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Abstract

We propose a new approach to deal with structural breaks in time series models.

The key contribution is an alternative dynamic stochastic specification for the model

parameters which describes potential breaks. After a break new parameter values are

generated from a so-called baseline prior distribution. Modeling boils down to the

choice of a parametric likelihood specification and a baseline prior with the proper

support for the parameters. The approach accounts in a natural way for potential

out-of-sample breaks where the number of breaks is stochastic. Posterior inference

involves simple computations that are less demanding than existing methods. The

approach is illustrated on nonlinear discrete time series models and models with re-

strictions on the parameter space.
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1 Introduction

Over the last two decades, empirical evidence showing that macroeconomic and fi-

nancial time series are subject to occasional structural breaks in their statistical

properties has mounted, see Stock and Watson (1996) and Andreou and Ghysels

(2009), among many others. A prominent example in macroeconomics is the Great

Moderation, referring to the large decline in volatility experienced by many macroe-

conomic time series in the first half of the 1980s, see McConnell and Perez-Quiros

(2000); Stock and Watson (2002); Sensier and van Dijk (2004) and Kim et al. (2008),

among others. In finance, the presence of structural breaks in predictive regres-

sion models for asset returns is by now well documented, see Pesaran and Timmer-

mann (2002); Paye and Timmermann (2006); Rapach and Wohar (2006); Lettau and

Van Nieuwerburgh (2008); Ravazzolo et al. (2008) and Pettenuzzo and Timmermann

(forthcoming), among others.

Many empirical studies reporting evidence for structural changes in macroeco-

nomic and financial time series make use of frequentist methods for detecting and

dating such breaks, as developed by Andrews (1993); Andrews and Ploberger (1994);

Bai and Perron (1998); Bai et al. (1998) and Qu and Perron (2007), among others;

see Perron (2006) for a recent survey. These methods can be classified as ‘histor-

ical’ testing procedures (Andreou and Ghysels; 2009), in the sense that they are

designed for testing for structural change and the identification of potential break

dates ex-post for time series observations spanning a given historical, in-sample pe-

riod.1 Out-of-sample forecasting in the presence of structural breaks has presented

a much bigger challenge when relying upon frequentist methods, see the survey of

Clements and Hendry (2006). A Bayesian approach would much better suit this

problem, in the sense that structural change can be made an inherent part of the

statistical time series model, in particular including the possibility that breaks oc-

cur in the out-of-sample period. Surprisingly then, accounting for possible future

breaks when constructing out-of-sample forecasts has not received much attention in

the Bayesian literature on structural breaks, with the notable exceptions of Pesaran

et al. (2006), Koop and Potter (2007), Maheu and Gordon (2008), and Geweke and

1A different strand of literature concerns testing for structural change ‘in real time’, i.e. mon-

itoring whether new, incoming observations are consistent with a previously specified model, see

Chu et al. (1996) and Zeileis et al. (2005), among others.
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Jiang (2010).

In this paper we propose a new Bayesian approach to deal with structural breaks

in time series models, with an explicit focus on the implications for out-of-sample

forecasting. Following the previous literature, we define a structural break as a

permanent change in the value of a parameter of the model or, in the Bayesian

framework, of a likelihood function. We propose a new stochastic specification to

describe the dynamic behavior of the parameter, which has a simple and intuitively

appealing interpretation. In each period, with a particular probability a structural

break occurs and in that case the new parameter value is generated by a so-called

baseline prior distribution. If a break does not occur, the parameter value is equal

to the value in the previous period. Put differently, the (conditional) distribution

of the model parameter is a two-component mixture, where one component is the

baseline prior distribution and the other component is degenerate at the parameter

value in the previous period. The mixing probability for the first component is the

probability of a structural break. The key advantage of this specification lies in

the Bayesian procedures for estimation and forecasting. For estimation purposes,

we derive a Markov chain Monte Carlo [MCMC] based algorithm for simulating

from the posterior distribution of the model parameters. The posterior simulator

boils down to straightforward sampling from three-component mixture distributions,

where most weight is put on degenerate components. Our sampler is a single-move

algorithm, for which it is well-known that convergence may be problematic (or at

least slow). To solve this issue, we introduce a remix step in our sampler which bears

similarities to the remixing step in Dirichlet process prior models. For forecasting

purposes, the predictive distributions of future observations are also of the mixture

type, with one component being the model under the no-break scenario and the other

being the model integrated over the baseline prior in case of a break. If the forecast

horizon grows, the probability of a break in the out-of-sample period increases and

the latter mixture component gets more weight.

The baseline prior and its hyperparameters form a key component in forecasting

exercises. Our model specification is such that in the case of a structural break the

new parameter value is independently from the past drawn from this baseline prior

distribution. However, by including a third layer in the model, this independence

assumption may be relaxed and we can train the hyperparameters of the baseline
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distribution. Such a strategy is common in marketing (see for example Rossi et al.;

2005) and applied to structural break models in Carlin et al. (1992), Pesaran et al.

(2006) and Geweke and Jiang (2010). By doing so, regimes from the past do reveal

information for future parameter values that is properly absorbed by the predictive

distribution.

Our methodology to accommodate structural breaks in time series models is

closely related to the independent, contemporary research by Geweke and Jiang

(2010) and the methods by Maheu and Gordon (2008), who propose essentially a

similar specification. However, we employ a different submodel representation for the

dynamic behavior of the model parameters with favorable computational implica-

tions. The simulator of Geweke and Jiang (2010) requires that the regime parameters

can be marginalized analytically. But, this requirement restricts the combinations of

model and baseline prior distribution that can be considered. Moreover, their sam-

pler requires potentially cumbersome tuning of the Metropolis–Hastings proposal

distributions. Our simulator does not have these restrictions and can in principle

be applied to any combination of model and baseline prior distribution. Maheu and

Gordon (2008) also restrict their analysis to models in which the posterior distri-

bution is of known form and, moreover, their estimation procedures require com-

putationally intensive marginal likelihood evaluations and continuously updating of

posterior model probabilities over time.

Our approach to structural breaks in fact offers two key advantages compared

to other existing methods. Both are closely related to the desirable properties of

structural break models as formulated by Koop and Potter (2007). The first advan-

tage is that our specification allows for an a priori unknown number and timing of

breaks. In particular, our approach naturally allows for the possibility that breaks

may occur beyond the in-sample period. It is commonly recognized that allowing for

future breaks is a necessary ingredient for realistic out-of-sample forecasting. Previ-

ous attempts to do so have certain limitations and drawbacks. Pesaran et al. (2006),

for example, propose an out-of-sample extension of the Markovian model of Chib

(1998). In this approach, structural breaks are modeled by means of a non-recurring

Markov process, which requires the specification of the number of breaks that occur,

both in- and out-of-sample, see also Koop and Potter (2007). Pesaran et al. (2006)

circumvent this issue by applying Bayesian model averaging over distinct scenarios,
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each with a specific number of breaks in the out-of-sample period. However, this pro-

cedure is computationally cumbersome, and still requires a specific plausible choice

of the maximum number of breaks to happen over the forecast horizon, which may

be difficult to set.2 Our approach does not suffer from these problems by specifying

the number of breaks to be stochastic both in- and out-of-sample.

The second main advantage of our specification is its ability to deal with struc-

tural breaks in various types of models. Previous approaches are confined to linear

regression models (e.g. Maheu and Gordon; 2008; Geweke and Jiang; 2010) or mod-

els that can, at least conditionally, be written in Gaussian state-space form, as in the

dynamic mixture models advocated by Gerlach et al. (2000); Giordani et al. (2007)

and Giordani and Kohn (2008). By contrast, our set-up can be applied straightfor-

wardly to different types of models (or likelihood functions) as well, including models

for limited dependent variables, models for count data, and to copula models for de-

scribing the dependence between different time series. This flexibility is mostly due

to the computational advantages offered by the proposed posterior simulator for our

specification of structural breaks. This efficient sampling scheme is the result of

analytically integrating out the break indicator variables. If the sample size is T ,

then each run of the simulator is of order O(T ) and only requires evaluations of one-

observation likelihoods and sampling from simple mixtures. Other simulators first

integrate with respect to the regime-specific parameters to improve convergence, see

Geweke and Jiang (2010) or Gerlach et al. (2000) for a similar solution in a (condi-

tional) Gaussian state-space specification. Hence, the feasibility of these approaches

relies on the computational ease of this integration step.

The outline of the remainder of this paper is as follows. Section 2 introduces

the dynamic specification of the breaking process, analyzes its implications for out-

of-sample forecasting and describes issued related to the choice of an appropriate

baseline prior distribution and the probability of a structural break. Section 3 deals

with the methods to simulate from the posterior distribution. Section 4 demon-

strates the usefulness and wide applicability of our methods both for descriptive

in-sample analysis and for constructing out-of-sample forecasts that incorporate po-

tential future parameter change. This is done by means of four applications involving

2In the most extreme, but also unlikely case, this number is equal to the length of the forecasting

horizon.
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different types of models, including a Poisson count data model, a copula model, a

probit model and an autoregressive model. A conclusion and discussion are given in

Section 5. The appendices elaborate on issues related to the theoretical results and

posterior simulation.

2 Modeling structural breaks

In this section we develop our modeling framework to deal with structural breaks.

In Section 2.1 we discuss the model specification in detail and we compare our

approach to related alternatives. In Section 2.2 we focus on the implications of

our model specification for out-of-sample forecasting. The role of the baseline prior

distribution and the probability of structural change are discussed in Sections 2.3

and 2.4.

2.1 Model specification

Let yt be the time series variable of interest, which is observed in periods t = 1, . . . , T ,

and let yk,l = (yk, yk+1, . . . , yl)
′, (1 ≤ k < l ≤ T ). Hence, y1,T denotes the complete

set of time series observations in the in-sample period, which we will denote by y

for notational convenience. Suppose the time series in period t is characterized by a

distribution with probability density function [pdf] p(yt|y1,t−1, θt), such that yt may

depend on its own past and a possibly time-varying parameter θt.
3

At the outset, it is useful to remark that we consider the case of a single parameter

θt solely to facilitate the exposition. Our specification can easily be extended to

a multiple parameter setting. In that case, we may impose simultaneous breaks

in all parameters or we may allow individual parameters to break independently

while, of course, intermediate cases are possible as well. Similarly, although we

restrict ourselves to univariate time series here, the modeling framework can easily

be extended to a multivariate setting; see Section 4 for an illustration of both issues.

To allow for infrequent structural breaks in the model parameter we propose a

stochastic process for θt. Specifically, the distribution of the model parameter in

3Of course it may depend on explanatory variables xt as well, but to keep notation clear we do

not mention this explicitly in the conditioning set.

6



period t is specified by the conditional density

p(θt|θ
1,t−1) = p(θt|θt−1) = πf0(θt;λ) + (1 − π)I{θt=θt−1}, (t = 2, . . . , T ), (1)

and θ1 ∼ f0(·;λ), where 0 ≤ π ≤ 1, f0 is the pdf of a distribution that we call the

‘baseline prior’ for θ, which is characterized by hyperparameters λ, and I{A} is an

indicator function that is equal to one if statement A is true and zero otherwise.4

Hence, the conditional distribution of θt is a mixture of two components. With

probability π a structural break occurs such that the parameter value changes, with

the new value being sampled according to the baseline prior f0, while with probability

1− π no break occurs and the distribution of θt is degenerate at the value from the

previous period. Note that the conditional distributions in (1) result in a joint

distribution for θ = (θ1, . . . , θT )′, which we denote by p(θ).

Geweke and Jiang (2010) independently propose a similar approach to deal with

structural breaks. A subtle difference (yet crucial for the estimation procedure) is

that they explicitly introduce binary dummy variables st, (t = 2, . . . , T ), indicating

the occurrence of a break (st = 1) or not (st = 0). Their model for the time-

dependent parameters can then be written as

p(θt|θ
1,t−1, s2,t) = p(θt|θt−1, st) = f0(θt)

I{st=1}
(

I{θt=θt−1}

)1−I{st=1} ,

where the break indicators st are assumed to be independent and Ber(π). This

auxiliary variable can be integrated out, which results in the same specification as

in (1):

p(θt|θt−1) =
∑

st=0,1

p(θt|θt−1, st)p(st)

= πf0(θt) + (1 − π)I{θt=θt−1}.

Similarly, our suggested approach to structural breaks is related to the mixture

innovation models of Giordani et al. (2007) and Giordani and Kohn (2008). The

framework in these papers crucially depends on the assumption that the model can

be written in Gaussian state-space form (at least conditionally) where the parameters

4In a statistical context where we use I{θ=θ∗} as a distribution for θ, this means that θ is

degenerate in θ∗, that is, Pr [θ = θ∗] = 1. Our notation has the same meaning as the Dirac delta

δθ∗(θ).
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are treated as the states. The state equations are specified such that the parameter

values are sampled from a mixture of a degenerate and a Gaussian component.

Specifically, the state equation is given by

θt = θt−1 +Ktηt, ηt
i.i.d.
∼ N (0, σ2

η), (2)

where the break indicators Kt have the same statistical properties as the st above.

The state equation (2) can be written in terms of conditional density functions,

p(θt|θt−1, Kt) = Ktfη(θt − θt−1) + (1 −Kt) I{θt=θt−1},

where fη is the pdf of ηt. If we again analytically integrate out the indicator variable

we can straightforwardly see the relation to our approach:

p(θt|θt−1) =
∑

Kt=0,1

p(θt|θt−1, Kt)p(Kt)

= πfη(θt − θt−1) + (1 − π)I{θt=θt−1}. (3)

In case of a break (3) implies that the change in the parameter value comes from

fη. In our approach θ will be a new value from the baseline prior f0.

For computational reasons, the conditional Gaussian state-space approach re-

quires fη to be the pdf of a (mixed) normal distribution, otherwise the relevant

sampling methods developed by Giordani and Kohn (2008) cannot be applied. The-

oretically this would not be too restrictive as long as the support for the parameter

is (−∞,∞). If, however, the support is a subset of the real line or prior beliefs

restrict the region (e.g. by truncation), this approach cannot be used anymore. Our

framework is much more flexible with respect to distributional assumptions of the

parameters, as we can simply opt for a baseline prior f0 that has the appropriate

features. We can even impose that θ can only take discrete values. Apart from

this pro, our approach has additional computational advantages, which result from

working with the ‘reduced’ form where the break indicators are marginalized, as will

be explained in more detail in Section 3.

Furthermore, the approach of Giordani and Kohn (2008) not only requires the

(mixed) Gaussian assumption of the state equation but also of the observation equa-

tion. A second major advantage of our approach is that it can be applied to any kind

of parametric likelihood function p(yt|y
1,t−1, θt). Hence, the time series yt may be
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continuous, discrete, or even a combination of both. Moreover, any choice of baseline

prior distribution for the parameters and likelihood function can be analyzed, as we

will demonstrate in the discussion of the estimation procedure in Section 3 and the

illustrations in Section 4.

In order to get a better understanding of the behavior implied by our chosen

model specification, it is insightful to examine p(θ) by means of simulation. This

is a form of prior predictive analysis as advocated by Lancaster (2004) and Geweke

(2005). For initialization we should pick a baseline prior distribution with density

f0 and a breaking probability π. Two routes can be followed. In the first one we

simulate a path {θt}Tt=1 by starting with θ1 ∼ f0 and subsequently using the con-

ditional distributions p(θt|θt−1), (t = 2, . . . , T ) as in (1). Alternatively, we may

initialize a path θ and then simulate iteratively from the full conditionals p
(

θt|θ[−t]

)

for t = 1, . . . , T , where θ[−t] = (θ1, . . . , θt−1, θt+1, . . . , θT )′. The first procedure is

based on the decomposition p(θ) = p(θ1)
∏T

t=2 p(θt|θt−1), while the second one ap-

plies the Gibbs sampling principle. Because the latter also provides the basis for the

posterior simulation scheme as described in Section 3, we discuss this approach in

more detail.5

The model in (1) for the stochastic behavior of the parameters shows that {θt}Tt=1

is a first-order Markov chain, implying that the full conditional distribution of θt only

depends on its two immediate neighbors. For θt, (t = 2, . . . , T − 1), collecting terms

from p(θ) gives

p
(

θt|θ[−t]

)

∝ p(θt|θt−1)p(θt+1|θt)

∝ π2f0(θt)f0(θt+1)

+ π(1 − π)f0(θt)I{θt+1=θt} + π(1 − π)f0(θt+1)I{θt=θt−1}

+ (1 − π)2
I{θt−1=θt=θt+1}. (4)

5Note that by comparing the two simulation strategies we can also check the validity of the

Gibbs sampler. That is, we can check that it traverses the entire support of p(θ) and thereby

also retrieves the marginal distributions for the θt’s, which are given by the baseline prior f0 (see

Proposition A.1 in Appendix A).
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Two scenarios are possible:

Scenario 1: θt−1 = θt+1 ≡ θ∗. In this case θt comes from a mixture with two com-

ponents:

θt = θ∗ with probability ∝ (1 − π)2 + 2π(1 − π)f0(θ
∗),

θt ∼ f0 with probability ∝ π2f0(θ
∗).

The first component in this mixture corresponds with the situation that the

value of θt is equal to both its neighbors’ value θ∗, which is the case if no breaks

occur at t and t + 1, or a single break occurs at either t or t+ 1 but the new

parameter value after the break is identical to the value before. The second

component captures the possibility that breaks occur at both t and t + 1, in

which case the value of θt is obtained from the baseline prior distribution f0

(and by construction the value after the break at t + 1 is again equal to the

value at t− 1).

Scenario 2: θt−1 6= θt+1. In this case θt comes from a mixture with three compo-

nents:
θt = θt+1 with probability ∝ π(1 − π),

θt = θt−1 with probability ∝ π(1 − π),

θt ∼ f0 with probability ∝ π2.

In this case, the three components correspond with the possibilities that (i) no

break occurs at time t and (necessarily) a break occurs at t + 1, (ii) a break

occurs at time t and no break occurs at t+ 1, (iii) breaks occur at both t and

t+ 1.

If we compare these situations, it shows that when both neighbors are the same, the

probability of no break gets an intuitively expected extra ‘interaction’ weight via the

last term in (4). As θ1 and θT only have one neighbor their full conditionals indicate

that with probability π they come from the baseline prior and with probability 1−π

they equal their respective neighbors, that is, θ2 and θT−1.

In sum, the full conditional distributions of the parameters are a mixture of

the baseline prior f0 and one or two – depending on the scenario – degenerate

distributions. Simulating from these distributions is therefore straightforward and

fast, also because the degenerate components get most weight.
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2.2 Forecasting implications

One of the main reasons why times series models may perform poorly in terms of

(out-of-sample) forecasting is the often incorrect assumption that model parameters

are stable over time. As shown by Clements and Hendry (2001, 2006), among others,

neglecting structural breaks that occur during the in-sample period may yield bi-

ased forecasts. As discussed in the introduction, various (frequentist and Bayesian)

methods are available for detecting and modeling in-sample breaks, which may be

used to annihilate the bias. However, if breaks have occurred in the past, it is likely

that further structural breaks may occur during the out-of-sample period as well.

Not accounting for this possibility will result in density forecasts that are tighter –

as preferred by practioners –, though an essential type of uncertainty is simply ne-

glected. In this section we demonstrate the implications of our modeling framework

for out-of-sample forecasting, by examining how this uncertainty with regard to the

possibility of future structural breaks affects the resulting density forecasts.

In a Bayesian context, density forecasts are given by the posterior predictive dis-

tribution, which combines the model structure, prior considerations and information

revealed by the data. At time τ , the posterior predictive density p(yτ+1|y1,τ) of yτ+1

can be demarginalized as

p(yτ+1|y
1,τ) =

∫

p(yτ+1|θ
1,τ+1,y1,τ )p(θ1,τ+1|y1,τ)dθ1,τ+1

=

∫

p(yτ+1|θτ+1,y
1,τ)p(θτ+1|θτ )p(θ

1,τ |y1,τ)dθ1,τ+1, (5)

by using the first-order Markov property of {θt} and the conditional independence

assumptions.6 The first two densities of the integrand in (5) are given by the (hi-

erarchical) model, while the third component is the posterior density of the model

parameters based on the data up to and including time τ . If we apply the dynamic

specification of the model parameters (1), this expression further breaks down to

p(yτ+1|y
1,τ) = π

∫

p(yτ+1|θτ+1,y
1,τ )f0(θτ+1)p(θ

1,τ |y1,τ)dθ1,τ+1

+ (1 − π)

∫

p(yτ+1|θτ+1,y
1,τ)I{θτ+1=θτ}p(θ

1,τ |y1,τ )dθ1,τ+1

= πp0(yτ+1|y
1,τ ) + (1 − π)

∫

p(yτ+1|θτ ,y
1,τ )p(θ1,τ |y1,τ)dθ1,τ , (6)

6Conditional on θt, yt is independent of the previous parameters θ1,t−1.
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where p0(yt|y1,t−1) is defined to be the marginal likelihood of yt (possibly conditional

on the past y1,t−1) under prior f0. This result shows that the predictive distribution

is a mixture of two components: (i) with probability π a structural break occurs,

and we integrate over the baseline prior f0 that generates the new but unknown

parameter value, and (ii) with probability 1 − π no break occurs, and we account

for the uncertainty in θτ by integrating over the posterior distribution.

In the nested situation in which we do not allow for a structural break at τ + 1

(π = 0) the predictive distribution reduces to the second part of the sum in (6). If

there is a positive probability that a break occurs in the next period, the predictive

probability mass is shifted in the direction of the marginal likelihood p0(yτ |y1,τ ),

resulting in a more dispersed density forecast. This mechanism becomes even more

clear if we investigate longer forecast horizons, as shown next.

The predictive distribution for h periods ahead is given by7

p(yτ+h|y
1,τ ) =

∫

p(yτ+h|θτ+h)p(θ
τ+1,τ+h|θτ )p(θ

1,τ |y1,τ)dθ1,τ+h.

The intermediate parameters θτ,τ+h−1 can be integrated out analytically by applying

Proposition A.2 in Appendix A with the marginal posterior of θτ until time τ as

initial distribution, i.e., take g(θτ ) =
∫

p(θ1,τ |y1,τ )dθ1,τ−1. This results in

p(θτ+h|y
1,τ ) =

∫

p(θτ+1,τ+h|θτ )g(θτ )dθ
τ,τ+h−1

=
[

1 − (1 − π)h
]

f0(θτ+h) + (1 − π)hg(θτ+h).

Therefore, θτ+h|y1,τ D
−→ f0 if the forecast horizon h becomes large. For very

large h the parameter comes approximately from the baseline prior, which makes

that yτ+h|y1,τ has the marginal likelihood under f0 as its limiting distribution:

yτ+h|y1,τ D
−→ p0. Temporal dependence can be dealt with in a straightforward

way by successively simulating intermediate yt’s
(

yτ+1,τ+h−1
)

from the likelihood

conditional on the most recently sampled parameter value.8

To summarize, the longer the forecast horizon the more the predictive probability

mass gets spread according to the marginal likelihood, and possibly shifted away

7For notational convenience, here we suppress the (direct) temporal dependencies between the

dependent variable in this expression, i.e., we write p(yt|y1,t−1, θt) = p(yt|θt).
8In case of stationary processes for yt, this direct temporal dependence introduces a second

convergence issue and the limiting distribution is not the ‘one-observation’ marginal likelihood p0,

but the unconditional distribution of yt mixed over f0.
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from the constant parameter setting where θτ+h = θτ . This process is illustrated in

the following simple example.

Example (Forecasting issues): Consider a simple normal linear regression model 9

that allows for structural breaks in the intercept and the variance:

yt|µt, σ
2
t

i.i.d.
∼ N (µt, σ

2
t ), (7)

f0(µ, σ
2) = fN (µ; b, σ2B)fIG2(σ

2; ν, S), (8)

where we assume that any breaks in the intercept and variance occur simultane-

ously. The baseline prior consists of a normal-inverted Gamma–2 distribution with

hyperparameters b, B, ν and S. We examine the posterior predictive distributions for

different horizons. We start forecasting at time τ where we assume we know µτ = 5

and σ2
τ = 1. Figure 1 displays the forecasting characteristics in this model. The

graphs in Figure 1(a) show the predictive densities for the different horizons. The

solid line shows the likelihood under µτ and σ2
τ , which is the pdf of a normal. The

one-period ahead predictive distribution is depicted by the dashed line: we can already

see the shift of probability mass due to the potential break. The dashed-dotted line

is associated with h = 20. Obviously, the larger horizon h the closer the marginal

likelihood (dotted line) is approximated; for h = 100 we are near the dotted line.

Note that in this case the ‘limiting’ distribution is given by

p0(yτ+h|y
1,τ) =

∫

p(yτ+h|µ, σ
2)f0(µ, σ

2; b, B, ν, S)dµdσ2.

The integral can be evaluated analytically yielding yτ+h|y1,τ ∼ T (b, (B+1)/(Sν), ν),

for h large. Figures 1(d)–(f) show the evolution of the distributions of the dependent

variable, the intercept and the variance, respectively, over time. For the two parame-

ters we can see that ultimately the theoretical marginals as plotted in Figures 1(b)–(c)

are approximated. The solid line for µ indicates the marginal Student’s t (by inte-

grating out σ2). For comparison, the dashed line is the pdf of a normal with variance

σ2 fixed at the Student’s t’s.

9The example regression model includes only a constant for purposes of illustration; it can easily

be augmented with explanatory variables without changing the argument.
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2.3 Baseline prior choice

The baseline prior distribution is a key element in our modeling approach and, as

just shown, it plays a crucial role in out-of-sample forecasting. It thus warrants

further discussion. Two important considerations when choosing the baseline prior

f0(·;λ) are (i) the type of distribution and (ii) its hyperparameters λ.

In our modeling framework, the baseline prior distribution gives birth to new

parameter values in case of a structural break. As such it is one of the advantages

of our approach, in the sense that restrictions on the model parameters, like pos-

itive support for variances, can easily be implemented through the specification of

the baseline prior. Furthermore, the effect of the prior specification on forecasting

can easily be analyzed. Our model specification does not put any restrictions on

the prior. The prior distribution can either be conjugate or non-conjugate. The

advantage of a conjugate prior is that it usually facilitates posterior simulation, but

non-conjugate priors can also be dealt with easily, as discussed in Section 3.1.2.

Not less important than the type of the baseline prior distribution is the setting of

the hyperparameters λ. This crucially depends on the ultimate goal of the research.

If it is mostly exploratory, that is, if we merely want to check for the possibility of

structural breaks in the past, choosing an uninformative baseline prior makes sense,

where we should ensure that it covers regions with plausible values sufficiently. If,

however, the primary interest lies in constructing accurate forecasts, λ plays a major

role.

As shown before, the predictive distribution is constructed by mixing the like-

lihood over the posterior and the baseline prior, where the latter gets more weight

as the forecast horizon grows. Clearly, choosing a particular value for λ means that

we fix the long run predictive distribution. This forms no problem when we have

leading prior information to be imposed. However, if our prior knowledge is diffuse,

this will result in relatively wide-spread predictive distributions. To circumvent the

latter situation we may exploit the hierarchical model structure and introduce a

third layer, that is, we may put a prior p(λ) on these hyperparameters. This is a

common strategy in Bayesian modeling, see, for example, Geweke (2005) for general

comments and Pesaran et al. (2006) and Geweke and Jiang (2010) for a forecasting

application.

This additional hierarchical layer in fact turns out to have several advantages.
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To illustrate this, suppose there turn out to be K − 1 structural breaks during the

in-sample period, which implies we have K different regimes with parameters θ∗k,

(k = 1, . . . , K). Each element of θ∗ = (θ∗1, . . . , θ
∗
K)′ is generated by the baseline f0.

Moreover, conditional on λ these K unique parameters are statistically independent

(see Proposition A.1 in Appendix A). The first advantage of this extra model layer

is that after marginalizing out λ the regime parameters do show dependence, which

Koop and Potter (2007) list as a requirement for any structural breaks model. Sec-

ond, and perhaps more important, it allows for a data-updating step to learn about

λ. Both advantages combined have the desirable effect that parameter values from

the past provide information relevant for future regimes, properly assimilated in the

predictive distributions.

In most hierarchical settings a conjugate prior for λ is implemented. Inte-

grating out λ, possibly through simulation, provides the marginal baseline prior
∫

f0(θt;λ)p(λ)dλ. This marginal baseline prior provides insights in what values for

θt are a priori covered, see Section 4 for an example. It is important to note that

in general there will be a limited number of breaks and, hence, a limited number of

unique θ∗k values. Since these contain all the information in the data relevant for λ,

there may be little updating. Hence, p(λ|θ∗) may be close to p(λ).

2.4 Probability of a structural break

Finally, some remarks concerning our specification of the structural break process

are in order. In our set-up, the probability of a structural break, π, is constant

over time. This implies that the duration of a regime (that is, the period of time

a particular parameter value prevails, in between two consecutive breaks) has a

geometric distribution. A theoretical drawback of this implication is that short

durations get highest probability a priori. That is, if the duration d ∼ Geo(π)

then Pr [d = j|π] = π(1 − π)j−1, (j = 1, 2, . . .). Koop and Potter (2007) argue for

alternatives that do not impose this restriction, for example by opting for Poisson

or history-dependent durations. Note that mixing the distribution of d over a prior

p(π) does not change the form of the marginal for d and its mode remains at d = 1.

Two sidemarks are in place with regard to this supposed drawback. First, because

π is usually (very) small the dispersion of the resulting geometric distribution is large,

assigning different durations pretty much an equal probability. This is in contrast
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to the Poisson case where most of the mass is concentrated around its mean ω.

However, there is no obvious, neither theoretical nor empirical, argument for why

there would be a break every ω periods on average. Instead, empirical research

shows that breaks seem to come in at arbitrary points in time instead of obeying a

cyclical pattern.

Second, suppose we are about to enter time period t and define dt to be the

duration of the current regime, i.e., the period of time expired since the previous

break. If this regime already lasted for j periods, the probability that it will die

at time t in the geometric case is Pr [dt = j|dt ≥ j] = π, for all j = 1, 2, . . .. In the

Poisson case Pr [dt = j|dt ≥ j] −→ 1 if j becomes large, which means that occurrence

of a break will eventually be enforced due to this regime duration specification.

A similar problem arises during forecasting: if a regime already lasts a relatively

(compared to ω) long time we will forecast a break with probability close to one.

The apparent lack of predictability of the occurrence of structural breaks (Maheu

and Gordon; 2008) pleads in favor of geometric durations.

As final remark, note that we may fix π to a specific value or, alternatively,

treat it as an unknown model parameter (for which we then have to specify a prior

distribution). From a non-statistical point of view we can interpret π as a smoothing

parameter: the closer it is to zero the more bumpy behavior is penalized resulting in

increased smoothness (less breaks). Because we model infrequent structural change

it should take a small number. Often, prior thoughts give a hunch for the expected

number of breaks and together with the sample size T we can fix π. Note that despite

such a fixation the actual number of breaks is still random. As a full Bayesian

alternative we can put a prior on this parameter. A Beta prior appears to be

convenient, but any other distribution restricted to [0, 1] is allowed. In case of a

prior specification on π, we should take into account the danger of ‘overfitting’,

which may occur because both the number of breaks and π are not set in advance.

Giordani et al. (2007) provide examples of prior parameter settings of a (Beta) prior

concentrated around small values to avoid this danger. Another alternative is to

link π to covariates in a probit fashion to make it time-varying. This would simply

introduce an additional hierarchical layer to the model and posterior simulation is

straightforward.
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3 Posterior simulation

In this section we discuss our procedure to simulate from the posterior distribution.

We use simulation techniques from the class of MCMC methods, see, for example,

Robert and Casella (2004). Section 3.1 deals with sampling of the time-varying

parameters in θ while Sections 3.2 and 3.3 discuss simulation of the baseline hyper-

parameters λ and the breaking probability π, respectively. Our simulation approach

is different from Geweke and Jiang (2010) and Gerlach et al. (2000), who first inte-

grate with respect to the regime-specific parameters to improve convergence. Their

estimation algorithms rely on the analytical tractability of these integrals which

limits the combinations of model and baseline prior specifications that can be con-

sidered. Our simulator does not require this analytical integration step but instead

uses a remixing step to improve convergence. Hence, it is not restricted to conjugate

prior settings or to linear regression models or models which can be written in a

(mixed) Gaussian state-space representation.

3.1 Time-dependent parameters

We simulate the time-dependent parameters {θt}Tt=1 conditional on the parameters λ

and π. To facilitate notation, assume without loss of generality for the moment that

λ and π are known or fixed, such that inference involves determining the character-

istics of p(θ|y). We start with analyzing the situation of a conjugate baseline prior

distribution and likelihood function. In this setting we propose to employ a Gibbs

sampler to sequentially sample from the full conditional posteriors p
(

θt|y, θ[−t]

)

, for

t = 1, . . . , T . The non-conjugate setting is examined thereafter.

3.1.1 Conjugate setting

In Section 2.1 we have derived the full conditional prior distributions of θt in (4).

Combining these with the likelihood p(yt|y
1,t−1, θt) makes that applying Bayes’ rule

results in the full conditional posterior distributions

p
(

θt|y, θ[−t]

)

∝ p(yt|y
1,t−1, θt)p

(

θt|θ[−t]

)

. (9)

Hence, the full conditional posteriors are also of the mixture form just like (4). Again

we can consider the two possible scenarios for t = 2, . . . , T − 1 (the posteriors for
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t = 1 and t = T are again straightforward special cases):

Scenario 1: θt−1 = θt+1 ≡ θ∗. In this case θt comes from a mixture with two com-

ponents:

θt = θ∗ with probability ∝

[

2 +
1 − π

πf0(θ∗)

]

p(yt|y1,t−1, θ∗),

θt ∼ p(θt|y1,t) with probability ∝

[

π

1 − π

]

p0(yt|y1,t−1),

where, in order to get the appropriate mixture components and their respective

weights, we use the identity

p(yt|y
1,t−1, θt)f0(θt) = p0(yt|y

1,t−1)p(θt|y
1,t), (10)

where p0(yt|y1,t−1) =
∫

p(yt|y1,t−1, θt)f0(θt)dθt is the marginal likelihood of yt

under the baseline prior f0 and p(θt|y
1,t) ∝ p(yt|y

1,t−1, θt)f0(θt) is the posterior

of θt conditional on data up to and including time t. The two components in

this mixture again correspond with the situations that (i) no breaks occur at

t and t+ 1 or a single break occurs at either t or t+ 1 but the new parameter

value after the break is identical to the value before, and (ii) breaks occur at

both points in time. In the former case θt is set equal to its neighboring values

θ∗, whereas in the latter case its value is obtained from the posterior.

Scenario 2: θt−1 6= θt+1. In this case θt comes from a mixture with three compo-

nents:

θt = θt−1 with probability ∝ p(yt|y1,t−1, θt−1),

θt = θt+1 with probability ∝ p(yt|y1,t−1, θt+1),

θt ∼ p(θt|y1,t) with probability ∝

[

π

1 − π

]

p0(yt|y1,t−1).

Now the possibilities comprise of (i) no break at time t and a break at t+1 (such

that θt = θt−1), (ii) a break at t no break at t+1 (such that θt = θt+1), and (iii)

breaks at both t and t+ 1 (such that θt is obtained from the ‘one-observation’

posterior).

One iteration of this Gibbs sampling scheme is performed in O(T ) computing time.

Moreover, sampling from the mixture distributions is straightforward. The only
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part that may consume considerable computing time is formed by the observation-

specific likelihood evaluations to get the mixture weights. Also, vectorization of the

marginal likelihood evaluations (which is often possible) is computationally efficient

(see Conley et al.; 2008). This contrasts with the methods proposed by Gerlach

et al. (2000), which involve time-consuming matrix inversions and decompositions

in every iteration and Kalman filter computations that are of order O(T 2).

As the sampler we propose is of the single-move type, it may suffer from slow

convergence. In order to enhance convergence of the Markov chain, we implement

a so-called remix step comparable to remixing in Dirichlet process prior models as

described by Escobar and West (1995). After running one iteration of the above

Gibbs sampler we obtain a particular value for θ. Conditional on this value we

can construct subsamples (regimes), according to the break dates S = {t | θt 6=

θt−1, t = 2, . . . , T}. In case of K − 1 = |S| breaks, we form K subsamples such

that all observations within each subsample are characterized by the distribution

p(yt|y1,t−1, θt) with the same parameter value θt = θ∗k, (k = 1, . . . , K). The index k

follows the time order, i.e., θ∗k is the parameter value of the regime that comes in time

immediately after the regime with value θ∗k−1. Suppose tk is the time index of the last

observation in regime k (just prior to the k-th structural break), and t0 = 0, tK = T

and tk−1 < tk. Then, the subsamples are denoted y(k) = (ytk−1+1, . . . , ytk)
′ such that

y =
(

y(1)′ , . . . ,y(K)′
)′

. We know from Section 2.3 that every unique parameter value

is an independent realization from f0 (conditional on λ), enabling us to rewrite the

likelihood function and resample θ∗k from

p
(

θ∗k|y
(k)

)

∝ f0(θ
∗
k)

tk
∏

t=tk−1+1

p(yt|y
1,t−1, θ∗k), (k = 1, . . . , K). (11)

This is just the ‘multi-observation’ version of the previously discussed posterior

mixture component p(θt|y1,t), and hence it has a known form. These resampled

(θ∗1, . . . , θ
∗
K)′ are used in the next iteration of the Gibbs sampler. To demonstrate

the efficacy of our Gibbs sampler we return to the example from the previous section.

Example (continued) (Estimation issues): The model in (7)–(8) shows that the

Gaussian likelihood combined with a normal-inverted Gamma–2 baseline prior forms

a conjugate setting. Integrating out both µ and σ2 provides the one-observation
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marginal likelihoods for t = 1, . . . , T (Student’s t densities),

p0(yt) = π− 1

2

Γ
(

1+ν
2

)

Γ
(

ν
2

) (B + 1)−
1

2

(

(yt − b)2

B + 1
+ S

)− 1+ν
2

S
ν
2 .

Of which computation can easily be vectorized. The one-observation posteriors for

the mixture components have the familiar form:

σ2
t |yt ∼ IG2(w,W ), µt|yt, σ

2
t ∼ N (a, A).

The parameters of these are

w = 1 + ν, W = S +
(yt − b)2

B + 1
,

a =
ytB + b

B + 1
, A = σ2

t

B

B + 1
.

We simulate a time series of T = 200 observations from a process with three regimes

in both mean and variance, where the structural breaks occur at t = 40 and 100.

Figure 2(a) shows the simulated time series. After employing the Gibbs sampler

with the remix step for 2,000 runs, we obtain the posterior time paths for µ and σ2

as depicted in Figures 2(c)–(d), where the first 1,000 runs are discarded as burn-in

and only the last 1,000 runs are used for constructing the posterior distributions.

The chain converges quickly and this only requires 1-2 minutes computing time on

a modern personal computer. We see that the data generating process is accurately

retrieved and the imposed simultaneous breaking of the two parameters is not restric-

tive. Figure 2(b) shows the marginal baseline prior for σ2. Since we have a regime

with variance equal to 4 and the baseline prior has only modest support for values

larger than 2, it is interesting to note that the variance of this volatile regime is still

properly estimated. However, this remark is certainly something to be aware of while

choosing the baseline distribution. We further address this issue in the illustrations

in Section 4.

The above derived Gibbs sampler can be applied to conjugate and conditional

conjugate settings. That is, in case of independent breaks in a vector of time-varying

parameters, where we have multiple layers as in (1), we can condition on other time-

varying parameters and still employ this procedure.
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3.1.2 Non-conjugate setting

In the case of non-conjugate baseline priors and likelihoods we propose to implement

a Metropolis–Hastings [MH] sampler. Instead of direct sampling from the consecu-

tive full conditional posteriors, we now use the full conditional priors as candidate

distributions to obtain the following algorithm:

Step 1. Initialize the vector of time-varying parameters10 at θ(1); set m = 1 and

repeat Step 2 for m = 2, . . . ,M (= number of simulation runs);

Step 2. For t = 1, . . . , T sample from the full conditional prior as in (4) and use

this proposal value θ#
t as a sample from the candidate distribution. The result

in (9) determines the MH-steps:

• Compute the proposal acceptance probability (which is the ratio of one-

observation likelihoods)

α(θ
(m)
t , θ#

t ) = min







p
(

yt|y1,t−1, θ#
t

)

p
(

yt|y1,t−1, θ
(m)
t

) , 1







;

• Set θ
(m+1)
t = θ#

t with probability α(θ
(m)
t , θ#

t ) and θ
(m+1)
t = θ

(m)
t otherwise.

Because of the assumption that structural breaks occur only infrequently, the full

conditional prior is the dominant part in (9). Exactly this makes the chosen can-

didate distribution a well-performing option. Moreover, for the large majority

of the observations there will be no break and in iteration m it will hold that

θ
(m)
t−1 = θ

(m)
t = θ

(m)
t+1 ≡ θ∗. In this case the proposal value θ#

t will very likely be

θ∗ and no likelihood evaluations at all are needed as the acceptance probability

obviously equals one. Hence, this MH-sampler requires even less computations com-

pared to the previous Gibbs sampler and is still O(T ). However, because π is small,

convergence may take longer. Starting with a no-breaks situation it may take a

while before the non-degenerate component f0 is sampled from.

For the remixing in (11) we can sample from a close candidate and perform an

MH-step or, for low-dimensional cases, implement a griddy-Gibbs step (see Ritter

and Tanner; 1992).

10The easiest way to do so is simply starting in a case of no breaks at all, that is, set θ
(1)
t = θ0,

(t = 1, . . . , T ), with θ0 somewhere in the support of f0.
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3.2 Baseline parameters

In case of a prior on the hyperparameters of the baseline distribution, we can update

by extending the discussed simulation scheme as in any hierarchical model. Condi-

tional on θ we can construct the vector of the K unique parameter values θ∗ that

are independent draws from f0(θ
∗
k;λ). Therefore, updating λ means sampling from

p(λ|y, θ∗) ∝ p(λ)
K
∏

k=1

f0(θ
∗
k;λ). (12)

Clearly, a conjugate prior distribution for λ usually facilitates this simulation step.

We refer to Section 4 for examples.

3.3 Breaking probability

In case we treat the probability of a break π as an unknown parameter, we can

include it in the MCMC simulation scheme and update by simulating from its full

conditional posterior, which can be written as

p(π|y, θ) ∝ p(π)
T

∏

t=2

p(θt|θt−1),

because the conditional densities of the parameters are the only parts that involve

π. Conditional on a sampled value of the parameter vector, the transition densities

reduce to

p(θt|θt−1) =

{

πf0(θt), if θt 6= θt−1,

πf0(θt) + (1 − π), if θt = θt−1.

This shows that a Beta prior does not automatically lead to a full conditional distri-

bution which is also Beta, as the term πf0(θt) in case θt = θt−1 does not cancel out.11

However, we can augment the parameter vector with a vector of indicator variables

s = (s2, . . . , sT )′, such that conditional on these indicators π can be sampled from a

Beta distribution, see Geweke and Jiang (2010) and their specification in Section 2.1.

Sampling s conditional on θ is simple and fast. Importantly, given θ the st’s are

non-degenerate. We refer to Appendix B for details of this step and for a proof that it

leads to the proper invariant distribution. Note that we actually twist the procedure

11Because πf0(θt) is small it is very close to a Beta distribution. Applying an MH-step with as

candidate this close Beta distribution turns out to be a good simulator, see Appendix B for details.
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proposed by Giordani and Kohn (2008). Instead of simulating indicators and states

in one block by integrating out the states first, we sample in one block by first

analytically integrating out the indicator variables. This results in a computationally

more attractive way to do inference.

If we now take a Beta prior for π the full conditional posterior (conditional on

s) of π is also Beta:

π ∼ Be(r1, r2) =⇒ π|y, s ∼ Be(K∗ + r1, T − 1 −K∗ + r2),

with K∗ =
∑T

t=2 I{st=1} which is larger than or equal to the number of in-sample

breaks K − 1.

4 Illustrations

In this section we demonstrate the practical usefulness of our approach by presenting

four illustrative applications. As we want to highlight the general applicability of our

approach to different types of time series models, the illustrations involve a Poisson

count data model, a copula model, a probit model and an autoregressive model.

These four examples will touch on issues relevant with respect to the modeling

process and estimation, including prior specification and the computational ease of

our approach in nonlinear models.

4.1 A Poisson count data model for earthquake data

In this example we investigate possible structural instability in a count data model,

that is, a model for a time series that takes only discrete values within a limited

range. Specifically, we consider a Poisson model for describing the worldwide annual

counts of extreme earthquakes (larger than 7.0) for the period 1900-2009.12 The time

series is displayed in Figure 3(a), showing that it ranges between a minimum of 6 in

1986 and a maximum of 41 in 1943. It also appears that the series may be subject

12Taken from the Time Series Data Library by Rob Hyndman: Hyndman,

R.J. (2010), http://robjhyndman.com/TSDL accessed on July 23, 2010. Orig-

inally collected by the National Earthquake Information Center, which source

(http://earthquake.usgs.gov/earthquakes/eqarchives/year/eqstats.php) we also have

used to extend the sample with data up to 2009.

23



to occasional level shifts. We examine this possibility by allowing for time-variation

in the mean parameter of the Poisson model. The complete model is given by

yt|ψt
i.i.d.
∼ Poi(ψt),

p(ψt|ψt−1) = πf0(ψt) + (1 − π)I{ψt=ψt−1},

f0(ψ) = fGa(ψ; a, b).

where we opt for a Gamma baseline prior for the parameter ψ to obtain a conjugate

setting.

This conjuage setting implies that we can implement a straightforward Gibbs

sampler for this model. The necessary marginal likelihoods become

p0(yt) =
ba

(b+ 1)a+yt

Γ(a+ yt)

Γ(a)yt!
,

where the ratio on the right reduces to
(

a+yt

a

)

if a is integer. The one-observation

posterior for the continuous mixture component is

ψt|yt ∼ Ga(a + yt, b+ 1).

Naturally, the posterior for the remix step, conditional on the breaking dates is

ψ∗
k|y

(k) ∼ Ga

(

a+
∑tk

t=tk−1+1
yt, b+ (tk − tk−1)

)

,

where k denotes the regime.

Posterior results for this model are depicted in Figure 3. The results are based on

5,000 iterations of the Gibbs sampler of which the first 2,000 iterations serve as burn-

in. This takes about 2-3 minutes computing time. In Figures 3(b)–(c), we display the

posterior marginal distributions of the ψt’s for two different parameterizations of the

Gamma baseline prior. The density functions of these two baseline priors are given

in Figure 3(d). If we choose for a relatively uninformative prior with wide support,

three distinct kinds of geophysical activity seem to occur. If we choose for the more

restrictive prior with support concentrated under 20, the ‘high-activity’ type (values

around 25-30) is not present anymore, see Figure 3(c). This demonstrates that it is

important that the prior on ψ has enough support to capture all possible regimes in

the data. Figures 3(e)–(f) show the marginal posterior break probabilities for each

point in time. These are Pr[ψt 6= ψt−1|y] = E
[

I{ψt 6=ψt−1}|y
]

, (t = 2, . . . , T ), which

24



can easily be computed using the Gibbs output by simply counting the number of

breaks given a sample of ψ1,T from the posterior. The probabilities in Figures 3(e)

indicate that the structural breaks may either occur almost instantaneously (as in

1905 and 1951) or gradually (during the 1910s, the late 1930s and early 1940s, and

around 1980).

4.2 Breaks in copula model parameters

To illustrate the usefulness of our approach in non-conjugate settings we examine

a copula model, which is becoming increasingly popular in empirical finance to

capture non-standard cross-sectional dependence (see, for example, McNeil et al.;

2005; Jondeau and Rockinger; 2006). We simulate 400 observations ut = (u1t, u2t)
′,

(t = 1, . . . , 400), from a bivariate Clayton copula, given by C(ut; θt) = (u−θt

1t +

u−θt

2t −1)−1/θt , with θt > 0. The parameter θt determines the strength of dependence

between u1t and u2t, with higher values indicating stronger dependence. For example,

Kendall’s τ is equal to θt/(θt+2). Furthermore, the Clayton copula is characterized

by lower tail dependence and upper tail independence, in the sense that

lim
q↓0

Pr [u2t ≤ q|u1t ≤ q] = C((q, q)′; θt)/q = 2−1/θt ,

lim
q↑1

Pr [u2t ≥ q|u1t ≥ q] = [1 − 2q + C((q, q)′; θt)] /(1 − q) = 0.

We impose three regimes with structural breaks occurring at observations 101 and

301. The copula parameter values for these three regimes are 0.1, 2 and 5, re-

spectively. Figure 4 displays some characteristics of the simulated data. Figure 4(a)

shows a scatter of the bivariate data over the whole sample period in the unit square.

No structural change is visible at first sight. Figure 4(c) displays the same data but

here we distinguish between the three regimes by using different marker types. For

example, the grey bullet data correspond to the most recent regime in which θ = 5;

the large parameter value implies stronger (left-tail) dependence.

We use the following model to estimate the parameters of the Clayton copula for

the simulated series:

ut|θt
i.i.d.
∼ CCl(θt),

p(θt|θt−1) = πf0(θt) + (1 − π)I{θt=θt−1},

f0(θ) = flogN (θ; a, A), θ ∈ (0,∞).
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The log-normal baseline prior exhibits desirable properties as it can be used for any

parameter which is bounded from below/above. It is easy to see that the baseline

prior f0 and the likelihood cCl(ut|θt) = ∂2C(ut; θt)/(∂u1t∂u2t) are non-conjugate, so

we have to use the Metropolis-Hastings sampler to simulate from the full conditional

posteriors p
(

θt|U, θ[−t]

)

with U = (u1, . . . ,u400)
′. For the remixing step we use a

griddy-Gibbs step where we take into account the f0-prior for the regime parameter:

θ∗k ∼ logN (a, A), (k = 1, . . . , K).

If θ ↓ 0 the Clayton copula becomes an independent copula. The first regime is

close to this situation. Therefore we consider a quite uninformative baseline prior

(a = 0.5 and A = 1) which also covers values close to zero. The density of the prior

is depicted in Figure 4(b). As we expect only a few breaks we set π equal to 0.01.

Posterior results are shown in Figure 4(d). It turns out that the marginal posteriors

of the parameters θt resemble the data generating process closely. We see very sharp

and sudden shifts in the parameter value at times t = 101 and t = 301. Posterior

results turn out to be quite robust with respect to prior parameters settings and

specification of the baseline prior. The computational burden of our approach is

small as it takes only three minutes computing time to obtain 3,000 draws from the

posterior distribution.

4.3 Size spread sign prediction

In the third illustration we apply our method to a probit model to forecast the sign

of the size spread in monthly U.S. stock returns. The size spread is defined as the

difference between the returns on portfolios consisting of the 20% smallest stocks and

portfolios consisting of the 20% largest stocks over the period July 1962 - October

2010.13 Hence, the data correspond to binary random variables yt, which equal 1 if

the difference is positive and zero otherwise. We model these binary variables using

a probit specification:

yt|xt,βt
i.i.d.
∼ Ber (Φ(x′

tβt)) , (13)

where Φ(·) is the CDF of the standard normal distribution. For the explanatory

variables xt we use a number of series that are typically considered for predicting

13The data were obtained from Kenneth French’s website data library

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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(relative) stock returns. A preliminary analysis suggests to use the following five

variables: credit spread, term spread, market return, and the growth in the Con-

ference Board’s leading index.14 We also include an intercept and the one-month

lagged size spread. As empirical studies indicate that the relation between some of

the explanatory variables and stock returns change (see, for example, Pesaran and

Timmermann; 2002), we allow for breaks in the β parameters.

Since we are dealing with a simple 0/1-series, we must be careful not to demand

too much from the data. For example, allowing all six parameters to vary leads to

too much flexibility corresponding to perfect fit in some time periods.15 Therefore

we focus on possible changes in the effect of the two spread variables and we only

allow their coefficients, βCS and βTS, to change simultaneously over time. Thus, we

extend the model in (13) with the conditional distribution

p(βS,t|βS,t−1) = πf0(βS,t) + (1 − π)I{βS,t=βS,t−1},

and we propose to use the following Gaussian baseline prior:

βS = (βCS, βTS)
′|µ,Σ ∼ N (µ,Σ). (14)

For the time-invariant part of βt we apply an uninformative conjugate Gaussian

prior. As discussed before, especially for forecasting purposes it would make sense

to update the hyperparameters of the baseline prior. We consider a matricvariate

normal-inverted Wishart prior for the hyperparamters:

µ′|Σ ∼ MN (p′, q · Σ), (15)

Σ ∼ IW(S, u). (16)

For the breaking probability π we take a Beta prior with parameters r1 and r2.

14To be more precise: (1) credit spread: the difference between Moody’s Baa corporate bond rate

and the 10-year Treasury constant maturity rate, in deviance from its one-year moving average;

(2) term spread: the difference between the 3-month Treasury bill secondary market rate and the

effective Federal funds rate, in deviance from its one-year moving average; (3) stock market return:

level of the S&P500 index relative to a two-year moving average; (4) growth in leading index:

growth rate of The Conference Board’s Composite Leading index over the six most recent months.

All explanatory variables are available at the actual time the forecast is constructed, that is, some

of them are appropriately lagged to take into account publication delays.
15This issue becomes even more relevant when the data show persistent clustering of zeros or

ones, for example, in case of an indicator for the business cycle regime.
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The prior hyperparameters are set to p′ = (0, 0), q = 2, S = 2 · I2 and u = 6.

Following the suggestions in Giordani et al. (2007) the parameters of the prior for π

are set to r1 = 5, r2 = 3000, which corresponds to a prior assumption of one to two

breaks. Because of the non-conjugate setting of (13) and (14) we have to rely on the

MH-procedures described in Section 3.1 to sample from the posterior distribution.16

To speed up convergence of the chain we employ a tailored remix step. For the remix

step we sample latent variables from truncated normals just as in an MCMC sampler

for a probit model based on data augmentation (see, for example, Albert and Chib;

1993). Conditional on these latent variables we resample the βS parameters. Note

that we only use these variables for the remixing step.

Figure 5 shows the posterior results of this sampler based on 7,000 iterations of

the MCMC sampler of which the first 2,000 serve as burn-in. Figures 5(a) and (c)

show the posteriors of the two parameters that may be time-variant. Initially the

credit spread has no impact, but since the late 1970s its effect becomes positive.

After the end of the 1990s the effect becomes negative. The term spread has a

positive impact from the beginning of the sample which becomes even stronger in

the early 1980s, though, its posterior uncertainty also increases.

The marginal properties of the posterior distribution of the model parameters

are reported in Table 1. The posterior median of the µ parameters is larger than

the median of the prior although the increase is small due to the fact that we only

have a small amount of breaks in the sample. Figure 5(b) shows the posterior of the

two marginal baseline densities implied by f0(·;µ,Σ) integrated over the posterior

p(µ,Σ|y). The posterior baseline belonging to the term spread is slightly more

shifted to the right due to the positive effect of the term spread on the size spread

sign.

In Figure 5(d) we show the ‘fitted’ in-sample probabilities; Φ(x′
tβt) integrated

over the posterior distribution. These probabilities do not show an outspoken pattern

which is inherent to these models. The hitrate is 63% based on a cut-off of 0.5.

16If we use data augmentation for the probit part we can rely on Gibbs steps but this extends

the MCMC sampler with more simulation steps, see Albert and Chib (1993)
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4.4 Forecasting U.S. quarterly GDP growth

Our final illustration examines structural breaks in an AR(4) model for quarterly

growth in U.S. gross domestic product and the implications with regard to forecast-

ing. Similar exercises have been employed by McConnell and Perez-Quiros (2000);

Clark (2009) and Geweke and Jiang (2010), for example. If yt is the annualized

quarterly growth rate for the sample period 1960Q1-2010Q3 and the random shocks

are assumed to be Gaussian, then the standard AR(4) representation can we written

as

yt = αt + ξtyt−1 +
3

∑

j=1

ϕ∗
j∆yt−j + εt, εt

i.i.d.
∼ N

(

0, σ2
t

)

,

where we condition on the observations before 1960Q1.

First, we allow for infrequent intercept shifts and changing persistence through

the conditional mean parameters αt and ξt, respectively. We impose simultaneous

changes in these two parameters to control for the fact that the unconditional ex-

pectation of yt is determined by both in a positive way. A shift in the unconditional

mean, either through the intercept or the persistence parameter occurs with proba-

bility π1. To impose unit root stationarity ξt should take values smaller than 1. In

our framework this truncation is easily dealt with. Further (conjugate) considera-

tions lead to a truncated multivariate Gaussian baseline prior distribution for the

time-varying mean parameters θt = (αt, ξt)
′:

p(θt|θt−1) = π1f0(θt) + (1 − π1)I{θt=θt−1},

θ|µ,Σ ∼ N (µ,Σ) × I{ξ<1}. (17)

Shifts in the volatility of the random shocks (σ2
t = Var [εt|σ2

t ]) are modeled inde-

pendently from the previous regression parameters. Therefore we specify a separate

layer as in (1) with a break in variance occurring with probability π2. For this

parameter we opt for an inverted Gamma–2 baseline prior:

p(σ2
t |σ

2
t−1) = π2f0(σ

2
t ) + (1 − π2)I{σ2

t =σ2
t−1

},

σ2|Ω, ν ∼ IG2(Ω, ν).

In order to update the baseline prior parameters, we augment the model with

a third level. For the baseline parameters of the truncated Gaussian in (17) we

use the same conjugate choice as in the sign prediction model of Section 4.3, see
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(15)–(16). Following Clark (2009), we use the pre-sample data to set its parameters

p = (2, 0.4)′, q = 10, u = 6 and S = 2 · I2.

We impose an inverted Gamma–2 prior for the parameter Ω of the baseline

distribution of the conditional variance. This allows us to learn with respect to the

distribution of σ2
t :

Ω ∼ IG2(W, z).

To simulate Ω during the MCMC scheme we implement an independence MH-

simulator with a Gamma distribution to generate proposal values. Again we use

historical data and take W = 50, z = 6 and ν = 9.

Further prior settings involve a conjugate Gaussian prior on the time-constant

parameters

(ϕ∗
1, ϕ

∗
2, ϕ

∗
3)

′ ∼ N (b,B),

where we set its hyperparameters such that it is close to a flat prior. To complete,

since we have two layers that account for structural breaks in the mean parameters

and the conditional variance, respectively, we have to set two priors for the associated

break probabilities π1 and π2. We use two independent Beta priors:

π1 ∼ Be(r11, r12) and π2 ∼ Be(r21, r22),

and we set r11 = 5, r12 = 1000, r21 = 1 and r22 = 100. This way the expected

probability of a break in either the mean or the conditional variance is approximately

equal to 0.02.

The assumption of independence between the two layers has the following im-

plications for estimation. Conditional on the standard deviations σ = (σ1, . . . , σT )′,

we have a conjugate setting17 and therefore we can employ the Gibbs sampler to

simulate (αt, ξt)
′, (t = 1, . . . , T ). Vice versa we also have a conjugate setting and

can simulate the conditional variances.

Figures 6(a) and (d) show the data and the posterior unconditional mean of

yt, and the posterior path of σ2
t , respectively. The unconditional mean is given by

αt/(1−ξt). Figure 6(a) shows that no shifts have occurred during the sample period;

α is in the range [1, 1.9] and the persistence parameter ξ covers values in [0.4, 0.65].

17Even with the truncation of the Gaussian baseline prior for ξ, the marginal likelihoods and

posterior distributions can be obtained analytically. Of course, the MH-routines can be applied

equally well.
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The variance does show significant changes, in line with previous empirical findings.

The Great Moderation corresponds to the large decline in volatility in the early

1980s. Recent negative growth rates suspect this decline is being offset, see Clark

(2009). However, more data are needed to provide more strong evidence in favor of

this hypothesis.

In Figures 6(b) and (c) we display the evolution of the marginal posterior pre-

dictive distributions p(yτ+h|y1,τ) for h = 1, . . . , 40, for two cases: no breaks at all

and the previously described structural break model, respectively. Forecasting starts

at τ = 2002Q4. Figures 6(e) and (f) show the marginal posterior predictive densi-

ties for horizions one quarter ahead (solid) and ten years ahead (dashed). Clearly,

if we assume parameter stability the Great Moderation is not accounted for and

the current variance is heavily overestimated leading to too wide density forecasts.

The structural break model starts with tighter forecast densities due to the smaller

estimated σ2
τ . If the forecasting horizon grows, we see that incorporating future

structural breaks leads to a predictive distribution that is more peaked than the

Gaussian in Figure 6(e). This heavy-tailedness assigns more probability mass to

more extreme values as realized in 2010.

5 Conclusion and discussion

In this paper we have proposed a dynamic stochastic specification to model infre-

quent sudden changes in model parameters over time. The specification is simple

and has many nice desirable properties.

First of all, the number of in-sample and out-of-sample breaks and the break dates

are a priori unknown. The dynamic specification contains natural implications in

terms of out-of-sample forecasting. In existing models, future parameter breaks are

neglected or require (computationally demanding) extensions. Our approach implies

a random number of out-of-sample breaks where its distribution depends on the fore-

casting horizon and the breaking probability. The risk of future breaks is assimilated

in the posterior predictive distributions according to the rules of probability.

Second, our approach is flexible in the sense that the posterior simulator does

not impose any restrictions on the model under consideration. Hence, we do not

have to limit ourselves to linear regression models or models which can be written in
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a (mixed) Gaussian state-space representation. The modeling part only involves the

choice of a likelihood specification and a baseline prior distribution that generates

new parameter values if a break occurs.

Third, the proposed posterior simulator is computationally less complex and

intensive than existing methods which usually need Kalman recursions or filtering

techniques. Our simulator is a single-move sampler and only requires sampling from

three-component mixtures followed by a remix step to enhance the convergence of the

sampler. This remix step is case-specific and needs to be tailored to the model/prior

specification under consideration if it is non-conjugate.

We have illustrated our approach using four examples. Both in real data sit-

uations and simulated data sets the methods perform well and the computational

burden is relatively small. The parameterization of the baseline prior turns out to

be important. To prevent that breaks are not detected, we have to ensure that the

baseline priors do not exclude plausible parameter values. Furthermore, the base-

line prior plays a key role in multi-step ahead forecasting as it determines the size

of out-of-sample parameters. A sensible strategy to obtain a plausible baseline prior

is to put a prior on its hyperparameters.
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Figure 1: Forecasting implications for the example model with potential simultaneous breaks in mean and variance.

Notes : (a) Pdf’s of posterior predictive distributions: Gaussian likelihood with µ = 5 and σ2 = 1 (solid) and p(yτ+h|y1,τ ) for h = 1

(dashed), h = 20 (dashed-dotted) and h = 100 (dotted); (b) Marginal Student’s t prior of µ (solid) and Gaussian with variance fixed at

the Student’s t’s (dashed); (c) Marginal inverted Gamma–2 prior of σ2; (d) Evolution of posterior predictive distributions for horizons

h = 1, . . . , 150, median (dashed) and 5th- and 95th-percentiles (dotted); (e) Evolution over time of µt; (f) Evolution over time of σ2
t . The

results in (d)–(f) are obtained through simulation (10,000 runs) with hyperparameters set as follows: b = 0, B = 9, ν = S = 6 and break

probability π = 0.01. Forecasting starts at time τ where µτ = 5 and σ2
τ = 1.
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Figure 2: Estimation results for the example model with potential simultaneous breaks in

mean and variance.

Notes : (a) Simulated series yt|µt, σ
2
t

i.i.d.
∼ N (µt, σ

2
t ) with µt = 2, (t ≤ 40), µt = 0, (t > 40) and

σ2
t = 1, (t ≤ 100), σ2

t = 4, (t > 100); (b) Pdf of marginal inverted Gamma–2 baseline prior for σ2
t ;

(c) Posterior mean (solid) and Gibbs samples from posterior µt|y; (d) Posterior mean (solid) and

Gibbs samples from posterior σ2
t |y. Results are obtained with prior hyperparameters π = 0.01,

b = 0, B = 16, ν = 6, S = 3 and 2,000 simulation runs of which 1,000 serve as burn-in (1-2 minutes

computing time).
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Figure 3: Results for the earthquake data with potential breaks in the Poisson parameter.

Notes : (a) Data series, dashed line represents the posterior mean of the Ga(a+
∑

yt, b+T ) when no breaks are allowed; (b) Posterior

distribution (mean and 10th- and 90th-percentiles) of ψt under ‘uninformative’ prior 1; (c) Posterior distribution (mean and 10th- and

90th-percentiles) of ψt under ‘restrictive’ prior 2; (d) Solid graph: density of prior 1: Ga(10, 0.5); dashed graph: density of prior 2:

Ga(10, 1); (e) Marginal posterior break probabilities under prior 1; (f) Marginal posterior break probabilities under prior 2.
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Figure 4: Results for the Clayton copula model.

Notes : (a) Simulated series ut|θt
i.i.d.
∼ CCl(θt), (t = 1, . . . , 400), with parameter values as

follows: (t ≤ 100): θt = 0.1, (100 < t ≤ 300): θt = 2 and θt = 5, (t > 300); (b) Marginal prior

pdf for θt for which it holds θt ∼ logN (0.5, 1); (c) Sample partitioned according to break events:

asterisk: t ≤ 100, diamond: 100 < t ≤ 300 and bullet: t > 300; (d) Posterior median and 10th-

and 90th-percentiles of marginal posteriors θt|y. Results are obtained with prior hyperparameters

π = 0.01, a = 0.5, A = 1 and 3,000 iterations of the MCMC sampler of which the first 1,000 serve

as burn-in (3 minutes computing time).
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Figure 5: Results for the sign prediction model.

Notes : (a) Posterior time-path of the parameter associated with the credit spread (βCS),

grey area indicates the 10th- and 90th-percentiles; (b) Posterior densities of the marginal baseline

distributions of the two time-varying parameters: βCS (solid) and βTS (dashed); (c) Posterior time-

path of the parameter associated with the term spread (βTS); (d) In-sample probit probabilities

obtained by integrating Φ(x′
tβt) over the full-sample posterior. Results are obtained with prior

hyperparameters r1 = 5, r2 = 3000, p′ = (0, 0), q = 2, S = diag(2, 2) and u = 6 and 7,000

iterations of the MCMC sampler of which the first 2,000 serve as burn-in (8 minutes computing

time).
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Figure 6: Results for the AR(4) model for U.S. quarterly GDP growth.

Notes : (a) Data series and posterior of the unconditional mean of yt (median and 10th- and 90th-percentiles); (b) Posterior predictive

distributions for horizons h = 1, . . . , 40 when forecasting starts in τ = 2002Q4 and no breaks are allowed for; (c) Same as (b) but now

breaks are modeled; (d) Posterior of conditional variance σ2
t ; (e) Densities of predictive distributions for horizons one quarter (solid) and

40 quarters (dashed) in the no-breaks model; (f) Same as (e) but now breaks are modeled.
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Table 1: Posterior properties of the sign prediction model.

Parameter Posterior median Posterior percentiles

Time-invariant regression parameters

β0 0.025 −0.049 0.099

βAC 0.036 0.021 0.051

βSP −0.826 −1.357 −0.305

βLI 0.348 −0.869 1.534

Third level parameters

µ
0.112 −0.323 0.550

0.291 −0.130 0.744

Σ(CS,CS) 0.327 0.178 0.690

Σ(TS,TS) 0.306 0.166 0.650

Σ(CS,TS) 0.012 −0.152 0.184

π 0.002 0.001 0.003

Notes : The table reports the median and the 10th- and 90th-percentile of the marginal posterior

distributions of the time-invariant parameters. The first panel depicts properties of the regression

parameters that are restricted to be constant over time: intercept (β0), autocorrelation term (AC),

S&P500 (SP) and leading index growth (LI). See the notes of Figure 5 for settings of the prior

distributions.
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A Derivation of prior marginal distribution θt

Proposition A.1. If the joint of (θ1, . . . , θT )′ is constructed by the conditionals

p(θt|θ
1,t−1) = p(θt|θt−1) = πf0(θt) + (1 − π)I{θt=θt−1}, (t = 2, . . . , T ),

and the initialization θ1 ∼ f0, then it holds that all θt’s are marginally f0 distributed.

Proof: For θ1 it holds by definition. Now, for θ2 it follows

p(θ2) =

∫

p(θ2|θ1)p(θ1)dθ1

= πf0(θ2)

∫

f0(θ1)dθ1 + (1 − π)

∫

f0(θ1)I{θ2=θ1}dθ1

= πf0(θ2) + (1 − π)f0(θ2).

Now suppose the acclaimed holds for arbitrary t, i.e., θt ∼ f0, then following the

same structure as before it is obvious that θt+1 has f0 as marginal as well.

Proposition A.2. Suppose we have two probability density functions f0 and g, both

defined on the same sample space. If the stochastic process {θt} has transition density

as in (1) and the initial state θ0 ∼ g, then θt
D

−→ f0 when t→ ∞.

Proof: By mathematical induction we iteratively solve for the marginal distribu-

tions and show that the influence of g dies out.

First, we show that the exact marginal distribution is determined by the following

mixture pdf:

p(θt) = π
t−1
∑

j=0

(1 − π)j × f0(θt) + (1 − π)tg(θt).

Take t = 1, then the marginal of θ1 is derived as follows:

p(θ1) =

∫

p(θ1|θ0)p(θ0)dθ0

=

∫

πf0(θ1)g(θ0)dθ0 +

∫

(1 − π)g(θ0)I{θ1=θ0}dθ0

= πf0(θ1) + (1 − π)g(θ1).
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Hence, the acclaimed holds for t = 1. Now assume the equation holds for arbitrary

t, then for t+ 1 it holds that

p(θt+1) =

∫

p(θt+1|θt)p(θt)dθt

=

∫

[

πf0(θt+1) + (1 − π)I{θt+1=θt}

]

×

[

(1 − π)tg(θt) + π

t−1
∑

j=0

(1 − π)j × f0(θt)

]

dθt

= π(1 − π)tf0(θt+1) + (1 − π)t+1g(θt+1) + π
t−1
∑

j=0

(1 − π)j × f0(θt+1).

Second, because
∑t−1

j=0(1 − π)j −→ 1
π

and (1 − π)t −→ 0 if t→ ∞, the marginal

pdf of θt converges to f0 for every point in the sample space.

B Introducing indicator variables

In order to clarify the differences and advantages with respect to other approaches it

is helpful to augment the parameter vector with indicator variables st, (t = 2, . . . , T )

as in Geweke and Jiang (2010). The model for the time-dependent parameters can

then be written as (conditional on the break probability π):

st =

{

1, with probability π,

0, with probability 1 − π,

p(θt|θ
1,t−1, s2,t) = f0(θt)

I{st=1}
(

I{θt=θt−1}

)1−I{st=1} , (t = 2, . . . , T ).

Here st indicates which of the two mixture components θt is sampled from: from the

baseline prior f0 or the degenerate at θt−1. The densities above describe the joint

p(θ, s), with s = s2,T . If we integrate out the auxiliary variables, we get the same

specification as in (1):

p(θt|θ
1,t−1) =

∑

s
2,t

p(θt|θ
1,t−1, s2,t)p(s2,t)

=
∑

st=0,1

p(θt|θt−1, st)p(st)

= πf0(θt) + (1 − π)I{θt=θt−1},
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where we use (i) that given θt−1, the current θt is independent from θ1,t−2 and (ii)

the temporal independence of the st’s.

B.1 Posterior sampling

We have to traverse the space of p(θ, s, π|y). Analytical integration of s makes

that we can set up a Gibbs sampler to simulate from p(θ|y, π) as described in

Section 3.1. Denote its transition kernel p∗(θ|θc, π). Conditional on a draw of θ, we

simulate from p(s|y, θ, π) – which is not degenerate. To update π we sample from

p(π|s, θ). We have to show that such a Markov chain has the required posterior as

its invariant distribution. With γc we denote the current state of random variable

γ. The invariant distribution is derived as follows:
∫

s
c,θc,πc

p(θc, sc, πc)p∗(θ|θc, πc)p(s|θ, πc)p(π|s, θ)

=

∫

s
c,θc,πc

p(sc|θc, πc)p(θc|πc)p(πc)p∗(θ|θc, πc)p(s|θ, πc)p(π|s, θ)

=

∫

θc,πc

p(θc|πc)p∗(θ|θc, πc)p(πc)p(s|θ, πc)p(π|s, θ)

=

∫

πc

p(θ|πc)p(πc)p(s|θ, πc)p(π|s, θ)

=

∫

πc

p(θ, s, πc)p(π|s, θ)

= p(π|θ, s)p(θ, s) = p(θ, s, π),

where we drop the notational conditioning on y for purposes of exposition. In this

derivation (third equality) we use that we have a valid Gibbs sampler to simulate

from p(θ|π). That is, its transition kernel is

p∗(θ|θc, π) = p(θ1|θ
c
2)

T−1
∏

t=2

p(θt|θt−1, θ
c
t+1) × p(θT |θT−1),

and
∫

θc

p(θc|π)p∗(θ|θc, π) = p(θ|π).

The complete posterior simulation scheme breaks down into three steps.

Step 1. Sample a new θ by simulating from p(θt|θt−1, θt+1, π) for t = 1, . . . , T . This

means sampling from a three-component mixture as in Section 3.1.

46



Step 2. Sample a new s by simulating from p(st|θ, π) for t = 2, . . . , T . In this step

we use that the st’s are independent and that

p(st|θ, π) ∝ [πf0(θt)]
I{st=1}

[

(1 − π)I{θt=θt−1}

]I{st=0} .

If θt 6= θt−1, then st is degenerate; Pr [st = 1|θ, π] = 1.

If θt = θt−1, then the indicator is sampled from

p(st|θ, π) ∝

{

1 − π, st = 0,

πf0(θt), st = 1.

Step 3. Sample the breaking probability from p(π|θ, s) = p(π|s). For this full

conditional it holds that

p(π|s) ∝ p(s|π)p(π) = π
∑T

t=2
I{st=1}(1 − π)

∑T
t=2

I{st=0} × p(π).

Therefore, taking a Beta prior yields a conjugate full conditional posterior

distribution:

π ∼ Be(r1, r2) =⇒ π|y, s ∼ Be(K∗ + r1, T − 1 −K∗ + r2),

with K∗ =
∑T

t=2 I{st=1}. We note that K∗ ≥
∑T

t=2 I{θt 6=θt−1} = K − 1; the sum

of the indicators is larger than or equal to the number of parameter breaks.

This shows the reason why we need the augmentation step to be able to sample

from a Beta distribution. Since K∗ will be close to the number of breaks, a

Metropolis–Hastings sampler with a Beta proposal with K∗ = K−1 is a good

alternative simulator.
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