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Abstract

This paper puts forward kernel ridge regression as an approach for forecasting with many predic-

tors that are related nonlinearly to the target variable. In kernel ridge regression, the observed predictor

variables are mapped nonlinearly into a high-dimensional space, where estimation of the predictive regres-

sion model is based on a shrinkage estimator to avoid overfitting. We extend the kernel ridge regression

methodology to enable its use for economic time-series forecasting, by including lags of the dependent

variable or other individual variables as predictors, as is typically desired in macroeconomic and finan-

cial applications. Monte Carlo simulations as well as an empirical application to various key measures

of real economic activity confirm that kernel ridge regression can produce more accurate forecasts than

traditional linear methods for dealing with many predictors based on principal component regression.
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1 INTRODUCTION

In current practice, forecasters in macroeconomics and finance face a trade-off between model complexity

and forecast accuracy. Due to the uncertainty associated with model choice and estimation, a highly com-

plex predictive regression model based on many variables or intricate nonlinear structures is often found to

produce less accurate forecasts than a simpler model that ignores major parts of the information that is at the

researcher’s disposal. Various methods for working with many predictors while circumventing this curse of

dimensionality in a linear framework have been applied in the recent forecasting literature, as surveyed by

Stock and Watson (2006). Most prominently, Stock and Watson (2002) advocate summarizing large panels of

predictor variables into a small number of principal components, which are then used for forecasting purposes

in a dynamic factor model. Alternative approaches include combining forecasts based on multiple models,

each of which includes only a small number of variables (Faust and Wright, 2009; Wright, 2009; Aiolfi and

Favero, 2005; Huang and Lee, 2010; Rapach et al., 2010), partial least squares (Groen and Kapetanios, 2008),

and Bayesian regression (De Mol et al., 2008). Stock and Watson (2009) find that for forecasting macroeco-

nomic time series, the dynamic factor model is preferable to these alternatives; see also Ludvigson and Ng

(2007), Ludvigson and Ng (2009) and Çakmaklı and van Dijk (2010) for successful applications in finance.

The possibility of nonlinear relations among macroeconomic and financial time series has also received

ample attention during the last two decades. Among the most popular nonlinear forecast methods are regime-

switching models and neural networks, see the surveys by Teräsvirta (2006) and White (2006), respectively.

Typically, these approaches are only suitable for small numbers of predictors, and even then their ability to

improve upon the predictive accuracy of conventional linear forecasting techniques seems limited, see Stock

and Watson (1999); Medeiros et al. (2006); Teräsvirta et al. (2005).

In this paper, we introduce a forecasting technique that can deal with high-dimensionality and nonlinearity

simultaneously. The central idea of this approach, known as kernel ridge regression, is to map the set of pre-

dictors into a high-dimensional (or even infinite-dimensional) space in a nonlinear way. A forecast equation is

estimated in this high-dimensional space, using a penalty (or shrinkage, or ridge) term to avoid overfitting. In

this manner, kernel ridge regression averts the curse of dimensionality, which plagues alternative nonparamet-

ric approaches to allow for flexible types of nonlinearity (Pagan and Ullah, 1999). Computational tractability
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is achieved by choosing the kernel in a convenient way, so that calculations in the high-dimensional space

actually are prevented. This approach avoids computational difficulties also encountered in standard ridge

regression when the number of predictor variables is large relative to the number of time series observations.

Taking all these elements together, kernel ridge regression provides an attractive framework for estimating

nonlinear relations in a data-rich environment.

The kernel methodology has been developed in the machine learning community, an area in which re-

searchers often work with large data sets. A typical application is optical recognition of pixel-for-pixel scans

of handwritten characters. Schölkopf et al. (1998) document outstanding performance of kernel methods for

this classification task. Kernel ridge regression has been found to work well also in many other applications.

Time-series applications are scarce and seem to be limited to deterministic (that is, non-stochastic) time se-

ries (Müller et al., 1997). Kernel ridge regression has, to our knowledge, not yet been applied in the context

of macroeconomic or financial time-series forecasting. In this paper, we extend the kernel methodology to

facilitate the estimation of models that include lags of the dependent variable or other individual variables as

predictors, as is typically desired in such applications. Using Monte Carlo simulations, we demonstrate that

kernel ridge regression delivers more accurate forecasts than conventional methods based on principal com-

ponents in the presence of many predictors that are related nonlinearly with the target variable. These conven-

tional methods include the extensions of the principal component regression methodology to accommodate

nonlinearity as put forward by Bai and Ng (2008). The potential practical usefulness of kernel methods is

confirmed in an empirical application to forecasting several key measures of U.S. macroeconomic activity

over the period 1970-2009. We find that, when traditional methods perform poorly, kernel ridge regres-

sion yields substantial improvements. This result holds for Industrial Production and for Personal Income.

Further, when traditional forecasts are of good quality, as is the case for the Sales and Employment series,

kernel-based forecasts remain competitive. We also find that kernel ridge regression is much less affected by

the recent financial and economic crisis in 2008-9 than the traditional methods are.

The remainder of this paper is organized as follows. Section 2 describes the kernel methodology. The

Monte Carlo simulation is presented in Section 3, and Section 4 discusses the empirical application. Conclu-

sions are provided in Section 5.
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2 METHODOLOGY

The technique of kernel ridge regression is based on ordinary least squares regression and ridge regression.

Therefore, we begin this section with a brief review of these methods, highlighting their drawbacks in dealing

with nonlinearity and high-dimensionality. Next, we show how kernel ridge regression overcomes these

drawbacks by means of the so-called kernel trick. We also present the properties of some kernel functions that

are popular because of their computational efficiency. As will become clear below, kernel ridge regression

involves tuning parameters. We close this section with a description of a cross-validation procedure for

selecting values for these parameters.

2.1 Preliminaries

Consider the following general setup for forecasting. At the end of period T we wish to forecast the value

of a target variable y at a specific future date, denoted y∗, given an N × 1 vector of predictors x∗. Historical

observations for t = 1, . . . , T are available on all variables, collected in the T × 1 vector y and the T × N

matrix X . If we assume a linear prediction function ŷ∗ = x′∗β̂ and obtain β̂ by minimizing the ordinary

least squares criterion ||y −Xβ||2, the solution is β̂ = (X ′X)−1X ′y, provided that X has rank N , and the

corresponding forecast is ŷ∗ = x′∗ (X
′X)−1X ′y.

The ordinary least squares procedure presupposes that N ≤ T , and in practice, N � T is required to

prevent overfitting problems. That is, if N is not small compared to T , we may obtain a good in-sample fit

(indeed, if N = T , the in-sample fit will be perfect), but the out-of-sample prediction ŷ∗ is generally found

to be of poor quality. A possible solution to this problem is shrinkage estimation or ridge regression, which

aims to balance the goodness-of-fit and the magnitude of the coefficient vector β. The ridge criterion is given

by ||y −Xβ||2 + λ ||β||2, where the penalty parameter λ > 0 is to be specified by the user. Minimizing

this criterion is most easily done by performing ordinary least squares on the (T +N) × 1 vector u =(
y′, 0′N×1

)′ and the (T +N) × N matrix V =
(
X ′,
√
λ IN×N

)′
, as we may then write ||y −Xβ||2 +

λ ||β||2 = ||u− V β||2. This criterion is minimized by β̂ = (V ′V )−1 V ′u, or, in terms of the original

variables, β̂ = (X ′X + λI)−1X ′y. The resulting forecast ŷ∗ = x′∗ (X
′X + λI)−1X ′y can be computed

also if the number of predictors N is larger than the number of observations T . Nevertheless, if the number
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of regressors becomes very large, the calculation of the ridge forecast may present computational difficulties,

as it involves inverting a possibly ill-conditioned N × N matrix. In practice, this hampers the use of ridge

regression when N � T , unless the shrinkage parameter λ is taken to be very large.

2.2 Kernel Ridge Regression and the Kernel Trick

Kernel ridge regression extends the general setup considered above to allow for nonlinear prediction functions

ŷ∗ = f (x∗). At the same time, it provides a way to avoid the computational complications involved in

producing the ridge forecast when the number of predictors becomes very large. As will become clear below,

this is particularly relevant in the context of nonlinear forecasting. From now on, let N denote the number

of observed predictor variables x, and let ϕ : RN → RM be a (possibly nonlinear) mapping resulting in

M transformed predictor variables. We assume that the prediction function is linear in z = ϕ (x), say

ŷ∗ = z′∗γ̂, where z∗ = ϕ (x∗). Collecting the transformed predictor variables in the T × M matrix Z

with rows z′t = ϕ (xt)
′, we may apply ridge regression to obtain γ̂ = (Z ′Z + λI)−1 Z ′y, and hence, ŷ∗ =

z′∗ (Z
′Z + λI)−1 Z ′y.

In macroeconomic and financial applications we often work with high-dimensional data, sometimes with

the number of observed predictorsN exceeding the number of time series observations T . Moreover, to allow

for flexible forms of nonlinearity in the forecast equation, we need M � N . For example, if we approximate

the unknown forecast function f by a dth order Taylor expansion, the mapping ϕ effectively transforms the

N × 1 vector x into the M × 1 vector z containing powers and cross-products of its elements, with M

proportional toNd. Thus, M may become extremely large for realistic values ofN and d. As the matrix Z ′Z

has dimensions M ×M , this can cause computational difficulties in producing the nonlinear ridge forecast.

An efficient method to solve this curse of dimensionality problem is provided by the so-called kernel trick.

Essentially this method is based on the idea that if the number of regressorsM is much larger than the number

of observations T , working with T -dimensional instead of M -dimensional quantities can lead to notable

computational savings. To appreciate the dimension reductions involved, we consider the macroeconomic

application that will be discussed in Section 4. In this application, we estimate models with N = 132

predictors on an estimation sample containing T = 120 observations. One of the models includes a constant,
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all observed predictors, their squares, and the cross-products of all pairs of predictors, leading to a total of

M = (N + 1) (N + 2) /2 = 8911 transformed predictor variables. The results that we describe in the

remainder of this section allow working with a 120× 120 matrix instead of the 8911× 8911 matrix Z ′Z.

This dimension reduction can be achieved by some algebraic manipulations of the expression of the non-

linear ridge forecast equation ŷ∗ = z′∗γ̂. First, we rewrite the ridge regression estimator γ̂ = (Z ′Z + λI)−1 Z ′y

as Z ′Zγ̂ + λγ̂ = Z ′y, or

γ̂ =
1
λ

(
Z ′y − Z ′Zγ̂

)
=

1
λ
Z ′ (y − Zγ̂) .

If we pre-multiply Z ′Zγ̂ + λγ̂ = Z ′y by the matrix Z, this gives ZZ ′Zγ̂ + λZγ̂ = ZZ ′y, or

Zγ̂ =
(
ZZ ′ + λI

)−1
ZZ ′y.

Combining these two results, we find

ŷ∗ = z′∗γ̂ =
1
λ
z′∗Z

′ (y − Zγ̂) =
1
λ
z′∗Z

′
(
y −

(
ZZ ′ + λI

)−1
ZZ ′y

)
=

1
λ
z′∗Z

′ (ZZ ′ + λI
)−1 (

ZZ ′ + λI − ZZ ′
)
y = z′∗Z

′ (ZZ ′ + λI
)−1

y.

If we define the T × T matrix K = ZZ ′ and the T × 1 vector k∗ = Zz∗, this result can be written as

ŷ∗ = k′∗ (K + λI)−1 y. (1)

The inverse matrix in Equation (1) has dimensions T × T , so that no M -dimensional computations are

required to determine the forecast ŷ∗, once K and k∗ are known. To achieve computational savings over the

straightforward application of ridge regression, it is crucial that K and k∗ can be computed in a relatively

simple way. The (s, t)th element of K = ZZ ′ equals z′szt = ϕ (xs)
′ ϕ (xt), and similarly, the tth element

of k∗ equals ϕ (xt)
′ ϕ (x∗). This implies that the computational efficiency increases greatly if we choose

a mapping ϕ for which the inner product κ (a, b) = ϕ (a)′ ϕ (b) can be computed quickly, that is, without

computing ϕ (a) and ϕ (b) explicitly. In this context, κ is called the kernel function and K is the kernel

matrix. This procedure for implicitly finding the optimal parameter vector γ̂ in the “high” dimension M
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while working exclusively in the “low” dimension T is known as the kernel trick and is due to Boser et al.

(1992).

As the above discussion shows, kernel ridge regression is no different from ordinary ridge regression

on transformations of the regressors, except for an algebraic trick to improve computational efficiency. The

key to a successful application of this kernel trick is choosing a mapping ϕ that leads to an easy-to-compute

kernel function κ. Various such mappings are known, and a recent overview is given in Smola and Schölkopf

(2004). The next section presents the most commonly used instances of these mappings.

We close this section by noting that in a time series context, we often prefer to include some specific

predictors in the forecast equation separately from the nonlinear mapping ϕ. In macroeconomic applications,

these predictors may include lags of the dependent variable to account for serial correlation. In financial ap-

plications such as predicting stock returns, these predictors may include valuation ratios such as the dividend

yield or interest rate related variables; see Ludvigson and Ng (2007), Çakmaklı and van Dijk (2010), for ex-

ample. In such cases we consider the generalized forecast equation ŷ∗ = w′∗β̂ + z′∗γ̂, where the P × 1 vector

w∗ contains the variables to be treated linearly. We collect the historical observations on these variables in the

T × P matrix W . We show in Appendix A.1 that the derivations that lead to (1) can be extended to include

such linear terms, resulting in the “extended” kernel ridge regression forecast equation

ŷ∗ =

 k∗

w∗


′ K + λI W

W ′ 0


−1 y

0

 . (2)

This is the forecast equation that will be used in the empirical application in Section 4.

2.3 Some Common Kernel Functions

A first and obvious example is the identity mapping ϕ (a) = a, for which κ (a, b) = a′b. With this choice

of κ, the kernel forecast ŷ∗ = k′∗ (K + λI)−1 y = x′∗X
′ (XX ′ + λI)−1 y equals the linear ridge forecast

ŷ∗ = x′∗ (X
′X + λI)−1X ′y, as can be seen by taking Z = X and z∗ = x∗ in the derivations preceding

Equation (1).

Next we consider a mapping such that ϕ (a) contains a constant term, all variables a1, a2, . . . , aN , and all
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squares and cross products of these variables. Some experimentation reveals that κ (a, b) takes a particularly

simple form if we multiply some elements of ϕ (a) by the constant
√

2. That is, if we choose the mapping

ϕ (a) =
(
1,
√

2a1,
√

2a2, . . . ,
√

2aN , a
2
1, a

2
2, . . . , a

2
N ,
√

2a1a2,
√

2a1a3, . . . ,
√

2aN−1aN

)′
,

the corresponding kernel function is

κ (a, b) = ϕ (a)′ ϕ (b)

= 1 + 2 (a1b1 + a2b2 + . . .+ aNbN ) + a2
1b

2
1 + a2

2b
2
2 + . . .+ a2

Nb
2
N

+ 2 (a1a2b1b2 + a1a3b1b3 + . . .+ aN−1aNbN−1bN )

= 1 + 2 (a1b1 + a2b2 + . . .+ aNbN ) + (a1b1 + a2b2 + . . .+ aNbN )2

= 1 + 2 a′b+
(
a′b
)2 =

(
1 + a′b

)2
.

With this specification of the kernel function, the computation of each of the T (T + 1) /2 distinct elements of

the kernel matrix K requires 2 (N + 1) additions and multiplications. In the absence of the indicated scaling,

the vector of constant, first-order, and second-order terms contains M = (N + 1) (N + 2) /2 elements. The

computation of each element of the kernel matrix would then require 2M = (N + 1) (N + 2) additions and

multiplications. Thus, the proposed scaling reduces the amount of computations by a factor of 1 +N/2.

As noted by Poggio (1975), this result can be generalized to the kernel function

κ (a, b) =
(
1 + a′b

)d for any integer d ≥ 1, (3)

corresponding to a mapping for which ϕ (a) consists of all polynomials in the elements of a of degree at

most d. Observe that this class of so-called polynomial kernel functions encompasses not only the quadratic

mapping, for d = 2, but also the identity mapping (and hence, standard linear ridge regression), for d = 1.

Because smart choices of ϕ enable us to avoid M -dimensional computations, the kernel methodology

even allows letting M → ∞. A common way to do this, dating back to Broomhead and Lowe (1988), is by
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using the Gaussian kernel function

κ (a, b) = exp
(
−1

2
||a− b||2

)
. (4)

We show in Appendix A.2 that the corresponding mapping ϕ (a) contains as elements, for all degrees

d1, d2, . . . , dN ≥ 0, the “dampened” polynomials

e−a′a/2
N∏

n=1

a dn
n√
dn!

.

In this paper, we consider the polynomial kernels (3) of degrees d = 1 and 2, as well as the Gaussian

kernel (4). To control for the relative importance of the terms in ϕ (x), we replace each observation x by

(1/σ)x before computing κ, for some positive scaling factor σ. Such scaling affects the weight placed on

different polynomial degrees, as it amounts to dividing linear terms in ϕ (x) by σ, second-order terms by σ2,

and so forth. Although we are performing linear regression on ϕ (x), such scaling is not without effect, as its

regression coefficients in the forecast equation ŷ∗ = w′∗β̂ + ϕ (x∗)
′ γ̂ are all penalized equally by the ridge

term in the criterion function ||y −Wβ − Zγ||2 + λ ||γ||2.

2.4 Selection of Tuning Parameters

Our implementation of kernel ridge regression contains two tuning parameters, namely, the shrinkage param-

eter λ and the scaling parameter σ. Additionally, our empirical application in Section 4 to several macroeco-

nomic time series involves the selection of lag lengths, which can also be seen as tuning parameters from a

model selection perspective. This section addresses the question of how to set the values for these parameters.

We determine the values of the tuning parameters by means of leave-one-out cross-validation, as this is a

natural criterion for the purpose of out-of-sample forecasting. For given values of the tuning parameters, we

estimate the model on the sample of size T − 1 that remains when the observation for period t is removed.

We then use this model to “forecast” the value of yt that was left out. This is repeated T times, leaving out

each observation for t = 1, . . . , T once. Performing this cross-validation exercise for each of the candidate

values of the tuning parameters, we select those values that lead to the smallest mean squared prediction error
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over these T forecasts. These values are then used to estimate the model on the full sample 1, 2, . . . , T , from

which we produce out-of-sample forecasts.

In the form stated above, this cross-validation procedure is computationally very expensive, as it requires

estimating the model on T different samples for each possible setting of the tuning parameters. Cawley and

Talbot (2008) propose a method that yields all leave-one-out prediction errors as a by-product of estimating

(1) only once, that is, on the full sample. We derive a similar result, extended to allow for the additional linear

terms in (2), in Appendix A.3.

In the simulation examples and in the empirical study below, we use this method to select both the

lag lengths and the ridge parameter λ from a grid. Because we will use rolling-window estimation, these

parameter values are reselected for each forecast. As it is difficult to find intuitively reasonable values for the

shrinkage parameter, we employ a fairly wide grid, containing 45 candidate values:

log10(λ) ∈ {−8,−5,−4.0,−3.8,−3.6, . . . , 3.6, 3.8, 4.0, 5, 8} .

The same cross-validation procedure could also be used to select the scaling parameter σ. Preliminary

simulation evidence shows that it is difficult to identify λ and σ simultaneously from data, as a wide range of

(λ, σ) combinations is found to lead to very similar forecasts. Relatively little out-of-sample forecast quality

is sacrificed if the scaling parameter σ is fixed a priori. Based on these exploratory results, we rescale the data

to have mean zero and variance one and then we use, as a practical rule of thumb, σ = 2d for the polynomial

kernel of degree d and σ = 10 for the Gaussian kernel.

As a technical note, serial correlation in time-series data leads to dependence between the observations in

the estimation sample and the observation that was left out. This dependence implies that the standard leave-

one-out cross-validation procedure may not be fully adequate; see Racine (2000) for an extensive discussion

and a modification to overcome these problems. Although the method outlined in Appendix A.3 can easily

be adapted to this modified form of cross-validation, the resulting implementation is computationally quite

intensive. We find that the results from using this modified procedure are not appreciably different from those

obtained with simple leave-one-out cross-validation; therefore, we only report results based on the latter

method.
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3 MONTE CARLO SIMULATION

To evaluate the potential of kernel methods in a data-rich environment (that is, when many predictor variables

are present), we assess the forecasting performance of kernel ridge regression for a set of static factor models

through a Monte Carlo study. We consider a setting with two latent factors f1t and f2t, which are uncorrelated

standard normal variables. As predictor variables, N = 100 noisy linear combinations of these factors are

generated by xit = µi1f1t +µi2f2t +ηit, where the factor loadings µij , j = 1, 2, are drawn from the standard

normal distribution. The noise ηit is also normal with mean zero; its variance is selected to control the fraction

of the variance of each xi variable explained by the factors, denoted by R2
x. We consider two cases with R2

x

equal to 0.4 or 0.8, which we label as “weak” and “strong” factor structure, respectively. The target variable

y is constructed according to three different DGPs:

Linear: yt = f1t + f2t + εt (5)

Squared: yt = f2
1t + f2

2t + εt (6)

Cross-product: yt = f1tf2t + εt (7)

Here ε is normal with mean zero and a variance selected to control R2
y, the fraction of the variance of yt that

is explained by the factors. For R2
y we also consider the values 0.4 and 0.8, which are referred to as “weak”

and “strong” predictive structure, respectively.

In each Monte Carlo replication, we generate time series of xi, i = 1, . . . , N , and y, each consisting of

T + 1 observations. The first T observations are used for estimation, and a forecast for yT+1 is made based

on xT+1. All variables are standardized to have mean zero and variance one in the estimation sample. We set

the sample size equal to T = 120, which corresponds with the length of the estimation window (ten years of

monthly observations) used in the empirical application in Section 4. The results presented below are based

on 5000 replications.

Because OLS is not a reliable forecasting method in this setting with N = 100 variables and T = 120

observations, we consider four alternative prediction methods in addition to kernel ridge regression:

(i) the “constant” forecast, with ŷ121 = (1/120)
∑120

t=1 yt;
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(ii) principal component regression (PC), which amounts to OLS but with regressors f̂t being the first k

principal components of the predictor variables x;

(iii) “PC-squared” (PC2), as suggested by Bai and Ng (2008), which corresponds to principal component

regression with the squares of f̂t as additional regressors; and

(iv) “Squared PC” (SPC), also proposed by Bai and Ng (2008), which is principal component regression

but with f̂t being the principal components of the original predictor variables x and their squares.

Bai and Ng (2008) also propose a quadratic principal component (QPC) regression variant, in which the f̂t

are principal components of not only the original variables and their squares (as in SPC), but also their cross-

products. They report high computational costs and poor forecasting performance for this technique, and our

preliminary analysis confirms both of these results. For this reason, QPC is not considered in our study.

For kernel ridge regression, the shrinkage parameter λ is selected from the grid defined in Section 2.4

using leave-one-out cross-validation. For each of the principal-components-based methods, we select the

number of components k by minimizing the Bayesian Information Criterion (BIC), where 1 ≤ k ≤ 10. Our

reason for minimizing BIC instead of performing cross-validation for principal-components-based methods

is twofold. First, using BIC in principal components forecasting settings is common in the literature; see, for

example, Stock and Watson (2002) and Bai and Ng (2008). Second, preliminary simulation evidence shows

that using BIC leads to superior results compared to using cross-validation.

Table 1 shows mean squared prediction errors relative to the variance of the series being predicted. Note

that if the factor values f1,T+1 and f2,T+1 were known, these relative MSPEs would be close to 1−R2
y, or 0.6

and 0.2 in the two scenarios of “weak” (R2
y = 0.4) and “strong” (R2

y = 0.8) predictive structure considered

here. Standard PC shows good performance for the linear DGP, and PC2 for the squared DGP. Such results

are to be expected, because the forecast equation in these methods corresponds exactly with these DGPs.

Interestingly, the kernel methods are not much less accurate than these “optimal” methods, with the obvious

exception of the Poly(1) (that is, linear) kernel in the squared DGP (for which standard PC also fares badly).

This finding holds regardless of whether R2
x and R2

y are high or low, although the difference between PC or

PC2 and the best performing kernel method is smaller when the factor structure in the predictor variables is
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Table 1: Relative Mean Squared Prediction Errors for the Factor Models (5)-(7).

DGP Linear Squared Cross-product
R2

y = 0.4 R2
y = 0.8 R2

y = 0.4 R2
y = 0.8 R2

y = 0.4 R2
y = 0.8

R2
x = 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4 0.8

Const 1.00 1.00 1.02 1.02 1.03 1.03 1.07 1.07 1.04 1.04 1.10 1.10

PC 0.62 0.61 0.23 0.20 1.04 1.05 1.10 1.10 1.06 1.06 1.13 1.13
PC2 0.63 0.62 0.23 0.21 0.65 0.63 0.27 0.22 0.90 0.89 0.73 0.72
SPC 0.63 0.63 0.24 0.22 0.70 0.64 0.35 0.22 0.79 0.65 0.52 0.23

Poly(1) 0.65 0.62 0.24 0.21 1.04 1.04 1.09 1.09 1.06 1.06 1.12 1.12
Poly(2) 0.68 0.64 0.27 0.22 0.70 0.64 0.32 0.23 0.70 0.64 0.32 0.23
Gauss 0.68 0.67 0.29 0.26 0.77 0.70 0.41 0.32 0.84 0.75 0.49 0.38

NOTE: This table reports mean squared prediction errors (MSPEs) for models (5)-(7), averaged over 5000 forecasts, and relative to
the variance of the series being predicted. The smallest relative MSPE for each DGP (column) is printed in boldface.

stronger (compare R2
x = 0.4 with R2

x = 0.8). Thus, we find that kernel methods can work well in standard

factor model settings.

For the cross-product DGP, the SPC method from Bai and Ng (2008) and the Poly(2) kernel can both be

expected to perform well. We observe that kernel ridge regression provides the most accurate forecasts here,

and that the gains are larger for lower R2
x. Thus kernel ridge regression performs well in this case, especially

when the factor structure of the predictors is not very strong, as is often the case for empirical macroeconomic

and financial data. The performance of the Gaussian kernel is also satisfactory.

We conclude that the use of kernel methods in a factor context works quite well, especially for nonlinear

relations, and in situations where the observed predictors give relatively little information on the factors.

4 MACROECONOMIC FORECASTING

4.1 Data and Forecast Models

To evaluate the forecast performance of kernel ridge regression in an empirical application, we consider fore-

casting of four key macroeconomic variables. The data set consists of monthly observations on 132 U.S.

macroeconomic variables, including various measures of production, consumption, income, sales, employ-

ment, monetary aggregates, prices, interest rates, and exchange rates. All series have been transformed to
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stationarity by taking logarithms and/or differences, as described in Stock and Watson (2005). We have up-

dated their data set, which starts in January 1959 and ends in December 2003, to cover the period until (and

including) January 2010. The cross-sectional dimension varies somewhat because of data availability: some

time series start later than January 1959, while a few other variables have been discontinued before the end of

our sample period. For each month under consideration, observations on at most five variables are missing.

We focus on forecasting four key measures of real economic activity: Industrial Production, Personal

Income, Manufacturing & Trade Sales, and Employment. (The acronyms by which Stock and Watson (2002)

refer to these series are ip, gmyxpq, msmtq, and lhnag, respectively.) For each of these variables, we

produce out-of-sample forecasts for the annualized h-month percentage growth rate, computed as

yh
t+h =

1200
h

ln
(
vt+h

vt

)
,

where vt is the untransformed observation on the level of each variable in month t. To simplify notation, we

denote the one-month growth rate as yt+1. We consider growth rate forecasts for h = 1, 3, 6 and 12 months.

The kernel ridge forecasts are compared against several alternative forecasting approaches that are pop-

ular in current macroeconomic practice. As benchmarks we include (i) the constant forecast (that is, the

average growth over the estimation window); (ii) the no-change (that is, random-walk) forecast; and (iii) an

autoregressive forecast. In addition, as the primary competitor for kernel methods we consider the diffusion

index (DI) approach of Stock and Watson (2002), who document its good performance for forecasting these

four macroeconomic variables. The DI methodology extends the standard principal component regression by

including autoregressive lags as well as lags of the principal components in the forecast equation. Specif-

ically, using p autoregressive lags and q lags of k factors, at time t, this “extended” principal-components

method produces the forecast

ŷh
t+h|t = w′tβ̂ + f̂ ′t γ̂,

where wt =
(
1, yt, yt−1 . . . , yt−(p−1)

)′ and f̂t =
(
f̂1,t, f̂2,t, . . . , f̂k,t, f̂1,t−1, . . . , f̂k,t−(q−1)

)′
. The lags of

the dependent variable in wt are one-month growth rates, irrespective of the forecast horizon h, because

using h-month growth rates for h > 1 would lead to highly correlated regressors. The factors f̂ are principal
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components extracted from all 132 predictor variables, and β̂ and γ̂ are OLS estimates. Aside from standard

principal components (PC), we also consider its extensions PC2 and SPC, discussed in Section 3. In each

case, the lag lengths p and q and the number of factors k are selected by minimizing the Bayesian Information

Criterion (BIC). This criterion is used instead of cross-validation for two reasons. We want our results to be

comparable to those in Stock and Watson (2002) and Bai and Ng (2008), and preliminary experimentation

has revealed that using the BIC leads to superior results. Like Stock and Watson (2002), we allow 0 ≤ p ≤ 6,

1 ≤ q ≤ 3, and 1 ≤ k ≤ 4; thus, the simplest model that can be selected uses no information on current or

lagged values of the dependent variable, and information from the other predictors in the current month only,

summarized by one factor. In line with Stock and Watson (2002), we do not perform an exhaustive search

across all possible combinations of the first four principal components and lag structures. Instead, we assume

that factors are included sequentially in order of importance, while the number of lags is assumed to be the

same for all included factors.

For kernel ridge regression, the corresponding forecast equation is

ŷh
t+h|t = w′tβ̂ + ϕ

((
x′t, x

′
t−1, . . . , x

′
t−(q−1)

)′)′
γ̂,

in the notation of Section 2.2, where wt is as defined above and xt contains all 132 predictors at time t. The

parameter vectors β̂ and γ̂ are obtained by kernel ridge regression, resulting in the forecast equation (2). The

lag lengths p and q, as well as the kernel penalty parameter λ, are selected by leave-one-out cross-validation.

All models are estimated on rolling windows with a fixed length of 120 months, such that the first forecast

is produced for the growth rate during the first h months of 1970. For each window, the tuning parameter

values are re-selected and the regression coefficients are re-estimated. That is, all of the tuning parameters

(p, q, k, λ) are allowed to differ over time and across methods.

4.2 Results

Table 2 shows the mean squared prediction errors (MSPEs) for the period 1970-2010 for three simple bench-

mark methods, three PC-based methods, and three kernel methods. Several conclusions can be drawn from

these results. We first observe that kernel ridge regression provides more accurate forecasts than any of the
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Table 2: Relative Mean Squared Prediction Errors for the Macroeconomic Series.

Forecast Industrial Production Personal Income
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
Const 1.02 1.05 1.07 1.08 1.02 1.06 1.10 1.17
RW 1.27 1.08 1.34 1.64 1.60 1.36 1.14 1.35
AR 0.93 0.89 1.02 1.02 1.17 1.05 1.10 1.15

PC 0.81 0.71 0.77 0.63 1.04 0.79 0.90 0.90
PC2 0.94 0.85 1.20 1.07 1.09 0.92 1.03 1.15
SPC 0.88 0.98 1.35 0.99 1.07 1.04 1.05 1.50

Poly(1) 0.75 0.67 0.85 0.62 0.92 0.82 0.93 1.12
Poly(2) 0.91 0.77 0.97 0.76 0.96 0.88 0.98 1.01
Gauss 0.80 0.80 0.78 0.67 0.89 0.81 0.81 0.80

Forecast Manufacturing & Trade Sales Employment
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
Const 1.01 1.03 1.05 1.08 0.98 0.96 0.97 0.97
RW 2.17 1.49 1.45 1.53 1.68 0.95 1.00 1.20
AR 1.01 1.02 1.10 1.08 0.96 0.85 0.90 0.96

PC 0.89 0.80 0.77 0.63 0.76 0.56 0.48 0.48
PC2 0.94 0.97 1.13 1.06 0.76 0.61 0.69 0.60
SPC 0.99 1.18 1.59 1.02 0.81 0.81 0.90 0.72

Poly(1) 0.94 0.85 0.81 0.56 0.87 0.61 0.55 0.56
Poly(2) 0.97 1.03 1.20 0.83 0.82 0.71 0.64 0.84
Gauss 0.95 0.91 0.86 0.74 0.85 0.67 0.63 0.64

NOTE: This table reports mean squared prediction errors (MSPEs) for four macroeconomic series, over the period 1970-2010,
relative to the variance of the series being predicted. The smallest relative MSPE for each series (column) is printed in boldface.

three benchmarks (constant, random walk, and autoregression) for all of the target variables and all forecast

horizons, with larger gains for longer horizons. This holds irrespective of the kernel function that is used, the

only exceptions being that the second-order polynomial kernel produces worse forecasts for the three-month

and six-month growth rates of Manufacturing & Trade Sales. In many cases the improvements in predictive

accuracy are substantial, even compared to the AR forecast, which seems the best of the three benchmarks.

For example, for 12-month growth rate forecasts, the kernel ridge regression based on the Gaussian kernel

achieves a reduction in MSPE of about 30% for all four variables.

Second, if we compare the forecasts based on kernel ridge regression and the linear PC-based approach,

we find somewhat mixed results, but generally the kernel methods perform better. Kernel ridge forecasts are
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superior for Industrial Production and Personal Income. For Manufacturing & Trade Sales, kernels perform

better at the longest horizon and slightly worse at the shorter horizons. Finally, for Employment, the PC-based

forecasts are more accurate than kernel-based forecasts.

Third, the kernel ridge regression approach convincingly outperforms the PC2 and SPC variants of the

principal component regression framework. In fact, also the linear PC specification clearly outperforms these

two extensions in all cases. Apparently, the PC2 and SPC methods cannot successfully cope with the possibly

nonlinear relations between the target variables and the predictors in this application. (Bai and Ng (2008)

report somewhat better performance if SPC is applied to a selected subset of the predictors, rather than to the

full predictor set. Also with this modification, SPC has difficulties outperforming simpler linear methods.)

Fourth, among the kernel-based methods, the Poly(1) kernel and the Gaussian kernel generally perform

best. All but one of the MSPE / variance ratios in Table 2 are below one for these methods. Neither of the

two consistently outperforms the other. Although Poly(1) performs better than the Gaussian kernel in some

cases, the latter kernel method shows satisfactory results in all situations.

A subset of the results in Table 2 is reproduced graphically in Figure 1. This graph allows us to interpret

the mixed results in the comparison of kernel-based and linear PC-based forecasts as follows. Kernel ridge

regression (especially using the Gaussian kernel) shows roughly the same good performance for all four se-

ries, but the quality of PC forecasts varies among the series and is exceptionally high for the Employment

series. Recall that in the Monte Carlo experiment in Section 3, we find the analogous result that kernel-based

methods yield better relative performance, compared to PC-based methods, if the factor structure is relatively

weak. That is, our results suggest that kernel ridge regression performs better than principal component re-

gression unless the latter performs very well. To further investigate this idea, Figure 2 shows time-series plots

of rolling mean squared prediction errors. The value plotted for date t is the mean squared prediction error

(without correcting for the variance of the predicted series) computed over the ten-year subsample ending

with the forecast for date t, that is, ŷh
t|t−h. We show only the series for h = 12, as the results for the other

horizons are qualitatively similar. This figure confirms that, when kernel-based forecasts are less accurate

than PC-based forecasts, this is because PC-based forecasts are very accurate, and not because kernel-based

forecasts would be inaccurate. Another interesting feature evidenced by Figure 2 is that, although the recent
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Figure 1: Relative Mean Squared Prediction Errors for Four Macroeconomic Series, for selected methods.

crisis reduces the accuracy of all forecasts from 2008 onward, if affects the kernel-based forecasts least.

Following Stock and Watson (2002), we provide a further evaluation of our results by using the forecast

combining regression

yh
t+h = α ŷh

t+h|t + (1− α) ŷh, AR
t+h|t + uh

t+h, (8)

where yh
t+h is the realized growth rate over the h-month period ending in month t + h, ŷh

t+h|t is a candidate

forecast from either the PC-based methods or from kernel ridge regression made at time t, and ŷh, AR
t+h|t is

the benchmark autoregressive forecast. Estimates of α are shown in Table 3, with heteroscedasticity and

autocorrelation consistent (HAC) standard errors in parentheses. The null hypothesis that the AR forecast

receives unit weight (α = 0) is strongly rejected in almost all cases, which means that PC-based and kernel-

based forecasts have significant additional predictive ability relative to this benchmark. Actually, the null

hypothesis that the candidate forecast receives unit weight (α = 1) cannot be rejected in many cases. If

α = 1, this means that the candidate forecast encompasses the AR forecast. This hypothesis is not rejected

for PC-based methods in 17 out of 48 cases, and for kernel-based methods even in 37 out of 48 cases.
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Figure 2: Ten-Year Rolling-Window Mean Squared Prediction Errors for Four Macroeconomic Series, for a forecast
horizon of h = 12 months, for AR and for the best-performing PC and kernel methods.

In order to compare the performance of kernel-based and PC-based forecasts directly, we run a similar

forecast combining regression

yh
t+h = α ŷh, kernel

t+h|t + (1− α) ŷh, PC
t+h|t + uh

t+h. (9)

As linear PC performs better than PC2 and SPC (see Table 2), we compare kernel methods to linear PC only.

We report the estimates of α in Table 4. These results show that both hypotheses of interest (α = 0 and α = 1)

are rejected in many cases (26 out of 48), suggesting that forecasts obtained from both types of models are

complementary. Apparently, each forecast method uses relevant information that the other method misses.
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Table 3: Estimated Coefficients α̂ from the Forecast Combining Regression (8).

Forecast Industrial Production Personal Income
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

PC 0.83∗ (0.15) 0.80∗ (0.14) 0.72∗† (0.13) 0.79∗ (0.11) 0.97∗ (0.26) 0.87∗ (0.12) 0.70∗† (0.10) 0.70∗† (0.09)
PC2 0.48∗† (0.15) 0.55∗† (0.11) 0.42∗† (0.12) 0.48∗† (0.13) 0.71∗ (0.18) 0.66∗† (0.12) 0.54∗† (0.07) 0.50∗† (0.10)
SPC 0.57∗† (0.08) 0.43∗† (0.11) 0.37∗† (0.12) 0.51∗† (0.08) 0.75∗ (0.21) 0.51∗† (0.09) 0.52∗† (0.10) 0.39∗† (0.08)

Poly(1) 0.89∗ (0.11) 0.91∗ (0.14) 0.63∗† (0.13) 0.81∗ (0.12) 1.07∗ (0.19) 1.01∗ (0.14) 0.63∗† (0.12) 0.52∗† (0.12)
Poly(2) 0.53∗† (0.09) 0.77∗ (0.19) 0.55∗ (0.25) 0.85∗ (0.15) 1.01∗ (0.23) 0.78∗ (0.14) 0.63∗† (0.15) 0.68∗ (0.17)
Gauss 1.23∗ (0.18) 0.74∗ (0.16) 0.89∗ (0.15) 0.99∗ (0.17) 1.29∗† (0.14) 1.10∗ (0.15) 0.96∗ (0.15) 0.95∗ (0.14)

Forecast Manufacturing & Trade Sales Employment
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12
PC 0.83∗ (0.12) 0.86∗ (0.13) 0.87∗ (0.17) 0.91∗ (0.12) 1.02∗ (0.09) 0.93∗ (0.09) 0.92∗ (0.10) 1.04∗ (0.12)
PC2 0.64∗† (0.08) 0.55∗† (0.11) 0.48∗† (0.19) 0.51∗† (0.15) 0.91∗ (0.06) 0.74∗† (0.07) 0.62∗† (0.10) 0.77∗ (0.14)
SPC 0.53∗† (0.09) 0.39∗† (0.14) 0.29† (0.15) 0.52∗† (0.10) 0.74∗† (0.07) 0.53∗† (0.08) 0.50∗† (0.09) 0.60∗† (0.09)

Poly(1) 0.66∗† (0.14) 0.83∗ (0.18) 0.80∗ (0.16) 0.97∗ (0.15) 0.68∗† (0.12) 0.97∗ (0.14) 0.97∗ (0.11) 0.91∗ (0.14)
Poly(2) 0.61∗† (0.12) 0.48∗† (0.17) 0.40† (0.24) 0.89∗ (0.26) 0.90∗ (0.11) 0.74∗ (0.21) 0.77∗ (0.13) 0.66∗ (0.19)
Gauss 0.76∗ (0.13) 0.89∗ (0.17) 0.86∗ (0.14) 1.06∗ (0.22) 0.98∗ (0.15) 1.21∗ (0.18) 1.10∗ (0.13) 1.07∗ (0.18)

NOTE: This table reports α̂, the weight placed on the candidate forecast in the forecast combining regression (8). HAC standard
errors follow in parentheses. An asterisk (∗) indicates rejection of the hypothesis α = 0 and a dagger (†) indicates rejection of α = 1,
at the 5% significance level.

Table 4: Estimated Coefficients α̂ from the Forecast Combining Regression (9).

Forecast Industrial Production Personal Income
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

Poly(1) 0.67∗† (0.09) 0.63∗† (0.16) 0.36∗† (0.13) 0.53∗† (0.15) 0.79∗ (0.17) 0.39† (0.24) 0.45∗† (0.13) 0.24† (0.17)
Poly(2) 0.30∗† (0.11) 0.40∗† (0.15) 0.20† (0.20) 0.29∗† (0.11) 0.69∗ (0.22) 0.34∗† (0.13) 0.42∗† (0.13) 0.41∗† (0.07)
Gauss 0.57∗† (0.17) 0.30† (0.19) 0.49∗† (0.14) 0.45∗† (0.11) 0.85∗ (0.17) 0.45∗† (0.16) 0.63∗† (0.16) 0.62∗† (0.10)

Forecast Manufacturing & Trade Sales Employment
method h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

Poly(1) 0.33∗† (0.16) 0.29∗† (0.15) 0.41∗† (0.17) 0.72∗ (0.26) 0.17∗† (0.08) 0.23† (0.14) 0.16† (0.16) 0.26† (0.19)
Poly(2) 0.24† (0.14) -0.06† (0.17) -0.29† (0.21) 0.18∗† (0.09) 0.18† (0.13) -0.05† (0.15) 0.05† (0.15) 0.04† (0.08)
Gauss 0.29† (0.16) 0.23† (0.18) 0.38∗† (0.16) 0.32∗† (0.13) 0.15† (0.12) 0.19† (0.13) 0.23∗† (0.11) 0.23∗† (0.11)

NOTE: This table reports α̂, the weight placed on the kernel-based forecast in the forecast combining regression (9). HAC standard
errors follow in parentheses. An asterisk (∗) indicates rejection of the hypothesis α = 0 and a dagger (†) indicates rejection of α = 1,
at the 5% significance level.
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Figure 3: The Twelve-Month Growth Rate of Personal Income (thin line), with its PC-based forecast (dashed line) and
its Gaussian-kernel forecast (heavy line). Top panel: 1970-1983. Middle panel: 1984-1993. Bottom panel: 1994-2010.
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Finally, we show time series plots of the twelve-month growth rate of Personal Income in Figure 3. The

choice of the three subperiods is motivated by dating the Great Moderation in 1984. The first subperiod con-

tains only pre-Moderation data. As we estimate all models on 120-month rolling windows, the first forecast

that is based only on post-Moderation data is the one for 1994, which marks the start of the last subperiod.

During the second subperiod (see the middle panel of Figure 3), the kernel-based forecast is much more

volatile than both the actual time series and the PC-based forecast. Apparently, kernel ridge regression is

relatively more heavily affected by the break in volatility in the Personal Income series at the Great Modera-

tion (with a variance of 7.84 for 1970-1983 and of 6.53 for 1984-2010). On both other subsamples, however,

allowing for nonlinearity through kernel methods enhances the forecast quality considerably, see the top and

bottom panels of Figure 3. The relative MSPEs, compared to the AR benchmark, for the three subperiods

1970-1983, 1984-1993, and 1994-2010 are respectively 86%, 71%, and 76% for PC, as compared to 70%,

77%, and 67% for Gaussian kernel ridge regression. This result shows that the kernel method performs bet-

ter than PC in the first and last subperiod. We also note the “overshooting” of the 2008-9 crisis by the PC

forecasts in the bottom panel of Figure 3. This does not occur for kernel ridge regression, as such extreme

forecasts are suppressed by the shrinkage parameter.

5 CONCLUSION

We have introduced kernel ridge regression as a framework for estimating nonlinear predictive relations in

a data-rich environment. We have extended the existing kernel methodology to enable its use in time-series

contexts typical for macroeconomic and financial applications. These extensions involve the incorporation

of unpenalized linear terms in the forecast equation and an efficient leave-one-out cross-validation procedure

for model selection purposes. Our simulation study suggests that this method can deal with the type of data

that comes up frequently in economic analysis, namely, data with a factor structure.

The empirical application to forecasting four key U.S. macroeconomic variables — production, income,

sales, and employment — shows that kernel-based methods are often preferable to, and always competitive

with, well-established autoregressive and principal-components-based methods. Kernel techniques also out-

perform previously proposed extensions of the standard PC-based approach to accommodate nonlinearity.
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Kernel ridge regression exhibits a relatively consistent good predictive performance, also during the crisis

period in 2008-9. It is outperformed by linear principal components only in those periods when the latter

method performs exceptionally well. Among the kernel methods, linear and Gaussian kernels are found to

produce the most reliable forecasts, and neither of these two kernels consistently outperforms the other. This

finding implies that the ridge term contributes importantly to the predictive accuracy, while accounting for

nonlinearity also helps in many cases. As using the Gaussian kernel does not require the forecaster to specify

the form of nonlinearity in advance, this method is a powerful tool.

Finally, we have provided statistical evidence that kernel-based forecasts contain information that principal-

components-based forecasts miss, and vice versa. This result suggests a potential for forecast combination

techniques. We conclude that the kernel methodology is a valuable addition to the macroeconomic fore-

caster’s toolkit.

APPENDIX: TECHNICAL RESULTS

This appendix contains derivations of three results stated in Section 2: the expression for the forecast equation

(2) for kernel ridge regression with additional unpenalized linear terms, the expansion of the Gaussian kernel,

and the leave-one-out cross-validation method that we use for selecting tuning parameters.

A.1 Kernel Ridge Regression with Unpenalized Linear Terms (Section 2.2)

We have shown in Section 2.2 that minimization of the penalized least-squares criterion ||y − Zγ||2 +λ ||γ||2

leads to the forecast ŷ∗ = k′∗ (K + λI)−1 y; this is Equation (1) in Section 2.2. In this appendix, we modify

this forecast equation to allow for unpenalized linear terms. That is, we seek to minimize

||y −Wβ − Zγ||2 + λ ||γ||2 (10)

over the P × 1 vector β and the M × 1 vector γ. For given β̂, we can proceed as in Section 2.2; we find

γ̂ = Z ′ (K + λI)−1
(
y −Wβ̂

)
. (11)
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On the other hand, for given γ̂, minimizing criterion (10) is equivalent to ordinary least squares regression:

β̂ =
(
W ′W

)−1
W ′ (y − Zγ̂) . (12)

We substitute the expression for γ̂ from Equation (11) into Equation (12), recall thatK = ZZ ′, and rearrange

the resulting equation to obtain

W ′
(
I −K (K + λI)−1

)
Wβ̂ = W ′

(
I −K (K + λI)−1

)
y

W ′ (K + λI −K) (K + λI)−1Wβ̂ = W ′ (K + λI −K) (K + λI)−1 y

β̂ =
(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1 y.

If we substitute this result and Equation (11) into the forecast equation ŷ∗ = z′∗γ̂ + w′∗β̂, and recall that

k∗ = Zz∗, we find

ŷ∗ = k′∗ (K + λI)−1

(
I −W

(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1

)
y

+ w′∗

(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1 y. (13)

To obtain a more manageable equation, recall that the partitioned matrix inverse

 K + λI W

W ′ 0


−1

equals

 (K + λI)−1

(
I −W

(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1

)
(K + λI)−1W

(
W ′ (K + λI)−1W

)−1

(
W ′ (K + λI)−1W

)−1
W ′ (K + λI)−1 −

(
W ′ (K + λI)−1W

)−1

 .

(14)

It follows from this result that Equation (13) is equivalent to Equation (2) in Section 2.2:

ŷ∗ =

 k∗

w∗


′ K + λI W

W ′ 0


−1 y

0

 .
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A.2 Expansion of the Gaussian Kernel (Section 2.3)

In this appendix, we derive the mapping ϕ that corresponds to the Gaussian kernel function. As stated in

Equation (4) in Section 2.3, this kernel function is defined as κ (a, b) = exp
(
−(1/2) ||a− b||2

)
. If we write

−(1/2) ||a− b||2 = −a′a/2− b′b/2 + a′b and expand the Taylor series for exp (a′b), we obtain

κ (a, b) = e−a′a/2 e−b′b/2
∞∑

r=0

1
r!
(
a′b
)r
. (15)

We proceed by expanding (a′b)r as a multinomial series:

(
a′b
)r =

(
N∑

n=1

anbn

)r

=
∑∑

· · ·
∑

{∑N
n=1 dn=r, all dn≥0}

(
r!∏N

n=1 dn!

N∏
n=1

(anbn)dn

)
.

Substituting this result into Equation (15), we find

κ (a, b) = e−a′a/2 e−b′b/2
∞∑

r=0

 1
r!

∑∑
· · ·
∑

{∑N
n=1 dn=r, all dn≥0}

(
r!∏N

n=1 dn!

N∏
n=1

(anbn)dn

)
= e−a′a/2 e−b′b/2

∞∑
r=0

 ∑∑
· · ·
∑

{∑N
n=1 dn=r, all dn≥0}

(
N∏

n=1

(anbn)dn

dn!

)
= e−a′a/2 e−b′b/2

∑∑
· · ·
∑

{all dn≥0, for n=1,2,...,N}

(
N∏

n=1

(anbn)dn

dn!

)
.

Finally, we split the product into two factors that depend only on a and only on b, respectively:

κ (a, b) =
∞∑

d1=0

∞∑
d2=0

· · ·
∞∑

dN=0

(
e−a′a/2

N∏
n=1

a dn
n√
dn!

)(
e−b′b/2

N∏
n=1

b dn
n√
dn!

)
. (16)

As expression (16) shows, κ (a, b) = ϕ (a)′ ϕ (b), where, as claimed in Section 2.3, ϕ (a) contains as ele-

ments, for each combination of degrees d1, d2, . . . , dN ≥ 0,

e−a′a/2
N∏

n=1

a dn
n√
dn!

.
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A.3 Computationally Efficient Leave-One-Out Cross-Validation (Section 2.4)

In this appendix, we describe an efficient method for leave-one-out cross-validation. Our derivation extends

the results in Cawley and Talbot (2008) to allow for the unpenalized linear terms in the forecast equation (2).

The result of Appendix A.1 can be summarized as follows: kernel ridge regression leads to the forecast

ŷ∗ =

 k∗

w∗


′ α̂

β̂

 with

 K + λI W

W ′ 0


 α̂

β̂

 =

 y

0

 . (17)

The first step in leave-one-out cross-validation is to estimate the model on all observations except the first.

As K = ZZ ′, and each row of Z depends only on the corresponding row of X , the only elements in K that

depend on the first observation are those in the first row and those in the first column. We therefore separate

the first row and column from the other elements of K, and likewise, we split off the first row of W , the first

element of α̂, and the first element of y. We denote these partitioned matrices and vectors by

K =

 k1,1 k′−1,1

k−1,1 K−1,−1

 , W =

 w′1

W−1

 , α̂ =

 α̂1

α̂−1

 and y =

 y1

y−1

 .

We then have, from Equation (17),


k1,1 + λ k′−1,1 w′1

k−1,1 K−1,−1 + λI W−1

w1 W ′−1 0




α̂1

α̂−1

β̂

 =


y1

y−1

0

 ,

or equivalently, separating the first equation from the others,

α̂1 (k1,1 + λ) +

 k−1,1

w1


′ α̂−1

β̂

 = y1, (18)

α̂1

 k−1,1

w1

+

 K−1,1 + λI W−1

W ′−1 0


 α̂−1

β̂

 =

 y−1

0

 . (19)
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The forecast of y1 based on a model estimated on observations 2, 3, . . . , T clearly equals

ỹ1 =

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 y−1

0


and we may write

ỹ1 = α̂1

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1

+

 k−1,1

w1


′ α̂−1

β̂

 using Equation (19)

= α̂1

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1

+ y1 − α̂1 (k1,1 + λ) using Equation (18)

= y1 − α̂1

k1,1 + λ−

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1


 .

The expression k1,1 + λ −

 k−1,1

w1


′ K−1,−1 + λI W−1

W ′−1 0


−1 k−1,1

w1

 equals the reciprocal of

element (1, 1) of


k1,1 + λ k′−1,1 w′1

k−1,1 K−1,−1 + λI W−1

w1 W ′−1 0


−1

=

 K + λI W

W ′ 0


−1

, as can be seen by using

the partitioned matrix inversion formula. Therefore, the first leave-one-out error equals

y1 − ỹ1 = α̂1

/
element (1, 1) of

 K + λI W

W ′ 0


−1

.

In general, an analogous calculation shows that the tth leave-one-out prediction error equals

yt − ỹt = α̂t

/
element (t, t) of

 K + λI W

W ′ 0


−1

. (20)
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That is, we can compute all leave-one-out errors by dividing each element of the vector α̂ by the corresponding

diagonal element of the matrix

 K + λI W

W ′ 0


−1

. Observe that both α̂ and this matrix inverse are needed

in computing the out-of-sample forecast ŷ∗. Thus, in the process of making the out-of-sample prediction, we

can find all leave-one-out errors without performing any additional computations, aside from the division in

Equation (20).

As a final note, we mention that the matrix inverse in Equation (20) can also be computed efficiently. As

K + λI is symmetric and positive definite, its inverse can be computed from its Cholesky decomposition.

The inverse of the full matrix can then be calculated using Equation (14) in Appendix A.1.
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