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ABSTRACT

Divergent priors are improper when de�ned on unbounded supports. Bartlett�s

paradox has been taken to imply that using improper priors results in ill-de�ned

Bayes factors, preventing model comparison by posterior probabilities. However many

improper priors have attractive properties that econometricians may wish to access

and at the same time conduct model comparison. We present a method of computing

well de�ned Bayes factors with divergent priors by setting rules on the rate of di¤usion

of prior certainty. The method is exact; no approximations are used. As a further

result, we demonstrate that exceptions to Bartlett�s paradox exist. That is, we show

it is possible to construct improper priors that result in well de�ned Bayes factors.

One important improper prior, the Shrinkage prior due to Stein (1956), is one such
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example. This example highlights pathologies with the resulting Bayes factors in

such cases, and a simple solution is presented to this problem. A simple Monte Carlo

experiment demonstrates the applicability of the approach developed in this paper.

Key Words: Improper prior; Bayes factor; marginal likelihood; Shrinkage prior;

measure. JEL Codes: C11; C52; C15; C32.
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1 Introduction

This paper addresses the issue of how to compute Bayes factors when priors diverge.

In Bayesian analysis, Bayes factors or posterior probabilities play an important role

for model comparison, model selection and model averaging. Certain improper priors

are also important in Bayesian analysis for various reasons. For example some priors

serve as representations of ignorance, or are used because of information theoretic

justi�cations or invariance properties, or because they result in admissible or at least

low (frequentist) risk estimators, or because they are used simply as a base case

for determining the role of informative (usually proper) priors in an analysis. Since

Bartlett (1957), however, it has been generally accepted that if improper priors are

used the posterior probabilities are not well de�ned. Speci�cally, using improper

priors results in posterior probabilities that prefer (with probability one) the smaller

model regardless of the information in the data.1 In this paper we consider improper

priors as the limit of a sequence of priors that diverge in the diameter of the support.

We have three aims. First, we present a method of obtaining well de�ned and well

behaved Bayes factors with divergent priors by controlling the rate of di¤usion of

certainty. This may be thought of as using priors that are proper on compact supports

of unspeci�ed diameters, but these priors diverge in the diameter of the support such

1Bartlett does not only consider improper priors. He also considers divergent priors and the

arbitrariness these introduce into the posterior probabilities.
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that at the limit they become improper. Second, we establish classes of priors that

are exceptions to Bartlett�s paradox. Finally, we identify pathologies in the Bayes

factors that result from using these improper priors and demonstrate how to use our

�rst result to avoid these pathologies.

Before proceeding, it is important to distinguish between Lindley�s paradox and

Bartlett�s paradox as the two are commonly confused. Lindley (1957) demonstrates

how a given value of a test statistic contains di¤erent amounts of evidence on a hy-

pothesis depending upon the sample size. Lindley (1957) does not consider improper

priors. Bartlett (1957), in a comment on Lindley (1957), shows the e¤ect of a diverg-

ing prior measure on the posterior odds and in particular the e¤ect of an improper

prior. In this paper we consider divergent priors and do not consider the e¤ect of the

sample size.

The structure of the paper is as follows. In Section 2 we de�ne and generalize

Bartlett�s paradox. This discussion includes a formal justi�cation for a number of

standard practices such as using improper priors on common parameters and then

computing Bayes factors and posterior probabilities. In Section 3 we introduce an

approach to obtaining well de�ned exact Bayes factors from divergent priors.

Section 4 shows exceptions to Bartlett�s paradox exist, with the speci�c example

of the shrinkage prior of Stein (1956, 1960 and 1962). We demonstrate how some

improper priors could result in well de�ned Bayes factors. However, we also show, in
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Section 5, that the use of these priors implies possibly undesirable behaviour of the

Bayes factor. Further, Section 5 contains general discussion on the Je¤reys (1961)

prior which demonstrates an alternative way priors can diverge to result in ill-de�ned

Bayes factors and shows how to adapt our suggested approach to account for this case.

Section 6 presents a small Monte Carlo experiment to investigate the performance

of three divergent priors in model selection. Section 7 contains some concluding

comments and suggestions for further research.

2 Bartlett�s paradox

In this section we restate Bartlett�s paradox to provide a more general formulation

than the original presentation. To do this, we begin with a de�nition of the poste-

rior with improper priors as this explanation is well understood, generally accepted,

and leads directly to an understanding of the paradox and of the reason why some

improper priors result in well de�ned Bayes factors. We also provide a justi�cation

for the common practice of using the same improper priors on common parameters

(such as variances and intercepts) when computing posterior model probabilities and

this justi�cation provides an interpretation for our main result. An important role of

this section is to set up the techniques we use in the remainder of the paper.

Let � (A) denote the Lebesgue of the collection of spaces A; with � (A) = 1

implying that A has in�nite Lebesgue measure. Next, let the n vector of parameters
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� have support de�ned by � 2 � � Rn with � (�) = 1. When we refer to a model

having a particular dimension n, we mean by this the dimension of the space � of

the model. Denote the prior distribution as � (�) = h (�) =c where c =
R
h (�) d�

is the unnormalized prior measure for the parameter space and h (�) is a kernel for

the density. If � has unbounded support and � (�) is improper then we regard c as

not well de�ned and this is sometimes represented by the statement c = 1. The

likelihood function is L (�jy) and the posterior density is de�ned as

� (�jy) = L (�jy)� (�)R
�
L (�jy)� (�) d� =

L (�jy)h (�) =cR
�
L (�jy)h (�) d�=c = L (�jy)h (�) =p

where p =
R
�
L (�jy)h (�) d�. Even if we use an improper prior such as with h (�) = 1

and � (�) = 1 so that c = 1, the posterior is considered well de�ned (see for

example Kass and Raftery 1995 or Fernández et al. 2001) so long as the integral

p converges. We assume this is the case throughout the paper such that we only

consider proper posteriors. That the posterior is well de�ned is explained by assuming

c=c = 1=1 = 1: It is only in speci�c circumstances that we can regard 1=1 = 1;

and this is one case. However, we later discuss other cases in which limits of ratios of

divergent measures (the c0s) have �nite limits.

Next we state a proposition for priors on bounded supports. This proposition will

be directly useful later in the paper, but for now it provides a framework to permit

us to consider unbounded supports. Some notation for vector spaces and measures

on these spaces with be useful for use in developing the discussion. When we refer
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to the diameter of a space A we refer to d = diam (A) = sup
n
kx� yk1=2 : x; y 2 A

o
.

Any n� 1 vector � 2 A � Rn can be decomposed as � = v� where v is a unit vector

such that v0v = 1 and � is a positive scalar; � > 0. For the following proposition, we

de�ne a function of �; f (�), symmetric as de�ned in Phillips (1994). That is, for the

decomposition � = v� , f (�) = f (v; �) = f (�) :

Assumption 1: For i = 1; 2; let the ni � 1 vector �i have support Ai � Rn and let

fi (�i) > 0 be a symmetric function. Assume the sequence ci =
R
Ai
fi (�i) d�i diverges

in di = diam (Ai) : Given ni and nj, for every �nite value of di there exists a �nite

value for dj such that c1c2 <1:

The assumption restricts us to prior measures, ci; that diverge in the diameter of

the support, di. Since d1 and d2 go to the same limit and we are in the following case

only interested in the limit, we can regard the sequences c1 and c2 as both diverging

in d = d1 = d2. Treating the measure ci for unbounded supports as the limit of a

sequence in d we can state the following theorem.

Theorem 1 For i = 1; 2; let the ni�1 vector �i have support Ai � Rni and fi (�i) be a

symmetric function. If the sequence ci =
R
Ai
fi (�i) d�i diverges in d = di = diam (Ai)

such that ci = O (dni) ; then c1
c2
= O (1) if n1 = n2; c1c2 = O (d

n1�n2) if n1 > n2; and

c1
c2
= o

�
d�+n1�n2

�
for some � > 0 if n1 < n2:

Proof. The proof follows from the basic properties of divergent sequences. If

x = O
�
mh
�
and y = O (mg) ; then z = xy = O

�
mh+g

�
: Let x = c1 and y = 1

c2
and
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the result follows.

Theorem 1 shows how we can regard c=c as �nite, but does not directly explain

why we might legitimately assign the value c=c = 1: If, however, c = O (dn) then we

can treat this as a polynomial in d and by l�Hopital�s rule we obtain c=c = 1:

Assumption 2: For all models the support A � Rn with diameter d and pA =R
A
L (�jy)h (�) d�; is such that for any other support A � A with diameter d > d and

pA =
R
A
L (�jy)h (�) d�; then pA � pA < " for any " > 0:

Assumption 2 essentially says that the diameters of the supports are all large

enough such that increasing them results in no distinguishable increase in the poste-

rior normalizing constant. This is a generalization of the same assumption made by

Bartlett (1957) in the uniform prior single parameter case.

The above results will prove useful when we consider Bartlett�s paradox. We

restrict ourselves in the remainder of this section to the uniform prior as used in

Bartlett�s original example as this is su¢ cient to demonstrate the issue and provides

a useful base upon which we can build to investigate the properties of alternative prior

measures. To consider other types of priors, then we should replace the expressions

such as c = O (dn) with c = O (g (d)) where g (d) is monotonically increasing in d:

We can also use the above results to consider priors that diverge on compact subsets

of the real space. We show this when we consider the Je¤reys prior for the general

linear regression model in Section 5.
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Denote the prior distribution as � (�) = h (�) =c where c =
R
h (�) d� is the unnor-

malized prior measure for the parameter space and h (�) is a kernel for the density. If

� has unbounded support and � (�) is improper then we regard c as not well de�ned.

Using the above results we give a more general statment of Bartlett�s paradox.

Say we wish to investigate the properties of a vector of data y where we have two or

more potential models. Denote model i by Mi and the ni vector of parameters for

this model as �i: The posterior probability of the model is given by Pr (Mijy) and for

comparison of two models Mi and Mj we can use the posterior odds ratio written as

Pr (Mijy)
Pr (Mjjy)

=
Pr (Mi)

Pr (Mj)

mi

mj

=
Pr (Mi)

Pr (Mj)
Bij

where Bij = mi=mj is the Bayes factor (in favour of model i against model j) and

mi = pi=ci is the marginal density of y under model i: Therefore,

Bij =
pi
pj
� cj
ci
:

The data inform the Bayes factor through the pi and pj and if the two models are

considered a priori equally likely, the posterior odds ratio is equal to the Bayes factor.

Our interest is in the in�uence of the prior on the Bayes factor through the ratio cj=ci.

If a proper prior is used for each model such that ci <1 and cj <1 are well de�ned

- and possibly known or able to be estimated - the Bayes factor is well de�ned as the

ratio cj=ci is also de�ned.
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If we use an improper prior with unbounded support for Mj and a proper prior

for Mi, then cj = O
�
d
nj
j

�
while ci = O (1) such that the ratio cj=ci diverges and the

Bayes factor is in�nite and not well de�ned. These posterior probabilities are not

well de�ned in the sense that their values do not re�ect any information in the data,

only prior uncertainty. In this case the penalty for uncertainty is absolute such that

Pr (Mijy) = 1 and Pr (Mjjy) = 0: This generalizes Bartlett�s �silly answer�. If we use

improper uniform priors for both models then cj = O
�
d
nj
j

�
and ci = O (d

ni
i ) and the

ratio cj=ci = O (dnj�ni) converges or diverges to either 0; 1 or1 depending only upon

the relative dimensions of the two models. In the �rst and last cases where ni 6= nj,

the posterior probabilities will assign probability one to the smallest model and zero

to all other models considered such that the penalty for dimension is absolute. In

such cases the data are unable to inform the posterior probabilities. The fortunate

exception, when the sequence cj=ci ! 1; holds when the dimensions of the models

match (see Poirier 1995 and Koop 2003).

As these same results can be shown to occur with other improper priors, and

regardless of whether one regards this as a paradox or a natural outcome in probability

of using improper priors, there is clearly then a limitation to inference when employing

improper priors. The conventional wisdom is that improper priors cannot be used

for model comparison by posterior probabilities. One generally accepted exception to

this conventional wisdom is as follows.
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We have two models with parameter vectors �i and �j which we partition as

�i = (
i; 
i) and �j =
�

j; 
j

�
where 
i and 
j have the same dimension. If improper

priors of the same form are used only on 
k; k = i; j then we can show that the Bayes

factors will be well de�ned (see for example, Fernández et al., 2001).2 In this case

ck = c
kc
k where c
k =
R
hk (
kj
) (d
k) �M <1 and c
k =

R
g (
k) d
k =1 thus

cj=ci = c
j=c
i since the c
i=c
j ! 1 at all points in the sequence.

A common example of where this result is used is when an improper prior is placed

upon the variance or intercept of the error in a regression model. However, it is not

necessary that the 
k have the same interpretation under both models. It is necessary

that 
k have priors that diverge at the same rate in both models. For example we

could have the two models

yi = xi� + �"i and yi = zi
 + �"i

and the priors for � 2 B � Rki and 
 2 � � Rkj are both divergent in di = diam (B)

and dj = diam (�) such that these priors are O
�
dkii
�
and O

�
d
kj
j

�
respectively. If the

priors are such that O
�
dkii
�
= O

�
d
kj
j

�
then the Bayes factor will be well de�ned.

For example, if the prior measures on B and � are both uniform, then the condition

O
�
dkii
�
= O

�
d
kj
j

�
would imply that the vectors � and 
 have the same dimension,

2Of course the prior for the entire vector �k is then improper. When we say that improper priors

are only used on 
; we mean that the prior for 
k conditional upon 
 is proper. This seems to be

accepted language.
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k = ki = kj.

The above result could be thought of as the basis of the next part of this paper

where we reparameterize to isolate a parameter, the norm of �; with common support

with divergent prior. In fact, it is not necessary that supports for the norms be the

same. Rather they need only be unbounded above some �nite value for each model

and this value need not be the same for any two models. Related discussion of this

issue can be found in, for example, Bartlett (1957), Zellner (1971), O�Hagan (1995),

Berger and Perrichi (1996) and Lindley (1997). The above discussion leads us to a

number of results which we demonstrate in the remainder of the paper.

For the results that follow, we need to decompose the measure ci into its di¤erent

components as they require di¤erent treatment. We introduce the necessary concepts

and notation here. The n� r (n � r) semi-orthogonal matrix V is an element of the

Stiefel manifold denoted by Vr;n = fV (n� r) : V 0V = Irg, that is V 2 Vr;n: If r = 1;

then V is a vector which we will denote by lower case such as v and v 2 V1;n. Any

n� 1 vector � 2 A � Rn can be decomposed as � = v� where � 2 V1;n which de�nes

the direction of � and � 2 T � R+ de�nes the vector length. The compact space V1;n

has a measure dvn1 and �nite volume

$n =

Z
V1;n

dvn1 = 2�
n=2=� (n=2) (1)

(Muirhead, 1982). We can decompose the di¤erential term for � into d� = �n�1 (d�) dvn1 :

The expression for the di¤erential term leads to the following explanation for
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Bartlett�s paradox. We can decompose the integral c into a convergent (�nite) part,

$n, and the divergent part, �n:

c =

Z
Rn
d� =

Z
T

�n�1 (d�)

Z
V1;n

dvn1 = �n$n (2)

where T � R+;

�n =

Z
R+
�n�1 (d�) =1: (3)

We can treat �n as the limit of a sequence �dn where

�dn =

Z d

0

�n�1d� =
dn

n
= O (dn) :

Next consider an nj dimensional model with parameter vector �j = vj� with

di¤erential term d�j = �nj�1 (d�) dv
nj
1 and, similarly, with cj =

R
Rnj
d�j = �nj$nj :

Recall that the posterior is well de�ned even if the integral cj =
R
Rnj
hj (�j) d�j does

not converge because the integrals in the numerator and denominator diverge at the

same rate such that their ratio is one. This same reasoning implies that if ni = nj = n

and hi (�i) = hj (�j) = 1; then the Bayes factor Bij = mi=mj = pi=pj � cj=ci where

since ci = cj = �n$n; Bij = pi=pj is well de�ned since by (4) cj=ci = 1: The important

point here is that we have taken the ratio of two polynomials (in the respective norms)

of the same order such that they diverge at the same rate. This result does not require

that the models nest, simply that they be of the same dimension, or at least that the

number of parameters with supports with in�nite Lebesgue measure are the same.
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As a simple example to demonstrate this point, consider the uniform distribution

on Rn for an n vector of parameters in one model, and a uniform distribution on the

same space for an n vector of parameters in another model. If we restrict the supports

to have diameter d then the prior measures for the two models become

�dn =

Z d

0

�n�1d� =
dn

n
= O (dn)

and

�dn =

Z d

0

�n�1d� =
dn

n
= O (dn) :

We will use variants of the rather simple result3

lim
d!1

�dn
�dn
= lim

d!1

R d
0
�n�1d�R d

0
�n�1d�

= lim
d!1

ndn

ndn
= 1: (4)

Further where q > 0

lim
d!1

�dn+q
�dn

=1: (5)

Despite the apparent simplicity of these results, some of their implications for model

comparison with improper priors seem to have been overlooked.

The integrals �n and$n do not depend upon the chosen model, only its dimension,

n. Further, provided the support of � is unbounded in at least one direction, the

term �n is not a¤ected by restrictions upon the support of �. This is because such

restrictions to � � Rn will restrict the support of v (not �) and so restrict only the

measure of this support, $n: For example, m positivity constraints (say for variances)

3In this simple case, the Theorem 1 can be proved using l�Hopital�s rule.
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will reduce $n to 2�m$n: A possible and rather strange exception is if �i is made up

of a closed convex space around the origin and some other unbounded space such that,

say, � 2 (0; u (v)] � (l (v) ;1) for some l > u: However, it is the rate of divergence

of the integral with respect to � that results in Bartlett�s paradox and this rate will

not change. We can show this by replacing the lower bounds of the integrals for � in

(4) and (5) by positive �nite numbers. The limits of the integrals and their ratios are

unchanged.

When nj > ni; the integrals of � (the term �n) diverge at di¤erent rates and we

have the case in (5) such that the ratio �nj=�ni = 1: The term in Bij due to the

polar part will always be �nite and known with value

$nj=$ni = �
(nj�ni)=2 � (ni=2)

� (nj=2)
: (6)

However, the Bayes factor Bij is again unde�ned.

3 Obtaining well de�ned Bayes factors with divergent priors

The problematic component of the Bayes factor is the ratio cj=ci: An early approach

to developing an approximation to the Bayes factors with minimal prior information

is presented by Schwarz (1978) who uses an asymptotic argument to let the data dom-

inate the prior as the sample size increases. Other approaches include: Spiegelhalter

and Smith (1982); Klein and Brown (1984); O�Hagan (1995); Berger and Pericchi

(1996); Phillips and Ploberger (1996); Phillips (1996); and Kleibergen (2004). The
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most relevant approach for this paper is that of Klein and Brown (1984, hereafter

KB). KB only consider the normal linear regression model while we do not place con-

straints on the model set. However, both this paper and KB use a sequence of proper

priors that, at the limit, are improper and the approach taken by KB to minimizing

information most closely resembles the approach taken in this paper.

For a �xed sample size in model i, KB take zero mean Normal priors for regression

coe¢ cients �i with precision matrix V i. For model j denote the precision matrix by

V j. The approach of KB assumes an unbounded support, but as a proper prior is used

the parameters are bounded in probability. KB use a sequence of priors such that

these probability bounds increase as V i ! 0 and V j ! 0 at such rates that cj=ci ! 1.

The sequence is determined by the rate at which V i ! 0, and this rate in turn depends

upon the dimension of �i: KB use limits of measures of information based upon those

developed by Shannon (1948) to formalize the concept of �minimizing information�.

Interestingly, for the particular model and prior they consider, they obtain the same

expression as Schwarz to approximate the posterior odds ratio.

Our approach is similar to that of KB in that we use a sequence of priors to control

cj=ci; but this ratio need not converge to one. We use bounded supports but it is

the rate of increase of these bounds that governs cj=ci and, as in KB, this rate is

determined by the dimensions of the models.

We set cj=ci by the appropriate choice of the support diameters, di and dj. One
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option, which we use in the application, is to assume cj
ci
= 1, such that this ratio

plays no further role in the model selection or comparison. Alternatively, one might

prefer a term that introduces a penalty for the dimension of the model with a smooth

increase in the measure as n increases, but which results in a well de�ned term in

the Bayes factor that does not give unmitigated support for the smallest (or largest)

model.

In the simple cases we have considered, the normalizing constant ci for the im-

proper prior diverged at a rate governed by di and ni: This is not always the case and

di¤erent measures will diverge at di¤erent rates depending upon model dimension.

Provided the priors diverge in the support diameters; we may choose the relative

diameters (d = dj=di) by a rule such that the ratio cj=ci is a (possibly constant)

function only of the relative dimensions nj and ni (n = nj=ni). This rule may provide

a sensible penalty for model dimension if desired.

To demonstrate this idea, consider the Uniform measure on a spherical support

centered at the origin and of diameter di: In this case ci =
$nid

ni
i

ni
. Say we choose

di by the rule ci = �0�
ni
2 / �

ni
2 (� > 0) such that for all relative diameters d (with

su¢ ciently large di) we obtain the Bayes factor Bij = (pi=pj) (cj=ci) = pi=pj�
(nj�ni)=2.

The ratio of prior normalizing constants is

cj
ci

= �(nj�ni)=2 =
ni$njd

nj
j

nj$nid
ni
i

=
$nj

$ni

1

n
dnjd

nj�ni
i using dj = ddi and nj = nni
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such that the implied relative diameter d is given by

d =

�
n$ni

$nj

�1=nj  �1=2
di

!(n�1)=n
=

 
n
�
�
nni
2

�
�
�
ni
2

� !1=nni  1
di

r
�

�

!(n�1)=n
:

Choosing � = 1; such that cj=ci = 1; simpli�es the expression slightly.

For �xed n > 1; d increases as � increases and at a rate determined by n such

that larger models have larger diameter supports. For small �, d has a non-monotonic

relationship with n for ni < 5 and monotonically increasing for ni � 4: These rules

only govern the relative diameter d, so the smallest diameter may be chosen large

enough such that the above functions are all increasing in � and n: As the diameter

of the support re�ects our certainty about the location of the parameter(s), we can

regard larger diameters as re�ecting less certainty. Selecting a rule by which we

determine the relative support sizes can therefore be viewed as a way of determining

the relative rate of decrease in certainty. These rules do not always imply larger

supports for larger models. To explain this we need to re�ne our justi�cation for the

rules. Rather than controlling the support size directly, these rules control the relative

uncertainty as measured by the weights in the Bayes factor given to the models of

di¤erent dimensions, where this weight depends upon the rate of divergence of the

chosen measure. To obtain sensible relative weights then, we sometimes need larger

supports for smaller models to allow them to accumulate su¢ cient volume.

Now we turn to the practical matter of assigning a value to �: In the application

we use � = 1: Another choice for � that suggests itself from the literature is � = �
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as suggested in Kleibergen and Paap (2002, p. 238), and this will be equivalent to

the choice of Chao and Phillips (1999) in computation of their posterior information

criterion.

The above rules imply the use of proper priors that allow us to maintain the

features of certain improper priors which bring particular bene�ts to inference such

as reducing frequentist risk or invariance (such as with the Je¤reys prior). As this

recommendation requires only a decision on the relative dimensions of the supports,

or more speci�cally a choice of value for ci=cj; and not on the actual dimension of

any one support, all we essentially require is a method of computing or estimating

pi as if the support were unbounded. We conclude this section by making the point

that the above method works only for divergent measures and so will not be practical

(or at all necessary) for proper priors: i.e., with convergent measures on unbounded

supports.

4 The improper shrinkage prior: An exception to Bartlett�s paradox

In this section we establish a class of priors that are an exception to Bartlett�s paradox

and show an example of an improper prior that results in a well-de�ned Bayes factor.

As has been discussed, many researchers accept that using improper priors on common

parameters, such as intercepts and variances, does not result in Bartlett�s paradox

provided proper priors are used on all other parameters. Here we show that in treating
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the norm of the parameter vector as a common parameter (as every vector has a

norm), certain improper priors on all parameters result in well de�ned Bayes factors.

To give a preliminary explanation, for this class of priors the divergent part of the

integral, �n; diverges at the same rate for all models using this prior such that the

ratio �nj=�ni is �nite and Bij is well de�ned. This is e¤ectively using a common form

of improper prior on � .

The Shrinkage prior has been advocated and employed by several authors (see for

example Stein 1956, 1960, 1962, Lindley 1962, Lindley and Smith 1972, Sclove 1968,

1971, Zellner and Vandaele 1974, Berger 1985, Judge et al. 1985, Mittelhammer et

al. 2000, and Leonard and Hsu 2001). An important feature of this prior is that

it tends to produce an estimator with smaller expected frequentist loss than other

standard estimators, such as estimators using �at or proper informative priors (see

for example, Zellner 2002 and Ni and Sun 2003). Ni and Sun (2003) provide evidence

of this improved performance for estimating the parameters of a VAR and the impulse

response functions from these models. Although this prior does not appear to have

been considered for model comparison by posterior probabilities, as we now show, it

does result in well de�ned Bayes factors.

The form of the Shrinkage prior is k�k�(n�2) = (�0�)
�(n�2)=2

: We again use the

decomposition � = v� such that (�0�)1=2 = � : The di¤erential form of the prior is

(�0�)
�(n�2)=2

(d�) = ��(n�2)�n�1 (d�) (dvn1 ) = � (d�) (dv
n
1 )
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and this form holds for all models. Importantly this prior results in a �rst order

polynomial in � for all models of all dimensions. The normalizing constant for a

model of dimension n is then

ci =

Z
Rn
(�0�)

�(n�2)=2
(d�) =

Z
R+
� (d�)

Z
V1;n

(dvn1 ) = �2$n

such that the ratio of the normalizing constants for the Shrinkage priors for models

Mi and Mj of di¤erent dimensions is always cj=ci = $nj=$ni given in (6), and this

is �nite and known.

If we bound the support to diameter di, the above normalizing constant becomes

ci =
$nid

2
i

2
: Using the rules described in the previous section we can specify ci / �

ni
2

to obtain

cj
ci

= �(nj�ni)=2 =
$njd

2
j

$nid
2
i

=
$nj

$ni

d2

and d =

�
$ni

$nj

�1=2
�(nj�ni)=4 =

 
�
�
nni
2

�
�
�
ni
2

� !1=2� �
�

�(n�1)ni=4
:

From the expression for cj=ci above, we can see that the ratio cj=ci = $nj=$ni could

simply result from the choice of relative dimension d = 1; and so can hold at all points

in the sequence di !1: In the following section we demonstrate why it is better to

choose bounded di and set cj=ci = �
(nj�ni)=2 rather than simply using improper priors

and setting cj=ci = $nj=$ni :
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5 A pathology and other forms of divergence

In this section we discuss issues related to the computation of Bayes factors with

improper priors using the above exception to Bartlett�s paradox. First, employing

these improper priors for model comparison introduces pathologies into the Bayes

factor. These pathologies support our recommendation against using these priors.

Second, the case of the Je¤reys prior for the normal linear model is discussed as

an example in which the prior does not diverge as the support becomes unbounded;

rather it diverges as the complement of the support shrinks. This case may be treated

in much the same way as the �rst case.

5.1 The role of the prior measure

The rules proposed earlier for choosing the relative diameter d set cj=ci to a speci�c

value. However, we saw for the uniform and shrinkage priors that this ratio was made

up of the ratio $nj=$ni and a function of the diameters di and dj: As $nj=$ni is

always a �nite constant it would seem unnecessary to include this in the function for

d: This subsection discusses the practical implications of ignoring the term $nj=$ni

in deciding the diameters. We present a pathology associated with such an approach

that suggests we should not in fact refer to the Bayes factors for the unbounded

shrinkage prior as �well de�ned�, but rather as �able to be calculated�. The main

problem is that an important function of the prior measure, penalizing large models,
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is lost with this case.

With many proper priors the ratio cj=ci brings into the posterior analysis penal-

ties for greater model dimension and greater prior parameter uncertainty. With the

Shrinkage prior, the penalty for uncertainty re�ected in the support diameter is re-

moved (e¤ectively matched for each model). As shown in the previous section, with

unbounded support the ratio is only a function of the dimensions of the models via

the ratio cj=ci = $nj=$ni. Interestingly, this same ratio would result if we were to use

a bounded spherical support centred at the origin of arbitrarily large diameter d such

that Assumption 2 held. Further, this same ratio would also result if we were to use

Uniform proper priors over a spherical support centred at the origin and of arbitrarily

large diameter di; but where we chose the diameters by the rule d
ni
i =ni = d

nj
j =nj or

dj =
�
nj
ni
dnii

�1=nj
. Note we need only choose the smallest di to be some arbitrarily

large number such that all of the integrals pj have converged. Thus we never need

to actually assign a value to di, so long as we incorporate into the Bayes factor the

correct value $nj=$ni. That is we could specify

Bij =
pi
pj

$nj

$ni

:

Although the ratios of prior normalizing constants are identical in each of these ex-

amples, equal to $nj=$ni, they do not produce the same Bayes factor as the ratios

pi=pj will di¤er, however they provide useful comparisons for discussion.

This choice of a common limit on the norm (or a common rule for choosing dj in
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the case of the Uniform prior) for all models is therefore innocuous in this case and

holds as di ! 1. Choosing dj by such rules to remove the e¤ect of the divergent

part of the prior measure may seem like a useful simpli�cation, however this process

results in posterior odds with odd and undesirable properties.

It has become accepted that models of larger dimension should be penalized in

the posterior via the prior measure. Because of the behaviour of the $n over n; the

penalty for dimension with the priors that result in the ratio cj=ci = $nj=$ni is largely

inverted as smaller models tend to be more heavily penalized. Figure (1) plots $n

for n = 1; :::; 30; and shows the measure for V1;n is not monotonic in n; increasing up

to around n = 9 and decreasing thereafter. The e¤ect on the ratio cj=ci = $nj=$ni

is shown in Figure (2) which plots ln ($gn) � ln ($n) for n = 1; 2; 3; 4 and 5 and

g = 1; :::; 20: Recall that the larger the prior measure for a model, the more a model

is penalized. Thus the more negative is ln ($gn)� ln ($n) the greater is the penalty

for the model of dimension n relative to the model of dimension gn: We see from

Figure (2) that very small models (small n) are given less penalty than slightly larger

models (small g > 1) and are heavily penalized relative to very large models (large

g). As the dimension of the numerator (in the Bayes factor) model Mi increases, the

penalty for being relatively small becomes very large very quickly.

This pathology is due to the non-monotonicity of $n in n. This e¤ect is usu-

ally overwhelmed in improper priors by the integral with respect to the norm, the
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exception being the shrinkage prior.

5.2 The analysis of nonsymmetric priors: The Je¤reys prior for the Nor-

mal linear model

In the above discussion we have focussed upon the term in the prior measure associ-

ated with the norm � with unbounded support, as this term resulted in the divergent

component in the integral. However, it is possible to ignore the term involving the

unit vector v only because the priors discussed are symmetric. Nonsymmetric priors

present a limitation on this analysis as we must also consider the measure for v.

One important example is the Je¤reys prior for the multivariate Normal linear

model y = X� + " in which y is a T �m random data matrix, X is the T � k matrix

of regressors, � is a k�m matrix of unknown coe¢ cients and vec (") s N (0;�
 IT ).

The symmetric covariance matrix � = T 0T is positive de�nite and T is the upper

triangular Choleski decomposition of � with the (i; j)th nonzero element denoted

as tij. We will denote the ith diagonal element as tii and note tii > 0: Collect the

n = km+m (m+ 1) =2 parameters into the n�1 vector � =
�
vec (�)0 ; vech (T 0)0

�0
with

decomposition � = �� with ordering for notational convenience such that tii = vii� :

We assume that the dimension of the systemm is �xed and any zero restrictions of

interest will be upon � or on the covariances in the o¤diagonal of � (if we consider, for

example, certain exogeneity restrictions). This excludes the case where one or more

25



variances are involved in linear restrictions (such as equalling zero). The following

results are quite general as they will hold in all but this rather exceptional case.

The exact Je¤reys prior is the square root of the information matrix which in this

case has the form

p (�;�) d (�;�) _ j�j�(k+m+1)=2 d (�;�) (7)

= 2m�mi=1t
�(k+i)
ii d (�; T ) = 2m�mi=1v

�(k+i)
ii dvn1 �

�1d�

(see the Appendix for the results in this section). The prior measure for the para-

meter space will be cn =
R
d� = 2m e$n

k�0 where e$n
k =

R
vn1
�mi=1v

�(k+i)
ii dvn1 : Thus all

models will have the term �0 which will cancel in the Bayes factor, however e$n
k is a

divergent integral which results in ill-de�ned Bayes factors. The divergence results

from the limits of the integrals in the regions where the vii approach zero and the rate

of divergence is governed not only by k - the dimension of � and most frequently the

object of interest - but also by the dimension n. This last point means if two models

di¤er by one in the number of regressors, or even if two models do have the same

number of regressors but a covariance (say exogeneity) restriction imposed, then inte-

grals
R
vn1
�mi=1v

�(k+i)
ii dvn1 and

R
vn�11

�mi=1v
�(k+i)
ii dvn�11 diverge at di¤erent rates4. Thus

adaptations of priors that result in polynomials in the norm of matching order will

4The di¤ering rates of divergence result from the dependence of the �ii upon the other �ij through

the constraint �0� = 1: So keeping even k constant does not result in common rates of divergence if

the covariances are restricted.
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not remove this divergence.

The e¤ect of the divergence in e$n
k could be removed and Bayes factors computed

if the elements of the unit vector v for the variances, the vii, were restricted to have

positive minimums ci > 0: As the ith variance can be expressed as �2i = �ij=1t
2
ji =

� 2�ij=1v
2
ji and the support of � is unrestricted, this restriction on vii would not imply

a restriction upon the marginal support of each element of �; however, the supports

would no longer be variation free.

Similarly to the approach discussed in the previous section in which no speci�c

upper bound was placed upon the support diameter, in this case no speci�c lower

bound ci needs to be speci�ed as it is the relative size of the lower bound that matters.

That is, the prior diverges as the area around the origin that is excluded from the

support shrinks. Therefore it is the diameter of this complement that governs the

rate of divergence and can be chosen to ensure well de�ned and well behaved Bayes

factors.

Before we conclude this subsection we mention the most commonly used form of

the Je¤reys prior, which is the approximation suggested by Je¤reys himself. This

prior assumes independence of � and � and has the form

p (�;�) d (�;�) _ j�j�(m+1)=2 d (�;�) = 2m�mi=1t�iii d (�; T ) = 2m�mi=1v�iii dvn1 � km�1d� :

In this case cn =
R
d� = 2m e$k�km where e$k =

R
vn1
�mi=1v

�i
ii dv

n
1 is still a divergent

integral and depends upon n (and so k) so will not cancel in the Bayes factor. Further,
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the term �km now enters, which will result in the smallest model being selected.

This subsection demonstrates a clear limitation upon the result that prior mea-

sures with matching orders of polynomials in the norm will not always produce com-

putable Bayes factors. Careful consideration must be given to how � enters the prior.

6 Monte Carlo study

In this section we conduct a small Monte Carlo study to consider computation of the

Bayes factors with uniform, shrinkage and Je¤reys priors for a small range of models.

We are interested in the ability of these priors to select the appropriate model. The

data generating process (DGP) is always the following:

� (L) yt = � (L)xt + "y;t "y;t s N
�
0; �2y

�
�xt = �xt�1 + "x;t "x;t s N

�
0; �2x

�
where E ("y;t"x;t) = 0; � (L) = 1� 0:7L� 0:15L2; � (L) = 0:35� 0:25L+ 0:05L2 such

that � (1) = � (1), and � 2 f�0:50;�0:45; : : : ;�0:05; 0g :

We include the above DGP in our model set but assume all parameter values

are unknown although we know � (1) = � (1). Denote this model by M1. The study

includes three other models that are similar, in that they capture the essential features

of the DGP, but may be over parameterized or incorrectly speci�ed in some respect.

There is little reason to explore models that di¤er greatly from the true DGP as they

are easily rejected as our results show.
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The second model, M2, is identical to the DGP above but we do not impose the

restriction � (1) = � (1) : The third model, M3, is a VAR but in the Beveridge Nelson

decomposition form. That is, for the vector zt = (yt xt) we estimate

�zt = �zt�1 + ��zt�1 + "t where "t s N (0;�) :

This model di¤ers from the DGP in subtle but important ways. It is in all cases

over-parameterized having four more parameters than M1 and three more than M2.

The extra lags of xt and yt in the equation for xt allow for much richer dynamics in

the system, particularly when � = 0. At the point � = 0 the matrix � should have

reduced rank which would approximate the �nal model.

The �nal model, M4, is a VECM with known error correction term wt = yt � xt :

�zt = �wt�1 + ��zt�1 + "t where "t s N (0;�) :

This is the only model that is an incorrect speci�cation for the DGP (in the sense

that it does not encompass the DGP), although it is incorrect only when � < 0:When

� = 0 it will be correct but overparameterized as it has two more parameters than

the DGP, however it should �t well when � is in the region near 0: The value of � has

a signi�cant e¤ect upon the ability of the Bayes factors computed under the di¤erent

priors to select the correct model.

Three priors are used in this study: the �at prior; the shrinkage prior (on the mean

equation coe¢ cients); and the Je¤reys prior. Combining the priors with the four
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models gives twelve Bayesian models. For each value of �; the marginal likelihoods

are computed for each Bayesian model using Importance sampling (Kloek and van

Dijk, 1978) and a Multivariate Student-t distribution with 5 degrees of freedom as the

candidate density. In all cases the Bayes factors prefer M1 with the �at prior. Tables

1 reports the Bayes factor for each model and prior to M1 with the �at prior. It is

clear that the �at prior is strongly preferred for all values of �: Under the �at prior,

M1 andM2 are preferred overM3 andM4; which suggests the �at prior performs well

at selecting the correct model and the model closest to the correct model. The model

M3 is preferred over the more parsimonious but incorrect model M4 until � t �0:10

when M4 becomes the preferred model:

The shrinkage and Je¤reys priors produce very di¤erent orderings of the models

to the �at prior. Models M3 and M4 are always preferred to M1 and M2, and M3 is

preferred over M4 until � t �0:10, at which point M4 becomes the preferred model.

These results are somewhat surprising as we expected the Shrinkage prior to prefer

more parsimonious models (M1 and M2). None of the priors was developed with the

intention that they be used for model selection, however these results suggest the

�at prior would perform better in this role. The Shrinkage and Je¤reys priors prefer

models with richer dynamics and are able to discern when important restrictions (in

this case cointegration) become relevant.
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Table 1: Bayes factor for each model and prior to M1 with a �at prior

Flat Prior Shrinkage Prior Je¤reys Prior

� M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

-0.50 -3.0 -30.6 -50.0 -1091.8 -1083.6 -901.4 -939.5 -1091.9 -1083.7 -909.0 -945.8

-0.45 -3.1 -30.6 -47.7 -1091.5 -1083.3 -901.4 -934.8 -1092.0 -1083.8 -909.4 -941.4

-0.40 -3.1 -30.7 -45.4 -1090.7 -1082.6 -902.0 -931.0 -1091.6 -1083.5 -910.5 -937.8

-0.35 -3.2 -30.8 -42.9 -1090.9 -1082.7 -901.0 -925.4 -1092.2 -1084.0 -909.9 -932.3

-0.30 -3.3 -30.9 -40.1 -1090.7 -1082.6 -900.7 -919.9 -1092.4 -1084.4 -910.0 -927.0

-0.25 -3.3 -31.0 -37.8 -1091.5 -1083.4 -899.5 -914.3 -1093.4 -1085.6 -909.4 -921.5

-0.20 -3.5 -31.1 -35.3 -1091.2 -1083.2 -899.0 -909.3 -1093.4 -1085.7 -909.3 -916.6

-0.15 -3.6 -31.2 -32.7 -1089.8 -1081.8 -899.8 -905.6 -1092.1 -1084.6 -910.3 -913.0

-0.10 -3.8 -31.5 -30.1 -1090.7 -1082.9 -898.5 -899.5 -1093.2 -1086.0 -909.3 -907.1

-0.05 -4.2 -31.9 -27.2 -1090.0 -1082.5 -898.1 -894.4 -1092.7 -1085.9 -909.1 -902.0

0.00 -5.5 -33.3 -23.4 -1090.1 -1083.6 -896.7 -887.5 -1092.9 -1087.5 -907.7 -895.0

7 Conclusion

Due to Bartlett�s paradox, Bayesians have not believed it possible to employ improper

priors when obtaining posterior probabilities for models. This is unfortunate as some

improper priors have attractive features the Bayesian may like to employ in, say,

BMA. Using a relatively simple and well-understood decomposition of the di¤erential
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term for a vector of parameters, we have demonstrated that certain improper priors

do result in well de�ned Bayes factors, in that they are not known a priori to be zero

or in�nity. One important example is the Shrinkage prior which has been shown to

produce estimates with lower frequentist risk than other approaches and therefore

are more likely to be admissible under quadratic loss. It is possible that the class of

improper priors that permit valid Bayes factors extends beyond those demonstrated

in this paper to those with other attractive properties. This is a potential area for

further investigation.

While we present a class of priors that does produce well de�ned Bayes factors,

we show that these resulting Bayes factors are not well behaved. The problem is the

relative prior measures which bias posterior inference in favor of larger models. From

a discussion on the role of the prior measure in model selection or model weighting,

we present a method of using the same form as the improper prior distributions

but on a compact space - bounded by a sphere of given diameter centered at the

origin - such that the prior is now proper. The approach essentially sets rules for

determining the relative sizes of support diameters for models of di¤erent dimensions

in such a way that the role of the prior measure in the Bayes factor is restored.

Importantly, however, the actual size of the support diameters are unspeci�ed and

can be arbitrarily large so that they play no further role in the computation of the

Bayes factor. We can therefore select the ratio of prior measure to be something that
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re�ects our preferences; for example they may incorporate a penalty for increased

model dimension.
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10 Appendix

Theorem 2 The exact Je¤reys prior for the multivariate Normal linear regression

model has the form

p (�;�) d (�;�) _ j�j�(k+m+1)=2 d (�;�) = 2m�mi=1t
�(k+i)
ii d (�; T ) = 2m�mi=1v

�(k+i)
ii dvn1 �

�1d� :

Proof. Proof: The multivariate Normal linear model has the form y = X�+ " in

which y is a T �m random data matrix, X is the T � k matrix of regressors, � is a

k �m matrix of unknown coe¢ cients and vec (") s N (0;�
 IT ). The information

matrix for e� = �vec (�)0 ; vech (�)0�0 has the form
� =

2664 ��1 
X 0X 0

0 T
2
D0
m (�

�1 
 ��1)Dm

3775
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(Magnus and Neudecker, 1988, p. 321). The determinant of this matrix is then

j�j =
����1 
X 0X

�� ����T2D0
m

�
��1 
 ��1

�
Dm

���� = jX 0Xjm j�j�k T
m(m+1)

2 j�j�(m+1)

in which we have used the result jDm (�
�1 
 ��1)Dmj = jD+

m (�
 �)D+0
m j

�1
=

2
m(m�1)

2 j�j�(m+1) (Magnus and Neudecker 1988, p. 50).

As the square root of the determinant of the information matrix, the Je¤reys

prior will therefore be proportional to j�j�(k+m+1)=2 d (�;�) : Next, from Muirhead

(1982, p. 62) we have the transformation of the measure from � to T as (d�) =

2m�mi=1t
m+1�i
ii (dT ) and so

jT j�(k+m+1) 2m�mi=1tm+1�iii (dT ) (d�) = 2m�mi=1t
�(k+m+1)
ii �mi=1t

m+1�i
ii (dT ) (d�)

= 2m�mi=1t
�(k+i)
ii (dT ) (d�) :

The transformation � =
�
vec (�)0 ; vech (T 0)0

�0
= v� implies (dT ) (d�) = d� = dvn1 �

n�1d�

where n = km + m(m+1)
2

: Therefore we can write the Je¤reys prior for (v; �) for this

model as proportional to

�mi=1v
�(k+i)
ii ��(km+

m(m+1)
2 )dvn1 �

km+
m(m+1)

2
�1d� = �mi=1v

�(k+i)
ii dvn1 �

�1d� :

Beginning with the approximation of the Je¤reys prior as j�j�(m+1)=2 d (�;�) and

transforming from � to T , this becomes

jT j�(m+1) 2m�mi=1tm+1�iii (dT ) (d�) = 2m�mi=1t
�(m+1)
ii �mi=1t

m+1�i
ii (dT ) (d�)

= 2m�mi=1t
�i
ii (dT ) (d�) :
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The transformation from � to v� gives us the Je¤reys prior for (v; �) for this model

as proportional to

�mi=1v
�i
ii �

�m(m+1)
2 dvn1 �

km+
m(m+1)

2
�1d� = �mi=1v

�i
ii dv

n
1 �

km�1d� :

Using the form of the Shrinkage prior we have the decomposition

p (�0;�) d (�0;�) _ j�j�(k+m+1)=2 (b00b0)
�k0m=2 d (�0;�)

_ �mi=1t
�(k+i)
ii (dT ) (b00b0)

�k0m=2 (d�0)

_ �mi=1v
�(k+i)
ii ��(km+

m(m+1)
2 )dvn1 �

�k0m� k0m+
m(m+1)

2
�1d�

_ �mi=1v
�(k+i)
ii dvn1 �

�km�1d�

which again has the same form in � and in � such that the rates of divergence of the

divergent components of the integral will match.
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Figure 1: Plot of $n; the measure for V1;n; for n = 1; :::; 30:
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Figure 2: Plot of ln ($gn)� ln ($n) for n = 1; 2; 3; 4 and 5 and g = 1; :::; 20: The value

g is on the x� axis:
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