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Seasonality with trend and cycle interactions
in unobserved components models

Siem Jan Koopman and Kai Ming Lee
VU University Amsterdam, The Netherlands.

Summary. Unobserved components time series models decompose a time series into a trend,
a season, a cycle, an irregular disturbance, and possibly other components. These models
have been successfully applied to many economic time series. The standard assumption of
a linear model, often appropriate after a logarithmic transformation of the data, facilitates es-
timation, testing, forecasting and interpretation. However, in some settings the linear-additive
framework may be too restrictive. In this paper, we formulate a non-linear unobserved com-
ponents time series model which allows interactions between the trend-cycle component and
the seasonal component. The resulting model is cast into a non-linear state space form and
estimated by the extended Kalman filter, adapted for models with diffuse initial conditions. We
apply our model to UK travel data and US unemployment and production series, and show that
it can capture increasing seasonal variation and cycle dependent seasonal fluctuations.

Keywords: Seasonal interaction; Unobserved components; Non-linear state space models;
Extended Kalman filter; Diffuse initialisation.

1. Introduction

A common practice in economic time series analyses and seasonal adjustment procedures
is first to take logarithms of the data. Linear Gaussian models can often be fitted to the
transformed data, while they are inappropriate for the series in the original metric. The
log-additive framework appears to work successfully for time series modelling based on
the decomposition in trend, seasonal, irregular and other components. The logarithmic
transformation converts an exponentialy growing trend into a linear trend. Further it
often eliminates or reduces growing seasonal variation and heteroskedasticity in seasonal
time series. However, the log-transformation has various drawbacks. In decomposition
models or in seasonal adjustment procedures such as the popular X-11 and X-12 programs,
the logarithmic transformation presents a single rigid alternative to the untransformed
linear-additive specification, see Findley et al. (1998). In particular, it predicates that time
series components combine multiplicatively in the implied model for the untransformed
series. A full multiplicative model is not always intended or desired. Moreover, when some
heteroskedasticity or changing seasonal variation remains after the transformation, applying
the log-transformation again is usually not an attractive solution. Finally, if the data is
already supplied in units measuring proportional changes, applying the log-transformation
can complicate model interpretation.

In cases where the log-transformation does not remove all heteroskedasticity or growth
in the seasonal component, an obvious course of action is to test alternative data transfor-
mations. In this paper, we explore a different option for the class of unobserved components
(UC) models, see Harvey (1989). Searching for an appropriate data transformation is es-
sentially a quest for a suitable functional form of the model. Our approach is to alter the
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functional form directly by relating the seasonal component to other components such as
the trend. We introduce a simple multiplicative-additive extension to linear UC models,
in which a transformation of the trend acts as a scaling factor to the seasonal component.
Estimation is effectively performed using the extended Kalman filter, which is a relatively
simple estimation procedure compared to more elaborate simulation-based methods. As our
model specification contains non-stationary components, we have adapted an exact diffuse
initialisation method to the extended Kalman filter, which is a novelty in the literature.
Unlike previous studies with multiplicative seasonality in UC models, we explicitly parame-
terise and estimate the degree of trend-season interaction. The basic linear form is a simple
parameter restriction in our model.

When the data contains a cyclical component, the magnitude of the seasonal influence
may vary along the phase of the cycle. Although seasonal fluctuations and business cycles
are traditionally assumed to be uncorrelated, for some macro-economic series there is in-
creasing evidence that this assumption is not valid. For example Cecchetti et al. (1997),
Franses and de Bruin (1999), van Dijk et al. (2003) and Osborn and Matas-Mir (2004)
have found varying amounts of interactions between cycles and seasonal adjustment in un-
employment and industrial production series using linear or non-linear smooth transition
autoregression models. With a straightforward extension of our trend-season interaction
model, we also examine interactions between the seasonal component and the business
cycle. Interactions between the season and the trend or the cycle are typically studied
separately in the literature. The non-linear UC model allows us to model changes in sea-
sonal variation along both trend and cycle fluctuations, as well as changes resulting from
exogenous shocks using a single coherent framework.

In the next section, we describe the basic unobserved components model. We further
review models with multiplicative seasonality that have been proposed in the literature. In
Secion 3 we introduce our non-linear specification and describe the extended Kalman filter
estimation procedure. Empirical applications of the new model are provided in Section 4.
We conclude with Section 5.

2. The unobserved components time series model

The unobserved components (UC) time series model has proven to be a valuable tool for
seasonal adjustment, see for example Gersch and Kitagawa (1983) and Harvey and Scott
(1994). Compared to model-free procedures, they offer the benefit of providing statistical
tests and prediction algorithms. Additionally, it is simple to incorporate changing seasonal
patterns and to introduce additional features such as explanatory variables, interventions
and cyclical components. Estimation of parameters and measurement of the components is
based on Kalman filter and smoothing methods which can deal with multivariate series and
data irregularities such as missing observations or unevenly recorded data. In this section
we briefly introduce the basic form of the model and provide some details which are needed
for the following sections.

The seasonal adjustment framework employed in this paper is based on the basic struc-
tural model (BSM) as described by Harvey (1989). We assume that the time series {Yt } is
observed which we routinely transform into logs, that is

yt = log Yt, t = 1, . . . , n. (1)
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The BSM decomposes yt into additive stochastic components and is given by

yt = µt + γt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n, (2)

where µt represents the trend, γt the seasonal component and εt the irregular disturbance
term. The linear model (2) can be regarded as a generalisation of the classical time series
decomposition in which deterministic components for trend and season are replaced by
stochastic processes. The BSM is a simple example of an UC model. It can be extended by
including deterministic and/or stochastic components. For example, explanatory variables,
intervention effects and stochastic cycles can be a part of the UC model.

The trend component µt in (2) is specified in our applications by the local linear trend
model as given by

µt+1 = µt + βt + ηt, ηt ∼ NID(0, σ2
η),

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ ), (3)

where βt represents the drift or slope of the trend µt and the disturbances εt, ηt and ζt are
mutually uncorrelated at all lags and leads, for t = 1, . . . , n. Some notable limiting cases
of this specification include: if σζ → 0 while ση is nonzero the trend is a random walk
with drift β1; if ση → 0 while σζ is nonzero the trend follows a smooth integrated random
walk; when both tend to zero, µt reverts to a deterministic linear trend. In our empirical
section we use a smooth trend specification by restricting σ2

η to zero. The initial values of
µ1, β1 are generally unknown, and will be represented by non-informative or diffuse initial
distributions. We will elaborate on this issue in Section 3.4, as the estimation procedure
needs to take it into account.

The seasonal component γt can be specified as a sum of time-varying trigonometric
cycles. Specifically, in a model for a time series with seasonal length s, we have(

γj,t+1

γ∗
j,t+1

)
=

[
cos λj sinλj

− sin λj cos λj

](
γj,t

γ∗
j,t

)
+

(
ωj,t

ω∗
j,t

)
,

(
ωj,t

ω∗
j,t

)
∼ NID(0, σ2

ωI2), (4)

with λj = 2πj/s for j = 1, . . . , [s/2] and t = 1, . . . , n. The seasonal disturbances ωj,t

and ω∗
j,t are uncorrelated with the previously specified disturbances at all lags and leads.

Further details of the seasonal components are discussed by Harvey and Scott (1994) and
Proietti (2000) who also describe alternative seasonal component models such as stochastic
seasonal dummy variables. Although these alternative specifications can be considered in
our non-linear UC model, we restrict ourselves to the trigonometric seasonal component (4)
in our study. The seasonal components represent non-stationary processes and their initial
conditions rely on diffuse distributions, similar to the trend components.

Many macro-economic time series contain periodic fluctuations of a lower frequency than
the seasonal frequencies. For example, fluctuations in economic time series associated with
medium frequencies related to periods between 1.5 and 8 years are typically interpreted as
the business cycle. The dynamic effects related to these medium frequencies appear often
less pronounced in the observed economic time series and tend to be of a stationary nature.
To incorporare the cyclical dynamics in the time series model, the BSM can be extended
by a stochastic cyclical component ψt. We then have the decomposition model

yt = µt + γt + ψt + εt, t = 1, . . . , n, (5)

with(
ψt+1

ψ∗
t+1

)
= ρ

[
cos λc sinλc

− sinλc cos λc

] (
ψt

ψ∗
t

)
+

(
κt

κ∗
t

)
,

(
κt

κ∗
t

)
∼ NID(0, σ2

κI2), (6)
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where the three unknown coefficients λc, ρ and σ2
κ in the cycle equation (6) represent the

cyclical frequency, the damping factor and the cycle disturbance variance, respectively.
The period of the cycle is given by 2π/λc. For |ρ| < 1, 0 < λ < π, the cycle ψt and
the auxilary process ψ∗

t are stationary ARMA(2,1) processes, with variance σ2
κ/(1 − ρ2).

The cycle collapses into an AR(1) process when λc approaches zero. The cycle process (6)
is stationary when |ρ| < 1 and its unconditional distribution provides the properly defined
initial conditions for ψt and ψ∗

t . The disturbances κt and κ∗
t are specified to be uncorrelated

with the disturbances of the other components at all lags and leads, and uncorrelated with
the initial distributions. A more elaborate discussion of the BSM and other UC models is
provided by Harvey (1989).

The BSM, possibly extended with a cycle component, can be formulated as a linear
state space model specified by the equations

yt = Zαt + εt, εt ∼ NID(0, σ2
ε),

αt+1 = Tαt + ηt, ηt ∼ NID(0,H), t = 1, . . . , n,
(7)

where the first equation relates the observation yt to an unobserved state vector αt, which
contains the trend, season and other components required for describing the model. The
state vector is modelled by the vector autoregressive process specified in the second equation,
together with an initial distribution for α1. The system variables Z, T , σ2

ε , H are chosen to
represent a particular model, and will usually depend unknown parameters, which can be
estimated by maximising the Gaussian Likelihood function of the model. After replacing
the parameters by their estimated values, the unobserved components can be estimated
using the Kalman filtering and smoothing equations. The seasonal adjustment procedure
based on BSM simply consists of substracting the estimated seasonal component γt from
the time series yt, that is ySA

t = yt − γ̂t where ySA
t is the seasonally adjusted time series

and γ̂t is the estimate of γt obtained from the Kalman smoothing equations. The filtering,
smoothing and Likelihood equations for linear Gaussian state space models are provided in
Appendix A. For a more complete discussion of state space methods and their applications,
we refer to Harvey (1989) and Durbin and Koopman (2001). An introductory text for UC
models is Commandeur and Koopman (2007).

3. Seasonal interacting components

3.1. A review of non-linear trend-seasonal models
A mixed additive multiplicative seasonal adjustment procedure based on the classical trend-
seasonal-irregular decomposition is considered by Durbin and Murphy (1975) for the mod-
eling of a set of unemployment series. The Durbin-Murphy specification is given by

yt = mt + gt + g∗t mt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n,

where mt is a deterministic trend function, gt is an additive seasonal fixed effect and g∗t is
a multiplicative seasonal fixed factor. A standard moving average filter can be derived to
extract the different components from the data. Although this model was not based on a
stochastic UC model, it can be regarded as an early precursor to our multiplicative seasonal
component model presented in Section 3.2 below.

Bowerman et al. (1990) explored a number of different approaches to deal with the
problem of increasing seasonal variation in time series. Although all their suggestions are
built on autoregressive moving average model based methods, one of their models takes a
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similar direction to what we propose. In their seasonal interaction model, changes in the
seasonal component are directly related to a deterministic trend by

yt = β0 + β+
0 t +

s−1∑
j=1

βjDj,t +
s−1∑
j=1

β+
j Dj,tt + ut,

where β0+β+
0 t is the fixed trend component with unknown coefficients β0 and β+

0 , Dj,t is the
seasonal dummy regression variable with unknown coefficients βj and β+

j for j = 1, . . . , s−1
and ut is modelled as an autoregressive integrated moving average process. The coefficients
βj are associated with the seasonal effects that are independent of the trend while the
coefficients β+

j are interacting with the trend.
In most current applications of UC models, the specifications are of the logarithmic

additive type, which can be easily formulated as a linear state space model. An impor-
tant practical advantage of linearity is that optimal estimates of the latent components,
parameters and model predictions are easily obtained using standard Kalman filter based
methods. Estimation is a routine procedure for which user-friendly graphical packages are
available. Combining multiplicative and additive components may result in a better model
fit. However, optimal estimation in such models can be quite complex, and are often car-
ried out using elaborate and computationally expensive simulation methods. For example,
Shephard (1994) formulated the multiplicative UC seasonal adjustment model

yt = (1 + γt + ε+
t )µt + εt, εt ∼ NID(0, σ2

ε), ε+
t ∼ NID(0, σ2

ε+),

for t = 1, . . . , n, where µt and γt are the trend and seasonal components and can possibly be
modelled as in (3) and (4), respectively. The two irregular terms εt and ε+

t are uncorrelated
with each other and with all other disturbances at all leads and lags. The seasonal term γt

interacts with the trend component through scaling while the irregular term ε+
t allows for

additional heteroskedasticity. The multiplicative UC model was used to seasonally adjust
the UK M4 money supply series based on parameter estimates obtained from Markov chain
Monte Carlo methods. Durbin and Koopman (2001) used a similar additive-multiplicative
specification as an exposition example for importance sampling techniques.

Proietti and Riani (2006) consider the use of the Box-Cox transformation in seasonal
UC models as a generalisation of the log-transformation. This approach implies an inverse
Box-Cox transformation on the sum of the components and it allows for a far wider range of
options than the usual exponential transformation. However, interpretation in the original
metric can be awkward for many values of the Box-Cox transformation parameter. The
model was estimated with a combination of numerical integration and simulation techniques.

Finally, the methodology of Ozaki and Thomson (1994) is close to our non-linear UC
model of Section 3.2 below although the specifics and motivations of the models are different.
Ozaki and Thompson consider a UC model in levels, given by

Yt = Mt(1 + Gt)eεt−σ2/2, εt ∼ NID(0, σ2
ε), t = 1, . . . , n,

where Mt is a linear Gaussian stochastic process for the trend while Gt is a stochastic
seasonal component. When the log-transformation is applied to Yt, the model for yt = log Yt

becomes linear and is given by

yt = µt + γt + εt, where µt = log(Mt) − σ2/2, γt = log(1 + Gt),



6 Siem Jan Koopman and Kai Ming Lee

for t = 1, . . . , n. Parameter estimation is carried out on basis of the non-linear model for Yt

using the extended Kalman filter rather than fitting the linear model to the log-transformed
series yt. The main motivation of this approach is to provide a model-based framework for
the X-11 seasonal adjustment procedure.

3.2. Trend and cycle interactions in the basic structural model
The standard linear BSM of Section 2 is usually fitted to log-transformed data, implying a
model with multiplicative components in the untransformed series. In the previous section
we have discussed a number of alternative specifications that have been suggested in the
literature. These non-linear model specifications can be considered when heteroskedasticity
or changing seasonal variation is not adequately removed by the model-based seasonal
adjustment procedure. We propose to generalize the BSM by scaling the amplitude of
the seasonal component via an exponential transformation of the trend component. The
time series, either in levels or in logs, is decomposed by the non-linear model

yt = µt + eb µtγt + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n, (8)

where b is an unknown fixed coefficient while the dynamic specification of the trend com-
ponent µt is given by (3) and the seasonal component γt is given by (4). The sign of the
coefficient b determines whether the seasonal variation increases or decreases when a posi-
tive change in the trend occurs. The model reduces to the basic linear specification when b
is zero. The overall amplitude of the seasonal component is determined by both eb µt and
the disturbance variance σ2

ω in the stochastic seasonal equation (4). The two sources of
seasonal amplitude can be made more explicit by restricting σ2

ω = 1 in (4) and replacing
eb µt by ea+b µt as the scaling process in (8) where a is a fixed unknown coefficient. However,
we adopt the specification in (8) to remain close to the original linear BSM.

When the cycle component (6) is added to the BSM we obtain model (5). Similar to
the introduction of the trend interaction, we can extend model (5) by a trend and cycle
interaction to obtain the non-linear model

yt = µt + ψt + eb µt+c ψtγt + εt, (9)

where c is an unknown fixed coefficient. The seasonal term in (9) is scaled by an exponential
transformation of a linear combination of the trend and cycle components. In economic time
series, the ψt component can often be referred to as the business cycle. In this case, the sign
of c determines whether seasonal effects are amplified or dampened during expansions and
recessions. The restriction b = c implies that the the seasonal component is scaled by the
combined trend-cycle component µt + ψt. Model (9) reduces to model (5) when b = c = 0.

In specification (9) changes to the seasonal pattern can be due to either the random
shocks of ωj,t and ω∗

j,t in (4) or to changes in the trend and cycle components. It is possible
to generalize the trend-cycle interaction model further. For instance, we can introduce a
scaling process to the cyclical component based on the trend and seasonal components. We
can also include interactions based on exogenous intervention and regression variables. In
this study however we limit ourselves to the specifications described in this section.

3.3. Seasonal interaction model in state space form
The non-linear seasonal interaction model cannot be formulated in the linear state space
form (7). Therefore we consider a non-linear state space model where the observation
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equation yt = Zαt + εt in (7) is replaced by

yt = Z(αt) + εt, εt ∼ NID(0, σ2
ε), t = 1, . . . , n. (10)

Here Z(·) is a deterministic non-linear function while the state equation for αt+1 in (30)
remains. The function Z(·) typically depends on unknown parameters.

The trend and cycle interaction model (9) has a state space representation with a state
vector given by

αt =
(

µt βt ψt ψ∗
t γ1,t γ∗

1,t γ2,t γ∗
2,t · · · γ

[ s−1
2 ],t

γ∗
[ s−1

2 ],t
γ[s/2],t

)′
, (11)

for s is even and with the non-linear equation Z(αt) in (10) given by

Z(αt) = µt + ψt + eb µt+c ψtγt, (12)

for t = 1, . . . , n. The dynamic specifications of the components are formulated in the state
equation of (30) with system variables given by

T =


1 1 0 0
0 1 0 0
0 0 Tψ 0
0 0 0 T γ

 , H =


0 0 0 0
0 σ2

ζ 0 0
0 0 σ2

κI2 0
0 0 0 σ2

ωIs−1

 , (13)

where
Tψ = ρC(λc), T γ = diag{C(λ1) . . . C(λ[ s−1

2 ]) − 1 }, (14)

for s is even and with λj = 2π j
s for j = 1, . . . , [s/2] and

C(λ) =
[

cos λ sinλ
− sinλ cos λ

]
. (15)

The elements of the initial state vector are diffuse except for ψt and ψ∗
t which represent

stationary variables. We therefore have α1 ∼ N(a1, P1) with

a1 = 0, P1 =


k 0 0 0
0 k 0 0
0 0 1

1−ρ2 σ2
κ I2 0

0 0 0 kIs−1

 , (16)

and let k → ∞. The state space formulation of the seasonal component with an odd seasonal
length is discussed in Durbin and Koopman (2001).

3.4. Parameter estimation by the extended Kalman filter
Estimation of the parameters and unobserved components in the BSM usually proceeds
by the procedure outlined at the end of Section 2. However, for the non-linear seasonal
interaction model (9) the Kalman filter cannot be applied directly. Many methods to
estimate non-linear state space models have been proposed in various disciplines. Early
algorithms were based on linearization of the non-linear functions. Most of the recent work
concentrate on simulation-based methods such as importance sampling and Markov chain
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Monte Carlo methods, see Fruhwirth-Schnatter (1994), Carter and Kohn (1994), Shephard
and Pitt (1997) and Durbin and Koopman (2000). In the engineering disciplines, the
simulation-based particle filter is often employed for analyzing non-linear state space models,
see Gordon et al. (1993), Pitt and Shephard (1999) and de Freitas et al. (2001). In this paper
we use the extended Kalman filter (EKF) for state estimation and likelihood evaluation.
The EKF has the virtue of being relatively simple in concept and implementation while
modest in terms of computational requirements. A review of the EKF method is provided
in Anderson and Moore (1979).

The Kalman filter evaluates the conditional expectation of the state vector αt given
past observations y1, . . . , yt−1 or given past and concurrent observations y1, . . . , yt. The
evaluation of these state estimates is an intractable problem for general non-linear state
space models. However, in many specific cases a practical approximation can be found. The
extended Kalman filter is based on a linearization of the non-linear effects in the model.
For the seasonal interaction model, the smooth non-linear function Z(·) is expanded around
an estimate of the state vector which we obtain from the Kalman filter. Since the Taylor
approximation is linear in the state vector αt, it can be estimated using the standard linear
Kalman filter. The Kalman filter applied to the linearized model is termed the extended
Kalman filter (EKF) for the non-linear state space model. The appendix provides details
of the EKF and its incorporation into the Kalman filter.

The EKF generally provides suboptimal estimates of the state vector in the original
non-linear model. In the engineering disciplines, from where the EKF originates, filtering
is regularly used to track physical objects. The researcher is typically more certain about
the model since it is derived from physical principles. The use of more sophisticated non-
linear filtering techniques is therefore helpful to obtain more precise estimates. In economic
applications however, models are seldomly interpreted as true descriptions of the underlying
dynamics. The non-linear model is adopted to develop methods for improving the model
fit compared to the linear specification. This inaccuracy due to the linearization step in the
EKF does not need to be interpreted as an error. Nevertheless, when more accurate state
estimates for the non-linear specification are desired, we can employ more computationally
demanding simulation methods.

An important issue in estimating stochastic trends and seasonal components is the treat-
ment of the initial state vector α1 with mean a1 and variance P1 which are given by (16)
for the seasonal interaction model. The trend and seasonal components are non-stationary
processes and we therefore treat the associating elements in the state vector as diffuse vari-
ables, that is k → ∞ in (16). In practice, a simple approach is to replace k by a very large
numerical value in (16), say k = 107. In our calculations, this approach has been detrimental
to the numerical stability of the estimation procedure. We therefore have adopted the exact
diffuse initialisation algorithms of Koopman and Durbin (2003) and we have modified the
EKF accordingly. Details of the diffuse recursions for the EKF together with an expression
for the diffuse likelihood and the smoothing equations for the seasonal interaction model
are given in the Appendix B.

The maximum likelihood estimates in this paper are obtained by maximising of the
likelihood function using the numerical maximisation routines of the Ox matrix program-
ming language by Doornik (2007). The diffuse EKF routines were programmed in Ox, with
support from the functions in the suite of SsfPack routines by Koopman et al. (1999).
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Fig. 1. Visist of UK residents abroad (i) in levels (million); (ii) in logarithms.

4. Applications

4.1. UK visits abroad
We consider a dataset of monthly visits abroad by UK residents from January 1980 to
December 2006. The data is compiled by the Office for National Statistics (ONS), based
on the International Passenger Survey. Figure 1 shows plots of the series in levels and logs.
The time series of visits abroad shows a clear upwards trend, a pronounced seasonal pattern,
and a steady increase of the seasonal variation over time. However, after applying the log-
transformation, the increase of seasonal variation has been converted into a decrease. This
may indicate that the log transformation is not particularly appropriate for this series.

A linear UC model with smooth trend, trigonometric seasonal and cycle components
together with a Normal white noise disturbance term as given by equations (3), (4), (5)
and (6) is considered first for the number of visitors in levels. The maximum likelihood
estimates of the parameters are

σ̂ε = 0.106, σ̂ζ = 0.00062, σ̂ω = 0.0119,

σ̂κ = 0.00050, ρ̂ = 0.958, 2π/λ̂c = 123, log L = 48.2,
(17)

where log L is the log-likelihood value of the model evaluated at the maximum likelihood
estimates of the parameters. The estimated standard deviation of the trend disturbance
is relatively small, which implies that the trend is quite steady. The cycle has the period
2π/λc which is estimated by 123 months. Furthermore, the estimates of the cycle parameters
include a relatively small disturbance and amplitude. Most of the variation in the series
can be attributed to the seasonal component and to the disturbance term.

Some diagnostic tests based on the standardized one-step ahead prediction errors f
−1/2
t vt
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are

N(χ2
2) = 6.21, H104(F104,104) = 2.46, Q12(χ2

11) = 30.9, Q24(χ2
23) = 43.8, (18)

where N is a Normality statistic based on the third and fourth moments, Hm a heteroskedas-
ticity statistic based on the ratio of sample variances for the first and last one third of the
prediction errors, and Ql the Box-Ljung serial correlation statistic up to l lags. The null
distributions of the tests are given between parentheses. The diagnostics indicate that there
is significant residual heteroskedasticity and serial correlation in the estimated model.

Next the non-linear specification

yt = µt + ψt + ebµtγt + εt, (19)

is considered, for which parameter estimates are obtained by by applying the EKF from
Section 3.2. The parameter and likelihood estimates are given by

σ̂ε = 0.116, σ̂ζ = 0.00090, σ̂ω = 0.00611, b̂ = 0.0984

σ̂κ = 0.00088, ρ̂ = 0.921, 2π/λ̂c = 589, log L = 55.1.
(20)

The most striking difference between the estimates of the linear model and model (19) is the
large drop in the value of the standard deviation of the seasonal disturbances, from 0.0119
to 0.00611. The seasonal component γt in the non-linear model is scaled by the process
ebµt , which must account for most of the drop in σω. The variation in µt is now factored
in the seasonality through the scaling in ebµtγt. The process for γt itself fluctuates less as
a result. The upper graph of figure 2 illustrates this by showing the scaled (ebµtγt) and
unscaled (γt) seasonal components as estimated by the extended Kalman smoother. The
scaled component is changing largely due to the trend component, while the unscaled com-
ponent shows much smaller movements and consequently does not require a large standard
deviation in the disturbance. We confirm that the scaled component is roughly the same
as the estimated γt from the linear model. In the non-linear model, the cycle frequency λc

approaches zero, which implies that the period approaches infinity and the the cycle process
ψt reduces to a first order autoregressive process.

The diagnostic tests for the residuals of the non-linear model are given by

N(χ2
2) = 3.18, H104(F104,104) = 1.85, Q12(χ2

11) = 21.9, Q24(χ2
23) = 31.0. (21)

Compared to the previous linear model, all the diagnostic tests have improved. The Q12 and
the H statistic are still significant at the 5% level, but autocorrelation and heteroskedasticity
are less severe than they were in the initial specification. Taken together with the significant
increase in the log-likelihood, we conclude that the non-linear model is a clear improvement
over the linear specification.

4.2. US unemployment
In this section we apply the seasonal interaction model to the log of the number of unem-
ployed persons in the US. The monthly data set was obtained from the Bureau of Labor
Statistics and spans the period from Januari 1948 to December 2006.

A graph of the log-unemployment with the estimated trend from a linear decomposition
model with trend, season, cycle and irreglar components is shown in Figure 3. Salient
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Fig. 2. Visits of UK residents abroad: (i) smooth estimates of the scaled and unscaled seasonal
components obtained by the EKF and its associated smoothing equations; (ii) scaling process ebµt

with µt replaced by its smoothed estimate.
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Fig. 3. US unemployed persons with smooth trend obtained by the Kalman smoother, applied to a
linear trend-cycle-season-irregular UC decomposition model.
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features in the series are an overall increasing trend that levels off towards the end, a
distinct seasonal pattern, and a large amount of medium frequency cyclical fluctuation.
The estimated parameters from the linear decomposition model considered are given by

σ̂ε = 0.00034, σ̂ζ = 0.00150, σ̂ω = 0.00120,

σ̂κ = 0.00072, ρ̂ = 0.970, 2π/λ̂c = 57, log L = 1082.3,
(22)

with diagnostics

N(χ2
2) = 70.6, H228(F228,228) = 4.43, Q12(χ2

11) = 18.5, Q24(χ2
23) = 33.9. (23)

The business cycle is quite persistent, with a damping factor of 0.97 for a monthly frequency,
which corresponds to 0.7 for a yearly frequency. The period of the cycle is close to five years,
which is a typical business cycle frequency. In Figure 3 The estimated trend is displayed,
and it may be concluded that the series possibly contains a second cycle with a longer period
that is currently captured by the trend component. The prediction error based diagnostic
tests indicate that Normality and homoskedasticity are strongly rejected, while the serial
correlation statistics are not significant at the 5% level.

The non-linear model with interactions between the trend plus cycle and the seasonal
component is given by equation (9) and is considered next. First we concentrate on the
cycle-season interaction and estimated the parameters of this model under the constraint
b = 0. Maximum likelihood estimates are given by

σ̂ε = 0.00034, σ̂ζ = 0.00217, ĉ = −0.58 σ̂ω = 0.00117,

σ̂κ = 0.00065, ρ̂ = 0.968, 2π/λ̂c = 53, log L = 1098.0,
(24)

with diagnostics

N(χ2
2) = 47.3, H228(F228,228) = 4.22, Q12(χ2

11) = 15.0, Q24(χ2
23) = 32.5. (25)

Compared to the estimates from the linear model, the cycle lenght becomes slightly shorter.
The model fit has improved in terms of the increase in the likelihood function. The diagnos-
tic tests show small improvements, but the Normality and heteroskedasticity tests remain
highly significant. The negative value of the estimated coefficient ĉ indicates that the sea-
sonal component is dampened during periods of high cyclical unemployment and attenuated
in the negative phases of the cycle, which is consistent with the findings of Franses (1995).
The smoothed scaling process is depicted in Figure 4, together with the scaled and unscaled
seasonal component. The plot shows that the scaling process adds about 20% cyclical vari-
ation to γt in the early parts of the series, but levels off towards the end as the amplitude
of the estimated cycle component wanes in the last decades.

We estimate a non-linear model with both trend-season and cycle-season interactions
next by relaxing the restriction b = 0. The parameters estimates are given by

σ̂ε = 0.00033, σ̂ζ = 0.00050, b̂ = −0.024, ĉ = −0.53 σ̂ω = 0.00126,

σ̂κ = 0.00074, ρ̂ = 0.980, 2π/λ̂c = 76, log L = 1106.9,
(26)

with diagnostics

N(χ2
2) = 49.2, H228(F228,228) = 4.47, Q12(χ2

11) = 23.3, Q24(χ2
23) = 45.9. (27)
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Fig. 4. US unemployed persons: (i) scaled and unscaled seasonal component; (ii) scaling process.

Although there is a considerable increase in the likelihood, not all the diagnostic statistics
have improved. The most notable difference is that the serial correlation in the residuals is
more severe than it is in the original linear specification, and is now significant at the 5%
level. This may be attributed to the fact that compared to previous estimates, there is a
considerable change in the decomposition, as the trend is smoother, while the cycle period
has lengthened over six years. Thus, a direct comparison with the linear specification is
difficult, in contrast to the previous non-linear specification without a trend-season inter-
action. If we fix the cycle length at the value of the previous model and re-estimate, we
obtain the estimates

σ̂ε = 0.00034, σ̂ζ = 0.00143, b̂ = −0.021, ĉ = −0.60 σ̂ω = 0.00132,
σ̂κ = 0.00067, ρ̂ = 0.973, 2π/λc = 53, log L = 1104.6,

(28)

with diagnostics

N(χ2
2) = 49.4, H228(F228,228) = 4.04, Q12(χ2

11) = 17.6, Q24(χ2
23) = 34.2. (29)

These diagnostic test statistics are very close to those from the model with only cycle-
season interactions, while the likelihood still shows a significant improved. Thus, we prefer
this decomposition to the previous one with an unrestricted cycle frequency parameter.
Nevertheless, the diagnostics are still not quite satisfactory for this series. As noted by
Franses (1995), the US unemployment series exhibits several types of non-linearities that
we have not incorporated in our model, such as asymmetry in the cycle and different shock
persistence in different regimes. A complete treatment will likely require a more elaborate
model, which we consider beyond the scope of this paper.
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Table 1. US monthly industrial and dwellings production, linear and non-linear model
estimates and test statistics.

(σ̂ × 10−3) industrial production dwellings production
linear trend-cycle linear trend cycle trend-cycle

σ̂ε 0.0007 0.0007 0.001 0.001 0.001 0.001
σ̂ζ 0.433 0.450 0.388 0.408 0.561 0.466
σ̂ω 0.223 0.223 0.574 0.680 0.555 0.640
σ̂κ 0.029 0.029 0.236 0.232 0.232 0.230

2π/λ̂c 60 60 73 72 72 72
ρ̂ 0.97 0.97 0.99 0.99 0.99 0.99

b̂ - 0.0009 - −0.063 - −0.052
ĉ - −0.063 - - −0.289 −0.245
log L 1742.0 1742.6 1182.7 1186.0 1187.5 1189.8
N 15.5 16.5 14.9 12.2 16.8 12.6
H 2.18 2.16 2.49 2.48 2.40 2.41
Q24 34.7 35.2 130.7 128.1 120.6 120.5
Q48 76.7 77.7 146.3 142.6 142.3 140.7

4.3. US industrial and dwellings production
In our final empirical application we consider the our seasonal interaction model for the US
industry and dwellings production series, obtained from OECD Main Economic Indicators
2007 release 07. Both monthly series start in Januari 1960 and end in December 2006.
The production of total industry is an index series standardised at 100 in the year 2000,
while the production of dwellings is measured in billion US dollars. We model both series
in logarithms.

Table 1 presents the estimation results of linear and non-linear models for both series.
For the industrial production series, we allow both trend-season and cycle-season interac-
tions in the non-linear model. The estimates show that there is almost no improvement
resulting from using the more general non-linear specification. We therefore conclude that
no trend or cycle induced variations in the seasonal component of the US industrial pro-
duction series is detected by our model.

For the dwelling production series, we estimate the parameters for non-linear models
with only a trend-season interaction (c = 0), only a cycle-season interaction (b = 0) and
with both trend-season and cycle-season interactions. We learn from Table 1 that both
forms of seasonal interactions improve upon the linear model, and either is significant on
its own as judged by a Likelihood Ratio test. The estimated coefficient of the trend-
season interaction is negative, which implies that the seasonal variation decreases with an
increase in the trend. It can be argued that technological changes which may have reduced
seasonal dependence in dwellings productions in the past decades have coincided with the
trending behaviour in the series, which are likely caused by many unrelated factors such
as demographic trends or changing preferences. Our model does not distinguish between
underlying causes, but merely reflects the effect of permitting the interaction.

The negative coefficient of the cycle-season interaction indicates that the seasonality in
the dwellings productions moves contra-cyclical, that is, the seasonal amplitude decreases
with a upswings in the production. A similar effect has been documented in some other US
industries by Cecchetti et al. (1997), who interpret it as a capacity constraint in the sector
when the inventory series of the sector does not show a decrease. However, in this paper
we do not model inventory series .
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Fig. 5. US dwellings production, seasonal scaling proces from non-linear model with (i) trend inter-
action; (ii) cycle interaction; (iii) trend-cycle interaction.

Figure 5 shows the estimated scaling process exp(bµt + cψt) from all three non-linear
models. We observe that the trend induced reduction in the seasonality is fairly uniform
and is roughly 20% over the sample period. The cyclical swings contribute about 10% at
their top in the mid 1970s and early 1980s. The cycle induced variations in seasonality
seems to have reduced since the early 1990s, as a direct result of the declining amplitude of
the cyclical component. Finally, we present the unobserved components decomposition of
the non-linear model with both trend-season and cycle-season interactions in figure 6. The
figure includes the data and estimated trend, cycle scaled and unscaled seasonal component.

5. Conclusion

In this paper we have presented a simple non-linear extension to the basic unobserved com-
ponents model to allow the seasonal term to interact with the trend and cycle components.
The model that we propose addresses some functional misspecifications that may arise from
imposing a (transformed) additive components structure. Starting from a basic linear un-
observed components model with trend, season, cycle and irregular components, we include
a transformed linear combination of trend and cycle components as a scaling factor for
the seasonal component. In the resulting model, the seasonal amplitude is amplified or
dampened along movements of the trend and cycle, depending on the estimated parameter.

In our empirical applications, we have considered models for UK travel, US unemploy-
ment and US production data. The travel data contains increasing seasonal variation, which
is not adequately removed by a logarithmic transformation. Our non-linear model shows
a significant improvement in the model fit and provides better residual diagnostics. In the
unemployment series, we found significant interactions between the cycle and the seasonal
term. Although the model improves on the linear specification, it does not capture all the
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Fig. 6. Smooth estimates of non-linear UC decomposition of US dwellings production with interaction
between the seasonal and the trend and cycle components: (i) data and trend; (ii) cycle; (iii) unscaled
season (iv) scaled season.

non-linear dynamics in the series. The estimated coefficient sign indicates that seasonal
effects are dampened during recessions. Finally our parameter estimates for the US pro-
duction series do not show evidence of interactions between in the total productions series.
However, in the production of dwellings, we observe a significant contra-cyclical effect, as
well as a dampening of seasonal fluctuations along the increasing trend.
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A. Kalman filter methods

A general formulation of a univariate linear Gaussian state space model is given by

yt = ct + Ztαt + εt, εt ∼ NID(0, σ2
ε),

αt+1 = dt + Ttαt + ηt, ηt ∼ NID(0,Ht), t = 1, . . . , n,
(30)

where the first equation relates the scalar observation yt to the state vector αt which is
modelled as the VAR(1) process as given in the second equation. The state vector contains
the unobserved components and additional variables to enable the specification of the dy-
namic processes of the components. The disturbance scalar εt and the disturbance vector
ηt are assumed to be uncorrelated at all times. The scalars ct and σ2

ε , the vectors Zt and
dt and the matrices Tt and Ht are fixed system variables which are designed to represent
a particular model. Some of the system variables may depend on a unknown parameters
which we collect in the vector θ. The initial state vector is distributed as α1 ∼ N(a1, P1).

The well-known Kalman filter equations for the state space model (30) are given by

vt = yt − Ztat − ct, ft = ZtPtZ
′
t + σ2

ε , Kt = PtZ
′
tf

−1
t ,

at|t = at + Ktvt, Pt|t = Pt − ftKtK
′
t,

at+1 = dt + Ttat|t, Pt+1 = TtPt|tT
′
t + Ht,

(31)

for t = 1, . . . , n, where vt is the one-step ahead prediction error with mean square error
(MSE) ft, Kt is the Kalman gain vector and at|t and at+1 are conditional expectations of the
state vector αt with MSE matrices Pt|t and Pt+1, respectively. The Kalman filter recursions
provide an efficient method for computing the filtered state at|t and the predicted state
at+1, which are the conditional expectation of respectively αt and αt+1 given obervations
y1, . . . , yt, together with their MSEs. When the disturbances are Gaussian white noise,
as we have assumed, the conditional expectations are the minimum MSE predictors of the
state. Without the Gaussianity assumption, the state estimates are minimum MSE amongst
the set of linear predictors.

The Kalman gain Kt determines the appropriate weighting of the observations for the
computation of the conditional expectations and variances. The smoothed state, that is the
expectation of the state vector conditional on the entire sample y1, . . . , yn, can be computed
with an additional set of recursions.

If the variables in αt are stationary, the initial mean and covariance matrix are implied
by their unconditional distributions. The distributions of non-stationary variables in αt are
degenerate and we let the associating diagonal elements in P1 approach infinity. We often
refer to non-stationary variables in the state vector as diffuse variables, and the Kalman filter
requires a diffuse initialisation. Here, we describe the initialisation method by Koopman
and Durbin (2003). When the state vector contains diffuse variables, the mean square error
matrix Pt can be decomposed into a part associated with diffuse state elements P∞,t, and
a part where the state has a proper distribution P∗,t, that is

Pt = kP∞,t + P∗,t, k → ∞. (32)

For the diffuse initial state elements, the corresponding entries on the diagonal matrix P∞,1

are set to positive values, while the remainder of the matrix contains zeros. Koopman and
Durbin show that for models with diffuse state elements the standard Kalman filter can be
split into two parts by expanding the inverse of ft = kf∞,t + f∗,t in k−1. In the first d
iterations of the filter, the state contains diffuse elements, which is indicated by a non-zero
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P∞,t. Separate update equations are maintained for the parts associated with P∞,t and
with P∗,t. Generally P∞,t becomes zero after some iterations, after which the standard
Kalman filter can be used. The diffuse filter equations for the initial iterations are given by

vt = yt − Ztat − ct,
f∞,t = ZtP∞,tZ

′
t, f∗,t = ZtP∗,tZ

′
t + σ2

ε ,
K∞,t = P∞,tZ

′
tf

−1
∞,t, K∗,t = (P∗,tZ

′
t − K∞,tf∗,t)f−1

∞,t,
P∞,t|t = P∞,t − f∞,tK∞,tK

′
∞,t, P∗,t|t = P∗,t − K∞,tZtP

′
∗,t − K∗,tZtP

′
∞,t,

P∞,t = TtP∞,t|tT
′
t , P∗,t = TtP∗,t|tT

′
t + Ht,

at|t = at + K∞,tvt, at+1 = dt + Ttat|t,
(33)

when f∞,t > 0. In case f∞,t is zero K∞,t does not exist, and the equations for K∗,t, P∞,t, P∗,t

and at|t are given by

K∗,t = P∗,tZ
′
tf

−1
∗,t , at|t = at + K∗,tvt,

P∞,t|t = P∞,t, P∗,t|t = P∗,t − K∗,tZtP
′
∗,t.

(34)

B. Extended Kalman filter with diffuse initialisation.

A non-linear state space model for a univariate time series y1, . . . , yn can be defined by the
equations

yt = Zt(αt) + εt, εt ∼ NID(0, σ2
ε),

αt+1 = Tt(αt) + ηt, ηt ∼ NID(0,Ht), t = 1, . . . , n,
(35)

The observations yt are modeled as a transformation Zt(·) of the latent stochastic state
vector αt plus observation noise εt. The state vector evolves according to the transformation
Tt(·) and accumulates additional transition noise ηt at each time t. We also assume all the
noise terms and the initial state to be mutually independent.

The extended Kalman filter equations provide approximate estimates of the state by
applying the standard Kalman filter to the Taylor approximations of (35) expanded around
the estimated state from the filter. The first order approximations to the observation and
transition equations are given by

yt ≈ Zt(at) + Z̃t · (αt − at) + εt,

αt+1 ≈ Tt(at|t) + T̃t · (αt − at|t) + ηt,
(36)

where

Z̃t =
∂Z(x)

∂x

∣∣∣
x=at

, T̃t =
∂T (x)

∂x

∣∣∣
x=at|t

, (37)

as the predicted and filtered states at and at|t respectively, are the most recent state esti-
mates available when the the linearizations are required in the filter equations.

As the first order approximation to the model is linear in αt, we can apply the Kalman
filter of (31) to (36), where the non-random terms in the linearized model Zt(at) − Z̃tat

and Tt(at|t) − T̃tat|t are incorporated into ct and dt respectively. This yields the equations

vt = yt − Zt(at), ft = Z̃tPtZ̃
′
t + σ2

ε , Kt = PtZ̃
′
tf

−1
t ,

at|t = at + Ktvt, Pt|t = Pt − ftKtK
′
t,

at+1 = Tt

(
at|t

)
, Pt+1 = T̃tPt|tT̃

′
t + Ht,

(38)
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which comprise the extended Kalman filter for the non-linear state space model (35). A
more detailed exposition of the extended Kalman filter can be found in Jazwinski (1970) or
Anderson and Moore (1979).

The filter equations provides estimates of the predicted and filtered state at+1 and at|t
with approximate mean square error matrices Pt+1 and Pt|t. The smoothed states α̂t, which
are conditioned on the entire sample of observations, can be calculated with an additional
set of recursions running from t = n backwards to t = 1, see Durbin and Koopman (2001).
For the first order approximation to the non-linear model, these take the form of

Lt = T̃t − T̃tKtZ̃t, rt−1 = Z̃ ′
tf

−1
t vt + L′

trt, α̂t = at + Ptrt−1 (39)

which is initialised by rn = 0.
When we apply the diffuse filter to the linear approximation (36), we obtain the diffuse

extended Kalman filter for t = 1, . . . , d, given by

vt = yt − Zt(at),
f∞,t = Z̃tP∞,tZ̃

′
t, f∗,t = Z̃tP∗,tZ̃

′
t + σ2

ε ,

K∞,t = P∞,tZ̃
′
tf

−1
∞,t, K∗,t = (P∗,tZ̃

′
t − K∞,tf∗,t)f−1

∞,t,

P∞,t|t = P∞,t − f∞,tK∞,tK
′
∞,t, P∗,t|t = P∗,t − K∞,tZ̃tP

′
∗,t − K∗,tZ̃tP

′
∞,t,

P∞,t = T̃tP∞,t|tT̃
′
t , P∗,t = T̃tP∗,t|tT̃

′
t + Ht,

at|t = at + K∞,tvt, at+1 = Tt

(
at|t

)
,

(40)
for f∞,t > 0, and

K∗,t = P∗,tZ̃
′
tf

−1
∗,t , at|t = at + K∗,tvt,

P∞,t|t = P∞,t, P∗,t|t = P∗,t − K∗,tZ̃tP
′
∗,t,

(41)

for f∞,t = 0. When P∞,t becomes zero after d iterations, the standard EKF of (38) applies
with Pd = P∗,d.

The state smoothing equations (39) can be split in a similar manner. The diffuse ex-
tended smoothing equations when f∞,t > 0 are

L∞,t = T̃t − T̃tK∞,tZ̃t,

r
(0)
t−1 = L′

∞,tr
(0)
t ,

r
(1)
t−1 = Z̃ ′

t(f
−1
∞,tvt − K ′

∗,tr
(0)
t ) + L′

∞,tr
(1)
t ,

(42)

while for f∞,t = 0 we have

L∗,t = T̃t − T̃tK∗,tZ̃t,

r
(0)
t−1 = Z̃ ′

tf
−1
∗,t vt + L′

∗,tr
(0)
t ,

r
(1)
t−1 = T̃ ′

tr
(1)
t ,

(43)

running from t = d, . . . , 1 with r
(0)
d = rd and r

(1)
d = 0. The smoothed state is calculated as

α̂t = at + P∗,tr
(0)
t−1 + P∞,tr

(1)
t−1. (44)
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We usually display the smoothed estimates of the state vector once the unknown parameters
are estimated. In models without diffuse variables, the parameter vector θ can be estimated
by maximising the Gaussian log-likelihood function as given by

log L(θ) = −1
2

n∑
t=1

log(2πft) −
1
2

n∑
t=1

v2
t / ft, (45)

where the one-step prediction error vt and its variance ft are obtained from the linear or
extended Kalman filter. The diffuse likelihood function is given by

log L = −n

2
log 2π − 1

2

d∑
t=1

wt −
1
2

n∑
t=d+1

(
log ft + f−1

t v2
t

)
, (46)

where wt = log f∞,t for f∞,t > 0 or wt = log f∞,t + f−1
∗,t v2

t when f∞,t = 0.
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