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Abstract

This paper presents the R package AdMit which provides flexible functions to approx-
imate a certain target distribution and to efficiently generate a sample of random draws
from it, given only a kernel of the target density function. The core algorithm consists
of the function AdMit which fits an adaptive mixture of Student-t distributions to the
density of interest. Then, importance sampling or the independence chain Metropolis-
Hastings algorithm is used to obtain quantities of interest for the target density, using
the fitted mixture as the importance or candidate density. The estimation procedure is
fully automatic and thus avoids the time-consuming and difficult task of tuning a sam-
pling algorithm. The relevance of the package is shown in two examples. The first aims
at illustrating in detail the use of the functions provided by the package in a bivariate
bimodal distribution. The second shows the relevance of the adaptive mixture procedure
through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange
log-returns data. The methodology is compared to standard cases of importance sampling
and the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs
approach.

Keywords: adaptive mixture, Student-t distributions, importance sampling, independence
chain Metropolis-Hasting algorithm, Bayesian inference, R software.
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1. Introduction

In scientific analysis one is usually interested in the effect of one variable, say, education (= x),
on an other variable, say, earned income (= y). In the standard linear regression model this
effect of x on y is assumed constant, i.e., E(y) = βx, with β a constant. The uncertainty of
many estimators of β is usually represented by a symmetric Student-t density (see, e.g., Heij,
de Boer, Franses, Kloek, and van Dijk 2004, Chap. 3). However, in many realistic models
the effect of x on y is a function of several deeper structural parameters. In such cases, the
uncertainty of the estimates of β may be rather non-symmetric. More formally, in a Bayesian
procedure, the target or posterior density may exhibit rather non-elliptical shapes (see, e.g.,
Hoogerheide, Kaashoek, and van Dijk 2007; Hoogerheide and van Dijk 2008b). Hence, in
several cases of scientific analysis, one deals with a target distribution that has very non-
elliptical contours and that it is not a member of a known class of distributions. Therefore,
there exists a need for flexible and efficient simulation methods to approximate such target
distributions.

This article illustrates the adaptive mixture of Student-t distributions (AdMit) procedure
(see Hoogerheide 2006; Hoogerheide et al. 2007; Hoogerheide and van Dijk 2008b, for details)
and presents its R implementation (R Development Core Team 2008) with the package AdMit
(Ardia, Hoogerheide, and van Dijk 2008). The AdMit procedure consists of the construction of
a mixture of Student-t distributions which approximates a target distribution of interest. The
fitting procedure relies only on a kernel of the target density, so that the normalizing constant
is not required. In a second step this approximation is used as an importance function in
importance sampling or as a candidate density in the independence chain Metropolis-Hastings
(M-H) algorithm to estimate characteristics of the target density. The estimation procedure
is fully automatic and thus avoids the difficult task, especially for non-experts, of tuning a
sampling algorithm.

In a standard case of importance sampling or the independence chain M-H algorithm, the
candidate density is unimodal. If the target distribution is multimodal then some draws
may have huge weights in the importance sampling approach and a second mode may be
completely missed in the M-H strategy. As a consequence, the convergence behavior of these
Monte Carlo integration methods is rather uncertain. Thus, an important problem is the
choice of the importance or candidate density, especially when little is known a priori about
the shape of the target density. For both importance sampling and the independence chain
M-H, it holds that the candidate density should be close to the target density, and it is
especially important that the tails of the candidate should not be thinner than those of the
target.

Hoogerheide (2006) and Hoogerheide et al. (2007) mention several reasons why mixtures of
Student-t distributions are natural candidate densities. First, they can provide an accurate
approximation to a wide variety of target densities, with substantial skewness and high kur-
tosis. Furthermore, they can deal with multi-modality and with non-elliptical shapes due to
asymptotes. Second, this approximation can be constructed in a quick, iterative procedure
and a mixture of Student-t distributions is easy to sample from. Third, the Student-t dis-
tribution has fatter tails than the Normal distribution; especially if one specifies Student-t
distributions with few degrees of freedom, the risk is small that the tails of the candidate are
thinner than those of the target distribution. Finally, Zeevi and Meir (1997) showed that un-
der certain conditions any density function may be approximated to arbitrary accuracy by a
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convex combination of basis densities; the mixture of Student-t distributions falls within their
framework. One sufficient condition ensuring the feasibility of the approach is that the target
density function is continuous on a compact domain. It is further allowed that the target
density is not defined on a compact set, but with tails behaving like a Student-t distribution.
Furthermore, it is even allowed that the target tends to infinity at a certain value as long as
the function is square integrable. In practice, a non-expert user sometimes does not know
whether the necessary conditions are satisfied. However, one can check the behaviour of the
relative numerical efficiency as robustness check; if the necessary conditions are not satisfied,
this will tend to zero as the number of draws increases (even if the number of components
in the approximation becomes larger). Obviously, if the provided target density kernel does
not correspond to a proper distribution, the approximation will not converge to a sensible
result. These cases of improper distributions should be discovered before starting a Monte
Carlo simulation.

The R package AdMit consists of three main functions: AdMit, AdMitIS and AdMitMH. The
first one allows the user to fit a mixture of Student-t distributions to a given density through
its kernel function. The next two functions perform importance sampling and independence
chain M-H sampling using the fitted mixture estimated by AdMit as the importance or can-
didate density, respectively. To illustrate the use of the package, we first apply the AdMit
methodology to a bivariate bimodal distribution. We describe in detail the use of the functions
provided by the package and document the relevance of the methodology to reproduce the
shape of non-elliptical distributions. Second, we consider an empirical application with the
Bayesian estimation of a mixture of ARCH model applied to foreign exchange log-returns,
and show the relevance of the AdMit methodology compared to standard procedures such
as using a unimodal candidate in importance and M-H sampling or the Griddy-Gibbs algo-
rithm. In particular, we illustrate that it is worthwhile to invest some computing time in
an accurate importance or candidate density. This investment may become profitable in the
sense of much quicker convergence or more reliable sampling results, especially to depict the
parameter uncertainty in the tails of the joint posterior distribution.

The outline of the paper is as follows: Section 2 presents the principles of the AdMit algorithm.
Section 3 presents the functions provided by the package with an illustration of a bivariate
non-elliptical distribution. Section 4 compares the performance of the AdMit approach with
standard strategies in a mixture of ARCH(1) model. Section 5 concludes.

2. Adaptive mixture of Student-t distributions

The adaptive mixture of Student-t distributions method developed in Hoogerheide (2006)
and Hoogerheide et al. (2007) constructs a mixture of Student-t distributions in order to
approximate a given target density p(θ) where θ ∈ Θ ⊆ Rd. The density of a mixture of
Student-t distributions can be written as:

q(θ) =
H∑
h=1

ηh td(θ |µh,Σh, ν) ,

where ηh (h = 1, . . . ,H) are the mixing probabilities of the Student-t components, 0 6 ηh 6 1
(h = 1, . . . ,H),

∑H
h=1 ηh = 1, and td(θ |µh,Σh, ν) is a d-dimensional Student-t density with
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mode vector µh, scale matrix Σh, and ν degrees of freedom:

td(θ |µh,Σh, ν) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)
(πν)d/2

× (det Σh)−1/2

(
1 +

(θ − µh)′Σ−1
h (θ − µh)
ν

)−(ν+d)/2

.

The adaptive mixture approach determines H, ηh, µh and Σh (h = 1, . . . ,H) based on a
kernel function k(θ) of the target density p(θ). It consists of the following steps:

Step 0 – Initial step Compute the mode µ1 and scale Σ1 of the first Student-t distribution
in the mixture as µ1 = arg maxθ∈Θ log k(θ), the mode of the log kernel function, and
Σ1 as minus the Hessian of log k(θ) evaluated at its mode µ1. Then draw a set of Ns

points θ[i] (i = 1, . . . , Ns) from this first stage candidate density q(θ) = td(θ |µ1,Σ1, ν),
with small ν to allow for fat tails.

Comment: In the rest of this paper, we use Student-t distributions with one degrees of
freedom (i.e., ν = 1) since:

1. it enables the method to deal with fat-tailed target distributions;
2. it makes it easier for the iterative procedure to detect modes that are far apart.

After that add components to the mixture, iteratively, by performing the following steps:

Step 1 – Evaluate the distribution of weights Compute the importance sampling weights
w(θ[i]) = k(θ[i])/q(θ[i]) for i = 1, . . . , Ns. In order to determine the number of compo-
nents H of the mixture we make use of a simple diagnostic criterion: the coefficient of
variation, i.e., the standard deviation divided by the mean, of the importance sampling
weights {w(θ[i]) | i = 1, . . . , Ns}. If the relative change in the coefficient of variation of
the importance sampling weights caused by adding one new Student-t component to
the candidate mixture is small, e.g., less than 10%, then the algorithm stops and the
current mixture q(θ) is the approximation. Otherwise, the algorithm goes to step 2.

Comment: Notice that q(θ) is a proper density, whereas k(θ) is a density kernel. So,
the procedure does not provide an approximation to the kernel k(θ) but provides an
approximation to the density of which k(θ) is a kernel.

Comment: They are several reasons for using the coefficient of variation of the im-
portance sampling weights. First, it is a natural, intuitive measure of quality of the
candidate as an approximation to the target. If the candidate and the target distri-
butions coincide, all importance sampling weights are equal, so that the coefficient of
variation is zero. For a poor candidate that not even roughly approximates the target,
some importance sampling weights are huge while most are (almost) zero, so that the
coefficient of variation is high. The better the candidate approximates the target, the
more evenly the weight is divided among the candidate draws, and the smaller the coef-
ficient of variation of the importance sampling weights. Second, Geweke (1989) argues
that a reasonable objective in the choice of an importance density is the minimization
of:

Ep[w(θ)] =
∫
k(θ)2

q(θ)
dθ =

∫ [
k(θ)
q(θ)

]2

q(θ)dθ = Eq[w(θ)2] ,
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or equivalently, the minimization of the coefficient of variation:(
Eq[w(θ)2]− Eq[w(θ)]2

)1/2
Eq[w(θ)]

,

since:
Eq[w(θ)] =

∫
k(θ)
q(θ)

q(θ)dθ =
∫
k(θ)dθ

does not depend on q(θ).

The reason for quoting the coefficient of variation rather than the standard deviation is
that the standard deviation of the ‘scaled’ weights (i.e., adding up to one) depends on
the number of draws, whereas the standard deviation of the ‘unscaled’ weights depends
on the scaling constant

∫
k(θ)dθ (i.e., typically the marginal likelihood). The coefficient

of variation of the importance sampling weights, which is equal for scaled and unscaled
weights, reflects the quality of the candidate as an approximation to the target (not
depending on number of draws or

∫
k(θ)dθ). The coefficient of variation is the function

one would minimize if one desires to estimate P(θ ∈ D), where D ⊂ Θ, if the true value
is P(θ ∈ D) = 0.5. Different functions should be minimized for different quantities
of interest. However, it is usually impractical to perform a separate tuning algorithm
for the importance density for each quantity of interest. Fortunately, in practice the
candidate resulting from the minimization of the coefficient of variation performs well
for estimating common quantities of interest such as posterior moments. Hoogerheide
and van Dijk (2008a) propose a different approach for forecasting extreme quantiles
where one substantially improves on the usual strategy by generating relatively far too
many extreme candidate draws.

Step 2a – Iterate on the number of components Add another Student-t distribution
with density td(θ |µh,Σh, ν) to the mixture with µh = arg maxθ∈Θ logw(θ) and Σh

equal to minus the inverse Hessian of logw(θ). Here, q(θ) denotes the density of the
mixture of (h− 1) Student-t distributions obtained in the previous iteration of the pro-
cedure. An obvious initial value for the maximization procedure for computing µh is
the point θ[i] with the highest weight in the sample {w(θ[i]) | i = 1, . . . , Ns}. The idea
behind this choice is that the new Student-t component should cover a region where
the weights w(θ) are relatively large. The point where the weight function w(θ) attains
its maximum is an obvious choice for µh, while the scale matrix Σh is the covariance
matrix of the local Normal approximation to the distribution with density kernel w(θ)
around the point µh.

Comment: There are several reasons for the use of minus the inverse Hessian of
logw(θ) as the scale matrix for the new component. First, suppose that k(θ) is a poste-
rior kernel under a flat prior, and that the first candidate distribution would be a uniform
distribution (or a Student-t with a huge scale matrix). Then logw(θ) takes its maximum
likelihood estimator and minus its inverse Hessian is an asymptotically valid estimate
for the maximum likelihood estimator’s covariance matrix. Second, since logw(θ) takes
its maximum at µh, its Hessian is negative definite (unless it is located at a boundary,
in which case we do not use this scale matrix). Therefore, minus the inverse Hessian is
a positive definite matrix that can be used as a covariance or scale matrix. Moreover, we
want to add candidate probability mass to those areas of the parameter space where w(θ)
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is relatively high, i.e., where there is relatively little candidate probability mass. This is
the reason for choosing the mode µh of the new candidate component at the maximum
of w(θ). Especially in those directions where w(θ) decreases slowy (i.e., moving away
from µh) we want to add candidate probability mass also further away from µh. This is
reflected by larger elements of minus the inverse Hessian of logw(θ) at µh. Note that
w(θ) is generally not a kernel of a proper density on Θ. However, we also do not require
this. We only make use of its local behaviour around its maximum at µh, reflected by
minus the inverse Hessian of logw(θ). That is, we specify a Student-t distribution that
locally behaves the same as the ratio w(θ).

Comment: To improve the algorithm’s ability to detect distant modes of a multimodal
target density we consider one additional initial value for the optimization and we use
the point corresponding to the highest value of the weight function among the two optima
as the mode µh of the new component in the candidate mixture.

Step 2b – Optimize the mixing probabilities Choose the probabilities ηh (h = 1, . . . ,H)
in the mixture q(θ) =

∑H
h=1 ηh td(θ |µh,Σh, ν) by minimizing the (squared) coef-

ficient of variation of the importance sampling weights. First, draw Np points θ
[i]
h

(i = 1, . . . , Np) from each component td(θ |µh,Σh, ν) (h = 1 . . . , H). Then, minimize:

E[w(θ)2]/E[w(θ)]2 (1)

with respect to ηh (h = 1, . . . ,H), where:

E[w(θ)m] =
1
Np

Np∑
i=1

H∑
h=1

ηhw(θ[i]
h )m (m = 1, 2) ,

and:

w(θ[i]
h ) =

k(θ[i]
h )∑H

l=1 ηl td(θ
[i]
h |µl,Σl, ν)

.

Comment: Minimization of (1) is time consuming. The reason is that this concerns
the optimization of a non-linear function of ηh (h = 1, . . . ,H) where H takes the values
2, 3, . . . in the consecutive iterations of the algorithm. Evaluating the function itself
requires already NH evaluations of the kernel and NH2 evaluations of the Student-t
densities. The computation of (analytically evaluated) derivatives of the function with
respect to ηh (h = 1, . . . ,H) takes even more time. One way to reduce the amount of
computing time required for the construction of the approximation is to use different
numbers of draws in different steps. One can use a relatively small sample of Np draws
for the optimization of the mixing probabilities and a large sample of Ns draws in order
to evaluate the quality of the current candidate mixture at each iteration (in the sense
of the coefficient of variation of the corresponding importance sampling weights) and
in order to obtain an initial value for the algorithm that is used to optimize the weight
function (that yields the mode of a new Student-t component in the mixture). Note that
it is not necessary to find the globally optimal values of the mixing probabilities; a good
approximation to the target density is all that is required.

Step 2c – Draw from the mixture Draw a sample of Ns points θ[i] (i = 1, . . . , Ns) from
the new mixture of Student-t distributions, q(θ) =

∑H
h=1 ηh td(θ |µh,Σh, ν), and go to
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step 1; in order to draw a point from the density q(θ) first use a draw from the uniform
distribution U(0, 1) to determine which component td(θ |µh,Σh, ν) is chosen, and then
draw from this d-dimensional Student-t distribution.

Comment: It may occur that one is dissatisfied with diagnostics like the coefficient of varia-
tion of the importance sampling weights corresponding to the final candidate density resulting
from the procedure above. In that case the user may start all over again the procedure with
a larger number of points Ns. The idea behind this strategy is that the larger Ns, the easier
it is for the method to detect and approximate the shape of the target density kernel, and to
specify the Student-t distributions of the mixture adequately.

If the region of integration Θ ⊆ Rd is bounded, it may occur in step 2 that w(θ) attains its
maximum at a boundary of the integration region. In this case minus the inverse Hessian of
logw(θ) evaluated at its mode µh may be a very poor scale matrix; in fact this matrix may not
even be positive definite. In such situations, µh and Σh are obtained as the estimated mean
and covariance based on a subset of draws corresponding to a certain percentage of largest
weights. More precisely, µh and Σh are obtained using the sample {θ[i] | i = 1, . . . , Ns} from
q(θ) we already have:

µh =
∑
j∈Jc

w(θ[j])∑
j∈Jc

w(θ[j])
θ[j]

Σh =
∑
j∈Jc

w(θ[j])∑
j∈Jc

w(θ[j])
(θ[j] − µh)(θ[j] − µh)′ ,

(2)

where Jc denotes the set of indices corresponding to the c percents of the largest weights in the
sample {w(θ[i]) | i = 1, . . . , Ns}. Since our aim is to detect regions with too little candidate
probability mass (e.g., a distant mode), the percentage c is typically a low value, i.e., 5%, 15%
or 30%. Moreover, the estimated Σh can be scaled by a given factor for robustness. Different
percentages and scaling factors could be used together, leading to different coefficients of
variation at each step of the adaptive procedure. The matrix leading to the smallest coefficient
of variation could then be selected as the scale matrix Σh for the new mixture component.

Once the adaptive mixture of Student-t distributions has been fitted to the target density p(θ)
through the kernel function k(θ), the approximation q(θ) is used in importance sampling or in
the independence chain Metropolis-Hastings (M-H) algorithm to obtain quantities of interest
for the target density p(θ) itself.

2.1. Background on Importance sampling

Importance sampling, due to Hammersley and Handscomb (1965), was introduced in econo-
metrics and statistics by Kloek and van Dijk (1978). It is based on the following relationship:

Ep
[
g(θ)

]
=
∫
g(θ)p(θ)dθ∫
p(θ)dθ

=
∫
g(θ)w(θ)q(θ)dθ∫
w(θ)q(θ)dθ

=
Eq
[
g(θ)w(θ)

]
Eq
[
w(θ)

] , (3)

where g(θ) is a given (integrable with respect to p) function, w(θ) = k(θ)/q(θ), Ep de-
notes the expectation with respect to the target density p(θ) and Eq denotes the expectation
with respect to the (importance) approximation q(θ). The importance sampling estimator of
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Ep
[
g(θ)

]
is then obtained as the sample counter-part of the right-hand side of (3):

ĝ =
∑N

i=1 g(θ[i])w(θ[i])∑N
i=1w(θ[i])

, (4)

where {θ[i] | 1, . . . , N} is a sample of draws from the importance density q(θ). Under certain
conditions (see Geweke 1989), ĝ is a consistent estimator of Ep

[
g(θ)

]
. The choice of the

function g(θ) allows to obtain different quantities of interest for p(θ). For instance, the mean
estimate of p(θ), denoted by θ, is obtained with g(θ) = θ; the covariance matrix estimate is
obtained using g(θ) = (θ − θ)(θ − θ)′; the estimated probability that θ belongs to a domain
D ⊆ Θ using g(θ) = I{θ∈D}, where I{•} denotes the indicator function which is equal to one
if the constraint holds and zero otherwise.

2.2. Background on the Independence chain Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm is a Markov chain Monte Carlo (MCMC) approach
that has been introduced by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953)
and generalized by Hastings (1970). MCMC methods construct a Markov chain converging
to a target distribution p(θ). After a burn-in period, which is required to make the influence
of initial values negligible, draws from the Markov chain are considered as (correlated) draws
from the target distribution itself.

In the independence chain M-H algorithm, a Markov chain of length N is constructed by the
following procedure. First, one chooses a feasible initial state θ[0]. Then, one repeats the
following steps N times (for i = 1, . . . , N). A candidate value θ? is drawn from the candidate
density q(θ?) and a random variable U is drawn from the uniform distribution U(0, 1). Then
the acceptance probability:

ξ(θ[i−1],θ?) = min

{
w(θ?)
w(θ[i−1])

, 1

}

is computed, where w(θ) = k(θ)/q(θ), k(θ) being a kernel of the target density p(θ). If
U < ξ(θ[i−1],θ?), the transition to the candidate value is accepted, i.e., θ[i] = θ?. Otherwise
the transition is rejected, and the next state is again θ[i] = θ[i−1].

3. Illustration I: The Gelman-Meng distribution

This section presents the functions provided by the R package AdMit with an illustration of a
bivariate bimodal distribution. This distribution belongs to the class of conditionally Normal
distributions proposed by Gelman and Meng (1991) with the property that the joint density
is not Normal. In the notation of the previous section, we have θ = (X1 X2)′.

Let X1 and X2 be two random variables, for which X1 is Normally distributed given X2

and vice versa. Then, the joint distribution, after location and scale transformations in each
variable, can be written as (see Gelman and Meng 1991):

p(x1, x2) ∝ exp
(
−1

2 [Ax2
1x

2
2 + x2

1 + x2
2 − 2Bx1x2 − 2C1x1 − 2C2x2]

)
, (5)
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where A, B, C1 and C2 are constants. Equation (5) can be rewritten as:

p(x1, x2) ∝ exp
(
−1

2

[
Ax2

1x
2
2 + (x− µ)′Σ−1(x− µ)

])
,

with:

µ =
(
BC2 + C1

1−B2

BC1 + C2

1−B2

)′
and Σ−1 =

(
1 −B
−B 1

)
,

so the term Ax2
1x

2
2 causes deviations from the bivariate Normal distribution. In what follows,

we consider the symmetric case in which A = 1, B = 0, C1 = C2 = 3.

The core function provided by the R package AdMit is the function AdMit. The arguments
of the function are the following:

> args(AdMit)

function (KERNEL, mu0, Sigma0 = NULL, control = list(), ...)
NULL

KERNEL is a kernel function k(θ) of the target density p(θ) on which the approximation is con-
structed. This function must contain the logical argument log. When log=TRUE, the function
KERNEL returns the (natural) logarithm value of the kernel function; this is used for numerical
stability. mu0 is the starting value of the first stage optimization µ1 = arg maxθ∈Θ log k(θ);
it is a vector whose length corresponds to the length of the first argument in KERNEL. If one
experiences misconvergence of the first stage optimization, one could first use an alterna-
tive (robust) optimization algorithm and use its output for mu0. For instance, the DEoptim
function provided by the R package DEoptim (Ardia 2007) performs the optimization (mini-
mization) of a function using an evolutionary (genetic) approach. Sigma0 is the (symmetric
positive definite) scale matrix of the first component. If a matrix is provided by the user,
then it is used as the scale matrix of the first component and mu0 is used as the mode of
the first component. control is a list of tuning parameters. The most important parameters
are: Ns (default: 1e+05), the number of draws used for evaluating the importance sampling
weights; Np (default: 1e+03), the number of draws used for optimizing the mixing probabili-
ties; CVtol (default: 0.1), the tolerance of the relative change of the coefficient of variation;
df (default: 1), the degrees of freedom of the mixture components; Hmax (default: 10), the
maximum number of components of the mixture; IS (default: FALSE), indicates if the scale
matrices Σh should always be estimated by importance sampling as in (2) without first trying
to compute minus the inverse Hessian; ISpercent (default: c(0.05,0.15,0.30)), a vector
of percentages of largest weights used in the importance sampling approach; ISscale (de-
fault: c(1,0.25,4)), a vector of scaling factors used to rescale the scale matrix obtained
by importance sampling. Hence, when the argument IS=TRUE, nine scale matrices are con-
structed by default and the matrix leading to the smallest coefficient of variation is selected
by the adaptive mixture procedure as Σh. For details on the other control parameters,
the reader is referred to the documentation file of AdMit (by typing ?AdMit). Finally, the
last argument of AdMit is ... which allows the user to pass additional arguments to the
function KERNEL. In econometric models for instance, the kernel may depend on a vector of
observations y = (y1 · · · yT )′ which can be passed to the function KERNEL via this argument.

For the numerical optimization of the mode µh and the estimation of the scale matrix Σh (i.e.,
when the control parameter IS=FALSE), the function optim is used with the option BFGS (the
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function nlminb cannot be used since it does not estimate the Hessian matrix at optimum).
If the optimization procedure does not converge, the algorithm automatically switches to the
Nelder-Mead approach which is more robust but slower. If still misconvergence occurs or if
the Hessian matrix at optimum is not symmetric positive definite, the algorithm automatically
switches to the importance sampling approach for this component.

For the numerical optimization of the mixing probabilities ηh (h = 1, . . . ,H), we rely on the
function nlminb (for speed purposes) and apply the optimization on a reparametrized domain.
More precisely, we optimize (H−1) components in R(H−1) instead of H components in [0, 1]H

with the summability constraint
∑H

h=1 ηh. If the optimization process does not converge,
then the algorithm uses the function optim with method Nelder-Mead (or method BFGS for
univariate optimization) which is more robust but slower. If still misconvergence occurs, the
starting value is kept as the output of the procedure. The starting value corresponds to a
mixing probability weightNC for ηh while the probabilities η1, . . . , ηH−1 are the probabilities
of the previous mixture scaled by (1-weightNC). The control parameter weightNC is set to
0.1 by default, i.e., a 10% probability is assigned to the new mixture component as a starting
value. Finally, note that AdMit uses C and analytically evaluated derivatives to speed up the
numerical optimization.

Let us come back to our bivariate conditionally Normal distribution. First, we need to define
the kernel function in (5). This is achieved as follows:

> 'GelmanMeng' <- function(x, A=1, B=0, C1=3, C2=3, log=TRUE)

+ {

+ if (is.vector(x))

+ x <- matrix(x, nrow=1)

+ r <- -.5 * (A*x[,1]^2*x[,2]^2 + x[,1]^2 + x[,2]^2

+ - 2*B*x[,1]*x[,2] - 2*C1*x[,1] - 2*C2*x[,2])

+ if (!log)

+ r <- exp(r)

+ as.vector(r)

+ }

Note that the argument log is set to TRUE by default so that the function outputs the (nat-
ural) logarithm of the kernel function. Moreover, the function is vectorized to speed up the
computations. The argument x is therefore a matrix and the function outputs a vector. We
strongly advise the user to implement the kernel function in this fashion. A contour plot of
GelmanMeng may be obtained as follows:

> 'PlotGelmanMeng' <- function(x1, x2)

+ {

+ GelmanMeng(cbind(x1,x2), log=FALSE)

+ }

> x1 <- x2 <- seq(from=-1, to=6, by=0.1)

> z <- outer(x1, x2, FUN=PlotGelmanMeng)

> contour(x1, x2, z, nlevel=20, las=1, lwd=2, col=rainbow(20),

+ xlab=expression(X[1]), ylab=expression(X[2]))

> abline(a=0, b=1, lty='dotted')
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The contour plot of GelmanMeng is displayed in the left-hand side of Figure 1. We notice the
bimodal banana shape of the kernel function.
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Figure 1: Left: contour plot of the Gelman and Meng (1991) kernel function. Right: contour
plot of the four-component Student-t mixture approximation estimated by the function AdMit.

Let us now use the function AdMit to find a suitable approximation for the density function
p(θ) whose kernel is (5). We set the seed of the pseudo-random number generator to a given
number and use the starting value mu0=c(0,0.1) for the first stage optimization. The result
of the function is assigned to the object outAdMit and printed out:

> set.seed(1234)

> outAdMit <- AdMit(GelmanMeng, mu0=c(0,0.1))

> print(outAdMit)

$CV
[1] 4.8224 1.3441 0.8892 0.8315

$mit
$mit$p
cmp1 cmp2 cmp3 cmp4

0.4464 0.1308 0.2633 0.1595

$mit$mu
k1 k2

cmp1 0.382 2.61803
cmp2 3.828 0.20337
cmp3 1.762 1.08830
cmp4 2.592 0.06723

$mit$Sigma
k1k1 k1k2 k2k1 k2k2
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cmp1 0.2292 -0.40000 -0.40000 1.57082
cmp2 0.8477 -0.08619 -0.08619 0.07277
cmp3 0.2832 -0.10489 -0.10489 0.22971
cmp4 0.7063 -0.18383 -0.18383 0.23474

$mit$df
[1] 1

$summary
H METHOD.mu TIME.mu METHOD.p TIME.p CV

1 1 BFGS 0.01 NONE 0.00 4.8224
2 2 BFGS 0.04 NLMINB 0.05 1.3441
3 3 BFGS 0.09 NLMINB 0.11 0.8892
4 4 BFGS 0.11 NLMINB 0.24 0.8315

The output of the function AdMit is a list. The first component is CV, a vector of length
H which gives the value of the coefficient of variation at each step of the adaptive fitting
procedure. The second component is mit, a list which consists of four components giving in-
formation on the fitted mixture of Student-t distributions: p is a vector of length H of mixing
probabilities, mu is a H × d matrix whose rows give the modes of the mixture components,
Sigma is a H × d2 matrix whose rows give the scale matrices (in vector form) of the mixture
components and df is the degrees of freedom of the Student-t components. The third com-
ponent of the list returned by AdMit is summary. This is a data frame containing information
on the adaptive fitting procedure: H is the component’s number; METHOD.mu indicates which
algorithm is used to estimate the mode and the scale matrix of the component (i.e., USER,
BFGS, Nelder-Mead or IS); TIME.mu gives the computing time required for this optimization;
METHOD.p gives the method used to optimize the mixing probabilities (i.e., NONE, NLMINB, BFGS
or Nelder-Mead); TIME.p gives the computing time required for this optimization; CV gives
the coefficient of variation of the importance sampling weights. When importance sampling
is used (i.e., IS=TRUE), METHOD.mu is of the type IS 0.05-0.25 indicating in this particular
case, that importance sampling is used with the 5% largest weights and with a scaling factor
of 0.25. Hence, if the control parameters ISpercent and ISscale are vectors of sizes d1

and d2, then d1d2 matrices are considered for each component H, and the matrix leading to
the smallest coefficient of variation is kept as the scale matrix Σh for this component. Time
outputs TIME.mu and TIME.p are provided since it might be useful, as a robustness check,
to see the computing time required for separate ingredients of the fitting procedure, that is
the optimization of the modes and the optimization of the mixing probabilities. A very long
computing time might indicate a numerical failure at some stage of the optimization process.

For the kernel function GelmanMeng, the approximation constructs a mixture of four compo-
nents. The computing time required for the construction of the approximation is 4.4 seconds
(see Section 6 for computational details). The value of the coefficient of variation decreases
from 4.8224 to 0.8315. A contour plot of the four-component approximation is displayed in
the right-hand side of Figure 1. This graph is produced using the function dMit which returns
the density of the mixture given by the output outAdMit$mit:

> 'PlotMit' <- function(x1, x2, mit)

+ {
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+ dMit(cbind(x1, x2), mit=mit, log=FALSE)

+ }

> z <- outer(x1, x2, FUN=PlotMit, mit=outAdMit$mit)

> contour(x1, x2, z, nlevel=20, las=1, lwd=2, col=rainbow(20),

+ xlab=expression(X[1]), ylab=expression(X[2]))

> abline(a=0, b=1, lty='dotted')

The contour plot suggests that the four-component mixture provides a good approxima-
tion of the density function whose kernel is (5). We can also use the mixture information
outAdMit$mit to display each of the mixture components separately:

> par(mfrow=c(2,2))

> for (h in 1:4)

+ {

+ mith <- list(p=1,

+ mu=outAdMit$mit$mu[h,,drop=FALSE],

+ Sigma=outAdMit$mit$Sigma[h,,drop=FALSE],

+ df=outAdMit$mit$df)

+ z <- outer(x1, x2, FUN=PlotMit, mit=mith)

+ contour(x1, x2, z, las=1, nlevel=20, lwd=2, col=rainbow(20),

+ xlab=expression(X[1]), ylab=expression(X[2]))

+ abline(a=0, b=1, lty='dotted')
+ title(main=paste("component nr.", h))

+ }

Contour plots of the four components are displayed in Figure 2.
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Figure 2: Student-t components of the four-component mixture approximation estimated by
the function AdMit.
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Once the adaptive mixture of Student-t distributions is fitted to the density p(θ) using a
kernel k(θ), the approximation q(θ) provided by AdMit is used as the importance sampling
density in importance sampling or as the candidate density in the independence chain M-H
algorithm.

The first function provided by the R package AdMit which allows to find quantities of interest
for the density p(θ) using the output outAdMit$mit of AdMit is the function AdMitIS. This
function performs importance sampling using the mixture approximation as the importance
density (see Section 2.1). The arguments of the function AdMitIS are the following:

> args(AdMitIS)

function (N = 1e+05, KERNEL, G = function(theta){theta}, mit = list(), ...)
NULL

N is the number of draws used in importance sampling; KERNEL is a kernel function k(θ) of
the target density p(θ); G is the function g(θ) in (3); mit is a list providing information on
the mixture approximation (i.e., typically the component mit in the output of the AdMit
function); ... allows additional parameters to be passed to the function KERNEL and/or G.

Let us apply the function AdMitIS to the kernel GelmanMeng using the approximation outAdMit$mit:

> set.seed(1234)

> outAdMitIS <- AdMitIS(KERNEL=GelmanMeng, mit=outAdMit$mit)

> print(outAdMitIS)

$ghat
[1] 1.458 1.460

$NSE
[1] 0.004892 0.004912

$RNE
[1] 0.6388 0.6309

The output of the function AdMitIS is a list. The first component is ghat, the importance
sampling estimator of Ep

[
g(θ)

]
in (4). This is a vector whose length corresponds to the

length of the output of the function G. The second component is NSE, a vector containing
the numerical standard errors (i.e., the square root of the variance of the estimates that can
be expected if the simulations were to be repeated) of the components of ghat. The third
component is RNE, a vector containing the relative numerical efficiencies of the components
of ghat (i.e., the ratio between an estimate of the variance of an estimator based on direct
sampling and the importance sampling estimator’s estimated variance with the same number
of draws). RNE is an indicator of the efficiency of the chosen importance function; if target
and importance densities coincide, RNE equals one, whereas a very poor importance density
will have a RNE close to zero. Both NSE and RNE are estimated by the method given in Geweke
(1989). For estimating Ep[g(θ)] the N candidate draws are approximately as ‘valuable’ as RNE
× N independent draws from the target would be.
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The computing time required to perform importance sampling on GelmanMeng using the four-
component mixture outAdMit$mit is 0.7 seconds, where most part of the computing time is re-
quired for the N evaluations of the function KERNEL at the sampled values {θ[i] | i = 1, . . . , N}.
The true values for Ep(X1) and Ep(X2) are 1.459. We notice that the importance sampling
estimates are close to the true values and we note the good efficiency of the estimation.
By default, the function G is function(theta){theta} so that the function outputs a vector
containing the mean estimates for the components of θ. Alternative functions may be provided
by the user to obtain other quantities of interest for p(θ). The only requirement is that the
function outputs a matrix. For instance, to estimate the covariance matrix of θ, we could
define the following function:

> 'G.cov' <- function(theta, mu)

+ {

+ 'G.cov_sub' <- function(x)

+ (x-mu) %*% t(x-mu)

+ theta <- as.matrix(theta)

+ tmp <- apply(theta, 1, G.cov_sub)

+ if (length(mu)>1)

+ t(tmp)

+ else

+ as.matrix(tmp)

+ }

Applying the function AdMitIS with G.cov leads to:

> set.seed(1234)

> outAdMitIS <- AdMitIS(KERNEL=GelmanMeng, G=G.cov, mit=outAdMit$mit,

+ mu=c(1.459,1.459))

> print(outAdMitIS)

$ghat
[1] 1.536 -1.166 -1.166 1.531

$NSE
[1] 0.006507 0.004644 0.004644 0.007391

$RNE
[1] 0.9128 0.7532 0.7532 0.7033

V <- matrix(outAdMitIS$ghat,2,2)

print(V)

[,1] [,2]
[1,] 1.536 -1.166
[2,] -1.166 1.531

V is the covariance matrix estimate. For this estimation, we have used the real mean values,
i.e., mu=c(1.459,1.459), so that NSE and RNE of the covariance matrix elements are correct.
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In general, those mean values are unknown and we have to resort to the importance sampling
estimates. In this case, the numerical standard errors of the estimated covariance matrix
elements are (generally slightly) downward biased.

The function cov2cor can be used to obtain the correlation matrix corresponding to the
covariance matrix:

> cov2cor(V)

[,1] [,2]
[1,] 1.0000 -0.7607
[2,] -0.7607 1.0000

The second function provided by the R package AdMit which allows to find quantities of
interest for the target density p(θ) using the output outAdMit$mit of AdMit is the function
AdMitMH. This function uses the mixture approximation as the candidate density in the inde-
pendence chain M-H algorithm (see Section 2.2). The arguments of the function AdMitMH are
the following:

> args(AdMitMH)

function (N = 1e+05, KERNEL, mit = list(), ...)
NULL

N is the length of the MCMC sequence of draws; KERNEL is a kernel function k(θ) of the
target density p(θ); mit is a list providing information on the mixture approximation (i.e.,
traditionally the component mit in the output of the function AdMit); ... allows additional
parameters to be passed to the function KERNEL.

Let us apply the function AdMitMH to the kernel GelmanMeng using the approximation outAdMit$mit:

> set.seed(1234)

> outAdMitMH <- AdMitMH(KERNEL=GelmanMeng, mit=outAdMit$mit)

> print(outAdMitMH)

$draws
k1 k2

1 1.283e+00 1.669e+00
2 1.603e+00 9.873e-01
3 1.223e+00 1.872e+00
4 1.223e+00 1.872e+00
5 1.030e+00 2.306e+00
6 1.030e+00 2.306e+00
7 2.767e+00 5.180e-02
8 2.767e+00 5.180e-02
9 1.857e+00 7.651e-01
10 1.857e+00 7.651e-01
11 1.857e+00 7.651e-01
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12 1.857e+00 7.651e-01
13 1.857e+00 7.651e-01
14 1.857e+00 7.651e-01
15 5.118e-01 1.941e+00
16 2.992e+00 7.749e-01
17 2.992e+00 7.749e-01
18 2.992e+00 7.749e-01
19 3.158e+00 2.375e-01
20 3.158e+00 2.375e-01
[ reached getOption("max.print") -- omitted 99980 rows ]]

$accept
[1] 0.5272

The output of the function AdMitMH is a list of two components. The first component is
draws, a N × d matrix containing draws from the target density p(θ) in its rows. The second
component is accept, the acceptance rate of the independence chain M-H algorithm.

In our example, the computing time required to generate a MCMC chain of size N=1e+05
(i.e., the default value) takes 0.8 seconds. Note that as for the function AdMitIS, the most
important part of the computing time is required for evaluations of the KERNEL function.
Part of the AdMitMH function is implemented in C in order to accelerate the generation of
the MCMC output. The rather high acceptance rate above 50% suggests that the mixture
approximates the target density quite well.

The R package coda (Plummer, Best, Cowles, and Vines 2008) can be used to check the con-
vergence of the MCMC chain and obtain quantities of interest for p(θ). Here, for simplicity, we
discard the first 1’000 draws as a burn-in sample and transform the output outAdMitMH$draws
in a mcmc object using the function as.mcmc provided by coda. A summary of the MCMC
chain can be obtained using summary:

> draws <- as.mcmc(outAdMitMH$draws[1001:1e5,])

> colnames(draws) <- c("X1","X2")

> summary(draws)$stat

Mean SD Naive SE Time-series SE
X1 1.466 1.239 0.003937 0.006903
X2 1.461 1.242 0.003948 0.005751

We note that the mean estimates are close to the values obtained with the function AdMitIS.
The relative numerical efficiency can be computed from the output of the function summary
by dividing the square of the (robust) numerical standard error of the mean estimates (i.e.,
Time-series SE) by the square of the naive estimator of the numerical standard error (i.e.,
Naive SE):

> summary(draws)$stat[,3]^2 / summary(draws)$stat[,4]^2

X1 X2
0.3253 0.4714
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These relative numerical efficiencies reflect the good quality of the candidate density in the
independence chain M-H algorithm.
Finally, note that for more flexibility, the functions AdMitIS and AdMitMH require the argu-
ments N and KERNEL. Therefore, the number of sampled values N in importance sampling or in
the independence chain M-H algorithm can be different from the number of draws Ns used to
fit the Student-t mixture approximation. In addition, the same mixture approximation can
be used for different kernel functions. This can be useful, typically in Bayesian times series
econometrics, to update a joint posterior distribution with the arrival of new observations.
In this case, the previous mixture approximation (i.e., fitted on a kernel function which is
based on T observations) can be used as the candidate density to approximate the updated
joint posterior density which accounts for the new observations (i.e., whose kernel function is
based on T + k observations where k > 1).

4. Illustration II: Bayesian estimation of a mixture of ARCH(1) model

In this section, we consider the Bayesian estimation of a mixture of ARCH model. We use
this example model in order to compare candidate distributions in case of a non-elliptical,
four-dimensional posterior distribution in a parameter space with a restricted domain. In
particular, we compare the performance of importance sampling and the independence chain
M-H algorithm using a candidate density constructed by the function AdMit with a naive
(standard) Cauchy distribution. We also consider the Griddy-Gibbs sampler of Ritter and
Tanner (1992) as a benchmark.
In this application, we set the control parameter IS=TRUE in the function AdMit. The reason
is that the (default) optimization step would quite possibly lead to unreliable scale matrices
due to the pronounced restrictions on the parameter space (i.e., in the sense that most of
the candidate mass might be outside of the allowed parameter region). Also, note that for
a high dimensional distribution, avoiding the optimization step can substantially speed up
the algorithm. The results for the four-dimensional highly non-elliptical posterior suggest the
method’s useful applicability in higher dimensions.
Mixture of ARCH and GARCH models have received a lot of attention in recent years as
they provide an explanation for the high persistence in volatility observed with single-regime
GARCH models (see, e.g., Lamoureux and Lastrapes 1990). Furthermore, these models al-
low for a sudden change in the (unconditional) volatility level which may lead to significant
improvements in volatility forecasts (see, e.g., Dueker 1997; Klaassen 2002; Marcucci 2005).
A two-component mixture of ARCH(1) model for log-returns {yt} may be written as:

yt = εth
1/2
t for t = 1, . . . , T

εt
i.i.d.∼ N (0, 1)

ht =

{
ω1 + αy2

t−1 with probability p
ω2 + αy2

t−1 with probability (1− p) ,

(6)

where ω1, ω2 > 0, α > 0 to ensure a positive conditional variance in each regime; N (0, 1) is
the standard Normal distribution. Model specification (6) allows to reproduce the so-called
volatility clustering observed in financial returns, i.e., the fact that large changes tend to be
followed by large changes (of either sign) and small changes tend to be followed by small
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changes. Moreover, it allows for sudden changes in the unconditional variance of the process;
in the first regime, the unconditional variance is ω1/(1 − α) while it is ω2/(1 − α) in the
second regime, provided that α < 1. We emphasize that model (6) is used for illustrative
purposes only. The assumption that the state (high/low volatility) is independent over time is
unrealistic and the number of regimes should be investigated. However, checking for possible
misspecification of model (6) is beyond the scope of the present paper.

In order to write the likelihood function, we define the vector of observations y = (y1 · · · yT )′

and we regroup the model parameters into the vector θ = (ω1 ω2 α p)′ for notational purposes.
The likelihood function of θ is then given by:

L(θ |y) ∝
T∏
t=2

{
p

(ω1 + αy2
t−1)1/2

exp
[
−1

2
y2
t

(ω1 + αy2
t−1)

]

+
1− p

(ω2 + αy2
t−1)1/2

exp
[
−1

2
y2
t

(ω2 + αy2
t−1)

]}
.

(7)

We use the following proper prior densities on the model parameters:

p(ω•) ∝ φ(ω• | 0, 2)I{ω•>0}

p(α) ∝ φ(α | 0.2, 0.5)I{06α<1}

p(p) ∝ I{06p61} ,

(8)

where φ(• |µ, σ) denotes the Normal density with mean µ and standard deviation σ and where
we recall that I{•} is the indicator function which equals one if the constraint holds and zero
otherwise. In addition, we require prior independence for the model parameters except for
ω1 and ω2, where we require ω1 < ω2 for identification purposes. The prior constraint on α1

ensures that the model (6) is covariance-stationary in each regime. A kernel function of the
joint posterior distribution is then constructed by combining the likelihood function and the
joint prior via the Bayes rule. Details regarding the implementation of the kernel function for
this model are provided in the Appendix.

It is important to note that we have a lack of conjugacy between the likelihood function and
the joint prior density so that the joint posterior is of unknown form. Moreover, the simple
Gibbs sampler cannot be used for this model since the full conditionals are also of unknown
form. Alternative estimation techniques are thus required. In what follows, we consider the
following strategies:

AdMit IS importance sampling using an adaptive mixture of Student-t distributions as the im-
portance density. First use the function AdMit with control parameter IS=TRUE (i.e.,
the mode and the scale matrix of the Student-t components are estimated with the
importance sampling weights, as in (2)). Then perform importance sampling using the
function AdMitIS with N=50000 draws.

AdMit M-H independence chain M-H using an adaptive mixture of Student-t distributions as the
candidate density. Use the same mixture approximation as for AdMit IS, but instead
of using the function AdMitIS, perform independence chain M-H sampling using the
function AdMitMH with N=51000 draws. The first 1’000 draws are discarded as a burn-in
sample.
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t1 IS importance sampling using a Student-t distribution with one degree of freedom (i.e.,
Cauchy) as the importance density. First use the function AdMit with control pa-
rameter Hmax=1. Then perform importance sampling using the function AdMitIS with
N=50000 draws.

t1 M-H independence chain M-H using a Student-t distribution with one degree of freedom (i.e.,
Cauchy) as the candidate density. Use the same approximation as for t1 IS, but instead
of using the function AdMitIS, perform independence chain M-H sampling using the
function AdMitMH with N=51000 draws. The first 1’000 draws are discarded as a burn-in
sample.

GG Griddy-Gibbs sampler. Update each parameter by inversion from the full conditional
distribution computed on a grid of the parameter space. Use the following grids for the
model parameters:

ω1 seq(from=0.001, to=0.25, by=0.002)
ω2 seq(from=0.001, to=2, by=0.01)
α seq(from=0, to=0.99, by=0.008)
p seq(from=0, to=1, by=0.008)

The kernel function is evaluated for each parameter in turn for the different values
on the grid, and then a new draw is generated using the function sample with the
corresponding probabilities (i.e., the normalized kernel values on the grid). Therefore,
the approach is not strictly speaking the Griddy-Gibbs of Ritter and Tanner (1992) which
consists in updating each parameter by inversion from the full conditional distribution
computed by a deterministic integration rule since we generate new draws from a discrete
distribution. However, an additional interpolation step would have slowed down even
more the generation of the model parameters (which is already very slow as shown later
in this section). We generate a chain of length 51’000 and discard the first 1’000 draws
as a burn-in sample.

More advanced approaches have been proposed to perform an efficient Bayesian estimation
of regime-switching GARCH type models. However, their implementation costs are far from
negligible. The interested reader is referred to Ardia (2008) for further detail. Finally, we
point out that the permutation sampler of Frühwirth-Schnatter (2001) or the permutation-
augmented sampler of Geweke (2007) may be used in the context of mixture models. They are
partly used to explore the unconstrained joint posterior distribution in order to find suitable
identification constraints. This is not necessary here as we required ω1 < ω2.
We apply our Bayesian estimation methods to daily observations of the Deutschmark vs
British Pound (DEM/GBP) foreign exchange log-returns. The sample period is from January
3, 1984, to December 31, 1991, for a total of 1’974 observations. The nominal returns are
expressed in percent as in Bollerslev and Ghysels (1996). This data set has been proposed as
an informal benchmark for GARCH time series software validation (see, e.g., McCullough and
Renfro 1998) and is available from the R package fEcofin (Wuertz 2008) using data(dem2gbp).
From this time series, the first 250 observations are used to illustrate the Bayesian approach.
The time series is shown in Figure 3.
The five estimation strategies are initialized with the mode of the kernel function: ω1 = 0.0350,
ω2 = 0.2782, α = 0.2129 and p = 0.5826. The function AdMit finds a four-component mixture
approximation; the coefficient of variation at each iteration is 3.618 1.776 1.435 and 1.430.
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Figure 3: DEM/GBP foreign exchange log-returns (in percent, first 250 observations of the
dem2gbp data set).

Table 1 reports the estimation results for the five strategies. From this table, we note that
the posterior mean estimates given by the five methodologies are very similar. This is also
the case for the posterior standard deviations, except for parameter ω2. The smaller values
obtained with the t1 approach may suggest that the tails of the marginal posterior for ω2 is not
fully covered by the Student-t candidate. The Griddy-Gibbs sampler is extremely slow (i.e.,
3 hours) compared to the adaptive approach (i.e., 7.1 minutes) and the naive approach (i.e.,
30 seconds). This illustrates that for complex problems the Griddy-Gibbs is hardly usable
as a real-time method. AdMit clearly requires more time than the naive approach (i.e., 14
times slower) because of the time required for fitting the adaptive mixture candidate (i.e., 7
minutes). However, its efficiency is much better, where the largest differences between the
strategies are observed for parameter ω2. In the importance sampling case, RNE is more than
14 times larger for the AdMit approach. Figure 4 illustrates the differences between both
methods. AdMit requires 422 seconds for fitting the mixture candidate but after 40 seconds
of sampling it already outperforms (in the sense of a higher precision) the naive approach in
estimating the posterior mean of ω2.

Regarding the M-H strategy for these candidates, we also notice the better efficiency for
AdMit. The autocorrelation in the MCMC output for the naive approach is much higher
than for AdMit, especially for parameter ω2, as illustrated in Figure 5 and Figure 6. We note
that both acceptance rates are rather high. In practice, for highly non-elliptical posterior
distributions in econometric models, independence chain M-H often leads to acceptance rates
below 10%. Apparently, the high autocorrelation observed for the t1 M-H approach is caused
by a too small candidate scale matrix; a lot of draws are generated in a small area of the
parameter space which are generally accepted. Incidentally, the t1 M-H sequence gets stuck
in a point far away from the posterior mode (i.e., there occurs a long sequence of rejections)
which implies slowly decaying autocorrelations.
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Table 1: Posterior results for the five estimation strategies.F

AdMit t1

IS M-H IS M-H GG

E(ω1 |y) 0.0452 0.0457 0.0454 0.0454 0.0450
NSE (×100) 0.0159 0.0272 0.0435 0.0469 0.0189

RNE 0.2636 0.0925 0.0361 0.0311 0.1869√
VAR(ω1 |y) 0.0182 0.0185 0.0185 0.0185 0.0182
ρ1(ω1) – 0.731 – 0.780 0.641
ρ10(ω1) – 0.094 – 0.229 0.070

E(ω2 |y) 0.3488 0.3519 0.3415 0.3390 0.3457
NSE (×100) 0.1503 0.2170 0.4843 0.4766 0.1501

RNE 0.1908 0.0885 0.0135 0.0119 0.1671√
VAR(ω2 |y) 0.1468 0.1443 0.1259 0.1160 0.1372
ρ1(ω2) – 0.731 – 0.877 0.610
ρ10(ω2) – 0.133 – 0.471 0.054

E(α |y) 0.2324 0.2316 0.2320 0.2310 0.2330
NSE (×100) 0.0787 0.1179 0.1159 0.1613 0.0571

RNE 0.2998 0.1326 0.1392 0.0699 0.5754√
VAR(α |y) 0.0964 0.0960 0.0967 0.0953 0.0969
ρ1(α) – 0.701 – 0.727 0.235
ρ10(α) – 0.056 – 0.111 0.009

E(p |y) 0.6361 0.6389 0.6337 0.6344 0.6347
NSE (×100) 0.1103 0.1736 0.2741 0.3143 0.1546

RNE 0.2893 0.1186 0.0465 0.0345 0.1471√
VAR(p |y) 0.1326 0.1336 0.1321 0.1306 0.1326
ρ1(p) — 0.710 – 0.751 0.785
ρ10(p) – 0.082 – 0.188 0.083

acceptance rate – 0.309 – 0.284 –
total time (sec.) 432 432 30 30 10’885
time estimation (sec.) 422 20 –
time sampling (sec.) 10 10 10 10 10’885

F AdMit: four-component mixture approximation; t1: Student-t distribution
with one degree of freedom; IS: importance sampling (i.e., using the func-
tion AdMitIS); M-H: independence chain Metropolis-Hastings algorithm (i.e.,
using the function AdMitMH); GG: Griddy-Gibbs sampler; E(• |y): posterior
mean estimate; NSE: numerical standard error of the posterior mean estimate;
RNE: relative numerical efficiency of the posterior mean estimate;

√
VAR(• |y):

posterior standard deviation estimate; ρk(•): autocorrelation at lag k in the
MCMC output. The number of draws is 50’000 for the five estimation strate-
gies.
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Figure 5: Autocorrelation function of the model parameters in the AdMit MH approach (i.e.,
using a four-component mixture approximation as the candidate density in the independence
chain M-H algorithm).
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Figure 6: Autocorrelation function of the model parameters in the t1 MH approach (i.e., using
a t1 approximation as the candidate density in the independence chain M-H algorithm).

The improvement of the AdMit approach over the naive approach is even more clear when
focusing on the tails of the joint posterior distribution. On the left-hand side of Figure 7,
we present the (natural) logarithm of the four-component mixture density. We note the non-
elliptical shape for high values of p where some components of the mixture drag some of
the candidate probability mass to the right-hand side of the plot. The right-hand side of
the figure displays 50’000 draws for (ω2 p)′ generated by the independence chain M-H using
the four-component mixture as the candidate density. We notice the banana shape of the
marginal distribution of (ω2 p)′. For large values of p, the likelihood has a small information
content for parameter ω2 so that the posterior of ω2 tends to its diffuse prior. In particular,
we can notice a non-negligible number of draws in the quadrant [ω2 > 1; p > 0.8]. Figure 8
presents the same type of graphs for the t1 candidate. The left-hand side clearly shows the
elliptical shape of the candidate density. On the right-hand side, only two draws are located
in the quadrant [ω2 > 1; p > 0.8]. In this case, the naive approach is not able to detect
well the mass of the joint posterior in this region. Also, far too few draws are generated
in the quadrant [0.8 < ω2 6 1; p > 0.8] compared to the AdMit approach. The marginal
distribution obtained with the Griddy-Gibbs displayed in Figure 9 underlines the importance
of the additional components in reproducing the non-elliptical shapes of the joint posterior.
The additional time required by AdMit compared to the naive approach is therefore useful
and acts as a way to robustify the Bayesian estimation of this model.

In Table 2, we report the estimated probability P(ω2 > ω∗2 | p > p∗,y) for different values of
ω∗2 and p∗ in the upper-right tail of the marginal distribution for (ω2 p)′. The probabilities are
estimated using the 50’000 draws generated by the AdMit M-H, t1 M-H and Griddy-Gibbs
strategies. The 95% confidence intervals (CI) of the estimated probabilities are obtained
using a robust estimate of the numerical standard error (i.e., using Time-series SE of the
summary function provided by the R package coda). From this table, we notice that the
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Figure 7: Left: contour plot of the (natural) logarithm of the four-component mixture density.
Right: 50’000 draws from the marginal distribution of (ω2 p)′ obtained with the AdMit MH
strategy (i.e., using a four-component mixture approximation as the candidate density in the
independence chain M-H algorithm).
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Figure 8: Left: contour plot of the (natural) logarithm of the t1 candidate density. Right:
50’000 draws from the marginal distribution of (ω2 p)′ obtained with the t1 M-H strategy (i.e.,
using a t1 approximation as the candidate density in the independence chain M-H algorithm).
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Figure 9: 50’000 draws from the marginal distribution of (ω2 p)′ using the Griddy-Gibbs
sampler.

t1 approximation completely underestimates the probability compared to the Griddy-Gibbs
approach. Most of the CI given by this approach are the same due to the small amount of
draws in the upper-right quadrant of the marginal distribution. These should obviously be
smaller for larger ω∗2. On the other hand, the CI provided by AdMit M-H overlap the CI of
the Griddy-Gibbs in every cases. The probability estimates in the extreme tail are therefore
not significantly different between the AdMit M-H approach and the Griddy-Gibbs sampler.

5. Concluding remarks

This paper presented the R package AdMit which provides functions to approximate and
sample from a certain target distribution given only a kernel of the target density function.
The estimation procedure is fully automatic and thus avoids the time-consuming and difficult
task of tuning a sampling algorithm. The relevance of the package has been shown in two
examples. The first illustrated in detail the use of the functions provided by the package in
a bivariate bimodal distribution. The second showed the relevance of the AdMit procedure
through the Bayesian estimation of a mixture of ARCH model fitted to foreign exchange log-
returns data. The methodology was compared to standard cases of importance sampling and
the Metropolis-Hastings algorithm using a naive candidate and with the Griddy-Gibbs ap-
proach. Both for investigating means and tails of the joint posterior distribution the adaptive
approach is preferable.

In a recent paper, Hoogerheide and van Dijk (2008b) illustrate the usefulness of the AdMit
approach both in a bivariate posterior in an instrumental variable model and in a eight-
dimensional posterior in a mixture model. We believe that this approach may be applicable
in many fields of research and hope that the R package AdMit will be fruitful for many
researchers like econometricians or applied statisticians.
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Table 2: Estimation of the probability P(ω2 > ω∗2 | p > p∗,y) for different
values of ω∗2 and p∗.F

ω∗2 = 0.8 ω∗2 = 1.0 ω∗2 = 1.2
p∗ [ 95% CI ] [ 95% CI ] [ 95% CI ]

AdMit M-H 0.8 0.0934 0.1502 0.0259 0.0807 -0.0010 0.0393
0.9 0.4055 0.6697 0.2119 0.4679 0.0395 0.2677

t1 M-H 0.8 -0.0008 0.0262 -0.0042 0.0132 -0.0042 0.0132
0.9 -0.0024 0.1231 -0.0024 0.1231 -0.0024 0.1231

GG 0.8 0.1087 0.1308 0.0400 0.0561 0.0168 0.0263
0.9 0.4013 0.4816 0.2206 0.2977 0.1093 0.1786

F AdMit M-H: independence chain M-H algorithm using a four-component
mixture approximation as the candidate density; t1: independence chain M-
H algorithm using a Student-t distribution with one degree of freedom as
the candidate density; GG: Griddy-Gibbs sampler; 95% CI: 95% confidence
intervals of the estimated probability P(ω2 > ω∗2 | p > p∗,y) obtained using
robust standard errors (i.e., using Time-series SE of the summary function
provided by the R package coda). The number of draws in the joint poste-
rior sample is 50’000 for the three estimation strategies.

Finally, if you use R or AdMit, please cite the software in publications. Use:

> citation()

and:

> citation("AdMit")

6. Computational details

The results in this paper were obtained using R 2.8.0 (R Development Core Team 2008) with
the packages AdMit 1.00-04 (Ardia et al. 2008), coda 0.13-2 (Plummer et al. 2008), fEcofin
270.73 (Wuertz 2008) and mvtnorm 0.9-0 (Genz, Bretz, and Hothorn 2008). R itself and all
packages used are available from CRAN at http://CRAN.R-project.org/. Computations
were performed on a Genuine Intel® dual core CPU T2400 1.83Ghz processor. Code out-
puts were obtained using options(digits=4, max.print=40). Since the functions AdMit,
AdMitIS and AdMitMH highly rely on evaluations of the function KERNEL, we strongly ad-
vise the users to implement this function in a vectorized fashion. Also, implementation in
lower-level languages like C or Fortran is possible using the functions .C and .Fortran.
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Appendix: Mixture of ARCH(1) model

The implementation of the kernel function for the mixture of ARCH(1) model is realized in
two steps. First, the prior (8) is implemented with the function PRIOR. The function PRIOR
tests whether the constraints are fulfilled, and outputs a (Ns × 2) matrix whose first column
indicates if the constraint is satisfied, and the second column returns the value of the prior
at the corresponding point:

> 'PRIOR' <- function(omega1, omega2, alpha, p, log=TRUE)

+ {

+ c1 <- (omega1>0 & omega2>0 & alpha>=0) ## positivity constraint

+ c2 <- (alpha<1) ## stationarity constraint

+ c3 <- (p>0 & p<1) ## U(0,1) prior on p

+ c4 <- (omega1<omega2) ## identification constraint

+ r1 <- c1 & c2 & c3 & c4

+ r2 <- rep.int(-Inf,length(omega1))

+ tmp <- dnorm(omega1[r1==TRUE], 0, 2, log=TRUE)

+ tmp <- tmp + dnorm(omega2[r1==TRUE], 0, 2, log=TRUE)

+ r2[r1==TRUE] <- tmp + dnorm(alpha[r1==TRUE], 0.2, 0.5, log=TRUE)

+ if (!log)

+ r2 <- exp(r2)

+ cbind(r1,r2)

+ }

The function PRIOR is coded outside the kernel function to render the program more readable
and more flexible (i.e., it is more easy to modify the constraints or the hyperparameters).

The KERNEL function is obtained by combining the prior (8) and the likelihood function (7).
We provide here a full implementation in R; an alternative coding, calling C code, is provided
in the code of this article (available on the JSS website). The function KERNEL requires as
inputs: theta is a (Ns × d) matrix of draws, where in our case d = 4; y is a vector of
observations. The function returns a vector of Ns (natural logarithm) kernel values.

> 'KERNEL' <- function(theta, y, log=TRUE)

+ {

+ if (is.vector(theta))

+ theta <- matrix(theta, nrow=1)

+ N <- nrow(theta)

+ pos <- 2:length(y) ## vector of positions used later

+

+ ## compute the prior for the parameters

+ prior <- PRIOR(theta[,1], theta[,2], theta[,3], theta[,4])

+
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+ d <- rep.int(-Inf,N)

+ for (i in 1:N)

+ { ## iterate over the parameters (rows of theta) using a for loop

+ ## (for computational memory, better than full vectorization)

+ if (prior[i,1]==TRUE)

+ { ## if the prior is satisfied, compute the kernel

+ h1 <- c(NA, theta[i,1] + theta[i,3]*y[pos-1]^2) ## state 1

+ tmp1 <- -0.5 * y[pos]^2/h1[pos] - 0.5 * log(h1[pos])

+ h2 <- c(NA, theta[i,2] + theta[i,3]*y[pos-1]^2) ## state 2

+ tmp2 <- -0.5 * y[pos]^2/h2[pos] - 0.5 * log(h2[pos])

+ tmp <- log(theta[i,4]*exp(tmp1) + (1-theta[i,4])*exp(tmp2))

+ d[i] <- sum(tmp) + prior[i,2] ## log-kernel

+ }

+ }

+ if (!log)

+ d <- exp(d)

+ as.numeric(d)

+ }
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Frühwirth-Schnatter S (2001). “Fully Bayesian Analysis of Switching Gaussian State Space
Models.” Annals of the Institute of Statistical Mathematics, 53(1), 31–49. Special issue on
nonlinear non-Gaussian models and related filtering methods.

Gelman A, Meng XL (1991). “A Note on Bivariate Distributions That Are Conditionally
Normal.” The American Statistician, 45(2), 125–126.

Genz A, Bretz F, Hothorn T (2008). The ‘mvtnorm’ package: Multivariate Normal and t
Distributions. R Foundation for Statistical Computing. URL http://cran.at.r-project.
org/web/packages/mvtnorm/index.html.

Geweke JF (1989). “Bayesian Inference in Econometric Models Using Monte Carlo Integra-
tion.” Econometrica, 57(6), 1317–1339. Reprinted in: Bayesian Inference, G. C. Box and
N. Polson (Eds.), Edward Elgar Publishing, 1994.

Geweke JF (2007). “Interpretation and Inference in Mixture Models: Simple
MCMC Works.” Computational Statistics and Data Analysis, 51(4), 3529–3550.
doi:10.1016/j.csda.2006.11.026.

Hammersley JM, Handscomb DC (1965). Monte Carlo Methods. Chapman and Hall. ISBN
0412158701.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and their Ap-
plications.” Biometrika, 57(1), 97–109. doi:10.1093/biomet/57.1.97.

Heij C, de Boer P, Franses PH, Kloek T, van Dijk HK (2004). Econometric Methods with
Applications in Business and Economics. Oxford University Press, Oxford, UK. ISBN
0199268010.

http://cran.at.r-project.org/web/packages/DEoptim/index.html
http://cran.at.r-project.org/web/packages/DEoptim/index.html
http://dx.doi.org/10.1007/978-3-540-78657-3
http://cran.at.r-project.org/web/packages/AdMit/index.html
http://cran.at.r-project.org/web/packages/AdMit/index.html
http://cran.at.r-project.org/web/packages/mvtnorm/index.html
http://cran.at.r-project.org/web/packages/mvtnorm/index.html
http://dx.doi.org/10.1016/j.csda.2006.11.026
http://dx.doi.org/10.1093/biomet/57.1.97


David Ardia, Lennart F. Hoogerheide, Herman K. van Dijk 31

Hoogerheide LF (2006). Essays on Neural Network Sampling Methods and Instrumental Vari-
ables. Ph.D. thesis, Tinbergen Institute, Erasmus University Rotterdam. Book nr. 379 of
the Tinbergen Institute Research Series.

Hoogerheide LF, Kaashoek JF, van Dijk HK (2007). “On the Shape of Posterior Densities
and Credible Sets in Instrumental Variable Regression Models with Reduced Rank: An Ap-
plication of Flexible Sampling Methods using Neural Networks.” Journal of Econometrics,
139(1), 154–180. doi:10.1016/j.jeconom.2006.06.009.

Hoogerheide LF, van Dijk HK (2008a). “Bayesian Forecasting of Value at Risk and Expected
Shorfall Using Adaptive Importance Sampling.” Tinbergen Institute discussion paper 2008-
092/4. URL http://www.tinbergen.nl/discussionpapers/08092.pdf.

Hoogerheide LF, van Dijk HK (2008b). “Possibly Ill-Behaved Posteriors in Econometric Mod-
els: On the Connection between Model Structures, Non-elliptical Credible Sets and Neural
Network Simulation Techniques.” Tinbergen Institute discussion paper 2008-036/4. URL
http://www.tinbergen.nl/discussionpapers/08036.pdf.

Klaassen F (2002). “Improving GARCH Volatility Forecasts with Regime-Switching GARCH.”
Empirical Economics, 27(2), 363–394. doi:10.1007/s001810100100.

Kloek T, van Dijk HK (1978). “Bayesian Estimates of Equation System Parameters: An
Application of Integration by Monte Carlo.” Econometrica, 46(1), 1–19.

Lamoureux CG, Lastrapes WD (1990). “Persistence in Variance, Structural Change, and the
GARCH Model.” Journal of Business and Economic Statistics, 8(2), 225–243.

Marcucci J (2005). “Forecasting Stock Market Volatility with Regime-Switching GARCH
Models.” Studies in Nonlinear Dynamics and Econometrics, 9(4), 1–53. Article nr. 6, URL
http://www.bepress.com/snde/vol9/iss4/art6/.

McCullough BD, Renfro CG (1998). “Benchmarks and Software Standards: A Case Study of
GARCH Procedures.” Journal of Economic and Social Measurement, 25(2), 59–71.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). “Equations of
State Calculations by Fast Computing Machines.” Journal of Chemical Physics, 21(6),
1087–1092.

Plummer M, Best N, Cowles K, Vines K (2008). The ‘coda’ package: Output Analysis and
Diagnostics for MCMC. R Foundation for Statistical Computing. Version 0.13-2, URL
http://cran.at.r-project.org/web/packages/coda/index.html.

R Development Core Team (2008). R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria. Version 2.8.0, URL
http://www.R-project.org/.

Ritter C, Tanner MA (1992). “Facilitating the Gibbs Sampler: the Gibbs Stopper and the
Griddy-Gibbs Sampler.” Journal of the American Statistical Association, 87(419), 861–868.

Wuertz D (2008). The ‘fEcofin’ Package: Rmetrics - Economic and Financial Data Sets.
R Foundation for Statistical Computing. URL http://cran.at.r-project.org/web/
packages/fEcofin/index.html.

http://dx.doi.org/10.1016/j.jeconom.2006.06.009
http://www.tinbergen.nl/discussionpapers/08092.pdf
http://www.tinbergen.nl/discussionpapers/08036.pdf
http://dx.doi.org/10.1007/s001810100100
http://www.bepress.com/snde/vol9/iss4/art6/
http://cran.at.r-project.org/web/packages/coda/index.html
http://www.R-project.org/
http://cran.at.r-project.org/web/packages/fEcofin/index.html
http://cran.at.r-project.org/web/packages/fEcofin/index.html


32 Adaptive mixture of Student-t distributions: the R package AdMit

Zeevi AJ, Meir R (1997). “Density Estimation Through Convex Combinations of Den-
sities: Approximation and Estimation Bounds.” Neural Networks, 10(1), 99–109.
doi:10.1016/S0893-6080(96)00037-8.

Affiliation:

Dr. David Ardia
Department of Quantitative Economics
University of Fribourg
CH 1700 Fribourg
Switzerland
E-mail: david.ardia@unifr.ch
URL: http://perso.unifr.ch/david.ardia/

Dr. Lennart F. Hoogerheide
Econometric and Tinbergen Institutes
Erasmus University Rotterdam
PO Box 1738
NL 3000 DR Rotterdam
The Netherlands
URL: http://people.few.eur.nl/lhoogerheide/

Prof. Dr. Herman K. van Dijk
Econometric and Tinbergen Institutes
Erasmus University Rotterdam
PO Box 1738
NL 3000 DR Rotterdam
The Netherlands
URL: http://people.few.eur.nl/hkvandijk/

Version of this paper: December 12, 2008

http://dx.doi.org/10.1016/S0893-6080(96)00037-8
mailto:david.ardia@unifr.ch
http://perso.unifr.ch/david.ardia/
http://people.few.eur.nl/lhoogerheide/
http://people.few.eur.nl/hkvandijk/

	Introduction
	Adaptive mixture of Student's t distributions
	Background on Importance sampling
	Background on the Independence chain Metropolis-Hastings algorithm

	Illustration I: The Gelman-Meng distribution
	Illustration II: Bayesian estimation of a mixture of ARCH(1) model
	Concluding remarks
	Computational details

