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Abstract

We study cooperative games with communication structure, represented by an undirected

graph. Players in the game are able to cooperate only if they can form a network in the

graph. A single-valued solution, the average tree solution, is proposed for this class of

games. Given the graph structure we define a collection of spanning trees, where each

spanning tree specifies a particular way by which players communicate and determines

a payoff vector of marginal contributions of all the players. The average tree solution is

defined to be the average of all these payoff vectors. It is shown that if a game has a

complete communication structure, then the proposed solution coincides with the Shapley

value, and that if the game has a cycle-free communication structure, it is the solution

proposed by Herings, van der Laan and Talman (2008). We introduce the notion of link-

convexity, under which the game is shown to have a non-empty core and the average tree

solution lies in the core. In general, link-convexity is weaker than convexity. For games with

a cycle-free communication structure, link-convexity is even weaker than super-additivity.

Keywords: Cooperative game, graph structure, single-valued solution, core, convexity,

spanning tree.

AMS subject classification: 90B18, 91A12, 91A43.

JEL code: C71.



1 Introduction

A situation in which sets of players can realize joint payoffs by cooperating can be for-

mulated as a cooperative game (N, v), where N = {1, . . . , n} is a finite set of players and

v : 2N → R a characteristic function with v(S) the joint payoff that the players in S ⊂ N

can obtain by cooperation. In the standard approach it is assumed that any coalition S

can form and achieve worth v(S). However, there are many situations of interest where

cooperation among people depends on how they can communicate and coordinate.

In a seminal paper, Myerson [13] formulates such games with communication struc-

ture by a triple (N, v, L), where N is a set of players, v : 2N → R a characteristic function,

and L ⊂ {{i, j}| i, j ∈ N, i �= j} a set of edges on N representing communication links

between players. A coalition S can only cooperate if the set of nodes S is connected in

the graph (N,L) and thus any two players in S can communicate with each other, either

directly or indirectly through other players in S. Myerson also proposes a single-valued

solution for games with communication structure. Nowadays this solution is known as the

Myerson value. The Myerson value of a game with communication structure equals the

Shapley value of the so-called Myerson restricted game, induced by the communication

structure, and is characterized by component efficiency and fairness.

Alternative characterizations of the Myerson value are given in Myerson [14] and

Borm, Owen, and Tijs [2]. In the latter paper also another solution for games with com-

munication structure has been proposed, the so-called positional value, see also Meessen

[12]. This value is characterized by component efficiency and balanced total threats, see

Slikker [17]. Recently, Herings, van der Laan, and Talman [9] introduced a new solution

for the class of games with cycle-free communication structure, the so-called average tree

solution. This solution is characterized by component efficiency and component fairness.

The average tree solution lies in the core if the characteristic function v is superadditive.

This property does not hold for the Myerson value and the positional value.

In this paper we aim to generalize the average tree solution to the class of all games

with communication structure. A tree (N, T ) is a cycle-free directed graph, with T a

collection of n − 1 directed edges, such that for exactly one node, the root, there exists a

unique directed path in (N,T ) to every other node. To generalize the average tree solution

to the class of all games with communication structure, we define for every graph (N,L) a

collection of admissible spanning trees on the graph. A spanning tree is admissible if each

player has exactly one successor in each component of his subordinates. Such a spanning

tree describes how in the graph a player can communicate with other players in such a

way that two players cannot communicate with each other if one is not a subordinate of

the other. The payoff of a player in a given admissible spanning tree is then the marginal

contribution of that player when he joins his subordinates, and the proposed average tree
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solution is the average of the payoff vectors for all admissible spanning trees.

We show that for games with cycle-free communication structure the average tree

solution coincides with the average tree solution in Herings et al. [9] and that for games with

complete communication structure the average tree solution coincides with the Shapley

value. In this way the average tree solution is a proper generalization of both the Shapley

value for games with full communication and the average tree solution for games with

cycle-free communication structure. The number of admissible spanning trees depends on

the structure of the graph. Typically, when there are more cycles, there are more ways

for players to communicate and the number of admissible spanning trees becomes larger.

In a cycle-free graph (N,L) with n players there are exactly n admissible spanning trees,

while if the graph is complete there are n! admissible spanning trees. So, the average tree

solution is the average of a certain number of marginal vectors of the induced restricted

game, where the number depends on the communication structure. It therefore differs from

the Myerson value, which for every game with communication structure is given by the

average of all n! marginal vectors of the restricted game.

In this paper we also introduce the notion of link-convexity for games with com-

munication structure. For games with complete communication structure, the notion of

link-convexity coincides with convexity, but in general the notion of link-convexity is weaker

than convexity. For games with cycle-free communication structure, link-convexity is even

weaker than superadditivity. It is well known that for convex games the Shapley value lies

in the core and so the Myerson value lies in the core of the game when the (restricted) game

is convex. We show that for arbitrary games with communication structure, the average

tree solution is in the core if the game is link-convex. This confirms the result of Herings et

al. [9] for a game with cycle-free communication structure that the average tree solution is

in the core if the game is superadditive. Talman and Yamamoto [18] give for games with

cycle-free communication structure a condition that is even weaker than link-convexity to

guarantee that the average tree solution is in the core. We also illustrate that the Myerson

value may not be in the core if the game is link-convex but not convex.

This paper is organized as follows. Section 2 is a preliminary section on games

with communication structure. In Section 3 the average tree solution for all games with

communication structure is introduced. In Section 4 the classes of cycle-free and com-

plete communication structures are discussed. In Section 5 the notion of link-convexity is

introduced and it is shown that the average tree solution lies in the core if the game is

link-convex. Section 6 concludes.
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2 TU-games with communication structure

A transferable utility cooperative game with communication structure is represented by

(N, v, L) with N = {1, . . . , n} a finite set of players, v : 2N → R a characteristic function,

and (N,L) an undirected graph with node set the set of players N and a set of edges

L, being a subset of {{i, j} | i �= j, i, j ∈ N}. The set L stands for the collection of

communication links between players. If {i, j} belongs to L, then players i and j are able

to communicate with each other.

A sequence of different nodes (i1, . . . , ik′) is called a path from i1 to ik′ in the graph

(N,L) if {ik, ik+1} ∈ L for k = 1, . . . , k′ − 1. A coalition of players S ∈ 2N forms a

network in the graph (N,L) if S is connected in the graph, i.e., for any i, j ∈ S, i �= j,

there is a path in S from i to j. Notice that the empty set and all singleton coalitions are

networks by definition. Any two members in a network are able to communicate with each

other directly or indirectly through other players in the same network. A coalition S of

players is called a component in the graph (N,L) if S forms a network and S cannot form

a larger network with any other player j ∈ N \ S. A sequence of at least three different

nodes (i1, . . . , ik′) is called a cycle in the graph (N,L) if (1) it is a path in (N,L) and (2)

{ik′, i1} ∈ L. A graph (N,L) is cycle-free if it does not contain any cycle. For given graph

(N,L), each K ∈ 2N induces the subgraph (K,L(K)), with L(K) = {{i, j} ∈ L | i, j ∈ K}

the set of links on K. Notice that L(N) = L. The concepts defined above for the graph

(N,L) are defined similarly for (K,L(K)). For K ∈ 2N , let CL(K) denote the collection of

all networks in the graph (K,L(K)) and let ĈL(K) denote the collection of all components

in (K,L(K)).

A directed graph on N is a pair (N,D) such that D ⊂ {(i, j) ∈ N ×N | i �= j} is

a collection of directed edges. A player i is a predecessor of j and j a successor of i in D

if (i, j) ∈ D. A sequence of different nodes (i1, . . . , ik′) is called a directed path from i1 to

ik′ in the directed graph (N,D) if (ik, ik+1) ∈ D for k = 1, . . . , k′ − 1. A tree (N, T ) is a

directed graph, with T a collection of exactly n− 1 directed edges, such that from exactly

one node, called the root, there is a unique directed path to every other node. In a tree the

root has no predecessor and any other player has exactly one predecessor. On the other

hand, a player may have multiple successors. A player j is a subordinate of i in T if T

contains a directed path from i to j. Given an undirected graph (N,L), a tree (N, T ) is

a spanning tree of (N,L) if (i, j) ∈ T implies {i, j} ∈ L, i.e., any directed edge in T is an

undirected edge in L.

In the game (N, v, L), a coalition S of players can only cooperate and realize its

worth v(S) if S forms a network. In the rest of the paper, we assume without loss of

generality that N is connected, so N itself forms a network and can realize its worth v(N).

Otherwise, the analysis can be done analogously for each component in the graph (N,L).
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When each pair of players can communicate directly, i.e., L = {{i, j} | i �= j, i, j ∈ N},

(N, v, L) is said to be a game with complete communication structure and often shortly

denoted by (N, v).

A payoff vector x ∈ Rn of (N, v, L) is an n-dimensional vector giving a payoff xi ∈ R

to every player i ∈ N . We write x(S) =
∑

i∈S xi for S ∈ C
L(N). A payoff vector x is

efficient if x(N) = v(N), i.e., it fully distributes the worth v(N) of the grand coalition N

to all its members. A solution for games with communication structure is a mapping F

that assigns to every game with communication structure (N, v, L) a set of payoff vectors

F (N, v, L) ⊂ Rn. A solution F is efficient if for any (N, v, L) every element of F (N, v, L)

is efficient.

The best-known set-valued solution for games (N, v) is the core, see Gillies [6],

which assigns to every game (N, v) the set C(N, v) = {x ∈ Rn | x(N) = v(N), and x(S) ≥

v(S), for all S ∈ 2N} of undominated efficient payoff vectors. With full communication, a

payoff vector x is dominated if there exists a coalition S such that x(S) < v(S). However,

for games with communication structure (N, v, L), a coalition S can only cooperate if it

forms a network and so a payoff vector x can only be dominated by networks. Conse-

quently, for games with communication structure (N, v, L) the core becomes equal to the

set C(N, v, L) given by

C(N, v, L) = {x ∈ Rn | x(N) = v(N), and x(S) ≥ v(S), for all S ∈ CL(N)}, (2.1)

i.e., the core is the set of efficient payoff vectors that are not dominated by any network S.

Clearly, it holds that C(N, v, L) is equal to C(N, vL), where vL is the characteristic function

of the Myerson restricted game (N, vL) induced by (N, v, L) and defined for S ∈ 2N by

vL(S) =
∑

K∈ĈL(S)

v(K),

i.e., the value of coalition S equals the sum of the values of its components in (S, L(S)).

The best-known single-valued solution for games (N, v) is the Shapley value, see

Shapley [16], which assigns to every game (N, v) the average φ(N, v) of all n! marginal

vectors mπ(v) ∈ R
n of the game (N, v), where π = (π(1), . . . , π(n)) is a permutation

π : N → N assigning a unique number π(i) ∈ N to every player i ∈ N and mπ(v) =

(mπ
1 (v), . . . ,m

π
n(v)) with, for every j ∈ N , m

π
j (v) = v(π

j ∪ {j})− v(πj) and πj = {i ∈ N |

π(i) < π(j)}. The Myerson value, see Myerson [13], is a single-valued solution assigning

to every (N, v, L) the Shapley value φ(N, vL) of the Myerson restricted game.
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3 The average tree solution

In this section we present a new single-valued solution for games with communication

structure. The new solution generalizes the average tree solution for games with cycle-free

communication structure as introduced in Herings et al. [9]. For a game with cycle-free

communication structure (N, v, L) the average tree solution is the average of n specific

payoff vectors. More precisely, each payoff vector corresponds to one player and this vector

is determined by the unique spanning tree (N, T ) for the cycle-free graph (N,L) in which

that player is the root of the tree. On the class of games with cycle-free communication

structure the average tree solution has been axiomatized by component efficiency and

component fairness. In [9] it is also shown that if the characteristic function of the game

satisfies superadditivity, the average tree solution lies in the core C(N, v, L).

To extend and generalize the average tree solution to the class of all games with

communication structure, first notice that when a graph (N,L) is not cycle-free, not all

links are needed to communicate. For a particular player i, every spanning tree on (N,L)

having player i as root describes a possibility in which player i is able to communicate with

the other players. We only consider spanning trees in which any player is linked to just

one successor in every component of the set of his subordinates. To describe this class of

spanning trees, we first give the definition of an admissible n-tuple of coalitions.

Definition 3.1 For given graph (N,L), an n-tuple B = (B1, . . . , Bn) of n subsets of N is

admissible if it satisfies the following conditions:

(1) For all i ∈ N, i ∈ Bi, and for some j ∈ N, Bj = N ;

(2) For all i ∈ N and K ∈ ĈL(Bi \ {i}), we have K = Bj and {i, j} ∈ L for some j ∈ N.

Condition (2) of Definition 3.1 states that for every i ∈ N each component in the

subgraph (Bi \ {i}, L(Bi \ {i})) is equal to Bh for some player h being linked to player i.

The same condition also implies that every set Bi is a network.

Given an admissible n-tuple of coalitions B, we interpret Bi as the set of subor-

dinates of player i together with player i himself. We define the directed graph (N,TB)

as

TB = {(i, j) | Bj ∈ Ĉ
L(Bi \ {i}), i ∈ N}. (3.2)

The notion of admissible n-tuples has the following properties.

Lemma 3.2 For a graph (N,L), let B be an admissible n-tuple of coalitions. Then the

following properties hold.
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(1) There exists a unique player i ∈ N such that Bi = N .

(2) For all i, j ∈ N , i �= j, either Bi ⊂ Bj \ {j}, or Bj ⊂ Bi \ {i}, or both Bi ∩ Bj = ∅

and Bi ∪Bj �∈ C
L(N);

(3) The directed graph (N,TB) is a spanning tree.

Proof. From Condition (1) of Definition 3.1 it follows that Bi = N for some i ∈ N. By

Condition (2) of Definition 3.1, for every K ∈ ĈL(Bi \ {i}) there exists j ∈ N such that

K = Bj and {i, j} ∈ L, which leads to edges (i, j) of TB. Next we continue this procedure

with every j chosen in the previous step for which the network Bj is not a singleton. We

proceed in this way until all remaining networks are singletons. It follows immediately that

TB is a spanning tree, which proves (3). Observe that, for all j ∈ N, Bj \ {j} is the set of

subordinates of player j in the spanning tree TB. Therefore, there is a unique i ∈ N for

which Bi = N , which proves (1).

To prove (2) consider two nodes i and j. Because TB is a spanning tree, either

Bi ⊂ Bj \ {j} or Bj ⊂ Bi \ {i} or Bi ∩ Bj = ∅. It remains to be shown that Bi ∪ Bj is

not a network in the last case. Since TB is a spanning tree, there is j′ �= i, j such that

Bi ⊂ Bj′ and Bj ⊂ Bj′ . Let Bj′ be the minimal set with these properties. Moreover, there

is no (j′, j′′) ∈ TB such that both Bi ⊂ Bj′′ and Bj ⊂ Bj′′ , since otherwise Bj′′ is a proper

subset of Bj′. It follows that Bi and Bj belong to different components of Ĉ
L(Bj′ \ {j′}),

so Bi ∪ Bj is not connected.

�

Property (2) of Lemma 3.2 says that if Bi and Bj are two different components in

ĈL(Bk \{k}) for some k ∈ N , then there is no link in the graph (N,L) between any player

of Bi and any player of Bj. This means that for any two players, if in T
B one player is

not a subordinate of the other, they cannot communicate directly with each other in the

graph (N,L). In the spanning tree TB, the root player i communicates with a subordinate

h in TB through his successor j in the component K of ĈL(N \ {i}) that contains h.

Then Bj = K and on his turn, player j communicates with his subordinates through his

successors in the components in ĈL(Bj \ {j}), and so on.

The following example illustrates the concept of admissible n-tuples and their in-

duced spanning trees.

Example 3.3 Let (N,L) be given byN = {1, 2, 3, 4} and L = {{1, 2}, {2, 3}, {3, 4}, {1, 4}},

i.e., L is given by the cycle (1, 2, 3, 4). Consider the case where B1 = N . By Condition (2)

of Definition 3.1, for the unique component K = {2, 3, 4} of the subgraph on {2, 3, 4},

there exists a player i such that {1, i} ∈ L and Bi = K. Clearly, it holds that i = 2 or
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i = 4. First, take i = 2, then B2 = {2, 3, 4}. For the unique component K ′ = {3, 4} of

the subgraph on B2 \ {2} = {3, 4}, there is a player j such that {2, j} ∈ L and Bj = K
′.

Clearly, j = 3 and it follows that B3 = {3, 4}. Finally B4 = B3 \ {3}, so B4 = {4} is a leaf.

Analogously, when i = 4 is taken, B4 = {2, 3, 4}, B3 = {2, 3}, and B2 = {2}.

So, there are two admissible n-tuple of coalitions with B1 = N , namely (i) B1 =

N , B2 = {2, 3, 4}, B3 = {3, 4}, B4 = {4}, and (ii) B1 = N , B2 = {2}, B3 = {2, 3},

B4 = {2, 3, 4}. By symmetry, for any i ∈ N there are two admissible n-tuples of coalitions

with Bi = N and thus there are 8 admissible n-tuples of coalitions for the cyclic graph on

N = {1, 2, 3, 4}.

The two sets of admissible n-tuple of coalitions with B1 = N induce two span-

ning trees with player 1 as root, the spanning tree T1 = {(1, 2), (2, 3), (3, 4)} in case

B2 = {2, 3, 4} and the spanning tree T2 = {(1, 4), (4, 3), (3, 2)} in case B4 = {2, 3, 4}.

Observe that there are also two other spanning trees with player 1 as root, namely T3 =

{(1, 2), (1, 4), (2, 3)} and T4 = {(1, 2), (1, 4), (4, 3)}, but these spanning trees do not cor-

respond to an admissible n-tuple of coalitions, because player 1 has two successors in

component {2, 3, 4} of ĈL(N \ {1}).

�

As shown in the example, the set of spanning trees induced by the collection of

admissible n-tuples of coalitions is typically a proper subset of the collection of all span-

ning trees of (N,L). To define the average tree solution for the class of all games with

communication structure we only consider spanning trees induced by admissible n-tuples of

coalitions. For a game with communication structure (N, v, L), let BL denote the collection

of all admissible n-tuples of coalitions B = (B1, . . . , Bn) for the graph (N,L). Then, for

every B ∈ BL, we define the marginal contribution vector mB(N, v, L), yielding a payoff

mB
i (N, v, L) for every player i ∈ N .

Definition 3.4 For a game with communication structure (N, v, L), the marginal contri-

bution vector mB(N, v, L) ∈ Rn corresponding to B ∈ BL is the vector of payoffs given

by

mB
i (N, v, L) = v(Bi)−

∑

K∈ĈL(Bi\{i})

v(K), i ∈ N.

At mB(N, v, L) every player i ∈ N receives a payoff equal to the worth of network Bi

minus the total worths of the components of (Bi \ {i}, L(Bi \ {i})). With respect to the

corresponding spanning tree TB, the marginal contribution gives to every player the value

of the network consisting of himself and his subordinates minus the total payoff assigned

to his subordinates. Notice that a marginal contribution vector mB(N, v, L) is a marginal

vector mπ of the restricted game (N, vL) for any permutation π satisfying Bi \ {i} ⊂ πi for
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all i ∈ N . We remark that spanning trees that are not induced by an admissible n-tuple

of coalitions do not yield a payoff vector that has this property.

We now define the average tree solution as the average of all marginal contribution

vectors over the collection of admissible n-tuples of coalitions.

Definition 3.5 Average tree solution

On the class of all games with communication structure (N, v, L), the average tree (AT)

solution assigns the payoff vector AT(N, v, L) given by

AT(N, v, L) =
1

|BL|

∑

B∈BL

mB(N, v, L).

The number of admissible n-tuples depends on the structure of the graph (N,L).

In the next section we discuss two special cases, cycle-free graphs and complete graphs.

4 Special cases of games with communication struc-

ture

In this section we discuss the average tree solution for games with cycle-free communication

structure and complete communication structure.

Lemma 4.1 Let (N,L) be a cycle-free graph. Then for every i ∈ N there is exactly one

admissible n-tuple of coalitions such that Bi = N .

Proof. For some i ∈ N , take Bi = N . Since the graph is cycle-free and connected, player

i is linked to exactly one player in each component of N \ {i}. For given K ∈ ĈL(N \ {i}),

let j ∈ K be the unique player such that {i, j} ∈ L. Then, by Condition (2) of Definition

3.1, Bj = K. Next, for each component Bj ∈ ĈL(N \ {i}), player j ∈ Bj is linked to

exactly one player in each component of ĈL(Bj \ {j}). For given K ′ ∈ ĈL(Bj \ {j}), let

j′ ∈ K ′ be the unique player in K ′ such that {j, j′} ∈ K ′. Then, again by Condition (2)

of Definition 3.1, Bj′ = K ′. Continuing this procedure as long as there are components

consisting of more than one player, we obtain the unique admissible n-tuple of coalitions

with Bi = N . �

Using this lemma we show that for games with cycle-free communication structure

the average tree solution coincides with the solution introduced in Herings et al. [9] for this

particular class of games. When (N,L) is cycle-free, let T i, i ∈ N , be the unique spanning
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tree with node i as its root. For a game with cycle-free communication structure (N, v, L),

the spanning tree T i determines a marginal contribution vector mi(N, v, L) with payoff

mi
j(N, v, L) = v(K

i
j)−

∑

{j|(j,j′)∈T i}

v(Ki
j′), j ∈ N, (4.3)

where, for j ∈ N , K i
j is the set of nodes consisting of j and all its subordinates in T

i. The

average tree solution for games with cycle-free communication structure as introduced in

Herings et al. [9] then yields the average of these n marginal contribution vectors.

Theorem 4.2 For a game with cycle-free communication structure (N, v, L) it holds that

AT (N, v, L) =
1

n

∑

i∈N

mi(N, v, L).

Proof. By Lemma 4.1 we have that for any i ∈ N there is a unique admissible n-tuple

of coalitions with Bi = N . Let B(i) be this n-tuple of coalitions. From the construction

in the proof of Lemma 4.1, it follows immediately that the spanning tree TB(i) corre-

sponding to B(i) coincides with the unique spanning tree T i having i as its root. Hence

mi(N, v, L) = mB(i)(N, v, L) for all i ∈ N . �

Next we prove that for games with complete communication structure the average

tree solution coincides with the Shapley value.

Lemma 4.3 Let (N,L) be a complete graph. Then there are n! admissible n-tuples of

coalitions.

Proof. For an arbitrarily chosen player i1 ∈ N , we consider the collection of all admissible

n-tuples B with Bi1 = N . Since the graph (N,L) is complete, N \ {i1} is connected and

thus consists of exactly one component. For any arbitrarily chosen i2 in N \ {i1} we can

set Bi2 = N \ {i1}, since i1 is connected with every other player. The network Bi2 \ {i2}

consists of exactly one component and for every i3 ∈ Bi2 \ {i2} we can set Bi3 = Bi2 \ {i2}.

Continuing in this way at each step k, k = 1, . . . , n, we can take an arbitrarily chosen

player ik in Bik−1 \ {ik−1} and set Bik = Bik−1 \ {ik−1}, where Bik = N when k = 1. Since

at each step, any player in the remaining set can be chosen, there are n! admissible n-tuples

of coalitions. �

Theorem 4.4 Let (N, v, L) be a game with complete communication structure. Then the

average tree solution is equal to the Shapley value of (N, v).
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Proof. For a game (N, v), the Shapley value φ(N, v) is equal to the average of all n! mar-

ginal vectors mπ(v). Let B be an admissible n-tuple of coalitions constructed in the proof

of Lemma 4.3. For the player ik chosen at step k, the marginal contribution m
B
ik
(N, v, L)

is equal to v(Bik) − v(Bik+1), where Bin+1 = ∅. We define a bijection between admissi-

ble n-tuple of coalitions B and permutations π by assigning permutation πB, given by

πBik = n + 1 − ik, k = 1, . . . , n, to admissible n-tuple of coalitions B. By definition of the

marginal vector we have that mπB(v) = mB(N, v, L). Hence, the average of all marginal

contribution vectors mB(N, v, L) is equal to the average of all marginal vectors mπ(v). �

Observe that for a complete graph each of the n! admissible n-tuples of coalitions

generates a path graph, i.e., each player has exactly one successor and one predecessor,

except the first chosen player who has no predecessor and the last chosen player who has

no successor. On the other hand, any given path graph corresponds to the permutation in

which the last chosen player enters first, the second last chosen player enters second, and

so on.

5 Core properties

In this section we provide conditions for arbitrary games with communication structure

under which the average tree solution lies in the core. For a game (N, v) it is well-known

that the Shapley-value φ(N, v) is in the core C(N, v) if the game is convex, the requirement

that v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for every S, T ⊂ N . A game is superadditive if

these inequalities are satisfied for every S and T such that S ∩ T = ∅. Superadditivity

is insufficient to ensure that a game has a non-empty core. We say that a game with

communication structure (N, v, L) is superadditive if its Myerson restricted game (N, vL)

is superadditive. It can be shown that a superadditive game with cycle-free communica-

tion structure has a non-empty core. In particular, it follows from Demange [5] that any

marginal contribution vector mi(N, v, L) as defined in equation (4.3) is in C(N, vL). In

fact, when vL is superadditive, then vL is permutationally convex for any permutation

corresponding to the spanning tree T i and then, according to Granot and Huberman [7],

mi(N, v, L) is in C(N, vL) for all i ∈ N . So, for superadditive games with cycle-free com-

munication structure the average tree solution is in C(N, v, L), because the core is convex.

Also for games with cycle-free communication structure, Talman and Yamamoto [18] pro-

vide a condition even weaker than superadditivity under which the average tree solution

is still in the core. We next introduce the notion of link-convexity, which will be shown to

assure that the average tree solution is an element of the core for an arbitrary game with

communication structure.
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Definition 5.1 Link-convexity

A game with communication structure (N, v, L) is link-convex if

v(S) + v(T ) ≤ v(S ∪ T ) +
∑

K∈ĈL(S∩T )

v(K),

for any S, T ⊂ N that satisfy

(1) S, T, S \ T, T \ S, and (S \ T ) ∪ (T \ S) are non-empty networks,

(2) N \ S or N \ T is a network.

Notice that Condition (1) of Definition 5.1 implies that S ∪ T is a non-empty network.

Link-convexity reduces to convexity for the class of games with complete commu-

nication structure because for those games all subsets of N are networks and convexity is

satisfied trivially when S, T, S \T, or T \S equals the empty set. We illustrate the concept

of link-convexity with an example.

Example 5.2 (Cycle graph)

We consider the graph (N,L) with L = {{i, i + 1} | i = 1, . . . , n}, where n + 1 = 1,

so the players are located on a circle. In this case any non-empty network has form

S = [i, j], where [i, j] denotes the set {i, i + 1, i + 2, . . . , j} if j ≥ i and [i, j] denotes the

set {i, i + 1, . . . , n, 1, . . . , j} if j < i. Observe that for any S = [i, j], the set N \ S is a

network. By Condition (1) of Definition 5.1 we must have that both S and T are non-

empty networks, so for some i, i′, j, j′, S = [i, i′] and T = [j, j′]. Then both N \S and N \T

are networks, so Condition (2) of Definition 5.1 is redundant. Without loss of generality

assume that j ≥ i. Then the condition that S \ T and T \ S are non-empty, requires that

j > i. Now, if j �= i′+1 then we must have that j′ = i−1, otherwise (S \T )∪(T \S) is not

a network. Therefore, for the game with cyclic communication structure the link-convexity

property requires that

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

for all sets S = [i, i′] and T = [j, j′] such that j > i and further j = i′+1 or j′ = i− 1, i.e.,

the two sets must be such that S ∪ T and S ∩ T are both networks. �

The next theorem shows that the average tree solution is in the core if the game is

link-convex.

Theorem 5.3 If the game with communication structure (N, v, L) is link-convex, then

AT (N, v, L) ∈ C(N, v, L).
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Proof. We show that under link-convexity any marginal contribution vector mB =

mB(N, v, L), B ∈ BL, is an element of C(N, v, L), which proves the result because the

core is a convex set.

Consider anyB = (B1, . . . , Bn) ∈ BL. We have by definition ofmB that
∑

i∈N m
B
i =

v(N). To prove that
∑

i∈Sm
B
i ≥ v(S) for S ∈ CL(N), take any S ∈ CL(N) and let

S1, . . . , Sk′ be the components in the subgraph (S, TB(S)). Since Sk is connected, the

directed subgraph (Sk, T
B(Sk)) is a tree and there exists a unique rk ∈ Sk such that Sk ⊂

Brk , k = 1, . . . , k
′. Notice that rk is the root of (Sk, T

B(Sk)). We define I = {r1, . . . , rk′}.

By Property (2) of Lemma 3.2, either Bi ⊂ Bj \ {j} or Bj ⊂ Bi \ {i} or Bi ∩ Bj = ∅ for

every pair i, j ∈ I. Since S is a network and because of Property (2) of Lemma 3.2 it holds

that there is one node, say, rk′ , such that for every i ∈ I \ {rk′} the node i is a subordinate

of rk′ and therefore Bi ⊂ Brk′ \ {rk′}. Since Si ⊂ Bi, for all i ∈ I, we have that S ⊂ Brk′ .

Next, for k = 1, . . . , k′, let Frk = {j ∈ N \ S | (i, j) ∈ TB for some i ∈ Sk} be the

set of successors of Sk in the tree T
B outside S.We define J = ∪i∈IFi as the set of all such

successors. For j ∈ J , let

Hj = {i ∈ I | Bi ⊂ Bj and � ∃i′ ∈ I \ {i} such that Bi ⊂ Bi′ ⊂ Bj}.

We define N̂ = I ∪ J and the directed graph (N̂ , T̂ ) by

T̂ = {(i, j) | j ∈ Fi, i ∈ I} ∪ {(j, i) | i ∈ Hj, j ∈ J}.

Clearly, (N̂, T̂ ) is a tree with root rk′.

For k = 1, . . . , k′, Brk = Sk ∪ (∪j∈FrkBj), so

∑

i∈S

mB
i =

k′∑

k=1

[v(Brk)−
∑

j∈Frk

v(Bj)]. (5.4)

Without loss of generality, let r1, . . . , rk′ be such that k1 < k2 implies Br
k1
⊂ Br

k2
or

Br
k1
∩Br

k2
= ∅. Next, for k = 0, . . . , k′, let Bk = Br1 ∪ · · · ∪Brk , so it follows that B

0 = ∅.

Consider some k ∈ {1, . . . , k′} and write Frk = {j1, . . . , jℓ′}. If Frk = ∅, then we

define l′ to be zero. When ℓ′ ≥ 1, then, for ℓ = 1, . . . , ℓ′, the two sets S ∪ Bk−1 ∪ (Bj1 ∪

· · · ∪ Bjℓ−1) and Bjℓ satisfy Conditions (1) and (2) of Definition 5.1. Notice that the

components of their (possibly empty) intersection are the networks Bi for i ∈ Hjℓ and that

Bjℓ \ (∪i∈HjℓBi) is linked to Sk. Now it follows from link-convexity that for l = 1, . . . , l′,

v(S∪Bk−1∪ (Bj1 ∪ · · · ∪Bjℓ−1))+v(Bjℓ) ≤ v(S ∪B
k−1∪ (Bj1 ∪ · · ·∪Bjℓ))+

∑

i∈Hjℓ

v(Bi).

By repeated application of this argument and since Sk∪Bk−1∪ (∪j∈FrkBj) = B
k, it follows

that for k = 1, . . . , k′,

v(S ∪ Bk−1) +
∑

j∈Frk

v(Bj) ≤ v(S ∪B
k) +

∑

j∈Frk

∑

i∈Hj

v(Bi).
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Notice that this formula is also valid if Frk = ∅, since then S ∪B
k−1 = S ∪Bk.

By repeated application of the last inequality, we find that

v(S) +
k′∑

k=1

∑

j∈Frk

v(Bj) ≤ v(S ∪ B
k′) +

k′∑

k=1

∑

j∈Frk

∑

i∈Hj

v(Bi).

Since S ∪ Bk
′

= Brk′ and T̂ is a tree, it follows that every Brk , k = 1, . . . , k
′ − 1, appears

exactly once in the right-hand side, and we obtain

v(S) +
k′∑

k=1

∑

j∈Frk

v(Bj) ≤
k′∑

k=1

v(Brk). (5.5)

From equations (5.4) and (5.5) it follows that

v(S) ≤
∑

i∈S

mB
i ,

which completes the proof. �

From this theorem the next corollary follows immediately

Corollary 5.4 If a game with communication structure (N, v, L) is link-convex, then the

core C(N, v, L) is non-empty.

For games with complete communication structure link-convexity and convexity

coincide with each other. The next lemma shows that under weaker conditions than su-

peradditivity, a game with cycle-free communication structure is link-convex.

Lemma 5.5 A game with cycle-free communication structure (N, v, L) is link-convex if

and only if for every S ∈ CL(N) it holds that

v(S) + v(T ) ≤ v(S ∪ T ) for all T ∈ ĈL(N \ S).

Proof. Let S, T ⊂ N satisfy the conditions in Definition 5.1 with N \ T being a network.

We first show that S ∩ T = ∅. Suppose S ∩ T �= ∅. Take any i′ ∈ S ∩ T . Since S \ T and

T \ S are non-empty and (S \ T ) ∪ (T \ S) is a non-empty network, there exists i ∈ S \ T

and j ∈ T \ S such that {i, j} ∈ L. Since both S and T are networks, there exists a path

in S connecting i and i′ and there exists a path in T connecting j and i′. This contradicts

the fact that (N, v, L) is a game with cycle-free communication structure.

From S∩T = ∅, it follows that S ⊂ N \T. Since both N \T and S∪T are networks,

S ⊂ N \ T, and (N,L) is cycle-free, we must have T ∈ ĈL(N \ S). �
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The lemma shows that the condition v(S) + v(T ) ≤ v(S ∪ T ) only has to hold

for any network S and any network T that is a component of (N \ S, L(N \ S)). Notice

that for a game with cycle-free communication structure superadditivity requires that

v(S) + v(T ) ≤ v(S ∪ T ) for any disjoint S and T such that S, T, and S ∪ T are networks.

So, the next corollary follows immediately.

Corollary 5.6 A game with cycle-free communication structure (N, v, L) is link-convex if

v is superadditive.

The following example illustrates that link-convexity is strictly weaker than superad-

ditivity and also that the Myerson value may not be in the core if the game is link-conevex.

Example 5.7 (Path graph)

We consider the cycle-free graph on (N,L) with L = {{j, j + 1} | j = 1, . . . , n − 1}.

In L the players are positioned along a path from 1 to n and any player is connected

with his neighbors. In this case any non-empty network S is of the form S = [i, j],

1 ≤ i ≤ j ≤ n, where [i, j] = {i, . . . , j}. From Theorem 5.5 it follows that for a game with

path communication structure (N, v, L), link-convexity requires

v(S) + v(T ) ≤ v(S ∪ T )

for all coalitions S and T such that S = [i, j] and T = [1, i− 1] or T = [j + 1, k]. Observe

that for games with path communication structure link-convexity is indeed weaker than

superadditivity.

For example, consider the path graph with N = 4 and L = {{1, 2}, {2, 3}, {3, 4}}.

The values of the connected coalitions are given by v({1}) = v({4}) = 0, v({2}) = 2,

v({3}) = 4, v([1, 2]) = v([2, 3]) = 2, v([3, 4]) = 4, v([1, 3]) = v([2, 4]) = 6, and v([1, 4]) = 6.

This game is not superadditive, since for the networks S = {2} and T = {3} we have that

v([2, 3]) = 2 < v({2}) + v({3}) = 6. Link-convexity only requires that

v([1, j]) + v([j + 1, k]) ≤ v([1, k]) for j = 1, 2, 3, j + 1 ≤ k ≤ 4

and

v([i, j]) + v([j + 1, 4]) ≤ v([i, 4]) for i = 2, 3, i ≤ j < 4.

Indeed, all these inequalities are satisfied for the game. Observe that this game has a

unique core element (0, 2, 4, 0)⊤.

The average tree solution for this game is equal to the average of the marginal

contribution vectors of the spanning trees induced by the four admissible 4-tuples B1 =

(N, {2, 3, 4}, {3, 4}, {4}), B2 = ({1}, N, {3, 4}, {4}), B3 = ({1}, {1, 2}, N, {4}), and B4 =
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({1}, {1, 2}, {1, 2, 3}, N). All these 4-tuples yield the same marginal contribution vector,

(0, 2, 4, 0)⊤. Therefore the average tree solution equals AT(N, v, L) = (0, 2, 4, 0)⊤, coincid-

ing with the unique core element.

To compute the Myerson value of the game, we first determine the Myerson re-

stricted game (N, vL). For S ∈ CL(N) we have vL(S) = v(S) and for S �∈ CL(N) we have

vL({1, 3}) = 4, vL({1, 4}) = 0, vL({2, 4}) = 2, vL({1, 3, 4}) = 4, and vL({1, 2, 4}) = 2.

The Myerson value is equal to the Shapley value of the game (N, vL) and therefore

equal to (1
3
, 5
3
, 11
3
, 1
3
)⊤. Notice that the Myerson value lies outside the core. This is caused

by the fact that the Myerson value is the average of all the 24 marginal vectors of (N, vL).

Each marginal vector of (N, vL) is induced by a permutation; not every permutation yields

a marginal vector which is a core element. For example, the permutation π1 = (1, 4, 2, 3)

leads to the marginal vectormπ1 = (0,−2, 4, 4)⊤ and the permutation π2 = (4, 1, 3, 2) leads

to the marginal vector mπ2 = (0, 4, 0, 2)⊤. Both marginal vectors lie outside the core and

are not induced by an admissible 4-tuple of coalitions. �

6 Concluding remarks

In this paper the average tree solution is proposed for the class of all games with commu-

nication structure. This solution generalizes both the solution introduced by Herings et al.

[9] for the class of games with cycle-free communication structure and the Shapley value

for the class of games with complete communication structure. We introduce the condition

of link-convexity under which the average tree solution is an element of the core. For the

class of games with cycle-free communication structure, link-convexity is weaker than su-

peradditivity. In general, link-convexity is weaker than convexity, and only coincides with

it for games with complete communication structure.

Following this study, Baron et al. [1] define and axiomatize the average tree solution

for any class of spanning trees. They also investigate several properties of the average tree

solution. In particular, they prove that the set of spanning trees induced by the class of

admissible n-tuples of coalitions is the largest class of spanning trees satisfying that the

corresponding average tree solution has the Harsanyi property.
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