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In the past, many refinements have been proposed to select equilibria in 

cheap talk games. Usually, these refinements were motivated by a discus-

sion of how rational agents would reason in some particular cheap talk 

games. In this paper, we propose a behavioral refinement and stability 

measure that is meant to predict actual behavior in a wide range of cheap 

talk games. According to our Average Credible Deviation Criterion 

(ACDC), the stability of an equilibrium is determined by the frequency and 

size of credible deviations. ACDC organizes the results from cheap talk 

experiments well, even in cases where other criteria remain silent. 
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1. Introduction 

Crawford & Sobel (1982) showed how meaningful costless communication 

between an informed Sender and an uninformed Receiver can be supported in 

equilibrium. Their seminal paper inspired many applications ranging from the 

presidential veto (Matthews, 1989), legislative committees (Gilligan & Krehbiel, 

1990) and political correctness (Morris, 2001) to double auctions (Matthews & 

Postlewaite (1989); Farrell & Gibbons (1989)), stock recommendations (Morgan 

& Stocken, 2003) and matching markets (Coles, Kushnir & Niederle, 2010). 

These cheap talk games are characterized by multiple equilibria which differ 

crucially in their prediction about how much information will be transmitted.  

Several refinements have been proposed to select an equilibrium in cheap talk 

games. Often, such refinements were based on an intuitive notion of how ration-

al players would reason in the context of a particular set of cheap talk games.1 

For instance, Farrell (1993) and Matthews, Okuno-Fujiwara & Postlewaite 

(1991) formulated refinements in which equilibria are discarded if they allow 

senders to submit credible deviating messages.2 Unfortunately, both Farrell’s 

neologism proofness and Matthews et al.’s (strong) announcement proofness 

criteria eliminate all equilibria in many games, including the original Crawford-

Sobel game.3 Several other types of concepts have been proposed that distin-

guish between stable and unstable equilibria (or profiles), such as Partial Com-

mon Interest (PCI) (Blume, Kim & Sobel, 1993), the recurrent mop (Rabin & 

Sobel, 1996) and No Incentive To Separate (NITS) (Chen, Kartik & Sobel, 

2008). These criteria often select a plausible equilibrium in specific settings, but 

fail to discriminate successfully across a wider range of cheap talk games. 

In this paper, we propose a behavioral refinement that is meant to predict 

actual behavior in a wide range of cheap talk applications. Our Average Credi-
                                     
1 For a comprehensive review of Sender-Receiver games, see Sobel (2010). 
2 Standard signaling refinements such as Kohlberg & Merten’s strategic stability (1986) have 

no bite in cheap talk games because messages are costless. 
3 Weak announcement proofness tends to eliminate too few equilibria. 
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ble Deviation Criterion (ACDC) is based on credible deviations but allows for a 

continuous instead of a binary stability concept. Its main contribution to the 

literature is that it works: it makes a prediction in many games and its predic-

tions are validated by experimental evidence. 

ACDC takes as a point of departure a theory of credible deviations like credi-

ble neologisms proofness (Farrell, 1993) or credible announcements (Matthews, 

Okuno-Fujiwara & Postlewaite, 1991). These theories stipulate conditions under 

which a message inducing a deviation from equilibrium is credible and thus 

upsets the equilibrium. The current approach is to assume that all equilibria 

that admit credible deviations are equally unstable. ACDC, however, assumes 

that the stability of an equilibrium is a decreasing function of its Average 

Credible Deviation (ACD), a measure of the frequency and intensity of credible 

deviations. The ACD measures the mass of types that can credibly deviate and 

the size of those induced deviations (as measured by the difference in Sender 

payoff between the equilibrium and deviating action). Comparable equilibria will 

perform better if they have a lower ACD on this account. In particular, we call 

an equilibrium that minimizes the ACD in a game an ‘ACDC equilibrium.’ This 

allows us to select equilibria, even in games where no equilibrium is completely 

stable. 

We think ACDC provides an intuitive solution to the equilibrium selection 

problem for cheap talk games. Human behavior is messy and seldom completely 

in (or out of) equilibrium. Still, neologism proofness, announcement proofness, 

and many of the other cheap talk refinements impose a neat binary distinction 

between stable and unstable equilibria. Whereas such a binary criterion is 

appropriate for rational agents, it may unnecessarily lose predictive power when 

applied to human behavior. ACDC solves this problem in two ways. It is able to 

select among equilibria in a wide range of games and it provides a continuous 

stability measure for each equilibrium. 

We derive the following results. First, we show that an ACDC equilibrium 

exists under general conditions. In all applications we have come along, there is 

a unique ACDC equilibrium. Second and more importantly, the predictions of 
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ACDC are validated by existing experiments as well as by new experimental 

data. Wherever experimental evidence exists, the predictions of ACDC are in 

line with the data: it performs at least as well as other criteria, if they are 

predictive, and also makes predictions when other criteria are silent.  We show 

that ACDC selects the unique maximum size equilibrium in the leading uni-

form-quadratic case of the Crawford-Sobel game for a large range of bias pa-

rameters. Until now, only NITS was able to select this equilibrium in the Craw-

ford-Sobel setting (Chen, Kartik & Sobel, 2008). In addition, the maximum size 

equilibrium becomes more stable as the bias parameter becomes smaller accord-

ing to ACDC, which is not predicted by existing criteria. Both results are 

supported by experimental work on (discrete) Crawford-Sobel games (Dickhaut, 

McCabe & Mukherji (1995), Cai & Wang (2006), Wang, Spezio & Camerer 

(2010)). 

Furthermore, we find that ACDC organizes the main features of the experi-

mental data of the discrete games analyzed by Blume, DeJong, Kim & Sprinkle 

(2001), originally intended to test the Partial Common Interest criterion. Final-

ly, ACDC is also successful in organizing the results of new experiments. In De 

Groot Ruiz, Offerman & Onderstal (2012a), we test the predictions of ACDC in 

a class of veto-threat games introduced in De Groot Ruiz, Offerman & Onder-

stal (2012b). The data corroborate the predictions of ACDC. The ACDC equi-

librium performs better in games where its ACD is smaller. In addition, in each 

treatment the ACDC equilibrium predicts best, also in games where all other 

criteria do not select a unique equilibrium.  

This paper has the following structure. In section 2, we motivate, define and 

illustrate ACDC. In section 3, we apply ACDC to the Crawford-Sobel uniform-

quadratic model and compare it to other concepts in this framework. In section 

4, we discuss the remaining experimental evidence on ACDC. Finally, section 5 

concludes. 
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2. Motivation, Definition, Properties, and Applications 

2.1. Motivation 

Applied theorists who analyze strategic information transmission face the 

following problem if they analyze a new cheap talk game. The model is likely to 

have several equilibria and so one would like a concept that selects the most 

plausible equilibrium, tells one how stable that equilibrium is, and is validated 

by experimental data. However, currently chances are high that one will not find 

such a concept for the new cheap talk game for two reasons.  

First, existing selection criteria tend to select an equilibrium in specific clas-

ses of games but not in all relevant applications. Neologism proofness (Farrell, 

1993) and announcement proofness (Matthews, Okuno-Fujiwara & Postlewaite, 

1991) provide a strong intuition and make meaningful predictions in specific 

simple discrete games. However, they fail to select an equilibrium in many 

applied settings, such as that of Crawford and Sobel (1982). In contrast, NITS is 

very effective in selecting equilibria in the Crawford-Sobel model (Chen, Kartik 

& Sobel, 2008). The predictions by NITS have been validated by experimental 

evidence on the Crawford-Sobel model (Dickhaut, McCabe & Mukherji (1995); 

Cai & Wang (2006); Wang, Spezio & Camerer (2010)). However, in other games, 

NITS is often not defined, as we will discuss in section 3. PCI has shown to 

make a prediction which is borne out by experimental data in particular discrete 

games (Blume, DeJong, Kim & Sprinkle, 2001), but does not select a partition 

in many continuous settings, such as that of Crawford-Sobel. 

Second, even if current concepts select an equilibrium, they do not tell how 

stable it is, even though experimental evidence suggest there is a considerable 

degree of variation in the stability of cheap talk equilibria. For instance, experi-

ments on (discrete versions of) the Crawford-Sobel game show that the most 

informative NITS equilibrium indeed performs best, but that its stability de-

creases considerably as the bias parameter increases. 
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Game A in Table 1 illustrates these two issues of selection and stability. In 

Game A, the Sender sends a costless message m to the Receiver, who then takes 

one of three actions: 1 2,a a  or 3.a 4 The payoffs for both players depend on the 

Receiver’s action and the Sender’s type. The Sender’s type is private infor-

mation and is drawn from 1t  and 2t  each with probability (1 ) / 2δ−  and from 

3t  with probability .δ   

 

TABLE 1
GAME A

 1a  2a  3a  4a  5a  

  1t  ( 1
2
δ− ) 1, 4 0, 0 0, 0 0, 0 2, 3 

  2t ( 1
2
δ− ) 0, 0 0, 2 + δ 1 + ε , 0 2, 2 1, 1 

  3t  (δ ) 0, 0 0, 0 2 + ε , 3 2, 2 1, 1 
Notes: The left column shows the Sender’s type and between brackets the 

probability that it is drawn. The top row shows the Receiver’s actions. The 
remaining cells provide the Sender’s payoff in the first entry and the Receiver’s 
payoffs in the second entry. δ≤ < 1

20 and ε≤ <0 1  

 

Game A has two equilibria. We say a type t induces action a, if the Receiver 

always takes action a after any message t sends in equilibrium. In the pooling 

equilibrium, all Senders induce 5.a  In the partially separating equilibrium, 1t  

induces 1,a  whereas 2t  and 3t  induce 4.a  

What do credible neologisms (Farrell, 1993) do in this game? Neologisms are 

out-of-equilibrium messages which are assumed to have a literal meaning in a 

pre-existing natural language.5 Farrell considers neologisms which literally say: 

“play action ,a�  because my type is in set N.” Farrell deems a neologism credible 

if and only if (i) all types t  in N  prefer a�  to their equilibrium action ( )a tσ , (ii) 

all types t  not in N  prefer their equilibrium action ( )a tσ  to a�  and (iii) the 

best reply of the Receiver after restricting the support of his prior to N  is to 

play .a�  We will denote neologisms by , .a N�  According to Farrell, credible 

                                     
4 We will refer to the Sender as a ‘she’ and the Receiver as ‘he.’  
5 See Blume, DeJong, Kim & Sprinkle (1998) and Agranov & Schotter (2012)  for studies on 

the role of natural language in cheap talk games. 
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deviations lead rational players to deviate from equilibrium. An equilibrium is 

neologism-proof, and stable on this account, if and only if it does not admit any 

credible neologism.  

If δ = 0  or ε = 0, neologism proofness provides a compelling reason why the 

partially separating equilibrium is more plausible. The pooling equilibrium 

admits the credible neologism 4 2 3, { , } .a t t  Hence, it is likely to be unstable as 

types 2t  and 4 2 3, { , }a t t  can credibly separate themselves from 1.t  On the other 

hand, the partially separating equilibrium is neologism proof: it admits no 

credible neologisms and is stable. For δ > 0  and ε > 0,  a key limitation of 

neologism proofness becomes evident. In this case, the partially separating 

equilibrium also admits a credible neologism, to wit 3 3, { } .a t  This leaves us 

with no stable equilibrium and no prediction.   

For entirely rational agents, the fact that neither equilibrium is stable might 

be all there is to be said. When explaining or predicting human behavior, 

however, we feel we can go further. Human behavior is hardly ever completely in 

or out of equilibrium, and by imposing a binary distinction between stable and 

unstable equilibria a concept may lose predictive power.6 

In game A, even though the partially separating equilibrium is not entirely 

stable, it seems more plausible than the pooling equilibrium if either 3t  is 

infrequent (δ  small) or 3t  has a very small incentive to deviate ( ε  small). If δ  is 

small, then the partially separating equilibrium will be upset with a small 

probability, whereas the pooling equilibrium will be upset almost half of the 

time. Similarly, if ε  is small, then 3t  has a small incentive to deviate in the 

partially separating equilibrium and may choose to stick to it, lest she be mis-

understood and get a payoff lower than she gets by sticking to equilibrium. 

Hence, we would expect to observe behavior close to the partially separating 

                                     
6 We consider equilibrium to be most meaningful in a dynamic context, where members of a 

group interact frequently with different other members. In this context language evolves and 
behavior is shaped by strategic forces in the direction of equilibrium. For a one-shot game 
between rational individuals without social information, an approach based on rationalizability 
and some focal meaning of messages, such as that in Rabin (1990), may be appropriate. 
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equilibrium more frequently than behavior close to the pooling equilibrium. This 

implies two things. First, it may be possible to select the most plausible equilib-

rium in a game, even though no equilibrium exists that is entirely stable. Se-

cond, to describe behavior in a cheap talk game one needs a continuous stability 

measure and not just a binary criterion.  

2.2. Definition and General Results 

Our intuition is that, from a behavioral perspective, the stability of an equilibri-

um is a decreasing function of the average intensity of the credible deviations it 

admits. This depends, firstly, on the mass of types that can credibly induce a 

deviation and, secondly, on the intensity of the deviation, measured by the 

incentive the Sender has to deviate. As a consequence, if the deviating mass and 

the induced deviations from equilibrium are small, the equilibrium is likely to be 

a good predictor of behavior. We formalize this intuition in the ACDC criterion. 

We first provide a definition of ACDC and apply it to the Crawford-Sobel game 

in the following section. 

For simplicity, we define ACDC for Sender-Receiver games and pure strate-

gies.7 Nature draws the Sender type t from probability density f on T, where T  

is a compact metric space. The Sender then privately observes her type t and 

chooses a costless message .m M∈  After having observed the Sender’s message, 

the Receiver chooses an action ,a A∈  where A  is a compact metric space.8 Let 

× → \:RU A T  be the utility function of the Receiver × → \:SU A T  that of 

the Sender. We assume both are bounded from above and below. A strategy for 

the Sender consists of a function : ,T Mμ →  and a strategy of the Receiver is a 

function : M Aα → . Let SΣ  be the set of Sender strategies and RΣ  the set of 

Receiver strategies. Let μ α{ , }  be a strategy profile and Σ  the set of all strategy 

profiles. Finally, let the Receiver have prior beliefs β =0( () )t f t  and posterior 

                                     
7 It is more cumbersome but conceptually analogous to formulate ACDC for mixed strategies 

and/or veto-threat games. In Appendix B, we define ACDC for veto-threat games. 
8 This representation allows for T and A to be de facto discrete, by allowing US and UR to be 

constant on regions of the type and outcome space. 
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beliefs β( | )t m respectively. A pure strategy perfect Bayesian equilibrium 

(henceforth just ‘equilibrium’) σ  = μ α β{ , , }  is characterized by the following 

three conditions: 

 

μ α∈∈ ∈For each , ( ) arg max ( ( ), )S
m Mt T t U m t   

(1) βα ∈∈ ∈ ∫For each , arg ma( ) ( )x , ) ( |a
R

T
Am U a t t m dtm M  

β μ β0( ) is derived from  and using Bayes Rule whenever poss e iblm  

 

Let ∗Σ  be the set of equilibria. ACDC provides a stability measure and a 

selection criterion for equilibria in ∗Σ .  The starting point of ACDC is a theory 

of credible deviations .γ  Such a theory associates a unique deviating profile 

γ γγ σ μ α= ∈ Σ( ) { , }  with an equilibrium σ. A deviating profile specifies firstly 

which Sender types would deviate and in which way, and secondly, how the 

Receiver would react. If no type can send a credible deviation according to ,γ  

then γ σ σ=( ) .  

We then define the Average Credible Deviation (ACD) of an equilibrium σ  

relative to γ  as: 

 

(2)  ( ) [ ( , )]tACD E CD tγ γσ σ∗ ∗=  

 

where ( , )CD tγ σ  measures the intensity of type t’s credible deviation. This 

captures the likelihood of a particular deviation and the degree to which a 

deviation upsets the equilibrium. We have selected an intensity measure on the 

following grounds. It should be 

- invariant to affine transformations of payoffs; 
- increasing in the difference between the deviating and equilibrium payoff; 

Additionally, we think it is desirable that it is decreasing in the lowest rational-

izable payoff, as that measures how risky it is to deviate from equilibrium for 

the Sender.  Finally, we think it is convenient to normalize it so that it is 0 if 
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the difference between deviating and equilibrium payoff is zero and 1 if the 

difference between deviating and equilibrium payoff is maximal. Specifications of 

( , )CD tγ σ∗  that adhere to the properties above are likely to lead to similar 

conclusions. We propose the following simple function for ( , )CD tγ σ∗ . Let †Σ  be 

the set of rationalizable strategy profiles. Then, 
α μ ∈Σ

≡
†{ , }

( ) infSU t ( )( )α μ, ( )SU t t  

and 
α μ ∈Σ

≡
†{ , }

( ) supSU t  ( )( )α μ, ( )SU t t  are the lowest and highest rationalizable 

payoff for Sender type t. Then  

 

 (3)  
( ) ( )γ γ

γ

α μ α μ
σ

−
=

−

, ( ( )) , ( ( ))
( , )

( ) ( )

S S

S S

U t t U t t
CD t

U t U t
 

 

if ( )α μ >, ( ( )) ( ).S SU t t U t  If ( )α μ =, ( ( )) ( ),S SU t t U t  then ( , ) 1,CD tγ σ∗ =  as in this 

case the Sender has no incentive to adhere to her equilibrium strategy.  

A deviation theory can be based on credible neologisms or some form of cred-

ible announcements (or, in principle, on any theory of credible deviations). Our 

preference is to employ credible neologisms.9 In our view, the simplicity of 

neologism proofness makes it the most apt to describe the behavior of bounded-

ly rational individuals. We agree with the observations in Matthews, Okuno-

Fujiwara & Postlewaite (1991) about the limitations of neologism proofness for 

rational agents. However, the motivation behind ACDC is to predict behavior 

and explain experimental data. Hence, our aim is somewhat different from that 

of most of the credible deviations literature, whose main concern is to establish 

what would be credible from a rational perspective. 

In the case of full rationality, strongly credible announcements are probably 

the proper basis for a deviation theory, as these are credible even if players 

anticipate deviations. Credible neologisms assume that players do not anticipate 

deviations and hence assume some form of bounded rationality. Nonetheless, in 

                                     
9 We assume that, if a type can send multiple neologisms, she sends the neologism that gives 

her the highest payoff. 
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almost all games strongly credible announcements predict that all equilibria are 

stable, which is clearly not what the empirical data shows. A reason may well lie 

in the bounded rationality of most people. Estimations of level-k reasoning and 

cognitive hierarchies of human data in experiments show that in most games the 

large majority of people engage in level-1 and level-2 reasoning (Nagel, 1995; 

Camerer, Ho, & Chong, 2004). Cai & Wang (1996) find specifically in a Craw-

ford-Sobel game that the majority of people do not exceed level-2 reasoning.  

Determining the credibility of an out-of-equilibrium message also requires 

quite a bit of strategic sophistication. In analogy to a level-k analysis, one can 

get a feel for this by looking at how deep people must reason in order to find a 

particular deviation credible. In a level-k model, players without strategic 

sophistication (‘level-0’) will send nor understand deviations. Players with 

elementary strategic sophistication (‘level-1’) can understand deviations. Howev-

er, they will not send them, as they believe they will not be understood. Nor 

will they anticipate them. Players with a decent amount of strategic sophistica-

tion (‘level-2’) will send credible deviations; but they will not anticipate them. 

Only sophisticated players (‘level-3’) will anticipate credible deviations but even 

they do not expect others to anticipate credible deviations. Very sophisticated 

players (‘level-4’) anticipate credible deviations and anticipate that others 

anticipate them as well. In line with results on strategic reasoning in previous 

experiments, we expect that credible neologisms and weakly credible announce-

ments (and ACDC with respect to them) come closest to describing the behav-

ior of the large majority of people. Thus, most boundedly rational Receivers will 

not deviate from equilibrium unless they receive a credible deviation. This 

means that the assumption implicit in ACDC that an equilibrium is only desta-

bilized if the Sender sends a credible deviation, can be taken as a good approx-

imation of behavior.  

Based on the ACD, we formulate the ACD-Criterion (ACDC), which says 

that an equilibrium σ∗  will on average predict better than equilibrium σ  if 

( ) ( )ACD ACDγ γσ σ∗ < . In particular, based on ACDC we can formulate the 

following selection criterion: 
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Definition 1 An equilibrium σ∗  is an ACDC equilibrium relative to deviation 

theory γ  if ( ) ( )ACD ACDγ γσ σ∗ ≤  for all .σ ∗∈ Σ  

 

Note that this selection criterion selects the equilibrium that will predict best on 

average rather than the equilibrium that will always be played. A simple impli-

cation is that σ  is an ACDC equilibrium if γ σ σ=( ) .   

The following result is immediate. 

 

Proposition 1 If the number of equilibrium outcomes is finite, the cheap talk 

game has an ACDC equilibrium relative to .γ  

 

Hence, existence of an ACDC equilibrium is guaranteed by a finite set of equi-

librium-outcomes. This is a relevant result, as Park (1997) has shown that finite 

Sender-Receiver games have a finite set of equilibrium outcomes under generic 

conditions. Before, Crawford and Sobel (1982) showed a similar result for their 

setting with a continuous type-space. Even when games do not have a finite 

outcome set, mild conditions can be formulated in order to guarantee existence 

of an ACDC equilibrium: 

 

Proposition 2 Let s be an equilibrium outcome and ( )ACD sγ  the ACD of 

equilibria inducing s. Suppose the equilibrium outcome set S can be represented by 

a finite union of compact metric spaces ,ii N
S S

∈
= ∪  such that ( )ACD sγ  is 

continuous in s on all subsets .iS  Then, an ACDC equilibrium exists with respect 

to .γ  

Proof ( )ACD sγ  achieves a minimum on each compact subset iS  and thus on 

S. Hence, min ( )ACDγ σ∗Σ
 is nonempty and an ACDC equilibrium exists. Q.E.D. 
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Proposition 2 is informative for continuous games for which the equilibrium 

outcome set is known but not finite. This proposition implies that continuous 

games with an equilibrium set consisting of partition equilibria that are well-

behaved with respect to their ACD will have an ACDC equilibrium.10 For 

instance, the class of continuous veto-threats games we introduce in De Groot 

Ruiz, Onderstal and Offerman (2012b) and for which we derive the ACDC 

equilibrium in Online Appendix B has an infinite equilibrium outcome set that 

meets the conditions of Proposition 2. 

2.3. Applying ACDC 

We will now apply ACDC to Game A in Table 1 and to Cai & Wang’s (1996) 

discrete versions of the Crawford-Sobel game. In a discrete game, the ACD of a 

pure equilibrium σ (with a pure ( ))γ σ  reduces to 

 
( ) ( )γ γα μ α μ

∈

−

−∑
, ( ( )) , ( ( ))

( ) )
( ,

(
)

S S

T
S

t
S

U t t U
f

t t

U t U t
t   

where ( )f t  is type t’s prior probability. Recall that in Game A in the pooling 

equilibrium, all Senders induce 5a  and 4 2 3, { , }a t t  is the unique credible neolo-

gism. Hence, the ACD of the pooling equilibrium is 
(1 ) (2 1)

2 2 0
δ− −

+
−

2 1
2 0

δ
ε
−

=
+ −

1 2
.

4 8 4
ε

δ
ε

−
+

+
 In the partially separating equilibrium 1t  induces 1,a  

whereas 2t  and 3t  induce 4a  and 3 3, { }a t is admitted. Hence, the ACD of the 

partially separating equilibrium is (2 2)
2 0

ε
δ

ε
+ −

=
+ −

.
2
δε

ε+
 It is readily verified 

that the pooling equilibrium’s ACD is greater than the partially separating 

equilibrium’s so that the latter is the ACDC equilibrium. In addition, the ACD 

                                     
10 An equilibrium of a game with a one-dimensional type and action set is a partition equilib-

rium if there exists a partition 0 1 1n nt t t t−< < <<"  of T such that each type in 1[ , ]i it t−  

induces action ia  with 1 2 ... naa a< < < . Hence, a partition equilibrium is characterized by a 

vector 1,..., )( na a a=  and a partition equilibrium outcome set can be represented by a finite 

union of subsets of 1,..., .n\ \  
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of the partially separating equilibrium goes to zero if δ  or ε  goes to zero. 

Finally, even though it is ACDC, if δ  or ε  become large the partially separating 

equilibrium becomes less stable because a type can deviate frequently or devia-

tions have a high intensity. 

What does ACDC do in the seminal Crawford-Sobel setting? Before the 

NITS criterion (Chen, Kartik & Sobel, 2008), refining the equilibrium set proved 

elusive. For example, in the leading uniform-quadratic game, no equilibrium is 

neologism proof. NITS selects the maximum size equilibrium in the Crawford-

Sobel game and experimental evidence on discrete versions of the Crawford-

Sobel linear quadratic game supports this prediction (Dickhaut, McCabe & 

Mukherji, 1995; Cai & Wang, 2006; Wang, Spezio & Camerer, 2010). There is, 

however, one important experimental finding that remains unexplained in the 

experimental data. As the bias parameter b decreases, the maximum size equi-

librium becomes more stable.11  

Consider, for instance, the results on a discrete Crawford-Sobel game by Cai 

& Wang (2006) depicted in Table 2. Applying ACDC to the discrete Crawford-

Sobel games is straightforward. For example, for b = 2, the ACD of the pooling 

equilibrium is 

 
⎛ ⎞− − − ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ − − −⎝ ⎠

1 (5,5) (5,7) (7,5) (7,7) (9,5) (9,7)
5 (5,7) (5,1) (7,9) (7,1) (9,9) (9,1)

S S S S S S

S S S S S S

U U U U U U
U U U U U U

≈ 1.37.  

In Table 2, we provide the ACD of each equilibrium for the treatments of Cai 

and Wang (2006). ACDC makes two predictions in line with the experimental 

data. First, ACDC selects the most informative equilibrium. Second, the most 

informative equilibrium has a lower ACD and thus becomes more stable as b 

becomes smaller and the reverse holds for the pooling equilibrium. Both predic-

tions are intuitive.  The most informative equilibrium admits ‘fewer’ or ‘smaller’ 

                                     
11 The results of Dickhaut, McCabe & Mukherji (1995) on a Crawford-Sobel game are similar 

to those reported by Cai and Wang, although they do not interpret their results in terms of 
overcommunication. More recently, Wang, Spezio & Camerer (2010) replicate the results of Cai 
& Wang (2006) and find that look-up patterns of Senders (as measured by eye-tracking) reveals 
a significant amount of information about their type. 
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credible deviations than the pooling equilibrium for all values of b in Table 2. 

This could provide an explanation why it predicts better. 

 

TABLE 2
ACDC IN BASELINE TREATMENTS CAI & WANG (2006) 

 Pooling Equilibrium1 Most Informative Equilibrium 
b 2  Credible  

Neologisms 
Error3 ACD Equilibrium4 Credible 

Neologisms 
Error ACD

0.5 1, {1} , 3, {3} ,

7, {7} , 9, {9}  

  .916 .220 {1},{3},{5},
{7},{9} 

–.084 0 

1.2 1, {1} , 7, {5,7,9} ,

8, {7,9}  

  .896  .181 {1,3}, 
{5,7,9} 

3, {3} ,

8, {7,9}  

  .146  .074

2 7, {5, 7, 9}    .734 .137 {1},
{3,5,7,9} 

7, {5, 7, 9} ,

8, {7,9}  

  .234 .099

4 6, {3,5,7,9}    .391 .101 {1,3,5,7,9} 6, {3, 5, 7, 9}

 

  .391 .101

Notes: In this Sender-Receiver game payoffs are given by = − ⋅ − 7/5
( , ) 110 10RU a t t a  and 

= − ⋅ + − 7/5
( , ) 110 10 .SU a t t b a  The type set is {1,3,5,7,9}, the action set is {1,2,3,4,5,6,7,8,9}. 

Each type is equally likely. 
1 In the pooling equilibrium, the Receiver takes action 5 regardless of the message. 
2 The baseline treatments only differ in the size of the bias parameter b. 
3 As prediction error we take the reported difference between the actual and predicted mes-

sage-type correlation. Cai and Wang also report other measures as message-action and type-
action correlations, which yield a similar picture. 

4 In this column, we show the equilibrium type partition. The Receiver’s action from a mes-
sage coming from a partition element is the average of the types in the partition element. 
 

In addition, as b increases, the most informative equilibrium admits ‘more’ or 

‘larger’ credible deviations. This may explain the fact that the prediction error 

of the most informative equilibrium appears to become larger as b increases (and 

the pooling equilibrium appears to predict less bad). One particular feature of 

the instability of the most informative equilibrium is that unless it is perfectly 

separating, there appears to be overcommunication. One explanation for over-

communication could be due to lying averse Senders and/or naïve Receivers 

(Kartik, Ottaviani, & Squintani, 2007). An additional explanation is that 

credible neologisms not only destabilize but also lead to more information 

transmission, as can be seen in Table 2. For instance, if b = 4, the unique 

pooling equilibrium predicts no information transmission, but credible neolo-
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gisms allow types 3 to 9 to separate themselves from type 1 if equilibrium is 

reached. 

3. Crawford-Sobel Game 

In this section, we apply ACDC to the leading uniform-quadratic case of Craw-

ford & Sobel’s (1982) cheap talk game (henceforth ‘CS game’). We compare its 

predictions to those of existing refinements. 

In the CS game, types are uniformly distributed on [0,1], the action space is 

[0,1], ( )2( , )RU a t a t= − −  and ( )2( , ) ( ) ,SU a t a t b= − − +  with 0b >  capturing 

the Sender bias. Crawford & Sobel (1982) show that this game only has (perfect 

Bayesian) partition equilibria and that the maximum equilibrium size ( )n b  is the 

largest integer n for which  

 

(4)  2 ( 1) 1n n b− < .  

 

The game has a unique size-n equilibrium for each {1,..., ( )}n n b∈ . Let 

 

(5)  2 ( ).n
i

i
t bi n i

n
≡ − −   

 

for 0,...,i n=  and 1,..., ( )n n b= . In the size-n  equilibrium, types in 1[ , )n n
i it t−  

send the same equilibrium message, which induces the Receiver to choose action  

 

(6)  1

1
( )

2
n n n
i i ia t t−= + , 1,...,i n= . 

 

We start by deriving all credible neologisms the equilibria admit. For each 

credible neologism ,a N� , the set of deviating types N  turns out to be an 

interval between some τ  and .τ  Hence, we can characterize neologisms by [ , ]τ τ  



16 
 

alone, since the Receiver’s best response is .
2

a
τ τ+

=�  An equilibrium can 

admit three types of credible neologisms. First of all, there may be a credible 

neologism which includes 0.t =  If this credible neologism exists, then it has the 

shape 0[0, )nτ  where  

 

( )0 1

2 4 1 2
1 .

3 3 3 3
n na b b n

n
τ = − = − +   

 

Chen, Kartik & Sobel (2008) show that an equilibrium that fails NITS has a 

credible neologism of this kind and prove that only the size- ( )n b  equilibrium 

satisfies NITS. Hence, the credible neologism 0[0, )nτ  exists if and only if 

( )n n b< . 

Second, Farrell (1993) shows that if 
1

,
2

b <  the game has a credible neolo-

gism on the right-end of the type space of the form ( ,1]n
nτ  where 

 

1 2
1 ( 1).

3 3
n
n b n

n
τ = − − +  

 

Finally, if {2,..., ( ) 1},n n b∈ −  there are 1n −  credible neologisms “in the mid-

dle.” These take the form ( , )n n
i iτ τ  for 1,..., 1,i n= −  where n

iτ  [ n
iτ ] is indiffer-

ent between the equilibrium action n
ia  [ 1n

ia + ] and the neologism action 

( ) / 2.n n n
i i ia τ τ= +�  We obtain: 

 

(7) 

1

3 1
2

4 4
n n n
i i ia a bτ += + −  and  

1

1 3
2 ,

4 4
n n n
i i ia a bτ += + −  

 
1,..., 1.i n= −   
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If ( ),n n b=  the game has the same types of credible neologisms “in the middle,” 

with the exception that the neologism ( )( ) ( )
1 1,n b n bτ τ  need not exist.12 Observe that 

1
n n
i iτ τ− <  for 1,..., ,i n=  so that none of the credible neologisms overlap. Figure 

1 illustrates the results for 
1

.
18

b =  

It seems intuitive that the highest size equilibrium is the ACDC equilibrium, 

since the deviations seem to get smaller and smaller as the size increases. This 

indeed turns out to be the case. Although one can obtain analytical results for 

the ACD for specific parameter values, finding the ACDC equilibrium for 

general b  defies an analytical approach. Hence, we calculated the ACD for a 

very fine grid of b  and obtain the following result.  

 

Proposition 3 For all 
1 2 1

, ,...,
10000 10000 4

b
⎧ ⎫⎪ ⎪⎪ ⎪∈ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 it holds that the ACD of the 

size-n equilibrium in the CS game is decreasing in n.  

Proof See Appendix A. 

 

Corollary 1 For all 
1 2 1

, ,..., ,
10000 10000 4

b
⎧ ⎫⎪ ⎪⎪ ⎪∈ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 the size- ( )n b  equilibrium is the 

unique ACDC equilibrium.  

 

We also derive the following property of the maximum size equilibrium (for 

which we do not need to calculate the ACD’s for each b): 

 

Proposition 4 The ACD of the size- ( )n b  equilibrium tends to zero if b tends 

to zero in the CS game.  

Proof Let ( )( ) n b
bbσ σ≡  be the maximum size equilibrium for b. Then,  

                                     
12 If (and only if) 22 ( ) 1bn b ≥ , there is no credible neologism of the form ( ) ( )

1 1( , )n b n bτ τ  because  

( )( ) ( ) ( ) 2
1 1 2

3 1 3
2 2 ( ) 1 0,

4 4 4 ( )
n b n b n ba a b bn b

n b
τ = + − = − − ≤ which is inconsistent with all types 

being in the interval [0,1] or the interval ( ) ( )( ) ( ) ( )
1 1 1, 0,n b n b n btτ τ =  being a neologism. 
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(

10 0

) ( )

0

)

4

(( ( ), ) ( ( ), ) 0 ( ( ), )
lim ( ) lim lim

min{
(

) ( )}
)

(

S S S

t tS Sb b b
t T

b b bU a t t U a t t U a t t
ACD Eb E

U t U t

σ σ σ

σ
↓ ↓ ↓

∈

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥≤ ≤⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎣ ⎦⎣ ⎦

�

  2 21
2

20 0

1 ( ( ) 1)
4 lim 4 lim

12 ( ) 3
S

b b

b n b
EU b

n b↓ ↓

⎛ ⎞− ⎟⎜ ⎟= − ⋅ = ⋅ + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
 

( )
( )

2
2

2
2 2 2 2

220 0

21 4
4 lim ( ) 4 lim 0

( ) 42 / 1 1b b

b b b
b b n b b

n b b↓ ↓

⎛ ⎞⎟⎜ + + ⎟⎛ ⎞ ⎜ ⎟⎜⎟⎜ ⎟⎟≤ ⋅ + + ≤ ⋅ + + =⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎜⎝ ⎠ ⎟+ −⎜ ⎟⎟⎜⎝ ⎠

 
Equality 1 follows from the specification of SEU  in Crawford & Sobel (1982). 

Inequality 2 follows from 1 1
2 2 2 / 1 1( )n b b⎡ ⎤+⎢⎢= + −⎥⎥  due to (4). The other 

manipulations are straightforward. Q.E.D.  

 

Hence, the ACD of the maximum size equilibrium converges to zero if b  ap-

proaches zero, i.e. if the interests of the players are almost perfectly aligned. 

This finding is intuitive because the Sender obtains almost her ideal outcome 

when b  is close to zero, so she will not gain much in the case of deviation, and 

even if she deviates, the deviation will hardly change the equilibrium. 

We can now compare ACDC with other criteria. First of all, neologism proof-

ness does not make a prediction: all equilibria admit credible neologisms and are 

thus unstable. Matthews, Okuno-Fujiwara & Postlewaite (1991) refine neologism 

proofness with three progressively stronger stability criteria: weak, ordinary and 

strong announcement proofness. Weak announcement proofness eliminates all 

equilibria for the same reasons as neologism proofness. Ordinary announcement 

proofness also tends to eliminates all equilibria and sometimes selects an unintu-

itive equilibrium. For instance, if ( )∈ 1 1
24 16, ,b  it selects the pooling equilibrium 

and eliminates the size-2 and size-3 equilibrium.13 Strong announcement proof-

ness fails to select an equilibrium as it eliminates no equilibrium.  

                                     
13 or ( )1 1

24 16, ,b ∈ the pooling equilibrium admits the weakly credible announcement composed 

of the neologisms at the beginning and end, characterized by the set of intervals of deviating 
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Rabin & Sobel (1996) propose the recurrent mop criterion, which can select 

equilibria that, although not impervious to credible deviations, are likely to 

recur in the long run, because they are frequently deviated to. The authors 

restrict their definition of the recurrent mop to games with a finite number of 

actions as it may run into problems in continuous games, amongst others be-

cause the deviation correspondence may not converge in these settings. Blume, 

Kim & Sobel (1993) put forward the Partial Common Interest (PCI) concept. A 

partition of the typeset satisfies PCI “if types in each partition element unam-

biguously prefer to be identified as members of that element, and there is no 

finer partition with that property.” PCI does not make a definite prediction in 

the CS game, as no partition of the type space (except 0 10 1t t= < = ) satisfies 

PCI. The main reason is that the highest Sender-type of a partition-element 

always prefers the Receiver to believe that the upper boundary is higher than 

the true boundary (except for type 1t = ).  

Also non-equilibrium concepts exist. Rabin (1990) introduced the concept of 

Credible Message Rationalizability (CMR). This non-equilibrium concept pro-

poses conditions under which communication can be guaranteed to happen. It 

assumes that rational players take truth-telling as a focal point, but use the 

strategic incentives of the game to check whether truth-telling is rational. In the 

CS game, CMR is silent. CMR requires that all Sender-types who send a credi-

ble message receive an action in which they achieve their maximum payoff. This 

would imply that the Receiver does not best respond to credible messages, 

which cannot be the case under CMR.14 

The NITS criterion (Chen, Kartik, & Sobel, 2008) is up till now the only re-

finement based on some notion of stability that can successfully select an equi-
                                                                                                           

types sending the same message { }51 4 4
6 6 6 60, , ,1 .b b⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦ In addition, however, it admits the 

weakly credible announcement { }16 16 3 16 161 1 2 12 12 4 4
5 5 5 5 5 5 5 5 5 5 5 50, , , , , , ,1 .b b b b b b⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦  Since for 

all weakly credible announcements deviating types exist that prefer another weakly credible 
announcement, none is announcement proof. The size-2 and size-3 equilibria only admit weakly 
credible announcements composed of the non-overlapping credible neologisms, which are thus 
credible. Observe that the computational demands on agents to determine whether credible 
announcements exist and how they look like are quite high. 

14 Rabin also introduces an equilibrium version of CMR, Credible Message Equilibria (CME), 
but as a consequence of the previous analysis, neither equilibrium in the game can be a CME. 
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librium in the CS game. NITS starts by specifying a ‘lowest type,’ a type with 

the property that all other types prefer to be revealed as themselves rather than 

as that lowest type. An equilibrium survives NITS if the lowest type has no 

incentive to separate, i.e. if the lowest type prefers her equilibrium outcome to 

the outcome she would get if she could reveal her type. In the general CS game, 

only the maximum size equilibrium outcome satisfies NITS. The strength of 

NITS is that it can make predictions under a general monotonicity assumption, 

and can be justified on the basis of perturbed games with lying averse or non-

strategic players.15  

The prediction of ACDC of Proposition 3 is thus in line with NITS. A differ-

ence between NITS and ACDC is that NITS assumes that only the lowest type 

can separate herself. Hence, according to NITS, the most informative equilibri-

um is (equally) stable regardless of b. According to ACDC, also other types can 

separate through credible deviations. As a consequence, it predicts that the 

stability of the maximum size equilibrium is decreasing in the bias parameter b, 

and if b is large, the maximum size equilibrium may not be all that stable. The 

experimental data discussed in the previous section provides support for this 

prediction. 

4. Other Experimental Results 

Here we discuss the experimental work on equilibrium selection in cheap talk 

games, in addition to that in the CS game, which we discussed in section 2.3. 

4.1. Discrete games 

Blume, DeJong, Kim & Sprinkle (2001) provide an experimental analysis of 4 

discrete cheap talk games, in which they compare the predictive power of re-

finements as neologism proofness, influentiality and ex-ante efficiency with PCI. 
                                     
15 A challenge for NITS is that it cannot be applied easily in cheap talk games that have no 

clear lowest type. For instance, in Game A, the lowest type cannot easily be defined. In section 
4.2, we discuss a game that has many NITS equilibria.  
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They find that PCI is a reliable predictor of when communication takes place 

and that the equilibrium refinements sometimes but not always improve on PCI. 

In their Games 1 and 3, the predictions of PCI and neologism proofness (and 

ACDC) are very much aligned, and borne out by the data. In their Game 2 (see 

Table 3) neologism proofness predicts complete separation while the finest 

partition consistent with PCI entails partial separation. The data are in line 

with separation, as a clear majority of 88% of the outcomes is consistent with 

the separating equilibrium. One could argue that this result does not contradict 

PCI, because PCI allows multiple patterns including separation (see their 

footnote 10). As the authors note (in footnote 19), one needs to add neologism 

proofness to PCI to actually predict that separation happens. 

 

TABLE 3
REPRODUCTION OF GAMES 2 AND 4 OF BLUME ET AL. (2001) 

 1a  2a  3a  4a  5a  

1t  800, 800 100, 100 0, 0 500, 500 0, 400

2t  x, 100 y, 800 0, 0 500, 500 0, 400

3t  0, 0 0, 0 500, 800 0, 0 0, 400

Notes: All the three types 1 2 3{ , , }t t t  of the Sender are equally likely and the Receiver can 

implement one of the actions 1 5{ ,..., }a a . Entry i,j, represents ( , ), ( , )S R
i j i jU t a U t a .  Games 2 and 

4 are identical, except that 100, 300x y= =  in game 2, whereas 300, 100x y= =  in game 4. 

 

In Blume et al.’s Game 4 (Table 3), no equilibrium is neologism proof while PCI 

selects a unique equilibrium. This game has two equilibrium outcomes. Besides 

the pooling equilibrium where action 5a  is induced there is a partially separating 

equilibrium where types 1t  and  2t  send a common message that differs from the 

message of 3.t  Types 1t  and 2t  induce 4a  while type 3t  induces 3.a  Full separa-

tion is not an equilibrium because 2t  prefers to mimic 1.t  None of the equilibria 

satisfies neologism proofness. PCI predicts meaningful communication because 

the finest partition consistent with PCI is given by { }1 2 3{ , }, { } .t t t  The partially 

separating equilibrium only has a credible neologism where 1t  deviates to 1.a  
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Thus, its ACD equals 
1 (800 500) 1
3 800 8

−
= . The pooling equilibrium admits the 

neologism where 1t  and 2t  deviate to 4a  and the credible neologism where 3t  

deviates to 3.a  Consequently, its ACD is 

1 (500 0) (500 0) (500 0) 7
3 800 500 500 8

⎛ ⎞− − − ⎟⎜ + + =⎟⎜ ⎟⎜⎝ ⎠
. So ACDC predicts that the partially 

separating equilibrium will be the most observed equilibrium outcome but that 

it will not be completely stable. 

In line with this prediction, Blume et al. find that 37% of the outcomes are 

consistent with the partially separating equilibrium but no outcome is consistent 

with the pooling equilibrium. Thus, of the two equilibria, the one with the 

lowest ACD performs best. Consistent with the ACD measures, much fewer 

outcomes are in line with the equilibrium selected by ACDC in game 4 than in 

game 2. In line with the fact that types 1t  have a credible neologism, they turn 

out to be the ones that are able to credibly identify themselves. 

Our conclusion is that our ACDC concept improves the predictions of neolo-

gism proofness and that it does at least as well as PCI in explaining the data of 

Blume, DeJong, Kim & Sprinkle (2001). The extra mileage for ACDC with 

respect to PCI comes from continuous games like the CS game and the veto-

threat game which we discuss in the next section. PCI fails to predict any 

communication at all in these settings, while in accordance with ACDC subjects 

are able to communicate meaningfully to a large extent. 

4.2. ACDC in a veto-threat game 

In De Groot Ruiz, Onderstal & Offerman (2012a), we test ACDC in fresh 

experiments. For this, we use games that belong to a class of veto-threat games 

introduced in De Groot Ruiz, Onderstal & Offerman (2012b). These games are 

suitable to test ACDC, as they allow for a continuous manipulation of the size 

and frequency of credible deviations and can have a rich equilibrium set that is 
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difficult to refine. In Appendix B, we show that ACDC, when adapted for veto-

threat games, selects a unique equilibrium in this class of games. 

We briefly discuss our results for four treatments (see Table 4). Each treat-

ment is a variation of the following game. The Sender’s type is drawn from the 

uniform distribution over integers in the interval [0,B]. The Sender sends a 

costless message ∈ {0,1,..., }m B to the Receiver, who makes a proposal 

∈ {0,1,..., }.a B  The Sender can then accept a or reject it, in which case the 

outcome is the disagreement point δ.  Payoffs for {0,1,..., }a B∈ are 

= − 2
3( ) 60RU a a  and = − −( , ) 60 .SU a t t a  In treatments G(120), G(130) and 

G(210), δ δ= =( ) ( , ) 0.R SU U t  These treatments only differ in the Boundary 

parameter B.  

 

 TABLE 4
FOUR TREATMENTS FROM DE GROOT RUIZ, ONDERSTAL & OFFERMAN (2012A)

Treatment ( )RU δ  ( )SU δ  B Equilibrium actions1 ACD2

G(120) 0 0 120 {45}, {0, 60}** 0 
G(130) 0 0 130 {45}, {0, 60}* 0.22 
G(210) 0 0 210 {45}, {0, 60}* 0.50 

T5 0 30 120 {30}, 1 1{ , 60},a a +  
2 2{0, , 60}a a + ** 3,4 

0 

Notes: In each game, the Sender sends a message m, after which the Receiver proposes an 
action a. Then the Sender can accept a or reject a, in which case the outcome is the disagreement 
point δ. t was uniformly distributed on the integers in [0,B]. 2

3( ) 60RU x x= −  and 

( , ) 60SU x t t x= − − . 1An equilibrium has a * if it is ACDC and ** if it is neologism proof as 

well. 2The ACD of the ACDC equilibrium. 3 1 [0,30]a ∈  and 2 (0,30].a ∈ 4 Only {0,30,60} is ACDC.  

 

Each of these treatments has a pooling equilibrium where the Receiver always 

proposes 45 and a partially separating equilibrium, where the Receiver proposes 

0 or 60. The only difference is that for B = 120, the partially separating equilib-

rium is the unique neologism proof equilibrium, whereas for the other treat-

ments neither equilibrium is neologism proof. For similar reasons as in the CS 

game, also neologism proofness, the recurrent mop, PCI and CMR do not select 

an equilibrium. The same holds true for announcement proofness because 

credible announcements coincide with credible neologisms in this game. Assum-
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ing the recurrent mop would converge, neither equilibrium is stable and both are 

recurrent.16 CMR can only guarantee that the 0 type can send a credible mes-

sage (and is silent about what other types do). The only partition that is PCI is 

= < =0 10 .t t B 17 NITS selects the partially separating equilibrium for all B if 

one takes 0 as the lowest type. 18  

ACDC selects the partially separating equilibrium in the three treatments 

and, in addition, predicts that the partially separating becomes less stable as B 

increases. In De Groot Ruiz, Onderstal & Offerman (2012a), we find that the 

data supports the predictions of ACDC. As can be seen in Figure 2, the higher 

the ACD, the higher the prediction error of an equilibrium. In particular, we 

find that in each treatment the partially separating equilibrium performs signifi-

cantly better than the pooling equilibrium. In addition, we find that for B = 130 

the partially separating equilibrium performs very similar as when B = 120, 

supporting the notion than stability is a continuous characteristic. Finally, we 

find that the partially separating equilibrium performs significantly better for B 

= 120 or B = 130 than for B = 210. 

Finally, treatment T5 has B=120, δ =( ) 0RU  and δ =( , ) 30.SU t  The corre-

sponding game has a continuum of size-2 and size-3 equilibria. None of the 

earlier refinements selects a unique equilibrium. Even influentiality (selecting the 

equilibrium with the maximum size) does thus not identify a unique equilibrium 

                                     
16 The deviation correspondence of the pooling equilibrium (the most interesting case), for 

instance, contains only message strategies with three messages (say ‘low’, ‘medium’ and ‘high’). 
In any Receiver strategy in this correspondence, the Receiver proposes 0 after ‘low’, 0 or 45 after 
‘medium’ and some higher action after ‘high’; furthermore, the correspondence will contain the 
strategy in which the Receiver proposes 45 after ‘medium.’ Hence, type t = 45 will separate and 
send ‘medium’ in any best response to a full-support strategy of the Receiver. Because the 
deviation correspondence only contains message strategies with three messages, it will not 
converge to either equilibrium. A similar reasoning holds for the separating equilibrium. 

17 The main reason is that the highest Sender-type of a partition-element always prefers the 
Receiver to believe that the upper boundary is higher than the true boundary (except for types 
= 0t  or t B= ). Finally, the ‘partition’ 0  and (0, ]B  is not PCI, as 0  (which is the best 

response if the Sender is 0) is also a best response to some Receiver-beliefs with support on the 
interval (0,1] . 

18 All types in [0,60]  are lowest types according to Chen et al.’s definition. The pooling equi-

librium survives NITS relative to types in [ ]22.5,105 ,  whereas the separating equilibrium 

survives NITS relative to types in [0,30].  



26 
 

because there are several size-3 equilibria. Similarly, NITS is not selective as one 

size-2 and all size-3 equilibria survive NITS. In sum, in De Groot Ruiz, Onder-

stal & Offerman (2012a), we find that the ACD of an equilibrium predicts well 

relative to other equilibria and that the ACDC equilibrium has the lowest 

prediction error. 

 

5. Conclusion 

ACDC generalizes refinements based on credible deviations, in particular neolo-

gism proofness, capturing the behaviorally relevant aspects of equilibrium 

stability in cheap talk games. ACDC is based on the intuition that the frequen-

cy and size of credible deviations affects equilibrium stability in a continuous 

rather than a binary manner. ACDC measures the (in)stability of cheap talk 

equilibria and determines which are most plausible. We showed that an ACDC 

equilibrium exists under general conditions and that it is unique in a large range 

of applications. Most importantly, the predictions of ACDC organize the data of 

 

FIGURE 2 
The figure plots for each equilibrium in each treatment its theoretical ACD against its empir-

ical prediction error for the last 15 periods.  Let σ( )a t  be the equilibrium action of the Receiver 

given type t  and  the observed action for observation i. The average prediction error (for 

a set of n observations I) is then σ

∈

−∑1
ˆ| ( ) ( ) |i i i

i I

a t a t
n

. 

ˆ ( )i ia t
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previous and new experiments well. In particular, the data supports the conclu-

sions of ACDC with respect to credible neologisms. Where credible neologisms 

differ from credible announcements, as in the Crawford-Sobel game, the predic-

tions of ACDC with respect to credible neologisms do better than those with 

respect to credible announcements. 
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Appendix A 

Proof of Proposition 3  

The proof proceeds as follows. First, we obtain closed-form solutions for the 

ACD for all b. Second, we calculate the ACD for the specified values of b. 

 The ACD of equilibrium σ  in the CS game is equal to 

 

( ), ) ( ( ), )
( )

( ) ( )
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t b< − . Suppose ( )a tσ  and 
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��  

 

As noted in the main text, an equilibrium of size n can have a neologism in the 

beginning 0
na� , a neologism at the end n

na�  and at most 1n −  neologisms in the 

middle, , 1,..., 1n
ia i n= −� . The size-1 equilibrium has a neologism at the begin-

ning and at the end. The maximum size ( )n b  equilibrium has a neologism at the 

end and neologisms in the middle , ( ),..., 1n
ia i i b n= −� , where ( ) 1i b =  if 

22 ( ) 1bn b <  and ( ) 2i b =  if 22 ( ) 1bn b ≥ . Size- n  equilibria with 1 ( )n n b< <  

admit all neologisms specified above. Observe that 1 1n
n bτ − < − , such that 

( ) 0SU t =  except for the highest types of the highest neologism, such that 

( , , , , )h b a a t tσ σ�  can be used to calculate the contribution to the ACD for neolo-

gisms ( ) 1,..., 1i b n= − . For the highest neologism, the contribution to the ACD 

is equal to 

 

( ) ( )2

2
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2
1

2
( ) ( )
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n nn n n
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1
( , , , , 1) ( )( 1)log[2 1].

2
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n n n n n n nh b a a b a a a a bτ= − + − + − +� � �  

 

Let n
bσ  be the size-n equilibrium of the game with bias parameter b . Then, 

the ACD of the pooling equilibrium is  

 
1 1 1 1

1 0 0( ) ( , , , 0, ) ( ,1).bACD h b a a h bσ τ= +�  

 

The ACD of the maximum-size equilibrium is 
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The ACD of a size-n equilibrium with 1 ( )n n b< <  is equal to  

 
1

1 0 0 1
1

( ) ( , , ,0, ) [ ( , , , , ) ( , , , , )] ( , )
i n
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b i i i i i i i i
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For each 
1 2 1

, ,..., ,
10000 10000 4

b
⎧ ⎫⎪ ⎪⎪ ⎪∈ ⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

 one can calculate the (closed-form) value of 

( )n
bACD σ  for all 1 ( ),n n b≤ ≤  and verify that the ACD of the size-n equilibri-

um in the CS game is decreasing in n. 
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Appendix B: ACDC in a Veto-Threat Games 

B.1. Equilibria and ACDC in veto-threat games 

Consider the following game. Nature draws the Sender type t from distribu-

tion f on T, where T  is a compact metric space. The Sender then privately 

observes her type t and chooses a message .m M∈  After having observed the 

Sender’s message, the Receiver chooses an action ,a A∈  where A  is a compact 

metric space. After seeing the action, the Sender chooses between accepting 

( 1v = ) or rejecting ( 0v = ) the action. If she rejects, the outcome is the disa-

greement point .δ  If ,Aδ ∈  the game has an internal veto threat and otherwise 

it has an external veto threat. The outcome set is { }.X A δ= ∪  Let 

:RU X T× → \  be the utility function of the Receiver :SU X T× → \  that of 

the Sender. We assume both are bounded from above and below.  

A strategy for the Sender consists of a message strategy :T Mμ →  and an 

acceptance strategy : {0,1}.A Tν × → The strategy of the Receiver is an action 

strategy α : M A™ . Let SΣ  be the set of Sender strategies and RΣ  the set of 

Receiver strategies.  Let μ α ν{ , , }  be a strategy profile and Σ  the set of all 

strategy profiles. Define ( )ν ν νδ+= ⋅ ⋅ −( , ; ) ( , ) ( , )( , ) ( , ) 1R R Rx t xV U x t tt x tU  and 

( )ν ν νδ= ⋅ + ⋅ −( , ; ) ( , )( , ) ( , ) 1 .( , )S S SV Ux t x t xt U tx t  Finally, let the Receiver have 

prior beliefs β =0( () )t f t  and posterior beliefs β( | )t m respectively. A pure 

strategy perfect Bayesian equilibrium (equilibrium henceforth) σ  = μ α β{ , , }  is 

characterized by the following four conditions: 
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α ν∈ ∈For each , ( ) arg max )( ),( ;St T m tm t V   

(8) ν βα ∈∈ ∈ ∫For each , arg max( ) ( , ; ) ( | )a A
R

T
m V a t t m dtm M   

 ν δ ν δ= > = <( , ) 1 if ( , ) ( , ) and ( , ) 0 if ( , ) ( , )S S S Sa t U a t U t a t U a t U t  

 β μ β0( ) is derived from  and using Bayes Rule whenever poss e iblm  

 

Let ∗Σ  be the set of equilibria and †Σ  be the set of rationalizable strategy 

profiles. Define 
α μ ν ∈Σ

≡
†{ , , }

( ) infSV t ( )( )α μ ν, ( ) ;SV t t  and 
α μ ν ∈Σ

≡
†{ , , }

( ) supSV t  

( )( )α μ ν, ( ) ; .SV t t  Then  

 

 (9)  
( ) ( )γ γ γ γ

γ

α μ ν α μ ν
σ

−
=

−

, ( ( )); , ( ( ));
( , )

( ) ( )

S S

S S

V t t V t t
CD t

V t V t
 

 

if ( )γα μ ν >, ( ( )); ( ).S SV t t U t  If ( )α μ ν =, ( ( )); ( ).S SV t t V t  ACDC can be now be 

defined analogously to the case without a veto by the Sender. 

B.2. ACDC in a veto-threat game 

Here we show that ACDC selects a unique equilibrium in the class of veto-threat 

games introduced by De Groot Ruiz, Offerman & Onderstal (2012b). The games 

studied experimentally in De Groot Ruiz, Offerman & Onderstal (2012a) belong 

to this class of games. We assume the Sender’s type t  is uniformly distributed 

on the interval [0,1]. We model the player’s bargaining power as the payoff of 

the disagreement point ( )RU δ  and ( ),SU δ  where we assume ( , ) ( )S SU t Uδ δ=  

does not depend on t. RU  and SU  satisfy the following assumptions:  

 

(10) RU  on \  is twice continuously differentiable, unimodal with a peak at 0 

and concave. 
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(11)  ( , )SU x t  can be written as a function ( )f t x− , for all x in \ , t in [0,1], 

where f is continuously differentiable, symmetric, concave, strictly in-

creasing in −\  and for all y ∈ \  there is a 0z >  such that ( )f z y<  and 

( ) ;f z y− <  Finally, ( ) (0).SU fδ < 19 

 

In De Groot Ruiz, Offerman & Onderstal (2012b) we show that only parti-

tion equilibria exist. Here we show that there is a unique ACDC equilibrium: 

 

Proposition 5 Under assumptions (10) and (11), the unique ACDC equilibri-

um is the maximum size equilibrium with the highest equilibrium action. 

 

For the proof of Proposition 5, we introduce some definitions and results from 

De Groot Ruiz, Offerman & Onderstal (2012b) and derive two helpful lemmas. 

 

Observe that in this game, a neologism ,a N�  is credible relative to equilibrium 

σ∗  if and only if  

 

{ }( )arg max ( , ) 0 ( ) ( )S R R
aa P U a t t N U a U δ∈∈ ≥ ∈ −\� , and  

for all 1,...,k n= it holds that 1[ , ]k kt t t N−∈ ∩ ( , )SU ta⇒ � ( , )S
kU a t>  and 

1[ , ] \ ( , ) ( , )S S
k k kt t t N U a t U a t−∈ ⇒ ≤� . 

 

Lemma 1 If ,a N�  is a credible neologism relative to equilibrium σ∗ , then N  

is an interval. 

Proof. The proof is by contradiction. Suppose 1 2 30 1t t t≤ < < ≤ , 1 3,t t N∈  

and 2t N∉ . Suppose further that in equilibrium, type it obtains action ia , 

1,2,3i = . The fact that the a type’s utility is strictly decreasing in the distance 

                                     
19 Observe that (11) implies assumptions (A2)-(A5) in De Groot Ruiz, Offerman & Onderstal 

(2012b). Our assumptions here are stricter. In particular, they require a uniform type distribu-
tion and a symmetric and concave payoff function for the Sender. 
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between t – a  implies 1 2 3a a a≤ ≤ . If 2a t≤�  then it must be the case that 

2a a≤�  (otherwise type 2t  would prefer a�  over 2a ). As a consequence, 

3 3 2aa t a≤ ≤ =�  because type 3t  must prefer a�  over 3a  and 3a  over 2a . A 

contradiction is established, because the fact that the indifference points t – d  

and t + d are strictly increasing in t implies that type 2t  strictly prefers a� over 
2a . This is in conflict with the definition of a credible neologism. Analogously, 

2a t>�  can be ruled out, so that N  is an interval. Q.E.D. 

 

From (11), it follows that there is a 0d >  such that for all t and ,a ∈ \  

( , ) ( )S SU a t U δ≥  if and only if [ , ].a t d t d∈ − +  Hence, t d−  and t d+  are the 

Sender’s indifference points as to whether she accepts action a. From Lemma’s 2 

and 3 in De Groot Ruiz, Offerman & Onderstal (2012b) it follows that in equi-

librium 

 

(12) 
1 0,a ≥  1k k kt d a t d− − < ≤ −  for all 2,...,k n= and 1k kt d a− + ≤  for 

3,...,k n= . 

  

We can now show that under (11), it holds that 

 

Lemma 2 In equilibrium, 1k k ka t dd a += = −+  for 2,..., 1k n= − . 

Proof. Due to the t being uniformly distributed and (11), the indifference 

points t d−  and  t d+  are uniformly distributed as well. This means that if 

the Receiver receives a message that identifies Sender types to be in the interval 

1[ , ]k kt t +  ( 0,..., 1k n= − ), the probability the Sender accepts an action is not 

higher for an action ka t d> +  than for action ,ka t d′ = +  while 

( ) ( ).R RU a U a ′<  Hence, for the equilibrium action ka  it holds true that 

1k ka t d−≤ +  and by (12), this means 1k k ka t d t d−= + ≤ −  for 3,...,k n= . Now, 

suppose that 1k kt d t d− + < −  for some 3,..., .k n=  This means that k ka t d< −  

and hence ,( ) 0.S
k kU a t <  Since 1( , ) ( , ),S S

k k k kU a t U a t+=  this implies, however, 
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that 1 ,k ka t d+ > +  which for 3,..., 1k n= − is a contradiction with 1k ka t d−≤ +  

for 3,..., .k n=  Hence, 1k k ka t d t d− + = −=  for 3,..., 1.k n= −  Consequently, 

1k k ka t dd a ++ = = −  for 3,..., 1k n= − . 

Furthermore, from the discussion above we have that 2 3t a d= −  and that 

2 1a t d≤ + . In addition, from (12) it follows that 2 2 .a t d≤ −  Hence, a necessary 

condition on 2a  is that ( )( )
1 22 1arg max ( ) ( ) .R R

t a t dda U a U a d tδ≤ ≤+ −∈ − + − Analo-

gously to the discussion in the proof of Proposition 2 in De Groot Ruiz, Offer-

man & Onderstal (2012b), one can show that this implies that 2a  must be equal 

to 2 .t d−  As a result, 2 2 3 .a t dd a+ = = −  Q.E.D. 

 

Proof of Proposition 5 Suppose that the game has more than one equilib-

rium outcome. If 2 ,x d≤ then consider the equilibrium outcome σ∗with 1 0a =

and 2a  such that 2 arg max ( )R
aa U a∈∈ \ ( )1

22min{ ,1} .a d a+ −  If 2 ,x d> let n  be 

the natural number for which 2 0x dn− ≤  and ( )2 1 0,x d n− − >  and consider 

the following :σ∗
1 0;a =  2 ( 2),ka x d n k= − − − 2,..., .k n=  We now show that 

σ∗  has the maximum equilibrium size and is the unique ACDC equilibrium 

outcome. 

 

From Lemma 4 in De Groot Ruiz, Offerman & Onderstal (2012b) and (11), it 

follows that there exists an x ∈ \  such that 

 

(13) 
( ) ( ) 2 ( ) 0 for all [0, ) andR R RU x U dU x x xδ− + ≥ ∈′  

( ) ( ) 2 ( ) 0 for all ( ,1 ].R R RU x U dU x x x dδ− + < ∈ −′  

 

where a prime  denotes a derivative with respect to x. Let *a  denote the 

highest equilibrium action na  in .σ∗
 Using (13), it can be verified that σ∗  

constitutes the highest size equilibrium, analogously to the proof of Proposition 

( )′
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3 in De Groot Ruiz, Offerman & Onderstal (2012b). Similarly, it can be verified 

that the highest action a∗∗  in any other equilibrium σ∗∗  must be smaller than 
*a : 

 

1 .a a d∗∗ ∗≤ ≤ −  

 

If 1a d∗∗ < − , σ∗∗  has at least one credible neologism: Types in the interval 

( ,1]τ∗∗  are willing to send a credible neologism ( ,1],a τ∗∗ ∗∗� , where 

( )1
, and

2
a aτ ∗∗ ∗∗ ∗∗= + �  

( )
( , (1)]

argmax ( ) ( ) .
1

R R

a a

a d
a U a U

λ

τ
δ

τ∗∗

∗∗
∗∗

∗∗
∈

+ −
∈ −

−
�  

 

To prove that σ∗  is an ACDC equilibrium, we first show it has at most one 

credible neologism (claim 1) and this credible neologism, if it exists, maximizes 

τ∗∗and minimizes a a∗∗ ∗∗−�  (claim 2). 

In order to prove claim 1, suppose that σ∗  has another credible neologism. 

By Lemma 1, the set of types that send the credible neologism relative to 

equilibrium σ∗  is an interval. We can exclude neologisms that induce the Re-

ceiver to propose 0a = , because 1 0a =  is already an equilibrium action. Hence, 

the neologism a� (with supremum neologism type τ�) is in between two equilibri-

um actions 1ka −  and ka . Due to Lemma 1, 1ka a− < � kaτ< <� . This implies that 

( , ) 0SU a τ ≤� � , because if ( , ) 0SU a τ >� � , action dτ −�  would be better for the 

Receiver than a�  after receiving the neologism. Consequently, 

1( , ) ( , ) 0S S
kU a U aτ τ− < ≤�� �  and ( , ) ( , ) 0S S

kU a U aτ τ< ≤�� � . This means that an 

0ε>  exists such that a types in ( ,τ ε−�  )τ ε+�  receive 0 payoff in equilibrium. 

Since this is not the case in σ∗ , σ∗  has no other neologisms. 



FOR ONLINE PUBLICATION 

39 
 

The proof of claim 2 proceeds as follows. Note that min{ ,1 }a a d∗∗ ∗∗= −� , 

where ( )argmax ( ) ( )
1

R R

a

a d
a U a U

τ
δ

τ

∗∗
∗∗

∗∗
∈

+ −
= −

−\
. We know a a∗∗ ∗∗> , because the 

solution to ( )arg max ( ) ( )
1

R R

a

a d t
U a U

t
δ

∈

+ −
−

−\
 is increasing in t  and a∗∗  is the 

solution for 1nt t −= , and a ∗∗  is the solution to the problem with 1nt a t∗∗
−≥ > . 

Moreover,  

 

( )( ) ( ) ( ) ( ) ( ) ( )
2

R R R R R R a a
U a U U a a d U a U U a dδ τ δ

∗∗ ∗∗
∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

⎛ ⎞− ⎟⎜ ⎟− + + − =′ − + +⎜⎜⎜⎝ ⎠
′ ⎟⎟

 
= 0 implies that  

( )
2 2 .

( )

R

R

U a
a a d

U a

∗∗
∗∗ ∗∗

∗∗
− = −

′
−  

From the concavity of RU  it follows that 
( )

( )

R

R

U a

U a′
 is increasing in a. Hence, 

a a∗∗ ∗∗−  is decreasing in a∗∗ . In particular, this implies that a a∗∗ ∗∗−�  is decreas-

ing in .a∗∗  Moreover, τ∗∗
 is increasing in a∗∗ . 

Finally, to show that σ∗  is an ACDC equilibrium, we show that it has the 

lowest ACD.  By Lemma 2, for equilibrium σ∗∗  it must then hold that 1 0a ∗∗ >  

or a ∗∗ <  *a . If 1 0a ∗∗ > , then a neologism 0 0,[0, ]a τ�  exists with 0 1 .a a ∗∗<� 20 

Suppose now that a ∗∗ <  *a . If σ∗
 does not admit a credible neologism, it is 

evident that 
* **( ) 0 ( ).ACD ACDσ σ= <  Hence, suppose that σ∗

 admits the 

credible neologism * *,[ ,1] .a τ�   

                                     
20  If 1 2 ,a d∗∗ ≥ 0a d=�  and 0 1 0( , ) ( , ).S SU d U aτ τ∗∗=� � If 1 ,a d∗∗ ≤  0 0a =�  and 

0 0 0( , ) (0, ).S SU a Uτ τ=� � � If 1 2 ,d a d∗∗< < 0 0a dτ= +� �  and 0 0 1 0( , ) ( , ).S SU a U aτ τ∗∗=� � �  This has a 
solution, because 0 0 1 0( , ) ( , ) 0S SU d U aτ τ τ∗∗− − >� � �  for 0 0τ =�  and 

0 0 1 0( , ) ( , ) 0S SU d U aτ τ τ∗∗− − <� � �  for 0 1aτ ∗∗=� . 
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We can now compare the ACD of *σ  and **.σ  First, *( ) 0CD tσ =  for 

*[0, ).t τ∈  Second, we show that ** ** * *( , ) ( , ) ( , ) ( , )S S S SU a t U a t U a t U a t− > −� � for 

* **[ , ).t a dτ∈ +  Due to claim 2 ** ** * *a a a a− > −� �  and ** *.τ τ<  If ** *t a a≤ <� � , 

then ** *( , ) ( , )S SU a t U a t<  and ** *( , ) ( , )S SU a t U a t>� � , so that the result is immedi-

ate. Assume now that ** .a t<�  By (11), ( , )SU a t  is concave in a, such that for 

x y t< ≤  and , 0b c > it holds that: 

( , ) ( , )S SU y t U x t− ≤ ( , ) ( , )S SU y b t U x b t− − −  ( , ) ( , ).S SU y b t U x b c t< − − − −  

Hence, for * *[ , ]t aτ∈ �  we have that * *( , ) ( , )S SU a t U a t−� ≤ *( , ) ( , )S SU t t U a t−  ≤

** * **( , ) ( , )S SU a t U a t a t− − +� � < ** **( , ) ( , ).S SU a t U a t−�  (Observe that *t a− <  

* * ** **.)a a a a− < −� � Similarly, for * **( , ],t a a d∈ +�   * *( , ) ( , )S SU a t U a t−�  ≤

** * * **( , ) ( , )S SU a t U a a a t− − +� � � < ** **( , ) ( , ).S SU a t U a t−� As a consequence, 

** *( ) ( )CD t CD tσ σ> for ** **[ , ).t a dτ∈ + Finally, ** *( ) 1 ( )CD t CD tσ σ= ≥ for 

**[ ,1].t a d∈ +  Together, this implies that ** **( )( ) tE CDACD tσσ ⎡= ⎤⎢ ⎥⎣ ⎦

*( )tE CD tσ> ⎡ ⎤⎢ ⎥⎣ ⎦
*( ).ACD σ=  

In sum, if **σ is different from *σ , then either 0 0a ∗∗ >  or a ∗∗ <  *a and in both 

cases ( ) ( )ACD ACDσ σ∗∗ ∗> . Therefore, σ∗  is the unique ACDC equilibrium. 

Q.E.D. 
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