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1 Introduction

Next to transaction costs, market power has been identified as an important source of friction

in water markets (Saleth, Braden, and Eheart 1991; Lovei and Whittington 1993; Rosegrant

and Binswanger 1994; Easter, Rosegrant, and Dinar 1999; Bjornlund and McKay 2002;

Jacoby, Murgai, and Rehman 2004; Draper 2008; Krause 2009). As Holland (2006) puts it:

“the owner [of a water supply project] might have an incentive to reduce deliveries from the

project in order to increase the price of water in the destination market”. Despite identifying

the friction of market power in these references, there is a lack of economic water models

suited to study this friction. We aim to provide such a model by extending the multi-market

Cournot model to water markets with spatial differentiation that naturally implements the

incentive to withhold water. In doing so, we develop a framework for estimating welfare

losses due to market power.

We analyse market power in water markets in a setting where agents along a river can

extract, sell, and purchase water, constrained only by the unidirectional river flow. Recently,

Chakravorty, Hochman, Umetsu, and Zilberman (2009) analysed market power in the extrac-

tion, distribution, and end-use of water under different institutional settings. Their model

imposes that water is generated at an upstream point source by a single supplier, and is

then distributed along a channel to a continuum of identical end-users. In this paper, we

take a more general perspective by explicitly modelling the extraction and distribution of

water at various points along a river with spatial interdependencies and a given spatial deliv-

ery infrastructure, connecting suppliers with heterogeneous end-users or differentiated water

markets. Specifically, we assume a setting with multiple suppliers and multiple water users

along a river with access to heterogeneous end-users through an infrastructure consisting of

direct links between individual suppliers and individual end-users. Given the unidirectional

flow of river water and the infrastructure, suppliers are connected with each other through

the water balance and are connected to (some of) the end users via the infrastructure. This

set-up creates a system of multiple markets for water. The number of potential suppliers to
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each water market, i.e., end user, is determined by the delivery infrastructure, though strate-

gic considerations on extraction and supply by the suppliers determine which water markets

are served. Our model is general enough to cover a wide range of specific water market

structures, with heterogeneous agents on both sides, who can make independent decisions

on extraction, sale, and purchases of water.

The water market structure described in this paper relates closely to the literature on

multi-market oligopolies (Dixit 1984; Bulow, Geanakoplos, and Klemperer 1985; Tirole

1988). For the case of two suppliers and two water users, our model—introduced in Sec-

tion 2—reduces to a multi-market model. Depending on the delivery infrastructure, each

supplier is a monopolist or competes in a duopoly on one or both markets and upstream’s

water extraction influences downstream’s availability and, possibly, the cost of extraction.

For any larger number of suppliers, say n and water users, say m, the n suppliers com-

pete on some markets but not necessarily all m. Our model relates to the literature on

Cournot-Walras competition (Gabszewicz and Vial 1972), in the sense that water extract-

ing agents maximize their profits by choosing water extraction levels and markets where to

sell it, taking into account the (indirect) price effects and extractions by their competing

water suppliers. Our paper, however, provides additional structure to the Cournot-Walras

model because of the sequential structure of the water resources (mimicking the direction of

river flow), the infrastructure to serve markets, and money and water differentiated across

m locations as m+ 1 goods, in combination with the quasi-linear utility functions of a user’s

own water consumption and money. This structure enables us to overcome several technical

issues involved in applying the Cournot-Walras equilibrium concept.

There is a major difference, however, with most of the literature: suppliers are resource or

capacity constrained. A supplier’s constraint that is binding increases the mark-up, measured

as the Lerner index with respect to the supplier’s own marginal costs, on each potential

market that this supplier might supply. The reason is that being physically forced to withhold

water increases the market price on all potential output markets and simultaneously reduces
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the supplier’s marginal costs. We prove existence of a market equilibrium with market power.

Our model also allows to measure welfare losses due to market power and we illustrate this

in a numerical implementation.

In the next section we introduce a somewhat simplified version of our model, for which

we derive general results in Section 3. To demonstrate the richness of our model, and

also in order to obtain sharper results, we provide further insights on specific water market

structures in Section 4, including monopoly, the case of water utilities as local monopolies,

duopoly in a river setting, and the setting of gravity-driven trade. Possible extensions to

even more general river structures, conveyance losses, operating and maintenance costs and

capacity constraints are discussed in Section 5. In Section 6 we provide some concluding

remarks.

2 The model

We consider a spatially distributed water body from which water is extracted at several

locations by water suppliers who sell their water to water users or water markets through

some given infrastructure. The water body may be a river, an irrigation infrastructure, a lake

or an aquifer. The infrastructure can be thought of as pipelines, irrigation canals, (national)

water carriers or water deliveries by trucks. For ease of exposition, we think of the water

body as the main flow of a river with a single supplier per location. Water market structures

with a richer river structure, more than one supplier per location such as a common pool,

or weaker spatial interdependence such as unconnected aquifers, are discussed in Section 5.

Figure 1 illustrates the model. The left-hand side of this figure represents the river as

a directed line graph where location 1 is upstream from location 2, location 2 upstream of

location 3 etc. up to location n (n ≥ 1), similar as in e.g. Ambec and Sprumont (2002) and

Ambec and Ehlers (2008). Water supplier i extracts yi of water at location i and nowhere else.

All extractions are stacked into the vector y, and all but i’s extractions are stacked in y−i.

The right-hand side of Figure 1 illustrates how the infrastructure connects water suppliers
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Figure 1: Suppliers along a ‘river’ extract and deliver water to water users.

and m water users (m ≥ 1), who are not necessarily tight to locations. The infrastructure

consists of bilateral links, denoted i, j, with a maximum capacity, denoted Ki,j ≥ 0. In order

to obtain sharper results, we restrict capacity Ki,j to either 0 or ∞. Capacity Ki,j = 0

means that supplier i and water user j cannot trade. Similar, Ki,j = ∞ means that the

trade between supplier i and water user j is unlimited by capacity. So, supplier i trades

0 ≤ xi,j ≤ Ki,j of water with water user j. We put all xi,j in the n×m matrix X. The i-th

row sum of X, denoted as xi, consists of the total supply or deliveries by supplier i to water

users, i.e., xi = xi,1 + . . . + xi,m =
∑m

j=1 xi,j. Similar, the j-th column sum of X, denoted

as xj, is the total water delivered to water user j, i.e., xj = x1,j + . . .+ xn,j =
∑n

i=1 xi,j.

Water balances are modelled as follows. The physical water resources at location i are

equal to ei ≥ 0, and all resources are stacked into the vector e. These resources may include

tributaries, river diversions, wells, groundwater aquifers, etc. Together with the inflow from

upstream, water supplier i extracts yi from the available water resources, and the remaining
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water at location i runs off to the adjacent downstream location. The water balance at

location 1 dictates y1 ≤ e1 with run-off e1 − y1 ≥ 0. Consequently, the water balance at

location 2 dictates y2 ≤ e2 + e1 − y1, with run-off e1 + e2 − y1 − y2 ≥ 0. Similarly, the water

balance at location 3 dictates y3 ≤ e3 + e1 + e2− y1− y2 etc. The key observation is that we

can rewrite these water balances in matrix notation, which for n = 3 would imply 1 0 0
1 1 0
1 1 1

 y1
y2
y3

 ≤
 1 0 0

1 1 0
1 1 1

 e1
e2
e3

 . (1)

In general, water balances are modelled using the n×n matrix R whose elements are Rı̂,i = 0

or 1 (e.g. the 3 × 3 matrix in (1)), such that Rı̂,i = 0 for i’s upstream location ı̂ < i and

Rı̂,i = 1 for i’s own or downstream location ı̂ ≥ i. Then, water balances are given by

R · y ≤ R · e. (2)

The i-th row of R is denoted Ri, and Ri · y ≤ Ri · e is location i’s water balance.

Depending on the water rights regime, suppliers may not have the right or the possibility

to extract all available water resources. Individual extraction rights (or legal entitlements)

can be modelled in two ways. One way would be to define ȳi as supplier i’s right to extract

an amount yi ≤ ȳi, and stack these rights in the vector ȳ. Then, adding y ≤ ȳ to the model

takes into account feasible legal extractions. However, in case all rights are feasible in the

water balances, we might reinterpret our model as follows, which is the second way to model

rights. Given n suppliers, we modify R such that Rı̂,i = 0 for ı̂ 6= i and Rı̂,i = 1 for ı̂ = i

because other suppliers are legally not allowed to extract others’ unused water resources.

Then, it is without loss of generality to set ei = ȳi and take R equal to the n × n identity

matrix I, so that (1) is equivalent to y ≤ ȳ. With this reinterpretation in mind, we forego

adding y ≤ ȳ to our model.

Water user j has the quasi-linear utility function uj (xj,mj) = bj (xj) + mj, where for

technical convenience bj is a thrice continuously-differentiable benefit function and mj is

monetary wealth. We write b′j (xj), b
′′
j (xj) and b′′′j (xj). We impose the following assumption,

which is standard in consumer theory.
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Assumption 1 For each j = 1, . . . , n, utility function uj (xj,mj) is strictly quasi-concave.

This assumption has two implications. First, with price-taking behaviour, water demand

satisfies the Law of Demand. This law states that the price of water and the quantity

consumed are inversely related. Or, if water consumption goes up the marginal willingness

to pay for water has to go down and vice versa. Second, the quasi-linear utility function is

strictly quasi-concave if and only if bj (xj) is a strictly concave function, which follows directly

from Crouzeix and Lindberg (1986). So, the willingness-to-pay for a marginal increase in xj,

which is b′j (xj), is decreasing in xj because its derivative b′′j (xj) is negative. Obviously, this

is in accordance with the Law of Demand. In addition, no other assumption on the relation

between price and water demand was found in the water literature.

Supplier i’s extraction costs depend upon his own extraction yi and the extraction of the

suppliers upstream of i (as these upstream extractions determine the amount of remaining

water
∑i−1

k=1 (ek − yk) available for extraction by i. Formally, the total costs of extracting yi =

xi are

ci (yi; y−i) = ci (xi,1 + . . .+ xi,m; y−i) = ci

(∑n

j=i
xi,j; y−i

)
,

where ci (·; y−i) is more convenient than ci(·; y1, . . . , yi−1). The costs function ci (yi; y−i) is in-

creasing and differentiable in all y1, . . . , yi on the relevant range and convex in y1, . . . , yi, and

independent of yi+1, . . . , yn.1 Each water supplier maximizes its profit. We assume quantity

competition among water suppliers. An equilibrium with market power is a social equilib-

rium of Debreu (1952), which is the appropriate extension of the Cournot-Nash equilibrium

for water markets.

Our model is general enough to include a wide range of possible water market structures

from the literature. We will examine these in detail in Section 4. In the next section we first

assess how market power applies in a spatially distributed water body with water balances

and market structure as described above.

1Our model does not allow for increasing returns to scale in water extraction and distribution, although
this is a relevant feature in some water market settings.
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3 Equilibrium with market power

By specifying bilateral deliveries from supplier i to water user j, we obtain a multi-market

oligopoly with n suppliers that are geographically differentiated and m water users represent-

ing differentiated markets. Suppliers are resource constrained with externalities of extraction

due to the river, and they face exogenous trade restrictions through the infrastructure. In

this section, we first establish market-clearing prices, then we show existence of equilibria.

Subsequently we introduce the suppliers’ maximization problems and show how these can

be solved.

3.1 Market-clearing prices

Multi-market quantity competition implies that each market faces its own uniform market

price that clears the market, see e.g. Bulow et al. (1985). This makes each market’s price

dependent upon this market’s supply. For consumers who buy positive amounts of the good,

the market-clearing price is equivalent to their marginal willingness to pay. In this subsection,

we translate these standard notions to our water market.

Recall that we treat water user j as being equivalent to a differentiated water market,

and we denote this user’s water price as pj. A price-taking water user j chooses his optimal

consumption xj ≥ 0 such that maxxj≥0 bj (xj)−pjxj. It therefore must hold that the market-

clearing price pj at market j = 1, . . . ,m that clears a total supply equal to xj is given by

pj = b′j (xj) = b′j (x1,j + . . .+ xn,j) , (3)

Each price function is continuous in total supply. Note that the Law of Demand holds for

each water user (or market). Equilibrium prices are differentiated per water user, depending

on both the relative price elasticities of demand, and the feasibility of supplying each water

user as constrained by the river structure and the delivery infrastructure.

Multi-market quantity competition can be regarded as a special case of the Cournot-

Walras model in Gabszewicz and Vial (1972). In this model, producers decide on output
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before consumers purchase goods. Purchasing is modelled as a General Equilibrium model

of an exchange economy with given output levels set by the producers in the first stage. The

producers’ sales prices are therefore derived from a General Equilibrium that describes the

market behaviour by price taking consumers after the producers have set their production

levels. In general, General Equilibrium prices form a multifunction or correspondence of

production with little to none mathematical properties. This hampers application of the

Cournot-Walras equilibrium. In case of differentiated water markets, there are in essence two

goods per market: water and money. The water user at each differentiated market can be seen

as the representative consumer with a concave utility function. By the equivalence of General

Equilibria and welfare optima, as first established by (Negishi 1960), the General Equilibrium

in each water market is described by a strictly-convex program for the representative water

user at this location. Hence, the vector of General Equilibrium prices (pi, 1) at location i,

where money is the numéraire, is a continuous function in all parameters, in particular

the water supply to this location. Our model structure of one representative consumer per

market resolves a major barrier for application of the Cournot-Walras model.

3.2 Conditions for existence of equilibria

Given the market-clearing prices as a continuous function of local supply, the extraction

decisions by the suppliers can be determined. Continuity of the suppliers’ profit functions,

however, is not sufficient to guarantee existence of an equilibrium and in this subsection

we state each suppliers’ decision problem, and impose and discuss sufficient conditions for

existence of equilibria.

Given the market-clearing prices in (3) expressed as a continuous function of local supply,

the extraction decision by supplier i = 1, . . . , n is given by

maxyi,xi,1,...,xi,m≥0
∑m

j=1 b
′
j (x1,j + . . .+ xi,j + . . .+ xn,j)xi,j − ci (yi, y−i) ,

s.t. Ri · y ≤ Ri · e, (βi)

xi,1 + . . .+ xi,m ≤ yi,

xi,j ≤ Ki,j, (γi,j)

(4)
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where βi denotes the shadow price on the available resources and γi,j denotes the shadow

price on capacity of the link i, j. The shadow price βi indicates how much additional marginal

profit supplier i can obtain if it could develop new water resources to increase ei, or from

receiving more water from upstream. The other shadow price, γi,j, indicates the marginal

profit supplier i can obtain from a marginal expansion of the capacity constraint with water

user j that would allow him to increase his deliveries to this water user. Since extraction is

costly, the water supplier will not extract more water than he can sell, and so, the second

constraint will be binding.

Existence of equilibria is complicated by the presence of extraction externalities and

insufficient structure to the suppliers’ profit functions. First, in contrast to quantity com-

petition with (possibly) an exogenous capacity constraint, extraction yi is confined to an

interval whose upper bound ei + Ri−1 · (e− y) depends upon upstream extractions, where

Ri−1 · (e− y) = 0 for i = 1. This means that the standard assumption underlying Nash’s

seminal existence theorem, which states that the outcome space is the Cartesian product of

each player’s strategy space, is not met.2 This issue can be overcome by resorting to the

weaker notion of a social equilibrium, as proposed by Debreu (1952), that allows for games

defined on any convex polyhedron of the traditional Cartesian product. The sufficient condi-

tions for existence of a social equilibrium also requires quasi-concavity of the player’s utility

functions, which is the second complicating issue. Application of the necessary and sufficient

conditions for quasi-concavity in Crouzeix and Lindberg (1986) do not translate into simple

conditions on the primitives of our model. The results in Hahn (1962) do not apply either,

because these are derived for producers that produce a single output. To the best of our

knowledge, there is no existence result for multi-product oligopoly models, except Laye and

Laye (2008) for quadratic benefit functions and in the absence of the river structure.

In our model, supplier i = 1, . . . , n produces (possibly) multiple outputs. Given arbitrary

convex cost functions, which include constant marginal costs, we impose as a sufficient condi-

2In a standard normal form, player i = 1, . . . , n has a strategy set Si that defines the set of outcomes S
as the Cartesian product S1 × . . .× SN , see Mas-Colell, Whinston, and Green (1995).
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tion the stronger strict concavity of each supplier’s revenue function. Due to the summation

of product forms b′j (xi,j + rj)xi,j, where rj = xj − xi,j ≥ 0 denotes the other deliveries to

water user j, the Hessian of supplier i’s revenue function with respect to xi,1, . . . , xi,m is a

diagonal matrix and, therefore, concavity of the revenue function is equivalent to concavity

of each product form. The product form b′j (xi,j + rj)xi,j is strictly concave in xi,j on the

relevant domain when for all xi,j + rj ∈ [0, Ri · e]:

b′′′j (xi,j + rj) <
2
∣∣b′′j (xi,j + rj)

∣∣
xi,j

. (5)

The latter condition on the model’s primitive bj seems relatively unrestricted for small xi,j.

It is always satisfied for quadratic benefit functions and bj (xj) = 1
αj

(xj)
αj , αj ∈ (0, 1).3

The above discussion on existence of equilibria with market power is formalised in the

following result. All proofs are deferred to the Appendix.

Proposition 2 Under (5) for all i = 1, . . . , n and j = 1, . . . ,m there exists an equilibrium

with market power.

To summarise, we impose strict concavity on each product form b′j (xi,j + rj)xi,j and this

sufficient condition allows relative straightforward verification in terms of second and third

derivatives of each benefit function. In the absence of extraction externalities on costs and

available resources, quadratic profit functions are sufficient for uniqueness of the equilibrium,

see Laye and Laye (2008). In Section 5.1, however, we report multiplicity of equilibria in

a duopoly with extraction from a common pool. For this reason we forego investigating

conditions for uniqueness. Nevertheless, the strict concavity of profit functions does allow a

first-order approach in characterizing equilibria, to which we turn next.

3Differentiation with respect to xj , and making use of xi,j ≤ xi,j + rj = xj , yields

b′′′j (xj) = (αj − 1) (αj − 2)x
αj−3
j =

(2− αj) (1− αj)x
αj−2
j

xj
<

2 |αj − 1|xαj−2
j

xi,j
=

2
∣∣b′′j (xi,j + rj)

∣∣
xi,j

.
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3.3 Profit-maximizing supply

The typical approach to solve for equilibria is to derive intersection points of the profit-

maximizing supply (or best-response) functions. For a given supplier i, the derivation of

these functions is rather involved. Instead, we characterise optimal supply by supplier i to

water user j based on the difference in water price, marginal willingness to pay and marginal

extraction costs.

Proposition 3 For Ki,j =∞, supplier i’s optimal supply to water user j is given by
xi,j = 0, if either b′j (rj) ≤ c′i(

∑
̂ 6=j xi,̂; y−i),

or b′j (rj) > c′i(
∑

̂ 6=j xi,̂; y−i) and
∑

̂6=j xi,̂ +Ri−1 · y = Ri · e,

xi,j > 0, if b′j (rj) > c′i(
∑

̂6=j xi,̂; y−i) and
∑

̂6=j xi,̂ +Ri−1 · y < Ri · e.

Moreover, xi,j > 0 implies b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j ≥ c′i (xi; y−i) independent whether

optimal extraction is constrained, but equality holds when it is unconstrained. For Ki,j = 0,

the capacity constraint xi,j ≤ Ki,j restricts profits if and only if b′j (rj) > c′i(
∑

̂ 6=j xi,̂; y−i).

Proposition 3 demonstrates that supplier i never supplies water to a user whose marginal

willingness to pay is less than this supplier’s marginal costs. Otherwise, profitable supply

will in principle occur, unless supplier i is constrained and considers trading with other water

users as more profitable. An interesting feature that appears only indirectly in Proposition 3

is that upstream extraction affects supplier i in three different ways: (i) by the physical

availability of water Ri · e − Ri−1 · y; (ii) by the effect on extraction costs c′i (xi; y−i); and

(iii) by the effect on marginal willingness to pay b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j through

upstream suppliers’ deliveries. We will take up this issue in detail in Section 5 for a duopoly

case.
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Using Proposition 3, the level of market power of supplier i on water user j can be

expressed using the Lerner index:4

pj − c′i
pj

≡
b′j − c′i
b′j

≥
[
−
∂b′j
∂xj
· xj
b′j

]
· xi,j
xj

> 0,

where the term between square brackets is the inverse of the price elasticity of demand and

the second term is i’s market share on market j. A Lerner Index equal to the lower bound

can only be attained in case supplier i is unconstrained in his supply to water user j, and

otherwise there will be a gap. In other words, the Lerner index is higher for boundary

solutions than for interior solutions. To see this, consider an incremental increase of the

resource, which is of course impossible when the supplier is at his maximal extraction. Such

increase, if it could somehow be realised, would simultaneously decreases the price and

(weakly) increase marginal costs due to the convexity of the cost function. Therefore, such

incremental increase in supply would decrease the Lerner index.

Interior equilibria provide more flexibility to gain rents from market power by either

increasing or decreasing supply. Suppliers with maximal extraction can only consider under-

supply in order to achieve higher prices, but would rather prefer an increase of total extrac-

tion. This implies that these suppliers exercise of market power is restricted to redistributing

their supplies over water users. Hence, full extraction with market power implies full extrac-

tion in the competitive equilibrium, but deliveries to water users may differ.

Further insights on optimal supply are obtained by comparing i’s supply to two water

users, j and ̂. The intuition of the following result generalises naturally to larger cases.

Proposition 4 Let Ki,j = Ki,̂ =∞. Whenever the optimal supply xi,j and xi,̂ by supplier i

to both water users j and ̂ is positive, it also holds that

b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j = b′̂ (xi,̂ + r̂) + b′′̂ (xi,̂ + r̂)xi,̂ ≥ c′i (xi, y−i) ,

4Since pj = b′j (xj) and
∂b′j(xj)

∂xj
=

∂b′j(xj)

∂xi,j
, it follows from Proposition (3) that

pj − c′i ≥ −
∂b′j (xj)

∂xj
· xi,j =⇒ pj − c′i

pj
≥ −

∂b′j (xj)

∂xj
· xj
pj
· xi,j
xj

.
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with equality when optimal extraction is unconstrained. In case the optimal supply by sup-

plier i is such that xi,j > 0 and xi,̂ = 0, it holds that b′j (xi,j + rj)+b′′j (xi,j + rj)xi,j ≥ b′̂ (r̂).

Proposition 4 demonstrates that supplier i maximizes his profits by serving only those

water users with the highest marginal willingness to pay among the water users he can

supply. His supply is such that the marginal willingness to pay is equated among water

users supplied. This result is independent of whether the supplier is resource constrained or

not. From the proofs of Proposition 3 and 4 it follows that shadow price βi is equal to the

largest difference between marginal revenues and marginal costs of water users supplied.

Remark 5 An interior equilibrium presupposes that for all bilateral links with Ki,j =∞ we

have xi,j > 0. This equilibrium-feature is supported by Bulow et al. (1985) who show that

in multi-market oligopolies, firms’ profits may be sub-optimal because they cannot commit

to serve only one or a few markets. The same lack of commitment obstructs the suppli-

ers’ profits in our setting. This effect may therefore mitigate the possible rents from market

power to some extent. Obviously limited capacity of infrastructure imposes partial commit-

ment, because water cannot be supplied freely in case Ki,j = 0 (or any small positive Ki,j

as in Section 5.1). Note that limited water resources also provide partial commitment in the

sense that a supplier is committed to deliveries at his maximal extraction, but then still the

limited possibility to strategically substitute between water markets remains, as illustrated in

Section 4.4.

4 Specific cases

Our model is general enough to include a wide range of possible water market structures

from the literature. In this section, we demonstrate how four of such specific structures can

be implemented. Also, we present sharper results for these structures.

13



4.1 River setting: monopoly

Consider a water distribution infrastructure with a single upstream supplier and many down-

stream water users as in Chakravorty et al. (2009). This water market structure is modelled

by taking n = 1 and K1,j = ∞ for all water users j. Conveyance losses, as in Chakravorty

et al. (2009), can be included as discussed in Section 5.2, but are left out here for simplicity.

The monopoly case is a multi-product monopoly with independent demands and dependent

costs as in e.g. Tirole (1988), but novel is the resource constraint. After substitution of yi

and dropping both rj = 0 and y−1 from our notation, we obtain the following result that is

stated without a formal proof.

Proposition 6 For the monopoly case n = 1, the equilibrium with market power is the

unique solution to

maxx1,1,...,x1,m≥0
∑m

j=1 b
′
j (x1,j)x1,j − c1 (x1,1 + . . .+ x1,m) ,

s.t. x1,1 + . . .+ x1,m ≤ e1. (βi)

In essence, the monopolist solves a strictly convex program, for which it is known that a

unique profit maximum exists. Moreover, the unique monopoly is continuous in the exoge-

nous parameters, such as the resource e1, and parameters of the benefit functions and the

cost function. Propositions 3 and 4 then imply that the monopolist serves only those water

users with the highest marginal willingness to pay among the water users he can supply, and

his supply is such that the marginal willingness to pay is equated among water users served.

The monopolist’s supply is less than or equal to the competitive equilibrium extraction in-

dependent whether the resource constraint is binding. In case the equilibrium extraction is

interior, i.e., 0 < y1 < e1, then the monopolists always under-supplies the water users.

We conclude this subsection with an example that will return as the illustrating example

throughout this section. The technical details are deferred to the Appendix. Consider a

monopolist with resources e1 and cost function c1 (y1) = −c1 ln (e1 − y1), where c1 > 0. So,

the extraction costs go to infinity as y1 goes to e1, and hence it is without loss to assume

y1 < e1. For explanatory reasons, the monopolist serves a single market with benefit function
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b1 (x1) = x1 (2− x1) so that the market’s satiation point is 1.5 According to Proposition 6,

the monopoly supply (or extraction) solves

x1 = arg max
x1∈[0,e1)

b′1(x1)x1 + c1 ln (e1 − x1) = arg max
x1∈[0,e1)

2x1 (1− x1) + c1 ln (e1 − x1) ,

from which we obtain the optimal monopoly supply

x1 =

 1
2

(
1
2

+ e1 −
√(

e1 − 1
2

)2
+ c1

)
< e1, if c1 < 2e1,

0, if c1 ≥ 2e1.
(6)

The water user is charged his monopoly water price p1(x1) = b′1 (x1) = 3
2
−e1+

√(
e1 − 1

2

)2
+ c1.

In order to study under-development of resources, we also derive the competitive equi-

librium. The associated supply (or extraction) is Pareto efficient, and therefore solves

x∗1 = arg max
x1∈[0,e1)

b1(x1) + c1 ln (e1 − x1) = arg max
x1∈[0,e1)

x1 (2− x1) + c1 ln (e1 − x1) .

Its solution is

x∗1 =

 1
2

(
1 + e1 −

√
(e1 − 1)2 + 2c1

)
< e1, if c1 < 2e1,

0, if c1 ≥ 2e1.
(7)

Comparing (6) and (7), we observe for c1 < 2e1 that we have x∗1 > x1, i.e., the resource is

under-developed when compared to the competitive equilibrium extraction.

For later reference, we also investigate the boundary case of constant marginal costs, i.e.,

c1 = 0. Substitution of c1 = 0 into (7) yields the market’s satiation point x∗1 = 1 due to

the zero extraction costs, and in case e1 < 1, maximal extraction is Pareto efficient with

the market clearing price b′1 (e1) > 0. Substitution of c1 = 0 yields the monopoly supply

x1 = 1
2
, which is interior whenever e1 >

1
2
. So, for e1 ≤ 1

2
, the equilibrium supplies in both

the monopoly and competitive case are e1, for 1
2
< e1 ≤ 1 the monopoly supply of 1

2
is less

than the competitive equilibrium supply of e1, and for e1 > 1 the monopoly supply of 1
2

is

half the competitive equilibrium supply of 1.

5This example can be modified to allow for m identical water users and resources m · e1 instead of e1.
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4.2 River setting: water utilities as local monopolies

Consider a water distribution infrastructure with several suppliers that each are exclusive

suppliers for one or more water users. This infrastructure captures the setting of several cities

that each have a municipal utility that provides its local inhabitants with water. Water that

is not used by upstream utilities runs off to downstream cities according to the water balance.

Such water market structure is modelled by partitioning the water users over water suppliers

such that supplier i is connected to mi ≥ 1 users, being any j between mi = m1+. . .+m−i+1

and mi = m1 + . . .+m−i +mi. In addition, exclusive supply requires that Ki,j =∞ for all

j between m1 + . . .+m−i + 1 and m1 + . . .+m−i +mi, while Ki,j = 0 for all other j.

There are similarities to the monopoly setting of Section 4.1, but a crucial difference is

that i’s extraction and supply decisions may be affected by upstream extraction through

resource availability and the cost of extraction, though never do these affect the water prices

and demand for supplier i. Hence, this water market structure can be solved recursively,

starting upstream with supplier 1. Obviously, supplier 1’s decision is characterized by Propo-

sition 6. Given the monopolist’s optimal extraction y1, we proceed to supplier 2. His water

balance dictates that y2 ≤ e2 + e1 − y1 and again, this supplier’s extraction decision is char-

acterized by Proposition 6, and so on. This implies the following result, which we state

without a formal proof.

Proposition 7 For the local-monopoly case, the equilibrium with market power is the unique

recursive solution to: For i = 1, . . . , n, solve

maxxi,mi
,...,xi,mi

≥0
∑mi

j=mi
b′j (xi,j)xi,j − ci

(
xi,mi

+ . . .+ xi,mi
, y−i

)
,

s.t. xi,mi
+ . . .+ x1,mi

≤ ei +Ri−1 · (e− y) , (βi)

set yi = xi,mi
+ . . .+ x1,mi

and compute Ri · (e− y). If i < n, go to i+ 1, otherwise stop.

The key insight is that every water user is charged the monopoly price set by its exclusive

supplier given the inflow from upstream. The solution is unique, because it is the solution to

a finite sequence of strictly convex programs. Moreover, supplier i’s unique monopoly supply
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is continuous in the exogenous parameters, such as the resource e1 and upstream extractions

y1, y2 up to yi−1. Propositions 3 and 4 then imply that supplier i serves only those water

users with the highest marginal willingness to pay among the water users he can supply, and

his supply is such that the marginal willingness to pay is equated among water users served.

Supplier 1’s extraction is always less than the competitive equilibrium extraction in case the

equilibrium extraction is interior, i.e., 0 < y1 < e1. However, for supplier 2 this is less trivial,

as illustrated in the following.

We conclude this subsection by extending the model of the example in Section 4.1. The

purpose is to consider a river with n = 2 local monopolies who each serve a single water user,

that is m1 = m1 = 1, m2 = m2 = 2 and supplier i = 1, 2 exclusively serves water user j = i.

As in the example in Section 4.1, upstream (local) monopolist 1 has resources e1 and cost

function c1 (y1) = −c1 ln (e1 − y1), where c1 > 0. Similar, downstream monopolist 2 has

resources e1 + e2− y1 and cost function c2 (y2, y1) = −c2 ln (e1 + e2 − y1 − y2), where c2 > 0.

Water user j has a benefit function bj (xj) = xj (2− xj), with satiation point equal to 1.

Since by definition x1 = x1,1 and x2 = x2,2, we perform the analysis in x1 and x2. Application

of Proposition 7 means we first solve monopolist 1’s optimal supply, which yields (6) and

water availability e1 + e2 − x1. Then, we solve

x2 = arg max
x2∈[0,e1+e2−x1)

2x2 (1− x2) + c2 ln (e1 + e2 − x1 − x2) ,

which is straightforward if we substitute e1 + e2 − x1 for e1 and c2 for c1 in (6). So, monop-

olist 2’s optimal supply is given by

x2 =


1
2

(
1
2

+ e1 + e2 − x1 −
√(

e1 + e2 − x1 − 1
2

)2
+ c2

)
, if c2 < 2 (e1 + e2 − x1) ,

0, if c2 ≥ 2 (e1 + e2 − x1) .
(8)

In the presence of externalities, the competitive equilibrium is Pareto inefficient because the

upstream market does not take into account its negative effects for the downstream market.

We exploit this fact by sequentially solving the competitive equilibrium as well, starting with

the upstream market. Repeating the arguments of the example in Section 4.1, we arrive at
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the same x∗1 as in (7), and performing the same substitution as for the monopolist, we arrive

at the competitive equilibrium supply

x∗2 =


1
2

(
1 + e1 + e2 − x∗1 −

√
(e1 + e2 − x∗1 − 1)2 + 2c2

)
, if c2 < 2 (e1 + e2 − x∗1) ,

0, if c2 ≥ 2 (e1 + e2 − x∗1) .
(9)

Comparing (8) and (9) becomes ambiguous because of the following reasons. For identical

resource availability, and hence identical cost functions, the monopolist under-develops the

resource compared to the competitive equilibrium. However, by x∗1 > x1 we have that

monopolist 2’s cost function lies below the cost function in the competitive equilibrium,

i.e., −c2 ln (e1 + e2 − x1 − x2) < −c2 ln (e1 + e2 − x∗1 − x2). A monopolist with the low cost

function would supply a larger amount than a monopolist with the high cost function, and

this increased monopoly supply is opposite to the earlier standard contraction of supply

in a monopoly. Of course, the ambiguity cannot arise in the boundary case of constant

marginal costs, i.e., c2 = 0, and this insight generalizes to all cost functions c2 (y2, y1) that

are independent of resource availability, i.e., independent of y1.

4.3 River setting: duopoly and extraction costs

The monopoly and local monopoly cases of Sections 4.1 and 4.2 are special cases in which

there is no strategic interaction between the water suppliers. In this subsection, we consider

such interaction by considering the duopoly case. As mentioned just after Proposition 3,

extractions matter in both the physical resource availability and the cost functions. In

this subsection, we investigate each in isolation by first assuming constant marginal cost of

extraction, and second, by assuming the costs of fully depleting the resource are prohibitively

large.

We will do so by extending the example of Section 4.1 to the situation where two suppliers

supply one water user, with constant marginal extraction costs.6 This captures situations in

which depleting the entire resource would involve relatively low extraction costs, which we

6In the Appendix, we show that positive constant marginal costs yield qualitatively similar results.
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set equal to zero for expository simplicity. So, we take n = 2 and m = 1, with supplier i = 1

upstream of supplier 2, and K1,1 = K2,1 = ∞. Specifically, the water body is a river with

e1 + e2 ∈ (0, 1), extraction costs c1 (y1) = c2 (y2; y1) = 0, and one water user with benefit

function b1 (x1) = x1 (2− x1). As in the monopoly example, the competitive equilibrium

water demand x∗1 = 1 > e1 + e2 is not feasible and location 1’s marginal willingness to pay

for an incremental increase of x1 is equal to b′1 (x1), i.e., the market clearing price p1(x1).

Because each supplier only delivers to a single water user, we substitute yi for xi,1 and

perform our analysis in y1 and y2.

Solving for equilibria with market power requires to derive the best-response functions

and determine the intersection points. From solving each supplier’s profit-maximization

problem we obtain the best-response functions in terms of extraction:

R1 (y2) = min
{

1
2
− 1

2
y2, e1

}
and R2 (y1) = min

{
1
2
− 1

2
y1, e1 + e2 − y1

}
,

where we defer details to the Appendix. The best-response function for supplier 1 is sim-

ilar to the best-response function in the modified Cournot model with exogenous capacity

constraints. However, supplier 2’s capacity is endogenous, and therefore his best-response

function is different from the earlier mentioned modified Cournot model. The expressions

for the best-response functions imply that we need to distinguish four distinct cases, labelled

A to D. Solving all these cases yields the following equilibrium values
y1 = e1, y2 = e2, if 2e1 + e2 < 1 and e1 + 2e2 < 1, (A)
y1 = e1, y2 = 1

2
− 1

2
e1, if e1 <

1
3

and e1 + 2e2 ≥ 1, (B)
y1 = 1− e1 − e2, y2 = 2e1 + 2e2 − 1, if 2e1 + e2 ≥ 1 and e1 + e2 <

2
3
, (C)

y1 = 1
3
, y2 = 1

3
, if e1 ≥ 1

3
and e1 + e2 ≥ 2

3
. (D)

Figure 2 illustrates these cases in the (e1, e2)-space. Maximal aggregate extraction equals

the resources available in cases A and C. In these two cases, the equilibrium with market

power coincides with the competitive equilibrium. In case D, however, we have the standard

unconstrained Cournot duopoly outcome with its classic under-supply. For the remaining

case B, we have that the maximal extraction 1
2

+ 1
2
e1 is strictly less than e1 + e2 whenever

e1 + 2e2 > 1. Because also y1 + y2 = 1
2

+ 1
2
e1 <

2
3

this implies that the aggregate supply in
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Figure 2: The solid lines partition the (e1, e2)-space into the four areas where each case holds.

case B is less than in the competitive equilibrium. We compare the duopoly outcome with

the monopoly of Section 4.1 for the special case e1 > 0 and e2 = 0. Recall that the monopoly

is inefficient for e1 >
1
2
, whereas the duopoly supplies the entire resource e1 whenever e1 ≤ 2

3
.

So, the duopoly is less harmful for the water user, even in case supplier 2 does not have any

resource on his own.

In cases A and B, the available resources are so scarce that each individual supplier

maximally extracts his own water resource. In case C, however, whenever 2e1 + e2 > 1

supplier 1 extracts less than his available resource e1, and this supplier’s unused water will

be extracted by supplier 2 who exhausts his available resource, i.e., y1 < e1 and y2 =

e1 + e2 − y1 > e2.

As a second case, we investigate the case in which depleting the entire resource would

involve relatively high extraction costs. For expository reasons, we consider the same non-

linear extraction costs c1 (y1) = −c1 ln (e1 − y1) and c2 (y2, y1) = −c2 ln (e1 + e2 − y1 − y2)

as in Section 4.2. These cost functions feature that less inflow from upstream shifts down-

stream’s costs of extraction upward, as mentioned under (ii) following Proposition 3. The

system of first-order conditions from which the equilibrium with market power must be

computed reduces to a polynomial of degree four in y1. Such polynomial does not allow a

closed-form solution. Therefore, one must resort to numerical methods to solve for equilibria.

In principle, there can be four roots. A unique equilibrium would imply that all except one

will be infeasible. As a numerical example, we take e1 = e2 = 1 and consider c1 = c2 = 1
4
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Values for c1, c2 The equilibrium (y1, y2)
c1 = 1

4
, c2 = 1

4
(0.251, 0.330)

c1 = 1
4
, c2 = 1

2
(0.276, 0.276)

Table 1: Unique equilibria with market power for two combinations of c1 and c2.

as well as c1 = 1
4

and c2 = 1
2
. The numerical method is applied to the system of first-order

conditions and is implemented in MATLAB. We obtained all four numerical solutions for

(y1, y2) for each choice of the parameters, but in both cases three were infeasible. Therefore,

there is a unique equilibrium with market power that is reported in Table 1. From this table,

we observe that when supplier 2’s cost parameter increases from 1
4

to 1
2
, the suppliers become

symmetric. By increasing c2, the marginal costs for supplier 2 go up and he extracts less,

which is standard economic intuition. By extracting less, supplier 1 increases his production

and thereby decreases the flow e1 +e2−y1 to downstream and this increases supplier 2’s cost

function, which is a novel effect. By strategic substitution of the classic Cournot duopoly,

supplier 2 reacts by reducing his extraction once more, to which supplier 1 reacts by further

increasing his production and reducing 2’s inflow further etc. until the new equilibrium is

reached.

4.4 Private resources and gravity-driven water trade

In this subsection, we investigate suppliers that are unconnected according to the river water

balances so that under-development of water resources does not cause run-off to downstream

suppliers. This setting is also relevant whenever suppliers pump groundwater from aquifers

or extract from other human-controlled reservoirs. Recall from Section 2 that our model

can be easily accommodated for water-rights regimes. This is appropriate for water market

structures where suppliers can supply water users at other locations, but are hampered

by capacity or (physical) trade restrictions, as is the case in e.g. US and Australian water

markets (Weber 2001; Bjornlund 2004; Brennan 2006; Chong and Sunding 2006). In many

such markets, a gravity-driven infrastructure facilitates trade from upstream to downstream,

but excludes opposite water flows.
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In all these situations, either suppliers are unconnected or each supplier has his private

water resource ei. By Section 2, water balances are adjusted such that the matrix R—

see (1)—is the identity matrix of size n. Although we could allow for an arbitrary number of

water users, we equate the number of users m to the number of suppliers with the interpre-

tation that there is one supplier and one user per location. Gravity-driven infrastructures

dictate trade restrictions Ki,j =∞ for all i ≤ j and and all other Ki,j = 0.

Further, we will relate this case to Laye and Laye (2008), who provide an existence and

uniqueness result for multi-product oligopoly models as discussed in Section 3.2. They also

provide a numerical implementation in which the equilibrium can be computed by means of a

single convex program. However, these results require a specification with quadratic benefit

functions. To apply their results, we assume that the quadratic benefit function for user i is

given by bj (xj) = 1
2
ajxj (2bj − xj), where aj, bj > 0, and the cost function ci (yi; y−i) = cyi,

where 0 ≤ c < ajbj for all j. We implement their numerical method in order to analyse the

size of welfare losses due to market power. Welfare consists of the consumer surplus (CS),

i.e., uj (xj), and profits.

In this specific setting, the equilibrium with market power can be obtained from Propo-

sition 2 in Laye and Laye (2008). The equilibrium solves:

max
x

∑n

i=1

∑n

j=i

1
2
aj
(
[2bj − xj (−i)]xi,j − x2i,j

)
−
∑n

i=1

(
c
∑n

k=i
xik

)
(10)

s.t.
∑n

j=i
xi,j ≤ ei, xj (−i) =

∑j

k=1,k 6=i
xkj.

For reasons of comparison, the competitive equilibrium solves:

max
x

∑n

j=1

1
2
ajxj (2bj − xj)−

∑n

i=1

(
c
∑n

k=i
xik

)
(11)

s.t.
∑n

j=i
xi,j ≤ ei, xj =

∑j

k=1
xkj.

The differences between both programs boil down to a different treatment of the xi,j’s in

supplier i’s objective function that reflect the different coefficients for xi,j in b′j (xi,j + rj) +

b′′j (xi,j + rj)xi,j = ajbj−2ajxj and b′j (xi,j + rj) = ajbj−ajxj in the equilibrium with market

power and the competitive equilibrium, respectively.
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Competitive Market power
i, j 1 2 3 Total 1 2 3 Total

yi 1.00 1.00 1.00 1.00 1.00 0.84
xj 0.67 0.67 1.67 0.47 0.71 1.66
pj 2.67 2.67 2.67 3.05 2.58 2.68
CS (j) 0.44 0.44 2.78 3.67 0.22 0.51 2.75 3.48
Profits (i) 1.67 1.67 1.67 5.00 1.83 1.63 1.42 4.89
Welfare 8.67 8.36

Table 2: The competitive equilibrium and the equilibrium with market power in case e1 =
e2 = e3 = 1.

We implemented (10) and (11) in MATLAB in order to numerically compute equilibrium

deliveries from which we derived equilibrium prices, consumer surpluses and profits. Take,

for instance the case with three locations such that n = m = 3. Assume parameter values

c = 1, a1 = a2 = a3 = 2, b1 = b2 = 2, b3 = 3, and e1 = e2 = e3 = 1. These values imply

that resource capacity, costs, and benefit functions are equal across locations, except for the

benefit function of user 3, whose marginal benefit of water use is higher. Equilibrium values

of key variables for both equilibria are presented in Table 2.

Table 2 shows that in the competitive equilibrium resource extraction is efficient and

prices are equal across locations. In the equilibrium with market power water resources

are under-developed because supplier 3 limits his extraction. This is a response to the

redistribution of supplies by suppliers 1 and 2, as discussed in Section 3.3. As a result, prices

are higher for users 1 and 3 and lower for user 2. Interestingly, profits are higher with market

power only for supplier 1 (by 10%), while those of suppliers 2 and 3 decrease (by 2.0% and

14.9% respectively). Market power increases the consumer surplus of user 2 by 13.7%, while

consumer surplus of users 1 and 3 decreases (by 49.5% and 1.0% respectively).

Overall, market power decreases both the consumer surplus and suppliers’ profits. Market

power enables supplier 1 to increase its profits at the cost of both consumer surplus as well

as the other suppliers’ profits. Total welfare loss as a result of market power in our example

equals 3% of the welfare in the competitive equilibrium.

Note that the sign and size of the effects of market power differs across locations. These
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effects depend among others on the scarcity of water. Using the above example, but limiting

resources to e1 = e2 = e3 = 0.5 we obtain an equilibrium that is capacity constrained at

all locations in both equilibria. Equilibrium values of key variables for both equilibria are

presented in Table 3.

Competitive Market power
i, j 1 2 3 Total 1 2 3 Total

yi 0.50 0.50 0.50 0.50 0.50 0.50
xj 0.17 0.17 1.17 0.17 0.25 1.08
pj 3.67 3.67 3.67 3.67 3.50 3.83
CS (j) 0.03 0.03 1.36 1.42 0.03 0.06 1.17 1.27
Profits (i) 1.33 1.33 1.33 4.00 1.36 1.36 1.42 4.14
Welfare 5.42 5.40

Table 3: The competitive equilibrium and the equilibrium with market power in case e1 =
e2 = e3 = 0.5.

Table 3 shows that in this situation with limited resources, market power is beneficial to

all suppliers and users, except for water user 3 whose consumer surplus decreases by 13.7%.

All suppliers gain from market power (by 2.1 to 6.3%). Water user 1 is unaffected by market

power while the consumer surplus of water user 2 increases by 115%. Due to market power,

the strategic redistribution of supply by the suppliers causes a reduction in supply to user 3,

who is the only user to see an increase in price. Total welfare loss as a result of market power

in our example equals 0.2% of the welfare in the competitive equilibrium.

These two examples illustrate that market regulation will be complicated. The possibility

that some water users might lose from such regulation requires compensation schemes. This

is standard practice in General Equilibrium models but novel in a Cournot setting.

5 Extensions

The model introduced in Section 2 is a robust and flexible framework to address market power

in water markets. For explanatory reasons, we restricted its generality in order to focus on

the type of results that can be obtained without being distracted by too much notation.

In this section, we will discuss how to generalize many of the restrictive assumptions. In
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order to focus the discussion, we distinguish between extensions to the river structure in

Section 5.1 and extensions to the water market infrastructure in Section 5.2.

5.1 More general river structures

In this subsection we discuss an extension to more general river structures. This includes

multiple sources and mouths of the river (i.e., a delta) as well as relaxation of our assumption

of only one supplier per location.

Multiple sources and river branches imply that the water from a source can only reach

downstream locations in its own branch of the river and not in other branches. Furthermore,

once the water from this source reaches the main river flow it can only reach mainstream

locations. Because all entries in the matrix R, as defined in Section 2, can be interpreted

as 0, 1 indicators that indicate whether water of location i reaches location ı̄ , we can easily

modify the matrix R to model multiple sources and branches. For example, for a river in

which location 1 and 2 are two distinct sources that are connected to the main stream at

location 3, the water balances are y1 ≤ e1, y2 ≤ e2, y1 + y2 + y3 ≤ e1 + e2 + e3, and as in (1)

these can be modelled in matrix notation as 1 0 0
0 1 0
1 1 1

 y1
y2
y3

 ≤
 1 0 0

0 1 0
1 1 1

 e1
e2
e3

 .
This example illustrates the general principle that a simple modification of the matrix R

captures multiple sources and branches. Note that each river can be modelled like this, and

that it is always possible to label locations in such a manner that the upper triangular matrix

consists of zeros. The key observation is that all local water balances can be modelled as

in (2).

Deltas have the property that the main stream of the river splits into branches that

eventually reach its final destination, say the sea or ocean. Under the presumption that the

main stream splits into fixed fractions, we must modify the 0, 1 indicator into the continuous

interval [0, 1] to represent fractions. Furthermore, if the river splits into a number of branches,

all the fractions should sum up to 1. For example, the river is the main stream at location 1
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and then splits into two branches such that 33% reaches location 2 and 67% reaches location

3. The associated water balances are y1 ≤ e1, y2 + 1
3
y1 ≤ e2 + 1

3
e1, y3 + 2

3
y1 ≤ e3 + 2

3
e1, and

these can be modelled in matrix notation as 1 0 0
1
3

1 0
2
3

0 1

 y1
y2
y3

 ≤
 1 0 0

1
3

1 0
2
3

0 1

 e1
e2
e3

 .
If branches split further, we must multiply all the fractions between upstream location i and

downstream location ı̄. In the above example, if the branch through location 3 would split

into two branches such that 16.7% reaches location 4 and 83.3% reaches location 5, then

2
3
· 1
6

= 1
9

of location 1’s unused resources end up in location 4 and 2
3
· 5
6

= 5
9

in location 5.

So, R4,1 = 1
9
, R5,1 = 5

9
, R4,4 = R5,5 = 1 and all other entries on row 4 and 5 are 0. Once

more, this example illustrates the general principle that a simple modification of the matrix

R captures the idea of a river that breaks apart in its delta. The main point is that all local

water balances can be modelled as in (2), and that it is always possible to label locations in

such a manner that the upper triangular matrix consists of zeros.

To allow for more than one supplier per location requires a different approach, using the

r̄ × n matrix L which assigns suppliers to locations. Lri = 1 means supplier i belongs to

location r, and otherwise Li,j = 0. Without loss of generality, supplier i is either located

upstream of supplier i+ 1 or both are located at the same location. Also, supplier 1 belongs

to location 1 and supplier n to location r̄. Then, L has the following structure:

L =


1, . . . , 1 0, . . . , 0 · · · 0, . . . , 0
0, . . . , 0 1, . . . , 1 · · · 0, . . . , 0

...
...

. . .
...

0, . . . , 0 0, . . . , 0 · · · 1, . . . , 1

 .
Aggregate extraction at each location is given by the vector L ·y. For n = 1, . . . , r̄, we define

location r’s maximal inflow as er + . . . + e1, which is the r-th row of R · e. By allowing

multiple suppliers per location, water balance equation (2) changes to

R · L · y ≤ R · e.
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For each of the three extensions discussed above, it is obvious that Propositions 2–4

also extend. The reason is that only the numerical values in the structure R · y ≤ R · e are

adjusted, not the mathematical structure of the model. Therefore, the proof of existence does

not require any modification and Proposition 2 still holds. Furthermore, Propositions 3–4 are

stated without reference to this structure, and therefore both still hold. This generalises these

results to realistic river structures with multiple sources, deltas, and relaxes the restriction

of one supplier per location. We proceed by illustrating how allowing for more than one

supplier per location can cause multiplicity of equilibria, based on the monopoly and duopoly

examples of Sections 4.1 and 4.3.

Recall the example from Section 4.3 in which two suppliers can supply one water user

on an infrastructure with an unlimited capacity, i.e., n = 2, m = 1 and K1,1 = K2,1 = ∞.

The water user has benefit function b1 (x1) = x1 (2− x1) and a marginal willingness to pay

b′1 (x1) = 2 (1− x1). Contrary to any of the previous examples, we now assume one location

that hosts two water suppliers and one water user. That is, we additionally take r̄ = 1 and

L = [1, 1]. This means both suppliers share a common resource. Specifically, e1 ∈ (0, 1) is

the common resource, and we assume extraction costs are given by c1 (y1) = c2 (y2) = 0.

Then, the competitive equilibrium water demand is x∗1 = e1. As in Section 4.3, we substitute

yi for xi,1 and perform the analysis in y1 and y2.

We solve for the equilibrium with market power by solving each supplier’s profit-maximization

problem in order to obtain the best-response functions in terms of extraction:

R1 (y2) = min
{

1
2
− 1

2
y2, e1 − y2

}
and R2 (y1) = min

{
1
2
− 1

2
y1, e1 − y1

}
,

where we defer details to the Appendix. The best-response function for each supplier is either

identical to the best-response function in the standard Cournot model, or to the anticipated

amount left by the competitor, which is different from the modified Cournot model with

exogenous capacity constraints. The equilibrium extraction levels are
y1 ∈ [0, e1] , y2 = e1 − y1, if e1 ≤ 1

2
,

y1 ∈ [2e1 − 1, 1− 2e1] , y2 = e1 − y1, if 1
2
< e1 <

2
3
,

y1 = 1
3
, y2 = 1

3
, if e1 ≥ 2

3
.
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The interval [2e1 − 1, 1− e1] for the middle case is a strict subinterval of [0, e1] that contains

the symmetric equilibrium y1 = y2 = 1
2
e1. As e1 goes to 2

3
, both its upper and lower

bound approach 1
3
. The equilibrium for the last case is the unconstrained equilibrium and it

coincides with the traditional Cournot-duopoly equilibrium. We would obtain similar results

if we had assumed positive marginal costs of extraction. A methodological implication is that

multiple equilibria with market power may exists, and hence the uniqueness result discussed

in Section 4.4, does not generally hold.

5.2 Conveyance losses, capacity constraints and operating costs

In this subsection we discuss an extension to the water supply infrastructure. This includes

conveyance losses in run-off and supply as mentioned in Section 4.1, as well as relaxation of

the assumption that capacity constraints Ki,j are restricted to either 0 or ∞.

Conveyance losses may occur both in the run-off between locations as well as in supply to

water users. Conveyance losses in the run-off between locations is modelled using the water

balances as in (1). Specifically, we assume that of the water that is unused by supplier i,

only the fraction ρi ∈ [0, 1] runs off to the adjacent downstream supplier and fraction 1− ρi

evaporates, leaks, dissolves, or is simply lost. Using the same example with n = 3 as

in (1), the water balance at location 1 dictates y1 ≤ e1, with run-off ρ1(e1 − y1) ≥ 0.

Consequently, the water balance at location 2 dictates y2 ≤ e2 + ρ1 (e1 − y1), with run-off

ρ2(ρ1 (e1 − y1) + e2 − y2) ≥ 0. Similarly, the water balance at location 3 dictates y3 ≤

e3 + ρ2 (ρ1 (e1 − y1) + e2 − y2). Similar to (1), we can rewrite these water balances in matrix

notation as 1 0 0
ρ1 1 0
ρ1ρ2 ρ2 1

 y1
y2
y3

 ≤
 1 0 0

ρ1 1 0
ρ1ρ2 ρ2 1

 e1
e2
e3

 . (12)

In general, we only need to revise the matrix R to R′ in order to preserve the structure

R′ · y ≤ R′ · e. The revised n × n matrix R′ has elements R′i,̂ı = 0 for ı̂ < i, R′i,i = 1,

R′i+1,i = ρi, R
′
i+2,i = ρi+1R

′
i+1,i = ρi+1ρi up to R′n,i = ρn−1R

′
n−1,i. We mention that R′ can

also accommodate for multiple sources and deltas with conveyance losses, which we omit.
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Conveyance losses in supply is modelled using a similar approach. Let di,j indicate that

if supplier i supplies 0 ≤ xi,j ≤ Ki,j to water user j, then di,jxi,j arrives at this user. We put

all di,jxi,j in the n×m matrix XD. The i-th row sum of XD consists of the total supply by

supplier i to its water users. Similar, the j-th column sum of XD, denoted as xDj , is the total

water delivered to water user j, i.e., xDj = d1,jx1,j + d2,jx2,j + . . .+ dn,jxn,j =
∑n

i=1 di,jxi,j.

Capacity constraints are obtained by relaxing the assumption that capacity constraints

Ki,j is restricted to either 0 or ∞. Specifically, Ki,j dictates that supply is constrained even

if Ki,j 6= 0 so that, given conveyance losses in supply, we have di,jxi,j ≤ xi,j ≤ Ki,j.

The model in Chakravorty et al. (2009) distinguishes between the costs of extraction

and operating and maintenance (O&M) costs to run the delivery infrastructure. They study

different institutional settings where operating the infrastructure is either in the hands of the

single water supplier, or is regulated and charges marginal costs. The model in Section 2 can

be easily extended by introducing O&M costs ci,j (xi,j) for the link between water supplier j

and water user i. The different institutional settings can be modelled by attributing these

costs to either the water supplier or the water user. In case suppliers legally control their

links of the infrastructure, then the O&M costs should be attributed to water supplier i.

By attributing these costs to the water users, we implicitly model that the infrastructure

is regulated. Note that this modification requires bj (xj) −
∑n

i=1 ci,j (xi,j) as the benefit

functions.

Given the market-clearing prices expressed as a continuous function of local supply, the

extraction decision by supplier i = 1, . . . , n, in the presence of conveyance losses, O&M costs

attributed to water suppliers, and capacity constraints is given by

maxyi,xi,1,...,xi,m≥0
∑m

j=1

[
b′j (d1,jx1,j + . . .+ di,jxi,j + . . .+ dn,jxn,j) di,jxi,j − ci,j (xi,j)

]
− ci (yi, y−i) ,

s.t. R′i · y ≤ R′i · e, (βi)
xi,1 + . . .+ xi,m = yi,
xi,j ≤ Ki,j, (γi,j)

Similar to Section 5.1, Propositions 2–4 can be adjusted in a straightforward manner. As

will be clear from the proof of Proposition 2, the arguments accommodate for the change
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from R to R′ and general Ki,j ∈ [0,∞). Concavity of the profit functions is guaranteed if

the function ci,j(xi,j) is differentiable, increasing and convex, and (5) is relaxed to

b′′′j (di,jxi,j + rj) <
2
∣∣b′′j (di,jxi,j + rj)

∣∣
di,jxi,j

.

In Proposition 3, a binding constraint xi,j = Ki,j > 0 requires the minor modification

b′j (di,jKi,j + rj) + b′′j (di,jKi,j + rj) di,jKi,j ≥ c′i

(
di,jKi,j +

∑
̂6=j

di,̂xi,̂; y−i

)
+ c′i,j (Ki,j) ,

due to each link’s individual O&M costs. Capacity restricts profits if and only if the inequality

is strict. Then, Proposition 4 requires two minor modifications. First, the attractiveness of

serving a market also depends on the individual O&M costs, and these need to be subtracted

from the marginal revenue. So, whenever the optimal supply xi,j < Ki,j and xi,̂ < Ki,̂ by

supplier i to both water users j and ̂ is positive, it also holds that

b′j (di,jxi,j + rj) + b′′j (di,jxi,j + rj) di,jxi,j − ci,j (Ki,j)
= b′̂ (di,̂xi,̂ + r̂) + b′′̂ (di,̂xi,̂ + r̂) di,̂xi,̂ − ci,̂ (Ki,̂)
≥ c′i (yi, y−i) .

In case xi,j = Ki,j and xi,̂ < Ki,̂, than the equality becomes a strict inequality, because

supplier i would like to increase his supply to water user j but is physically constrained to

do so. To summarize, our main results generalise to realistic water market infrastructures

with conveyance losses, O&M costs and finite capacity.

6 Concluding remarks

We analyse water markets with market power as multi-market Cournot competition in which

an infrastructure constrains access to differentiated local markets and a river structure with

interdependencies constrains resource use. Our analysis shows that an equilibrium under

market power exists under mild concavity conditions. Binding resources or capacity con-

straints impose some physical commitment not to serve too many markets, and directly lead

to a gap between the relative mark-up on markets served and the traditional expressions for

the Lerner indices. Compared to the competitive equilibrium, market power results in the
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strategic substitution of water supply over the suppliers’ markets. The competitive equilib-

rium is not necessarily efficient (it is typically not if cost functions depend on inflow from

upstream) and market power may increase such inefficiencies. All four cases in Section 4

indicate under-development of water resources, but the interdependency of extractions costs

creates a counter effect to the traditional contraction effect of oligopolies on extraction, which

creates an ambiguity with respect to under-development. Nevertheless, market power should

not be seen as an instrument in mitigating over-exploitation of water. Standard intuition

is valid in those cases where market power is bad for all consumers, which justifies the reg-

ulation of water markets. Our numerical example in Section 4.4 illustrates, however, that

market power may not unequivocally harm water users and benefit suppliers. Depending

on their location and parameter values, some water users may benefit, while suppliers may

be harmed by the presence of market power. So, Pareto improving regulation for water

users may involve financial compensation schemes for those users that would be harmed by

regulation.

Our paper develops a robust multi-market Cournot model that is applicable in many

different circumstances. This facilitates wide applicability of our model, especially because

software is available to numerically solve such models. The Cournot model is motivated

by the observation in Holland (2006) that there might be an incentive to reduce deliveries.

Alternatively, one might model market power as price competition. Price competition would

be equivalent in the monopoly and local monopolies cases in Section 4.1 and 4.2, similar as in

the standard monopoly model. In the duopoly model of Section 4.3 with constant marginal

costs, classic Bertrand competition would seem to lead to the competitive equilibrium. One

can then ask whether Bertrand competition underestimates market power, or that Cournot

competition overestimates the effects of market power. Empirical research has to settle this

issue, but it requires economic models that can deal with market power and the specific

structures of water markets. For that reason, we regard our analysis of Cournot competition

as a necessary first step towards a formal treatment of market power in water markets.
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Two issues have not received attention yet but should be considered when putting our

model to work. First, an implicit assumption is that water users are financially uncon-

strained. This means that either their budget exceeds the purchases they made, or perfect

capital markets exist in order to provide loans that are paid back by some of the monetary

benefit bj (xj).

Second, water markets may apply other trading mechanisms than the quantity competi-

tion used in this paper. Important alternative mechanism are water banks, (double) auctions,

water leasebacks, and bilateral bargaining. Such mechanisms may coexist. In the Australian

Goulburn-Murray Irrigation District, for example, a small informal bargaining market coex-

ists with a formal auction-based water exchange. This informal market is mainly used by

neighbouring farms who prefer private transactions of small amounts of water (Bjornlund

2003). For this type of informal trade, a bargaining model may be more suitable, such as

Saleth et al. (1991), who demonstrate that strategic bargaining in thin water markets leads

to inefficiencies and therefore welfare loss.

Appendix: Mathematical proofs and other derivations

Proof of Proposition 2

The proof consists of verifying whether the sufficient conditions for existence of a social

equilibrium in Debreu (1952) hold in our water market. These conditions concern the sets

of feasible actions and the objective functions.

For supplier i, the set of feasible extractions [0, ei +Ri−1 · (e− y)] ⊆ [0, Ri · e] is a non-

empty, compact and convex set whose bounds are continuous in y−i. Due to linearity of the

constraints, the set
{
y ∈ Rn

+|Ri · y ≤ Ri · e for all i = 1, . . . , n
}

is a non-empty, compact and

convex polyhedron in the Cartesian product [0, R1 · e]× . . .× [0, Rn · e].

We will apply the existence theorem on the domain of feasible deliveries in Rn×m
+ . Given

the matrix of deliveries X ∈ Rn×m
+ , Xi and X−i denote the i-th row of X, respectively, all

rows of X except row i. We also put all capacity constraints into the n×m matrix K, and
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write X ≤ K whenever xi,j ≤ Ki,j for all i = 1, . . . , n and j = 1, . . . ,m. After substitution

and due to linearity of the constraints, we obtain that the set

P ≡
{
X ∈ Rn×m

+ |
∑i

ı̂=1
(xı̂,1 + . . .+ xı̂,m) ≤ Ri · e for all i = 1, . . . , n, and X ≤ K

}
is a non-empty, compact and convex polyhedron in the Cartesian product [0, R1 · e]n× . . .×

[0, Rn · e]n. The set P satisfies the conditions on the domain in Debreu (1952).

The profit function of supplier i = 1, . . . , n can be written as

m∑
j=1

b′j (x1,j + . . .+ xi,j + . . .+ xn,j)xi,j − ci (xi, X−i) ,

and this function is well-defined on the domain P ⊂ Rn×m
+ . Furthermore, it is continuous in

X and strictly concave in supplier i’s own decision variables (xi,1, . . . , xi,m) by assumption.

Therefore, supplier i’s profit function satisfies the conditions on the objective function in

Debreu (1952).

To summarise, all conditions in the existence theorem for a social equilibrium in Debreu

(1952) hold, and hence, such an equilibrium exists. �

Proof of Proposition 3

Given X−i, xi =
∑m

j=1 xi,j, xj =
∑n

i=1 xi,j, rj = xj − xi,j, r̂i = xi − xi,j and y−i are also

determined. Costly extraction implies xi ≤ yi is binding, and we substitute xi for yi. Then,

supplier i’s profit-maximization program (4) can be rewritten as

maxxi,1,...,xi,m≥0
∑m

j=1 b
′
j (xi,j + rj)xi,j − ci (xi, y−i) ,

s.t. xi ≤ ai, (βi)

xi,j ≤ Ki,j, (γi,j)

(13)

where ai = Ri · e−Ri−1 · y. The FOCs for supplier i are

xi,j : b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j − c′i (xi, y−i)− βi − γi,j ≤ 0 ⊥ xi,j ≥ 0,

βi : xi,j + r̂i − ai ≤ 0 ⊥ βi ≥ 0,

γi,j : xi,j −Ki,j ≤ 0 ⊥ γi,j ≥ 0.

To characterise xi,j, we must distinguish the following cases. First, we distinguish the main

cases Ki,j = ∞ and Ki,j = 0. Then, we distinguish the first sub-level of cases ai > r̂i and
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ai = r̂i. At the deepest level, we distinguish the sub-cases xi,j = 0, xi,j = ai − r̂i, and

xi,j < ai − r̂i, provided such sub-cases exist.

Ki,j =∞ Then, γi,j = 0 must hold.

If ai > r̂i, then xi,j ∈ [0, ai − r̂i] can be equal to the lower bound, can be interior, or

can be equal to the upper bound. In the first sub-case, xi,j = 0 < ai− r̂i implies βi = 0

and b′j (rj) ≤ c′i(r̂i, y−i). In the second sub-case, βi = b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j −

c′i (xi, y−i) ≥ 0 with equality and b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j = c′i (xi,j + r̂i, y−i) if

0 < xi,j < ai − rj. In the remaining sub-case 0 < xi,j = ai − r̂i, βi ≥ 0 implies

b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j ≥ c′i (xi, y−i).

If ai = r̂i, then xi,j = 0 but with the understanding that either xi,j ≥ 0 is binding

and βi = 0 whenever b′j (rj) < c′i(r̂i, y−i), or xi,j ≤ ai − rj = 0 is binding and βi > 0

whenever b′j (rj) > c′i(r̂i, y−i). Equality b′j (rj) = c′i(r̂i, y−i) implies xi,j = 0 is optimal

under classical optimization without the constraints xi,j ≥ 0 and xi,j ≤ 0. In the latter

case, βi = 0.

Ki,j = 0 Then, independent of ai ≥ r̂i, xi,j = 0 must hold with the understanding that

either xi,j ≥ 0 is binding whenever b′j (rj) < c′i(r̂i, y−i), or xi,j ≤ min {Ki,j, ai − r̂i} = 0

is binding whenever b′j (rj) > c′i(r̂i, y−i). Equality b′j (rj) = c′i(r̂i, y−i) implies xi,j = 0

is optimal under classical optimization without the constraints xi,j ≥ 0 and xi,j ≤ 0.

Note that ai > r̂i additionally implies that βi = 0. �

Proof of Proposition 4

First, consider Ki,j = Ki,̂ =∞ and positive supply xi,j and xi,̂ to both water users j and ̂.

Independent of constrained or unconstrained water resources xi ≤ ai, it follows from the first

order conditions of the proof of Proposition 3 that

βi = b′j (xi,j + rj)+b′′j (xi,j + rj)xi,j−c′i (xi, y−i) = b′̂ (xi,̂ + r̂)+b′′̂ (xi,̂ + r̂)xi,̂−c′i (xi, y−i) .
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Combined with βi ≥ 0 we must have

b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j = b′̂ (xi,̂ + r̂) + b′′̂ (xi,̂ + r̂)xi,̂ ≥ c′i (xi, y−i) ,

with equality if supplier i is unconstrained. Next, consider Ki,j = Ki,̂ =∞ and xi,j > 0 and

xi,̂ = 0. Then, additionally

b′j (xi,j + rj) + b′′j (xi,j + rj)xi,j ≥ b′̂ (xi,̂ + r̂) + b′′̂ (xi,̂ + r̂)xi,̂ = b′̂ (r̂) ,

because < would contradict that (xi,1, . . . , xi,n) maximizes supplier i’s profit. �

Derivations of the example in Section 4.1

Consider the monopoly. The derivative of the monopolist’s profit function is proportional to

(1− 2x1) (e1 − x1)− 1
2
c1 = 2x21−x1 (1 + 2e1)+e1− 1

2
c1. The derivative is negative at x1 = e1,

and it is positive at x1 = 0 if and only if e1 >
1
2
c1. So, for e1 ≤ 1

2
c1, we have x1 = 0, and

for e1 >
1
2
c1 we have an interior solution x1 ∈ (0, e1). We obtain (6) from solving the first-

order condition, because 1
2

(
1
2

+ e1 +
√(

e1 − 1
2

)2
+ c1

)
> 1

2

(
1
2

+ e1 +
√(

e1 − 1
2

)2)
= e1

is infeasible, and −
√(

e1 − 1
2

)2
+ c1 < −

√(
1
2
− e1

)2
= −

(
1
2
− e1

)
implies the other root is

feasible, i.e., less than e1.

Next, we consider the competitive equilibrium. The derivative of the objective is proportional

to (1−x1) (e1 − x1)− 1
2
c1 = x21−(e1 + 1)x1+e1− 1

2
c1. Note that the derivative is negative at

x1 = e1, and it is positive at x1 = 0 if and only if e1 >
1
2
c1. So, for e1 ≤ 1

2
c1, we have x∗1 = 0,

and for e1 >
1
2
c1 we have an interior solution x∗1 ∈ (0, e1). We obtain (7) from solving the first-

order condition, because 1
2

(
1 + e1 +

√
(e1 − 1)2 + 2c1

)
> 1

2

(
1 + e1 +

√
(e1 − 1)2

)
= e1 is

infeasible, and −
√

(e1 − 1)2 + 2c1 < −
√

(1− e1)2 = − (1− e1) implies the other root is

feasible. �

Derivations of the two examples in Section 4.3
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Supplier 1’s best-response function is found by solving

R1 (y2) = arg max
y1∈[0,e1]

y1p1 (y1 + y2)− 0 · y1

= arg max
y1,λ1≥0

2y1 (1− y1 − y2)− λ1 (y1 − e1)

= min
{

max
{

0, 1
2
− 1

2
y2
}
, e1
}
.

Similarly, supplier 2’s best-response function is given by

R2 (y1) = arg max
y2∈[0,e1+e2−y1]

y2p1 (y1 + y2)− 0 · y2

= arg max
y2,λ2≥0

2y2 (1− y1 − y2)− λ2 (y1 + y2 − e1 − e2)

= min
{

max{0, 1
2
− 1

2
y1}, e1 + e2 − y1

}
.

In the main text, we write 1
2
− 1

2
y1 instead of max{0, 1

2
− 1

2
y1} for convenience. We rewrite

1
2
− 1

2
y2 ≤ e1 and 1

2
− 1

2
y1 ≤ e1 + e2 − y1 as y2 ≥ 1− 2e1 and y1 ≤ 2e1 + 2e2 − 1. Clearly, we

need to distinguish four distinct cases.

D. y2 ≥ 1 − 2e1 and y1 ≤ 2e1 + 2e2 − 1. So, y1 = 1
2
− 1

2
y2 and y2 = 1

2
− 1

2
y1. Then,

y1 = y2 = 1
3
> 0. This case’s conditions impose e1 ≥ 1

3
and e1 + e2 ≥ 2

3
.

C. y2 ≥ 1 − 2e1 and y1 > 2e1 + 2e2 − 1. So, y1 = 1
2
− 1

2
y2 and y2 = e1 + e2 − y1, because

1
2
− 1

2
y2 ≤ e1. Taking non-negativity of y1 and y2 for granted, we obtain y1 = 1−e1−e2

and y2 = 2e1 + 2e2 − 1. This case’s conditions further impose 2e1 + e2 ≥ 1 and

e1 + e2 <
2
3
. Feasibility 0 ≤ y1 ≤ e1 and 0 ≤ y2 ≤ e1 + e2 − y1 hold. Total extraction

is y1 + y2 = e1 + e2.

B. y2 < 1 − 2e1 and y1 ≤ 2e1 + 2e2 − 1. So, y1 = e1 and y2 = 1
2
− 1

2
y1. Taking feasibility

of y1 and y2 for granted, we obtain y1 = e1 (feasible) and y2 = 1
2
− 1

2
e1. This case’s

conditions impose e1 <
1
3

and e1 + 2e2 ≥ 1, and these conditions guarantee feasibility

0 ≤ y1 ≤ e1 and 0 ≤ y2 ≤ e1 + e2 − y1.

A. y2 < 1 − 2e1 and y1 > 2e1 + 2e2 − 1. So, y1 = e1 and y2 = max {e2, e1 + e2 − y1} = e2.

Then, y1 = e1 and y2 = e2 satisfy feasibility. This case’s conditions impose 2e1 +e2 < 1

and e1 + 2e2 < 1.
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Summarizing the conditions of all four cases, we have four important lines: e1 = 1
3
, e1+e2 = 1,

2e1 + e2 = 1 and e1 + 2e2 = 1. In the (e1, e2)-space, all these lines intersect at e1 = e2 = 1
3
,

as Figure 2 in the main text illustrates.

In the second example, we consider c1 (y1) = −c1 ln (e1 − y1) and c2 (y2, y1) = −c2 ln (e1 + e2 − y1 − y2).

Because y1 < e1 in the optimum, supplier 1’s optimal response solves

max
y1∈[0,e1)

y1 (2− y1 − y2) + c1 ln (e1 − y1) .

Similar, y2 < e1 + e2 − y1 in the optimum, supplier 2’s optimal response solves

max
y2∈[0,e1+e2−y1)

y2 (2− y1 − y2) + c2 ln (e1 + e2 − y1 − y2) .

Combining and rewriting the both first-order conditions for an interior solution, implies the

following non-linear system:

0 = (2− 4y1 − 2y2) (e1 − y1)− c1,
0 = (2− 2y1 − 4y2) (e1 + e2 − y1 − y2)− c2.

Obviously, y1 < e1 and y1 + y2 < e1 + e2, because otherwise the right-hand side of one of the

conditions would be negative. Expanding the expressions yields

0 = 4y21 − y1 (2 + 4e1 − 2y2) + e1 (2− 2y2)− c1,
0 = 4y22 − y2 (2 + 4e1 + 4e2 − 6y1) + (e1 + e2 − y1) (2− 2y1)− c2.

Note that the first line’s right-hand side is positive at y1 = 0 if and only if c1 < 2e1 (1− y2).

Similar, the second line’s right-hand side c1 < 2 (e1 + e2 − y1) (1− y1). Note that both

conditions are more restrictive than c1 < 2e1 and c1 < 2 (e1 + e2 − y1), respectively. So, only

under these conditions do we have an interior solution.

The first-order conditions do not allow an analytical solution. To see this, supplier 1’s

first-order condition is linear in y2, and by y1 ∈ (0, e1), implies

y2 =
(4y21 − (2 + 4e1) y1 + 2e1 − c1)

2 (e1 − y1)

Substitution into supplier 2’s first-order condition yields

0 = −6y41 + (6e1 − 6e2 + 8) y31 +
(
2e2 − 14e1 + 5c1 + c2 + 6e21 + 12e1e2 − 2

)
y21

+
(
4e1 − 3c1 + 4e21 − 6e31 − 6e2e

2
1 − 4e1e2 − 3e1c1 − 2e1c2 + 2e2c1

)
y1

+2e31 − 2e21 + 2e2e
2
1 − 2c1e

2
1 + c2e

2
1 − c21 + 3e1c1 − 2e1e2c1.
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This polynomial of degree four does not allow an analytical solution and can only be solved

numerically. In principle, there can be four roots. A unique equilibrium would imply that

all except one will be infeasible.

As a numerical example, we take e1 = e2 = 1 and consider all four combinations c1, c2 ∈

{1
4
, 1
2
}. The numerical method is applied to the quadratic system of first-order conditions

and is implemented in MATLAB. We report all numerical solutions (y1, y2) for the system

of first-order conditions in the following table. Clearly, two roots are infeasible, because one

of the extractions is negative. Another root is infeasible because its aggregate extraction is

above e1 = e2 = 2. For these numerical values, we obtain a unique equilibrium.

c1, c2 Equilibrium (Root 1) Root 2 Root 3 Root 4
c1 = c2 = 1

4
(0.251, 0.330) (1.060, 1.002) (−1.090, 3.12) (1.113,−0.119)

c1 = 1
4
, c2 = 1

2
(0.276, 0.276) (1.058, 1.058) (−1.118, 3.177) (1.118,−0.177)

This completes the derivations. �

Derivation of the example in Section 5.1

Supplier i’s profit-maximization problem is given by

yi = arg max
yi≥0

2yi (1− yi − y−i) , s.t. yi ≤ e1 − y−i.

From the Lagrange function 2yi (1− yi − y−i) − λi (yi + y−i − e1), the Kuhn-Tucker first-

order conditions can be derived. There are two cases, either y1 + y2 < e1 or y1 + y2 = e1.

y1 + y2 < e1. Then, λ1 = λ2 = 0 and we obtain the best-response functions y1 = 1
2
− 1

2
y2 and

y2 = 1
2
− 1

2
y1. The equilibrium extractions are y1 = y2 = 1

3
> 0. Finally, y1 + y2 < e1

requires e1 >
2
3
.

y1 + y2 = e1. For supplier 1, the best-response functions is y1 = e1 − y2 and the shadow

prices are λ1 = 2 − 4y1 − 2y2. Note that λ1 ≥ 0 is equivalent to y1 ≤ 1
2
− 1

2
y2, where

the left-hand side is the best-response function from the first case. By symmetry,

y2 = e2 − y1 and λ2 = 2 − 2y1 − 4y2 ≥ 0 if and only if y2 ≤ 1
2
− 1

2
y1. Because the

best-response functions form a dependent linear system, these only impose y1+y2 = e1.
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The equilibrium values of y1 and y2 are restricted by the non-negativity of the shadow

prices. Substitution of y1 = e1−y2 into the condition for λ1 ≥ 0 yields y2 ≥ 2e1−1, and

similar substitution of y2 = e1 − y1 yields y1 ≤ 1− e1. By symmetry, substitution into

λ2 ≥ 0 yields y1 ≥ 2e1 − 1 and y2 ≤ 1− e1. So, y1 ∈ [2e1 − 1, 1− e1] and y2 = e1 − y1.

The interval is non-empty if and only if e1 ≤ 2
3
. The interval is a strict subset of [0, e1]

if and only if e1 >
1
2
. So, for e1 ∈ (1

2
, 2
3
] we must have that all y1 ∈ [2e1 − 1, 1− e1] are

equilibria, and for e1 ∈ [0, 1
2
) we have that all y1 ∈ [0, e1] are equilibria.

For completeness, we note that qualitatively the same result holds for ci (yi) = cyi, where

c ∈ (0, 1), after we substitute 1− c for 1 in the Lagrangian function.
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Gabszewicz, J. and J. Vial (1972). Oligopoly à la Cournot in a general equilibrium analysis.

Journal of Economic Theory 4 (3), 381–400.

Hahn, F. (1962). The stability of the Cournot oligopoly solution. Review of Economic

Studies 29 (4), 329–331.

Holland, S. (2006). Privatization of water-resource development. Environmental and Re-

source Economics 34 (2), 291–315.

40



Jacoby, H., R. Murgai, and S. Rehman (2004). Monopoly power and distribution in frag-

mented markets: the case of groundwater. Review of Economic Studies 71 (3), 783–808.

Krause, M. (2009). The Political Economy of Water and Sanitation. London: Routledge.

Laye, J. and M. Laye (2008). Uniqueness and characterization of capacity constrained

Cournot-Nash equilibrium. Operations Research Letters 36 (2), 168–172.

Lovei, L. and D. Whittington (1993). Rent-extracting behavior by multiple agents in the

provision of municipal water supply: a study of Jakarta, Indonesia. Water Resources

Research 29 (7), 1965–1974.

Mas-Colell, A., M. Whinston, and J. Green (1995). Microeconomic Theory. New York:

Oxford University Press.

Negishi, T. (1960). Welfare economics and existence of of an equilibrium for a competitive

economy. Metroeconomica 12 (2-3), 92–97.

Rosegrant, M. and H. Binswanger (1994). Markets in tradable water rights: potential

for efficiency gains in developing country water resource allocation. World Develop-

ment 22 (11), 1613–1625.

Saleth, R., J. Braden, and J. Eheart (1991). Bargaining rules for a thin spot water market.

Land Economics 67 (3), 326–339.

Tirole, J. (1988). The Theory of Industrial Organization. Cambridge: MIT press.

Weber, M. (2001). Markets for water rights under environmental constraints. Journal of

Environmental Economics and Management 42 (1), 53–64.

41


