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BAYESIAN ESTIMATION OF THE GARCH(1,1) MODEL WITH STUDENT-T INNOVATIONS

Bayesian Estimation of the GARCH(1,1)
Model with Student-t Innovations
by David Ardia and Lennart F. Hoogerheide

Abstract This note presents the R package
bayesGARCH (Ardia, 2007) which provides
functions for the Bayesian estimation of the
parsimonious and effective GARCH(1,1) model
with Student-t innovations. The estimation pro-
cedure is fully automatic and thus avoids the te-
dious task of tuning a MCMC sampling algo-
rithm. The usage of the package is shown in
an empirical application to exchange rate log-
returns.

Introduction

Research on changing volatility using time series
models has been active since the pioneer paper by
Engle (1982). From there, ARCH and GARCH type
models grew rapidly into a rich family of empiri-
cal models for volatility forecasting during the 80’s.
These models are widespread and essential tools in
financial econometrics. Among these models, the
GARCH(1,1) model with Student-t innovations is
particularly useful, since it can capture the dynam-
ics of volatility in a parsimonious way (unlike ARCH
models), and it can provide the excess kurtosis in the
conditional distribution that is often found in finan-
cial time series (unlike models with Gaussian inno-
vations).

Until recently, these models have mainly been
estimated using the classical Maximum Likelihood
technique. The Bayesian approach offers an attrac-
tive alternative which enables small sample results,
robust estimation, model discrimination, model
combination, and probabilistic statements on nonlin-
ear functions of the model parameters.

The package bayesGARCH (Ardia, 2007) imple-
ments the Bayesian estimation procedure described
in Ardia (2008, chapter 5) for the GARCH(1,1)
model with Student-t innovations. The approach,
based on the work of Nakatsuma (1998), consists
of a Metropolis-Hasting (MH) algorithm (Metropo-
lis et al., 1953; Hastings, 1970) where the proposal
distributions are constructed from auxiliary ARMA
processes on the squared observations. This method-
ology avoids the time-consuming and difficult task,
especially for non-experts, of choosing and tuning a
MCMC sampling algorithm. The program is written
in R with some subroutines implemented in C in or-
der to speed up the simulation procedure. The valid-
ity of the algorithm as well as the correctness of the
computer code have been verified by the method of
Geweke (2004).

Model, priors and MCMC scheme

A GARCH(1,1) model with Student-t innovations for
the log-returns {yt} may be written via data aug-
mentation (see Geweke, 1993) as

yt = εt(
ν−2

ν vt ht)
1/2 t = 1, . . . , T

εt
iid
∼N (0,1)

vt
iid
∼ IG

(ν

2
,
ν

2

)

ht
.
= α0 + α1y2

t−1 + βht−1 ,

(1)

where α0 > 0, α1, β ≥ 0 and ν > 2; N denotes
the standard normal distribution; IG denotes the in-
verted gamma distribution. The restriction on the
degrees of freedom parameter ensures the condi-
tional variance to be finite and the restrictions on the
GARCH parameters guarantee its positivity. We em-
phasize the fact that only positivity constraints are
implemented in the MH algorithm; no stationarity
conditions are imposed in the simulation procedure.

In order to write the likelihood function, we de-
fine the vectors y

.
= (y1, . . . ,yT)′, v

.
= (v1, . . . ,vT)′

and α
.
= (α0,α1)

′. We regroup the model parameters
into the vector ψ

.
= (α, β,ν). Then, upon defining the

T × T diagonal matrix

Σ
.
= Σ(ψ,v) = diag

(

{vt
ν−2

ν ht(α, β)}T
t=1

)

,

where ht(α, β)
.
= α0 + α1y2

t−1 + βht−1(α, β), we can
express the likelihood of (ψ,v) as

L(ψ,v |y) ∝ (detΣ)−1/2 exp
[

− 1
2 y′Σ−1y

]

.

We use truncated Normal priors on the GARCH
parameters α and β

p(α) ∝ φN2
(α |µα,Σα)1{α ∈R

2
+}

p(β) ∝ φN1
(β |µβ,Σβ)1{β ∈R+} ,

where µ• and Σ• are the hyperparameters, 1{·} is
the indicator function and φNd

is the d-dimensional
Normal density.

The prior distribution of vector v conditional on
ν is found by noting that the components vt are in-
dependent and identically distributed from the in-
verted gamma density, which yields
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We follow Deschamps (2006) in the choice of the
prior distribution on the degrees of freedom parame-
ter. The distribution is a translated exponential with
parameters λ > 0 and δ ≥ 2

p(ν) = λexp
[

− λ(ν− δ)
]

1{ν > δ} .

For large values of λ, the mass of the prior is
concentrated in the neighborhood of δ and a con-
straint on the degrees of freedom can be imposed
in this manner. The normality of the errors is ob-
tained when δ is chosen large. As pointed out by De-
schamps (2006), this prior density is useful for two
reasons. First, it is potentially important, for numeri-
cal reasons, to bound the degrees of freedom param-
eter away from two to avoid explosion of the con-
ditional variance. Second, we can approximate the
Normality of the errors while maintaining a reason-
ably tight prior which can improve the convergence
of the MCMC sampler.

The joint prior distribution is then formed by as-
suming prior independence between the parameters,
i.e., p(ψ,v) = p(α)p(β)p(v |ν)p(ν). Then, by cou-
pling the likelihood function with the joint prior, we
can use Bayes’ rule to get the posterior density

p(ψ,v |y) ∝ L(ψ,v |y)p(ψ,v) .

This posterior is a quantitative, probabilistic de-
scription of the knowledge about the parameters af-
ter observing the data.

The recursive nature of the GARCH variance
equation implies that the joint posterior and the full
conditional densities are of unknown forms. There
exists no (conjugate) prior that can remedy this prop-
erty. Therefore, we cannot use the simple Gibbs sam-
pler so that we need more elaborate estimation pro-
cedures.

The MCMC sampler implemented in the pack-
age bayesGARCH is based on the approach of Ardia
(2008, chapter 5), inspired from the previous work by
Nakatsuma (1998). The algorithm consists of a MH
algorithm where the GARCH parameters are up-
dated by blocks (one block for α and one block for β)
while the degrees of freedom parameter is sampled
using an optimized rejection technique from a trans-
lated exponential source density. This methodology
has the advantage of being fully automatic. More-
over, in our experience, the algorithm explores the
domain of the joint posterior efficiently compared to
naive MH approaches or the Griddy-Gibbs sampler
of Ritter and Tanner (1992).

Illustration

We apply our Bayesian estimation methods to daily
observations of the Deutschmark vs British Pound
(DEM/GBP) foreign exchange log-returns. The sam-
ple period is from January 3, 1985, to December 31,
1991, for a total of 1974 observations. This data set
has been promoted as an informal benchmark for
GARCH time series software validation. From this
time series, the first 750 observations are used to
illustrate the Bayesian approach. The observation
window excerpt from our data set is plotted in Fig-
ure 1.
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Figure 1: DEM/GBP foreign exchange daily log-
returns.

We fit the GARCH(1,1) model with Student-t in-
novations to the data for this observation window.
To that aim, we use the bayesGARCH function

> args(bayesGARCH)

function (y, mu.alpha = c(0, 0),

Sigma.alpha = 1000 * diag(1,2),

mu.beta = 0, Sigma.beta = 1000,

lambda = 0.01, delta = 2,

control = list())

The input arguments of the function are the vec-
tor of data, the hyperparameters and the list control
which can supply any of the following elements:

• n.chain: number of MCMC chain(s) to be gen-
erated; default 1.

• l.chain: length of each MCMC chain; default
10000.

• start.val: vector of starting values of the
chain(s); default c(0.01,0.1,0.7,20). Alter-
natively, the starting values could be set to the
maximum likelihood estimates using the func-
tion fGarch available in the package fGarch
(Wuertz, 2008), for instance.

• refresh: frequency of reports; default 10.

• digits: number of printed digits in the reports;
default 4.
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As a prior distribution for the Bayesian estima-
tion we take the default values in bayesGARCH, which
are diffuse priors. We generate two chains for 5000
passes each by setting the control parameter values
n.chain = 2 and l.chain = 5000.

> set.seed(1234)

> MCMC <- bayesGARCH(y, control = list(

l.chain = 5000, n.chain = 2))

chain: 1 iteration: 10

parameters: 0.0441 0.212 0.656 115

chain: 1 iteration: 20

parameters: 0.0346 0.136 0.747 136

...

chain: 2 iteration: 5000

parameters: 0.0288 0.190 0.754 4.67

The function outputs the MCMC chains as
an object of the class mcmc from the package
coda. Note that coda is loaded automatically with
bayesGARCH.

We control the convergence of the sampler using
the diagnostic test of Gelman and Rubin (1992) avail-
able in coda. The convergence diagnostic shows no
evidence against convergence for the last 2500 iter-
ations. The MCMC sampling algorithm allows to
reach very high acceptance rates ranging from 89%
for vector α to 95% for β suggesting that the proposal
distributions are close to the full conditionals. The
optimized rejection technique used to generate ν al-
lows to draw a new value at each pass in the MH al-
gorithm. The one-lag autocorrelations in the chains
range from 0.87 for parameter α1 to 0.98 for param-
eter ν. Using the function formSmpl, we discard the
first 2500 draws from the overall MCMC output as a
burn in period, keep every second draw to diminish
the autocorrelation, and merge the two chains to get
a final sample’s length of 2500.

> smpl <- formSmpl(MCMC, l.bi = 2500,

batch.size = 2)

n.chain: 2

l.chain: 5000

l.bi: 2500

batch.size: 2

smpl size: 2500

Basic posterior statistics can be easily obtained
with the summary method available for mcmc objects.

> summary(smpl)

Iterations = 1:2500

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2500

1. Empirical mean and standard deviation

for each variable, plus standard error

of the mean:

Mean SD Naive SE Time-series SE

alpha0 0.0345 0.0138 0.000277 0.00173

alpha1 0.2360 0.0647 0.001293 0.00760

beta 0.6832 0.0835 0.001671 0.01156

nu 6.4019 1.5166 0.030333 0.19833

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

alpha0 0.0126 0.024 0.0328 0.0435 0.0646

alpha1 0.1257 0.189 0.2306 0.2764 0.3826

beta 0.5203 0.624 0.6866 0.7459 0.8343

nu 4.2403 5.297 6.1014 7.2282 10.1204

The marginal distributions of the model param-
eters can be obtained by first transforming the out-
put in a matrix and then using the function hist.
Marginal posterior densities are displayed in Fig-
ure 2. We clearly notice the asymmetric shape of the
histograms; this is especially true for parameter ν.
This is also reflected by the differences between the
posterior means and medians. These results should
warn us against the abusive use of asymptotic justifi-
cations. In the present case, even 750 observations
do not suffice to justify the asymptotic symmetric
Normal approximation for the parameter estimator’s
distribution.

Probabilistic statements on nonlinear functions of
the model parameters can be straightforwardly ob-
tained by simulation from the joint posterior sample.
In particular, we can test the covariance stationarity
condition and estimate the density of the uncondi-
tional variance when this condition is satisfied. Un-
der the GARCH(1,1) specification, the process is co-
variance stationary if α1 + β < 1, as shown by Boller-
slev (1986, page 310). The term (α1 + β) is the degree
of persistence in the autocorrelation of the squares
which controls the intensity of the clustering in the
variance process. With a value close to one, past
shocks and past variances will have a longer impact
on the future conditional variance. An autoregres-
sive coefficient α1 + β = 1 corresponds to a unit root
process for squared observations.

To make inference on the persistence of the
squared process, we simply use the posterior sam-

ple and generate (α
[j]
1 + β[j]) for each draw ψ[j] in

the posterior sample. The posterior density of the
persistence is plotted in Figure 3. The histogram
is left-skewed with a median value of 0.923 and a
maximum value of 1.050. In this case, the integra-
tion for the variance process is not supported by the
data. The unconditional variance of the GARCH(1,1)
model is α0/(1− α1 − β) given that α1 + β < 1. Con-
ditionally upon existence, the posterior mean is 0.387
and the 90% confidence interval is [0.274,1.378]. The
empirical variance is 0.323.
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Figure 2: Marginal posterior distributions of the model parameters. This histograms are based on 2500 draws
from the joint posterior sample.
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Figure 3: Posterior density of the persistence. The
histogram is based on 2500 draws from the joint pos-
terior sample.

Other probabilistic statements on interesting
functions of the model parameters can be obtained
using the joint posterior sample. Under specifica-
tion (1), the conditional kurtosis is 3(ν − 2)/(ν − 4)
provided that ν > 4. Using the posterior sample, we
estimate the posterior probability of existence for the
conditional kurtosis to 0.994. Therefore, the existence
is clearly supported by the data. Conditionally upon
existence, the posterior mean of the kurtosis is 8.21

and the 95% confidence interval is [4.12,15.81], indi-
cating heavier tails than for the normal distribution.
The empirical kurtosis is 4.63.

Normal innovations and prior restrictions

The function addPriorConditions can be used to
impose any type of constraints on the model pa-
rameters ψ during the estimation. For instance,
to ensure the estimation of a covariance stationary
GARCH(1,1) model, the function should be defined
as

> "addPriorConditions" <- function(psi)

+ psi[2] + psi[3] < 1

This function is non-exported (i.e., it belongs to
the package’s namespace); it is therefore important
to overwrite it using the function assignInNamespace
after its new definition. This is simply achieved as
follows

assignInNamespace("addPriorConditions",

addPriorConditions, "bayesGARCH")

Finally, we can impose normality of the innova-
tions in a straightforward manner by setting the hy-
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perparameters λ = 100 and δ = 500 in the bayesGARCH
function.

Summary

This note presented the Bayesian estimation of the
GARCH(1,1) model with Student-t innovations us-
ing the R package bayesGARCH. The estimation
strategy is fully automatic and does not require any
tuning of the MCMC sampler. Practitioners who
need to run the estimation frequently and/or for a
large number of time series should find the proce-
dure helpful. We illustrated the use of the package
with an empirical application to foreign exchange
rate log-returns.
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