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Abstract

We apply the splitting method to three well-known counting problems,

namely 3-SAT, random graphs with prescribed degrees, and binary contingency

tables. We present an enhanced version of the splitting method based on the

capture-recapture technique, and show by experiments the superiority of this

technique for SAT problems in terms of variance of the associated estimators,

and speed of the algorithms.

Keywords. Counting, Gibbs Sampler, Capture-Recapture, Splitting.

1 Introduction

In this paper we apply the splitting method introduced in [5] to a variety of counting

problems in #P-complete. Formally, given any decision problem in the class NP,

e.g. the satisfiability problem (SAT), one can formulate the corresponding counting
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problem which asks for the total number of solutions for a given instance of the

problem. In the case of the SAT problem, this corresponding counting problem

has complexity #SAT. Generally, the complexity class #P consists of the counting

problems associated with the decision problems in NP. Clearly, a #P problem is

at least as hard as its corresponding NP problem. In this paper we consider #P-

complete problems. Completeness is defined similarly as for the decision problems:

a problem is #P-complete if it is in #P, and if every #P problem can be reduced

to it in polynomial counting reduction. This means that exact solutions to these

problems cannot be obtained in polynomial time, and accordingly, our study focuses

on approximation algorithms. For more background on the complexity theory of

problems we refer to [13].

The proposed splitting algorithm for approximate counting is a randomized one.

It is based on designing a sequential sampling plan, with a view to decomposing

a “difficult” counting problem defined on some set X ∗ into a number of “easy”

ones associated with a sequence of related sets X0,X1, . . . ,Xm and such that Xm =

X ∗. Splitting algorithms explore the connection between counting and sampling

problems, in particular the reduction from approximate counting of a discrete set to

approximate sampling of elements of this set, with the sampling performed, typically,

by some Markov chain Monte Carlo method.

Recently, counting problems have attracted research interest, notably the so-

called model counting or #SAT, i.e. computing the number of models for a given

propositional formula [10]. Although it has been shown that many solution tech-

niques for SAT problems can be adapted for these problems, yet due to the exponen-

tial increase in memory usage and running times of these methods, their application

area in counting is limited. This drawback motivated the approximative approach

mentioned earlier. There are two main heuristic algorithms for approximate count-

ing methods in #SAT. The first one, called ApproxCount, is introduced by Wei and

Selman in [17]. It is a local search method that uses Markov Chain Monte Carlo

(MCMC) sampling to compute an approximation of the true model count of a given

formula. It is fast and has been shown to provide good estimates for feasible so-

lution counts, but, in contrast with our proposed splitting method, there are no

guarantees as to the uniformity of the MCMC samples. Gogate and Dechter [9]

recently proposed a second model counting technique called SampleMinisat, which

is based on sampling from the so-called backtrack-free search space of a Boolean

formula through SampleSearch. An approximation of the search tree thus found is

used as the importance sampling density instead of the uniform distribution over all
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solutions. Experiments with SampleMinisat show that it is very fast and typically

it provides very good estimates.

The splitting method discussed in this work for counting in deterministic prob-

lems is based on its classic counterpart for efficient estimation of rare-event probabili-

ties in stochastic problems. The relation between rare-event simulation methods and

approximate counting methods have also been discussed, for instance, by Blanchet

and Rudoy [2], Botev and Kroese [4], and Rubinstein [14]; see also [15, Chapter 9].

As said, we propose to apply the sequential sampling method presented in [5]

which yields a product estimator for counting the number of solutions |X ∗|, where

the product is taken over the estimators of the consecutive conditional probabilities,

each of which represents an “easy” problem. In addition, we shall consider an

alternative version, in which we use the generated samples after the last iteration of

the splitting algoritm as a sample for the capture-recapure method. This method

gives us an alternative estimate of the counting problem. Furthermore, we shall

study an extended version of the capture-recapture method when the problem size is

too large for the splitting method to give reliable estimates. The idea is to decrease

artificially the problem size and then apply a backwards estimation. Whenever

applicable, the estimators associated with our proposed enhancements outperform

the splitting estimators in terms of variance.

The paper is organized as follows. We first start with describing the splitting

method in detail in Section 2. Section 3 deals with the combination of the classic

capture-recapture method with the splitting algorithm. Finally, numerical results

and concluding remarks are presented in Sections 4 and 5, respectively.

2 Splitting Algorithms for Counting

The splitting method is one of the main techniques for the efficient estimation of

rare-event probabilities in stochastic problems. The method is based on the idea

of restarting the simulation in certain states of the system in order to obtain more

occurrences of the rare event. Although the method originated as a rare event

simulation technique (see [1], [6], [7], [8], [11], [12]), it has been modified in [2], [4],

and [14], for counting and combinatorial optimization problems.

Consider a NP decision problem with solution set X ∗, i.e., the set containing

all solutions to the problem. We are interested to compute the size |X ∗| of the

solution set. Suppose that there is a larger set X ⊃ X ∗ which can be represented

by a simple description or formula; specifically, its size |X | is known and easy to
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compute. We call X the state space of the problem. Denote by p = |X ∗| / |X | the

fraction (or “probability”) of the solution set w.r.t. the state space. Since |X | is

known, it suffices to compute p. In most cases p is extremely small, in other words

we deal with a rare-event probability. However, assuming we can estimate p by p̂,

we obtain automatically

|̂X ∗| = |X |p̂

as an estimator of |X ∗|. Note that straightforward simulation based on generation

of i.i.d. uniform samples Xi ∈ X and delivering the Monte Carlo estimator p̂MC =
1
N

∑N
i=1 I{Xi∈X ∗} as an unbiased estimator of |X ∗|/|X | fails when p is a rare-event

probability. To be more specific, assume a parametrization of the decision problem.

The size of the state space |X | is parameterized by n, such that |X | → ∞ as n → ∞.

For instance, in SAT n represents the number of variables. Furthermore we assume

that the fraction of the solution set p → 0 as n → ∞. The required sample size N

to obtain a relative accuracy ε of the 95% confidence interval by the Monte Carlo

estimation method is [1, Chapter 6]

N ≈
1.962

ε2p
,

which increases like p−1 as n → ∞.

The purpose of the splitting method is to estimate p more efficiently via the

following steps:

1. Find a sequence of sets X = X0,X1, . . . ,Xm such that X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗.

2. Write |X ∗| = |Xm| as the telescoping product

|X ∗| = |X0|

m∏

t=1

|Xt|

|Xt−1|
, (1)

thus the target probability becomes a product p =
∏m

t=1 ct, with ratio factors

ct =
|Xt|

|Xt−1|
. (2)

3. Develop an efficient estimator ĉt for each ct and estimate |X ∗| by

ℓ̂ = |̂X ∗| = |X0| p̂ = |X0|
m∏

t=1

ĉt. (3)

It is readily seen that in order to obtain a meaningful estimator of |X ∗|, we have to

solve the following two major problems:

4



(i). Put the counting problem into the framework (1) by making sure that

X0 ⊃ X1 ⊃ · · · ⊃ Xm = X ∗, (4)

such that each ct is not a rare-event probability.

(ii). Obtain a low-variance estimator ĉt of each ratio ct.

To this end, we propose an adaptive version of the splitting method. As a demon-

stration, consider a specific family of decision problems, namely those whose solution

set is finite and given by linear integer constraints. In other words, X ∗ ⊂ Zn
+ is given

by 



∑n
j=1 aijxj = bi, i = 1, . . . ,m1;

∑n
j=1 aijxj ≥ bi, i = m1 + 1, . . . ,m1 +m2 = m;

xj ∈ {0, 1, . . . , d}, ∀j = 1, . . . , n.

(5)

Our goal is to count the number of feasible solutions (or points) to the set (5).

Note that we assume that we know, or can compute easily, the bounding finite set

X = {0, 1 . . . , d}n, with points x = (x1, . . . , xn) (in this case |X | = (d+ 1)n) as well

for other counting problems.

Below we follow [14]. Define the Boolean functions Ci : X → {0, 1} (i = 1, . . . ,m)

by

Ci(x) =




I{

∑n
j=1

aijxj=bi}, i = 1, . . . ,m1;

I{
∑n

j=1
aijxj≥bi}, i = m1 + 1, . . . ,m1 +m2.

(6)

Furthermore, define the function S : X → Z+ by counting how many constraints

are satisfied by a point x ∈ X , i.e., S(x) =
∑m

i=1Ci(x). Now we can formulate the

counting problem as a probabilistic problem of evaluating

p = Ef

[
I{S(X)=m}

]
, (7)

where X is a random point on X , uniformly distributed with probability density

function (pdf) f(x), denoted by X
d
∼ f = U(X ). Consider an increasing sequence

of thresholds 0 = m0 < m1 < · · · < mT−1 < mT = m, and define the sequence of

decreasing sets (4) by

Xt = {x ∈ X : S(x) ≥ mt}.

Note that in this way

Xt = {x ∈ Xt−1 : S(x) ≥ mt},
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for t = 1, 2, . . .. The latter representation is most useful since it shows that the ratio

factor ct in (2) can be considered as a conditional expectation:

ct =
|Xt|

|Xt−1|
= Egt−1

[I{S(X)≥mt}], (8)

where X
d
∼ gt−1 = U(Xt−1). Note that gt−1(x) is also obtained as a conditional pdf

by

gt−1(x) = f(x|Xt−1) =





f(x)
f(Xt−1)

, x ∈ Xt−1;

0, x 6∈ Xt−1.
(9)

To draw samples from the uniform pdf gt−1 = U(Xt−1) on a complex set given

implicitly, one applies typically MCMC methods. For further details we refer to

[14].

2.1 The Basic Adaptive Splitting Algorithm

We describe here the adaptive splitting algorithm from [5]. The thresholds (mt) are

not given in advance, but determined adaptively via a simulation process. Hence,

the number T of thresholds becomes a random variable. In fact, the (mt)-thresholds

should satisfy the requirements ct = |Xt|/|Xt−1| ≈ ρt, where the parameters ρt ∈

(0, 1) are not too small, say ρt ≥ 0.01, and set in advance. We call these the splitting

control parameters. In most applications we chose these all equal, that is ρt ≡ ρ.

Consider a sample set [X]t−1 = {X1, . . . ,XN} of N random points in Xt−1.

That is, all these points are uniformly distributed on Xt−1. Let mt be the (1−ρt−1)-

th quantile of the ordered statistics values of the scores S(X1), . . . , S(XN ). The elite

set [X]
(e)
t−1 ⊂ [X]t−1 consists of those points of the sample set for which S(Xi) ≥ mt.

Let Nt be the size of the elite set. If all scores S(Xi) would be distinct, it follows

that the number of elites Nt = ⌈Nρt−1⌉, where ⌈·⌉ denotes rounding to the largest

integer. However, dealing with a discrete space, typically we will find more samples

with S(Xi) ≥ mt. All these are added to the elite set. Finally we remark that from

(9) it easily follows that the elite points are distributed uniformly on Xt.

Having an elite set in Xt, we do two things. First, we screen out (delete) du-

plicates, so that we end up with a set of size N
(s)
t of distinct elites. Secondly, each

screened elite is the starting point of a Markov chain simulation (MCMC method)

on Xt using a transition probability matrix Pt with gt = U(Xt) as its stationary dis-

tribution. Because the starting point is uniformly distributed, all consecutive points

on the sample path are uniformly distributed on Xt. Therefore, we may use all these

points in the next iteration.
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Suppose that each sample path has length bt = ⌊N/N
(s)
t ⌋, then we get a total of

N
(s)
t bt ≤ N uniform points in Xt. To continue with the next iteration again with

a sample set of size N , we choose randomly N − N
(s)
t bt of these sample paths and

extend them by one point. Denote the new sample set by [X]t, and repeat the same

procedure as above. The algorithm iterates until we find mt = m, say at iteration

T , at which stage we stop and deliver

|̂X ∗| = |X |
T∏

t=1

ĉt (10)

as an estimator of |X ∗|, where ĉt = Nt/N in iteration t.

In our experiments we applied a Gibbs sampler to implement the MCMC simulation

for obtaining uniformly distributed samples. To summarize, we give the algorithm.

Algorithm 2.1 (Basic splitting algorithm for counting).

1. Set a counter t = 1. Generate a sample set [X]0 of N points uniformly distributed

in X0. Compute the threshold m1, and determine the size N1 of the elite set. Set

ĉ1 = N1/N as an estimator of c1 = |X1|/|X0|.

2. Screen out the elite set to obtain N
(s)
t distinct points uniformly distributed in Xt.

3. Let bt = ⌊N/N
(s)
t ⌋. For all i = 1, 2, . . . , N

(s)
t , starting at the i-th screened elite

point run a Markov chain of length bt on Xt with gt = U(Xt) as its stationary

distribution. Extend N − N
(s)
t bt randomly chosen sample paths with one point.

Denote the new sample set of size N by [X]t.

4. Increase the counter t = t+1. Compute the threshold mt, and determine the size

Nt of the elite set. Set ĉt = Nt/N as an estimator of ct = |Xt|/|Xt−1|.

5. If mt = m deliver the estimator (10); otherwise repeat from step 2.

3 Combining Splitting and Capture–Recapture

In this section we discuss how to combine the well known capture-recapture (CAP-

RECAP) method with the basic splitting Algorithm 2.1. First we present the clas-

sical capture-cecapture algorithm in the literature.
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3.1 The Classic Capture–Recapture in the Literature

Originally the capture-recapture method was used to estimate the size, say M , of an

unknown population on the basis of two independent samples from it. To see how

the CAP-RECAP method works, consider an urn model with a total of M identical

balls. Denote by N1 and N2 the sample sizes taken at the first and second draws,

respectively. Assume in addition that

• The second draw takes place after all N1 balls have been returned to the urn.

• Before returning the N1 balls, each is marked, say we painted them a different

color.

Denote by R the number of balls from the first draw that reappear in the second.

Then an (biased) estimate M̃ of M becomes

M̃ =
N1N2

R
.

This is based on the observation that N2/M ≈ R/N1. Note that the name capture-

recapture was borrowed from a problem of estimating the animal population size in

a particular area on the basis of two visits. In this case R denotes the number of

animals captured on the first visit and recaptured on the second.

A slightly less biased estimator of M is

M̂ =
(N1 + 1)(N2 + 1)

(R+ 1)
− 1. (11)

See [16] for an analysis of the bias and for the derivation of an approximate unbiased

estimator of the variance of M̂ :

E

[
(N1 + 1)(N2 + 1)(N1 −R)(N2 −R)

(R+ 1)2(R+ 2)

]
≈ Var(M̂). (12)

3.2 Splitting algorithm combined with Capture–Recapture

Application of the CAP-RECAP to counting problems is trivial. We set |X ∗| = M

and note that N1 and N2 correspond to the screened-out samples at the first and

second draws, which are performed after Algorithm 2.1 reaches the desired level m.

Note that we need to remove duplicate samples because these do not occur in the

capture-recapture method.

As an example, let us assume that we run the splitting algorithm 2.1 till its

last step T with N = 10, 000. After reaching the desired level m, we draw two

independent sets of magnitude N1 = 5000 and N2 = 5010 and assume that the
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number of solutions that appeared in both draws in 10, i.e. R = 10. The CAP-

RECAP estimator of |X ∗|, denoted by |̂X ∗|cap is therefore

|̂X ∗|cap = 2, 505, 000.

Our numerical results in Section 4 clearly indicate that the CAP-RECAP estimator

is typically more accurate than the product estimator (10), that is

Var[|̂X ∗|cap] ≤ Var[|̂X ∗|],

provided the sample N is limited, say by 10, 000 and |X ∗| is large but also limited,

say by 106.

We make a distinction for larger solution sets: if 106 < |X ∗| ≤ 109, we apply an

extended version of the capture-recapture method, as we will describe in the next

section. If |X ∗| is even larger (|X ∗| > 109), we can estimate it with the crude Monte

Carlo.

3.3 Extended Capture–Recapture Method

Recall that the regular CAP-RECAP method

1. Is implemented at the last iteration T of the splitting algorithm, that is when

some configurations have already reached the desired set X ∗.

2. It provides reliable estimators of |X ∗| if it is not too large, say |X ∗| ≤ 106.

In typical rare events counting problems, like SAT |X ∗| is indeed ≤ 106, nevertheless

we present below an extended CAP-RECAP version, which extends the original

CAP-RECAP for 2-3 orders more, that is it provides reliable counting estimators

for 106 < |X ∗| ≤ 109.

If not stated otherwise we shall have in mind a SAT problem. The enhanced

CAP-RECAP algorithm involves additional constraints (clauses) and can be written

as follows.

Algorithm 3.1 (Extended CAP-RECAP). As soon as all m clauses C1, . . . , Cm

of Xm have been reached by the splitting algorithm and it occurs that the resulting

product estimator ̂|Xm| of |Xm| is larger than > 106 proceed as follows:

1. Generate a sample X1, . . . ,XNXm
of uniformly distributed points in the desired

problem set Xm by adding one by one some arbitrary auxiliary clauses until for

some τ we have that

ĉm+τ =
NXm+τ

NXm

≤ cm+τ . (13)
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Here cm+τ is a relatively small number, fixed in advance, say 10−2 ≤ cm+τ ≤

10−3; furthermore, NXm
and NXm+τ

represent the respective number of points

generated at Xm and accepted at Xm+τ . Note that the estimate ĉm+τ is obtained

as in Step 4 of the basic splitting algorithm 2.1.

2. Estimate |X ∗| = |Xm| by

̂|Xm|ecap = ĉm+τ
−1

· ̂|Xm+τ |cap. (14)

We call |̂Xm|ecap the extended CAP-RECAP estimator. It is essential to bear in

mind that

• ̂|Xm+τ |cap is a CAP-RECAP estimator rather than a splitting (product) one.

• |̂Xm|ecap does not contain the original estimators ĉ1, . . . , ĉT generated by the

splitting method.

• Since we only need here the uniformity of the samples at Xm, we can run

the splitting method of Section 2.1 all the way with relatively small values of

sample size N and splitting control parameter ρ until it reaches the vicinity of

Xm denoted by Xm−r, where r is a small integer say, r = 1 or r = 2; and then

switch to larger N and ρ.

• In contrast to the splitting estimator which employs a product of T terms,

formula (14) employs only a single c factor. Recall that this additional ĉm+τ
−1

factor allows to enlarge the CAP-RECAP estimators of |Xm| for about two-

three additional orders, namely from |Xm| ≈ 106 to |Xm| ≈ 109.

4 Numerical Results

Below we present numerical results with the splitting algorithm for counting. In

particular we consider the following problems:

1. The 3-satisfiability problem (3-SAT)

2. Graphs with prescribed degrees

3. Contingency tables

For the 3-SAT problem we shall also use the the CAP-RECAP method. We shall

show that typically CAP-RECAP outperforms the splitting algorithm. We shall use

the following notations.
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Notation A. For iteration t = 1, 2, . . .

• Nt and N
(s)
t denote the actual number of elites and the number after screening,

respectively;

• m∗
t and m∗t denote the upper and the lower elite levels reached, respectively

(them∗t levels are the same as themt levels in the description of the algorithm);

• ρt is the splitting control parameter (we chose ρt ≡ ρ);

• ĉt = Nt/N is the estimator of the t-th conditional probability;

• product estimator |̂X ∗
t | = |X |

∏t
i=1 ĉi.

4.1 The 3-Satisfiability Problem (3-SAT)

There arem clauses of length 3 taken from n boolean (or binary) variables x1, . . . , xn.

A literal of the j-th variable is either TRUE (xj = 1) or FALSE (xj = 0 ⇔ x̄j =

1, where x̄j = NOT(xj)). A clause is a disjunction of literals. We assume that

all clauses consist of 3 literals. The 3-SAT problem is defined as the problem of

determining if the variables x = (x1, . . . , xn) can be assigned in a such way as to

make all clauses TRUE. More formally, let X = {0, 1}n be the set of all configurations

of the n variables, and let Ci : X → {0, 1}, be the m clauses. Then define φ : X →

{0, 1} by

φ(x) =

m∧

i=1

Ci(x).

The original 3-SAT problem is to find a configuration of the xj variables for which

φ(x) = 1. In this work we are interested in the total number of such configurations

(or feasible solutions). Then as discussed in Section 2, X ∗ denotes the set of feasible

solutions. Trivially, there are |X | = 2n configurations.

The 3-SAT problems can also be converted into the family of decision problems

(5) given in Section 2. Define the m× n matrix A with entries aij ∈ {−1, 0, 1} by

aij =





−1 if x̄j ∈ Ci,

0 if xj 6∈ Ci and x̄j 6∈ Ci,

1 if xj ∈ Ci.

Furthermore, let b be the m-(column) vector with entries bi = 1− |{j : aij = −1}|.

Then it is easy to see that for any configuration x ∈ {0, 1}n

x ∈ X ∗ ⇔ φ(x) = 1 ⇔ Ax ≥ b.

11



Below we compare the efficiencies of the classic and the extended CAP-RECAP

with their splitting counterpart, bearing in mind that the extended CAP-RECAP

version is used for larger values of |X ∗| then the classic one. As an example we

consider the estimation of |X ∗| for the 3-SAT problem with an instance matrix A

of dimension (122× 515), meaning n = 122,m = 515. In particular Table 1 presents

the the performance of the splitting Algorithm 2.1 based on 10 independent runs

using N = 25, 000 and ρ = 0.1, while Table 2 shoews the dynamics of a run of the

Algorithm 2.1 for the same data.

Table 1: Performance of splitting algorithm for the 3-SAT (122 × 515) model with

N = 25, 000 and ρ = 0.1.

Run nr. of its. |̂X ∗| CPU

1 33 1.41E+06 212.32
2 33 1.10E+06 213.21
3 33 1.68E+06 214.05
4 33 1.21E+06 215.5
5 33 1.21E+06 214.15
6 33 1.47E+06 216.05
7 33 1.50E+06 252.25
8 33 1.73E+06 243.26
9 33 1.21E+06 238.63
10 33 1.88E+06 224.36

Average 33 1.44E+06 224.38

The relative error, denoted by RE is 1.815E − 01. Notice that the relative error

of a random variable Z is calculated by the standard formula, namely

RE = S/ℓ̂,

where

ℓ̂ =
1

N

N∑

i=1

Zi, S2 =
1

N − 1

N∑

i=1

(Zi − ℓ̂)2.
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Table 2: Dynamics of a run of the splitting algorithm for the 3-SAT (122 × 515)

model using N = 25, 000 and ρ = 0.1.

t |̂X ∗

t
| Nt N

(s)
t

m∗

t
m∗t ĉt

1 6.53E+35 3069 3069 480 460 1.23E-01
2 8.78E+34 3364 3364 483 467 1.35E-01
3 1.15E+34 3270 3270 484 472 1.31E-01
4 1.50E+33 3269 3269 489 476 1.31E-01
5 2.49E+32 4151 4151 490 479 1.66E-01
6 3.37E+31 3379 3379 492 482 1.35E-01
7 3.41E+30 2527 2527 494 485 1.01E-01
8 6.19E+29 4538 4538 495 487 1.82E-01
9 9.85E+28 3981 3981 497 489 1.59E-01
10 1.31E+28 3316 3316 498 491 1.33E-01
11 1.46E+27 2797 2797 501 493 1.12E-01
12 4.61E+26 7884 7884 501 494 3.15E-01
13 1.36E+26 7380 7380 501 495 2.95E-01
14 3.89E+25 7150 7150 502 496 2.86E-01
15 1.06E+25 6782 6782 505 497 2.71E-01
16 2.69E+24 6364 6364 503 498 2.55E-01
17 6.42E+23 5969 5969 504 499 2.39E-01
18 1.42E+23 5525 5525 506 500 2.21E-01
19 3.03E+22 5333 5333 505 501 2.13E-01
20 5.87E+21 4850 4850 506 502 1.94E-01
21 1.06E+21 4496 4496 507 503 1.80E-01
22 1.71E+20 4061 4061 507 504 1.62E-01
23 2.50E+19 3647 3647 509 505 1.46E-01
24 3.26E+18 3260 3260 510 506 1.30E-01
25 3.62E+17 2778 2778 510 507 1.11E-01
26 3.68E+16 2539 2539 510 508 1.02E-01
27 3.05E+15 2070 2070 511 509 8.28E-02
28 2.17E+14 1782 1782 512 510 7.13E-02
29 1.21E+13 1398 1398 513 511 5.59E-02
30 5.00E+11 1030 1030 513 512 4.12E-02
31 1.49E+10 743 743 514 513 2.97E-02
32 2.39E+08 402 402 515 514 1.61E-02
33 1.43E+06 150 150 515 515 6.00E-03

We increased the sample size at the last two iterations from N = 25, 000 to

N = 100, 000 to get a more accurate estimator.

As can be seen from Table 1, the estimator |̂X ∗| > 106, hence for this instance the

extended CAP-RECAP Algorithm 3.1 can also be used. We shall show that the

relative error (RE) of the extended CAP-RECAP estimator |̂Xm|ecap is less than

that of |̂X ∗|. Before doing so we need to find the extended 3-SAT instance matrix

(122× 515) + τ , where τ is the number of auxiliary clauses. Applying the extended
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CAP-RECAP Algorithm 3.1 we found that τ = 5 and thus the extended instance

matrix is (122×520). Recall that the cardinality |Xm+τ | of the extended (122×520)

model should be manageable by the regular CAP-RECAP, that is we assumed that

|Xm+τ | < 106. Indeed, Table 3 presents the performance of the regular CAP-RECAP

for that extended (122×520) model. Here we used again ρ = 0.1. As for the sample

size, we took N = 1, 000 until iteration 28 and then switched to N = 100, 000. The

final CAP-RECAP estimator is obtained by taking two equal samples, each of size

N = 70, 000 at the final subset Xm+τ = X520. (The sample sizes that were used in

the estimation are smaller due to the screening step.)

Table 3: Performance of the regular CAP-RECAP for the extended (122 × 520)

model.

Run nr. of its. |̂X ∗|cap CPU

1 34 5.53E+04 159.05
2 35 5.49E+04 174.46
3 35 5.51E+04 178.08
4 34 5.51E+04 166.36
5 34 5.52E+04 159.36
6 33 5.52E+04 152.38
7 33 5.54E+04 137.96
8 34 5.50E+04 157.37
9 35 5.51E+04 179.08
10 34 5.51E+04 163.7

Average 34.1 5.51E+04 162.78

The relative error of |̂X ∗|cap over 10 runs is 2.600E − 03.

Next we compare the efficiency of the regular CAP-RECAP (as per Table 3) with

that of the splitting algorithm for the extended (122× 520) model. Table 4 presents

the performance of splitting for ρ = 0.1 and N = 100, 000. It readily follows that

the relative error of the regular CAP-RECAP is about 30 times less than that of

splitting. Notice in addition that the CPU time of CAP-RECAP is about 6 times

less than that of splitting. This is so since the total sample size of the former is about

6 time less than of the latter. Thus the overall speed up obtained by CAP-RECAP

is about 5, 000 times.
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Table 4: Performance of splitting algorithm for the 3-SAT (122 × 520) model.

Run nr. of its. |̂X ∗| CPU

1 34 6.03E+04 900.28
2 34 7.48E+04 904.23
3 34 4.50E+04 913.31
4 34 5.99E+04 912.27
5 34 6.03E+04 910.44
6 33 4.94E+04 898.91
7 34 5.22E+04 931.88
8 34 5.74E+04 916.8
9 34 5.85E+04 919.63
10 34 5.72E+04 927.7

Average 33.9 5.75E+04 913.54

The relative error of |̂X ∗| over 10 runs is 1.315E − 01.

With these results at hand we can proceed with the extended CAP-RECAP and

compare its efficiency with splitting (see Table 1) for the instance matrix (122×515).

Table 5 presents the performance of the extended CAP-RECAP estimator |̂X ∗|ecap
for the (122 × 515) model along with the performance of the regular CAP-RECAP

estimator |̂X ∗|cap for the (122 × 520) model (see also the results of Table 3 for

|̂X ∗|cap). We set again ρ = 0.1. Regarding the sample size we took N = 1, 000 for

the first 31 iterations and then switched to N = 100, 000 until reaching the level

m = 515. Recall that the level m + τ = 520 and the corresponding CAP-RECAP

estimator |̂X ∗|cap was obtained from the set Xm = X515 by adding τ = 5 more

auxiliary clauses. Note that in this case we used for |̂X ∗|cap two equal samples each

of length N = 100, 000.

Comparing the results of Table 1 with that of Table 5 it is readily seen that

the extended CAP-RECAP estimator |̂X ∗|ecap outperforms the splitting one |̂X ∗| in

both RE and CPU time. In particular, we have that both RE and CPU times of the

former are about 1.6 times less than of the latter. This means that the overall speed

up obtained by |̂X ∗|ecap versus |̂X ∗| is about 1, 62 · 1.6 ≈ 4 times. Note finally that

the total number of samples used in the extended CAP-RECAP estimator |̂X ∗|ecap

is about N = 500, 000, while in its counterpart - the splitting estimator |̂X ∗| is about

N = 50, 000 ∗ 36 = 1, 800, 000.
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Table 5: Performance of the extended CAP-RECAP estimator |̂X ∗|ecap for the (122×

515) model along with the regular CAP-RECAP one |̂X ∗|cap for the (122 × 520)

model.

Run nr. its. ĉm+τ |̂X ∗|cap |̂X ∗|ecap CPU

1 33 3.13E-02 5.41E+04 1.73E+06 138.99
2 34 3.47E-02 5.51E+04 1.59E+06 154.64
3 34 3.55E-02 5.52E+04 1.55E+06 161.78
4 33 4.51E-02 5.40E+04 1.20E+06 163.53
5 34 3.04E-02 5.13E+04 1.69E+06 143.84
6 34 2.99E-02 5.41E+04 1.81E+06 151.1
7 34 4.27E-02 5.51E+04 1.29E+06 174.08
8 34 3.87E-02 5.42E+04 1.40E+06 143.27
9 33 3.27E-02 5.42E+04 1.66E+06 171.07
10 34 4.22E-02 5.51E+04 1.30E+06 154.71

Average 33.7 3.63E-02 5.42E+04 1.52E+06 155.70

The relative error of |̂X ∗|cap over 10 runs is 2.010E − 02.

The relative error of |̂X ∗|ecap over 10 runs is 1.315E − 01.

4.2 Random graphs with prescribed degrees

Random graphs with given vertex degrees have attained attention as a model for real-

world complex networks, including World Wide Web, social networks and biological

networks. The problem is basically finding a graph G = (V,E) with n vertices, given

the degree sequence d = (d1, . . . , dn) formed of nonnegative integers. Following [3],

a finite sequence (d1, . . . , dn) of nonnegative integers is called graphical if there is a

labeled simple graph with vertex set {1, . . . , n} in which vertex i has degree di. Such

a graph is called a realization of the degree sequence (d1, . . . , dn). We are interested

in the total number of realizations for a given degree sequence, hence X ∗ denotes

the set of all graphs G = (V,E) with the degree sequence (d1, . . . , dn).

Similar to (5) for SAT we convert the problem into a counting problem. To pro-

ceed consider the complete graph Kn of n vertices, in which each vertex is connected

with all other vertices. Thus the total number of edges in Kn is m = n(n − 1)/2,

labeled e1, . . . , em. The random graph problem with prescribed degrees is trans-

lated to the problem of choosing those edges of Kn such that the resulting graph G

matches the given sequence d. Set xi = 1 when ei is chosen, and xi = 0 otherwise,

i = 1, . . . ,m. In order that such an assignment x ∈ {0, 1}m matches the given de-

gree sequence (d1, . . . , dn), it holds necessarily that
∑m

j=1 xj =
1
2

∑n
i=1 di, since this
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is the total number of edges. In other words, the configuration space is

X =



x ∈ {0, 1}m :

m∑

j=1

xj =
1
2

n∑

i=1

di



 .

Let A be the incidence matrix of Kn with entries

aij =




0 if vi 6∈ ej

1 if vi ∈ ej.

It is easy to see that whenever a configuration x ∈ {0, 1}m satisfies Ax = d, the

associated graph has degree sequence (d1, . . . , dn). We conclude that the problem

set is represented by

X ∗ = {x ∈ X : Ax = d}.

We first present a small example as illustration. Let d = (2, 2, 2, 1, 3) with n = 5,

and m = 10. After ordering the edges of K5 lexicographically, the corresponding

incidence matrix is given as

A =




1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1




It is readily seen that the following x = (0, 0, 1, 1, 1, 0, 1, 0, 1, 0)′ , and x = (1, 0, 0, 1, 1, 0, 0, 0, 1, 1)′

present two solutions of this example.

For the random graph problem we define the score function S : X → Z− by

S(x) = −
n∑

i=1

|deg(vi)− di|,

where deg(vi) is the degree of vertex i under the configuration x. Each configuration

that satisfies the degree sequence will have a performance function equal to 0.

The implementation of the Gibbs sampler for this problem is slightly different

than for the 3-SAT problem, since we keep the number of edges in each realization

fixed to
∑

di/2. Our first algorithm takes care of this requirement and generates a

random x ∈ X .

Algorithm 4.1. Let (d1, . . . , dn) be the prescribed degrees sequence.

• Generate a random permutation of 1, . . . ,m.
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• Choose the first
∑

di/2 places in this permutation and deliver a vector x having

one’s in those places.

The adaptive thresholds in the basic splitting algorithm are negative, increasing

to 0:

m1 ≤ m2 ≤ · · · ≤ mT−1 ≤ mT = 0.

The resulting Gibbs sampler (in Step 3 of the basic splitting algorithm starting with

a configuration x ∈ X for which S(x) ≥ mt) can be written as follows.

Algorithm 4.2 (Gibbs Algorithm for random graph sampling). For each edge xi =

1, while keeping all other edges fixed, do:

1. Remove xi from x, i.e. make xi = 0.

2. Check all possible placements for the edge resulting a new vector x̄ conditioning

on the performance function S(x̄) ≥ mt

3. With uniform probability choose one of the valid realizations.

We will apply the splitting algorithm to two problems taken from [3].

4.2.1 A small problem

For this small problem we have the degree sequence

d = (5, 6, 1, . . . , 1︸ ︷︷ ︸
11 ones

).

The solution can be obtained analytically and already given in [3]:

“To count the number of labeled graphs with this degree sequence, note

that there are
(
11
5

)
= 462 such graphs with vertex 1 not joined to vertex

2 by an edge (these graphs look like two separate stars), and there are(
11
4

)(
7
5

)
= 6930 such graphs with an edge between vertices 1 and 2 (these

look like two joined stars with an isolated edge left over). Thus, the total

number of realizations of d is 7392.”

As we can see from Table 6, the algorithm easily handles the problem. Table 7

presents the typical dynamics.
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Table 6: Performance of the splitting algorithm for a small problem using N =

50, 000 and ρ = 0.5.

Run nr. of its. |̂X ∗| CPU

1 10 7146.2 15.723
2 10 7169.2 15.251
3 10 7468.7 15.664
4 10 7145.9 15.453
5 10 7583 15.555
6 10 7206.4 15.454
7 10 7079.3 15.495
8 10 7545.1 15.347
9 10 7597.2 15.836
10 10 7181.2 15.612

Average 10 7312.2 15.539

The relative error of |̂X ∗| over 10 runs is 2.710E − 02.

Table 7: Typical dynamics of the splitting algorithm for a small problem using

N = 50, 000 and ρ = 0.5 (recall Notation A at the beginning of Section 4).

t |̂X ∗

t
| Nt N

(s)
t

m∗

t
m∗t ĉt

1 4.55E+12 29227 29227 -4 -30 0.5845
2 2.56E+12 28144 28144 -4 -18 0.5629
3 1.09E+12 21227 21227 -6 -16 0.4245
4 3.38E+11 15565 15565 -4 -14 0.3113
5 7.51E+10 11104 11104 -4 -12 0.2221
6 1.11E+10 7408 7408 -2 -10 0.1482
7 1.03E+09 4628 4628 -2 -8 0.0926
8 5.37E+07 2608 2608 -2 -6 0.0522
9 1.26E+06 1175 1175 0 -4 0.0235
10 7223.9 286 280 0 -2 0.0057

4.2.2 A large problem

A much harder instance (see [3]) is defined by

d = (7, 8, 5, 1, 1, 2, 8, 10, 4, 2, 4, 5, 3, 6, 7, 3, 2, 7, 6, 1, 2, 9, 6, 1, 3, 4, 6, 3, 3, 3, 2, 4, 4).

In [3] the number of such graphs is estimated to be about 1.533 × 1057 Table 8

presents 10 runs using the splitting algorithm.
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Table 8: Performance of the splitting algorithm for a large problem using N =

100, 000 and ρ = 0.5.

Run nr. its. |̂X ∗| CPU

1 39 1.66E+57 4295
2 39 1.58E+57 4223
3 39 1.58E+57 4116
4 39 1.53E+57 4281
5 39 1.76E+57 4301
6 39 1.75E+57 4094
7 39 1.46E+57 4512
8 39 1.71E+57 4287
9 39 1.39E+57 4158
10 39 1.38E+57 4264

Average 39 1.58E+57 4253

The relative error of |̂X ∗| over 10 runs is 8.430E − 02.

4.3 Binary Contingency Tables

Given are two vectors of positive integers r = (r1, . . . , rm) and c = (c1, . . . , cn) such

that ri ≤ n for all i, cj ≤ n for all j, and
∑m

i=1 ri =
∑n

j=1 cj . A binary contingency

table with row sums r and column sums c is a m× n matrix X of zero-one entries

xij satisfying
∑n

j=1 xij = ri for every row i and
∑m

i=1 xij = cj for every column j.

The problem is to count all contingency tables.

The extension of the proposed Gibbs sampler for counting the contingency tables

is straightforward. We define the configuration space X = X (r) ∪ X (c) as the space

where all column or row sums are satisfied:

X (c) =

{
X ∈ {0, 1}m+n :

m∑

i=1

xij = cj ∀j

}
,

X (r) =



X ∈ {0, 1}m+n :

n∑

j=1

xij = ri ∀i



 .

Clearly we can sample uniformly at random from X without any problem. The score

function S : X → Z− is defined by

S(X) =




−
∑m

i=1 |
∑n

j=1 xij − ri|, for X ∈ X (c),

−
∑n

j=1 |
∑m

i=1 xij − cj|, for X ∈ X (r),
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that is, the difference of the row sums
∑n

j=1 xij with the target ri if the column

sums are right, and vice versa.

The Gibbs sampler is very similar to the one in the previous section concerning

random graphs with prescribed degrees.

Algorithm 4.3 (Gibbs algorithm for random contingency tables sampling). Given

a matrix realization X ∈ X (c) with score S(X) ≥ mt. For each column j and for

each 1-entry in this column (xij = 1) do:

1. Remove this 1, i.e. set x′ij = 0.

2. Check all possible placements for this 1 in the given column j conditioning on the

performance function S(X ′) ≥ mt (X
′ is the matrix resulting by setting x′ij = 0,

x′i′j = 1 for some xi′j = 0, and all other entries remain unchanged).

3. Suppose that the set of valid realization is A = {X ′|S(X ′) ≥ mt}. (Please note

that this set also contains the original realization X). Than with probability 1
|A|

pick any realization at random and continue with step 1.

Note that in this way we keep the column sums correct. Similarly, when we

started with a matrix configuration with all row sums correct, we execute these

steps for each row and swap 1 and 0 per row.

4.3.1 Model 1

The date are m = 12, n = 12 with row and column sums

r = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2), c = (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2).

The true count value is known to be 21, 959, 547, 410, 077, 200. Table 9 presents 10

runs using the splitting algorithm. Table 10 presents a typical dynamics.
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Table 9: Performance of the splitting algorithm for Model 1 using N = 50, 000 and

ρ = 0.5.

Run nr.its. |̂X ∗| CPU

1 7 2.15E+16 4.54
2 7 2.32E+16 4.55
3 7 2.23E+16 4.54
4 7 2.11E+16 4.58
5 7 2.05E+16 4.57
6 7 2.23E+16 4.54
7 7 2.02E+16 4.55
8 7 2.38E+16 4.58
9 7 2.06E+16 4.57
10 7 2.14E+16 4.55

Average 7 2.17E+16 4.56

The relative error of |̂X ∗| over 10 runs is 5.210E − 02.

Table 10: Typical dynamics of the splitting algorithm for Model 1 using N = 50, 000

and ρ = 0.5.

t |̂X ∗

t
| Nt N

(s)
t

m∗

t
m∗t ĉt

1 4.56E+21 13361 13361 -2 -24 0.6681
2 2.68E+21 11747 11747 -2 -12 0.5874
3 1.10E+21 8234 8234 -2 -10 0.4117
4 2.76E+20 5003 5003 -2 -8 0.2502
5 3.45E+19 2497 2497 0 -6 0.1249
6 1.92E+18 1112 1112 0 -4 0.0556
7 2.08E+16 217 217 0 -2 0.0109

4.3.2 Model 2

Darwin’s Finch Data from Yuguo Chen, Persi Diaconis, Susan P. Holmes, and Jun

S. Liu: m = 12, n = 17 with row and columns sums

r = (14, 13, 14, 10, 12, 2, 10, 1, 10, 11, 6, 2), c = (3, 3, 10, 9, 9, 7, 8, 9, 7, 8, 2, 9, 3, 6, 8, 2, 2).

The true count value is known to be 67, 149, 106, 137, 567, 600. Table 11 presents 10

runs using the splitting algorithm.
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Table 11: Performance of the splitting algorithm for Model 2 using N = 200, 000

and ρ = 0.5.

Run nr. its. |̂X ∗| CPU

1 24 6.16E+16 246.83
2 24 6.50E+16 244.42
3 24 7.07E+16 252.71
4 24 7.91E+16 247.36
5 24 6.61E+16 260.99
6 24 6.77E+16 264.07
7 24 6.59E+16 269.86
8 24 6.51E+16 273.51
9 24 7.10E+16 272.49
10 24 5.91E+16 267.23

Average 24 6.71E+16 259.95

The relative error of |̂X ∗| over 10 runs is 7.850E − 02.

5 Concluding Remarks

In this paper we applied the splitting method to several well-known counting prob-

lems, like 3-SAT, random graphs with prescribed degrees and binary contingency

tables. While implementing the splitting algorithm, we discussed several MCMC

algorithms and in particular the Gibbs sampler. We show how to incorporate the

classic capture-recapture method in the splitting algorithm in order to obtain a low

variance estimator for the desired counting quantity. Furthermore, we presented an

extended version of the capture-recapture algorithm, which is suitable for problems

with a larger number of feasible solutions. We finally presented numerical results

with the splitting and capture-recapture estimators, and showed the superiority of

the latter.
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