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Abstract

Although the principles of Exclusion and Exemption are appealing, the specific condi-

tions under which an agent receives its claim, respectively nothing, seem arbitrary and are

inconsistent in the sense that there is no bankruptcy rule that satisfies both. However,

weakening these conditions (by putting lower boundaries on what is considered to be a

‘small claim’), there do exist rules satisfying both principles. In this paper we consider a

Weak Exemption and a Weak Exclusion property such that there is a unique bankruptcy

rule that satisfies these two properties, together with Consistency and Weak Proportion-

ality (i.e. a change in the estate effects the payoffs of agents with bigger claims more than

the payoffs of agents with smaller claims). This rule turns out to be the Reverse Talmud

rule. Moreover, we show that Weak Exemption and Weak Exclusion are each others dual,

and that the Reverse Talmud rule also can be characterized as the unique Self-Dual solu-

tion that satisfies Consistency, Weak Proportionality and either Weak Exemption or Weak

Exclusion. Finally, we generalize the Reverse Talmud rule to a class of bankruptcy rules

that all satisfy some Weak Exemption and some Weak Exclusion property (that are not

necessarily each others dual), which also contains the famous Constrained Equal Awards

and Constrained Equal Losses rules as extreme cases.

Keywords: Bankruptcy problem, Exemption, Exclusion, Self-Duality, Reverse Talmud

rule.

JEL code: D63.



1 Introduction

One of the most fundamental models in economic theory is that of the bankruptcy or

rationing problem. This problem considers a set of agents that each have a certain non-

negative claim on a nonnegative estate such that the sum of the claims is smaller than the

estate. The estate consists of a given amount of a single (perfectly divisible) good. The

allocation problem then is how to divide the estate among the agents taking into account

their claims. This bankruptcy problem models real life situations. Basic properties of an

allocation rule is that all agents earn a nonnegative part of the estate and no agent gets

more than its claim. An allocation rule that satisfies these two basic properties is called a

bankruptcy rule.

The literature discusses many solutions (i.e. bankruptcy rules) to this problem,

see e.g. Young (1987, 1988), Chun (1988), Dagan (1996), Herrero et al. (1999), Herrero

and Villar (2001) and Thomson (2008), or O’Neill (1982), Aumann and Maschler (1985),

Curiel et al. (1988), and Dagan and Volij (1993) for a game theoretic approach. Also see

Thomson (1995) and Moulin (2001) for a survey.

The four most famous bankruptcy rules are the Proportional rule (that divides

the estate proportionally to the agents claims), the Constrained Equal Awards rule (that

divides the estate equally among the agents under the condition that nobody gets more

than its claim), the Constrained Equal Losses rule (that divides the difference between the

aggregate claim and the estate equally, provided no agent ends up with a negative transfer)

and the Talmud rule (that combines the principles of the three rules above and that gives

at most half of the claim to an agent when the Estate is small, at least half of the claim

when the estate is big and is equal to the Proportional rule when the estate is equal to half

of the sum of the claims). We refer to Herrero and Villar (2001) for a survey of these four

rules. Most part of the literature is devoted to characterizing these and other bankruptcy

rules by several appealing axioms. For a survey on this we refer to Thomson (1998). In

this paper we introduce a new bankruptcy rule that has important properties in common

with these four rules.

Although these rules have a long tradition in history, their axiomatizations have been

developed in the last few decades. In Herrero and Villar (2001) the four rules are evaluated

by their differences with respect to satisfying a selected set of axioms. It is known from

the literature that a solution satisfies the properties of Equal Treatment of Equals, Scale

Invariance, Composition, Path Independence and Consistency if and only if it is either the

Proportional rule or the Constrained Equal Awards rule or the Constrained Equal Losses

rule, see Moulin (2000). Further, Herrero and Villar (2001) show that from these three

solutions the Constrained Equal Awards rule is the only one that satisfies Exemption, while
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the Constrained Equal Losses rule is the only one that satisfies Exclusion1. The Exemption

property says that small claims are not held responsible for the shortages. In contrast,

Exclusion ignores small claims. Although the principles of Exclusion and Exemption are

appealing, the specific conditions under which an agent receives its claim, respectively

nothing, seem arbitrary and are inconsistent in the sense that there is no bankruptcy

rule that satisfies both. However, we can still respect the principles of Exclusion and

Exemption but with weaker conditions under which an agent must receive its claim or

nothing. Therefore we define weak Exemption and weak Exclusion and show that there

exist solutions that satisfy both these properties. More precise, we show that there is a

unique bankruptcy rule that satisfies these two properties, together with Consistency and

Weak Proportionality (the last property saying that changing the estate always has an

effect on the payoffs of agents with higher claims that is at least as much as the effect on

payoffs of lower claim agents). This rule turns out to be the Reverse Talmud rule introduced

in Chun, Schummer and Thomson (2001), see also Thomson (2008). This rule combines

the principles of the Proportional-, CEA- and CEL rules and can be seen as some kind

of counterpart of the Talmud rule. It gives the same solution as the Constrained Equal

Losses rule when the estate is small compared to the sum of the claims, the same solution

as the Constrained Equal Awards rule when the estate is large and it is again equal to the

Proportional rule when the estate is equal to half of the sum of the claims.

An important property that this Reverse Talmud rule has in common with the

Proportional rule, but is not satisfied by the Constrained Equal Awards rule nor the Con-

strained Equal Losses rule is Self-Duality, see Chun, Schummer and Thomson (2001). We

show that the properties of Weak Exemption and Weak Exclusion are each others dual,

and so the Reverse Talmud rule can also be characterized as the unique Self-Dual solu-

tion that satisfies Consistency, Weak Proportionality and either Weak Exemption or Weak

Exclusion.

Finally, we will also show that when we parametrize Weak Exclusion and Weak Ex-

emption, we obtain a class of bankruptcy rules, containing the Constrained Equal Awards

and Constrained Equal Losses rules as its two extreme elements and containing the Reverse

Talmud rule as some kind of compromise solution between these two rules. All solutions

in this class are CIC-rules (first Constant, then Increasing, then Constant) as considered

in Thomson (2008).

This paper is organized as follows. In Section 2 we discuss some preliminaries.

In Section 3 we characterize the Reverse Talmud rule using Weak Exemption and Weak

Exclusion. In Section 4 we discuss and axiomatize the general class of bankruptcy rules.

1In fact, Herrero and Villar (2001) characterize these solutions by Path Independence, Consistency and

Exemption, respectively Composition, Consistency and Exclusion.
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Finally, Section 5 contains some concludiong remarks.

2 Preliminaries

Let N be a finite (or countably infinite) set of agents. An allocation situation is given

by a finite set N ⊂ N and an amount E ≥ 0, refered to as the estate, of a certain good

(money) to be distributed among the agents. An allocation situation is called a bank-

ruptcy situation (or a rationing problem (see e.g. Moulin (2000)), when each agent

i ∈ N has a claim ci ≥ 0 on the good such that
∑

i∈N ci ≥ E. In the sequel we denote a

bankruptcy situation by the triple (N,E, c), where c = (ci)i∈N is the collection of claims.

For given N , the collection of all bankruptcy situations (N,E, c) is denoted by BN . Further

B = ∪N⊂NBN denotes the collection of all bankruptcy situations over all populations. For

given N ⊂ N and any S ⊆ N , cS denotes the collection of claims (ci)i∈S restricted to S,

and c(S) =
∑

i∈S ci is the sum of claims of agents in S. Further we denote the aggregate

claim by C =
∑

i∈N ci and the aggregate loss by L = C − E. Note from C = L + E and

E ≥ 0, that L ≤ C, so that (N,L, c) ∈ B is the bankruptcy problem induced by (N,E, c)

in which the aggregate loss L has to be distributed among the players. For given N ⊂ N ,

an allocation x ∈ IRn assigns a payoff xi to any i ∈ N . For S ⊆ N and x ∈ IRn, we also

denote xS = (xi)i∈S and x(S) =
∑

i∈S xi. A bankruptcy rule on B is a mapping F

that assigns to every (N,E, c) ∈ B a unique allocation F (N,E, c) that is efficient and

individually non-negative and claim bounded, i.e.,

(i)
∑

i∈N Fi(N,E, c) = E,

(ii) 0 ≤ Fi(N,E, c) ≤ ci for any i ∈ N .

So, a bankruptcy rule always distributes exactly the worth of the estate such that no agent

gets less than zero or more than its claim. For given bankruptcy rule F , the dual rule

F ∗ of F , see Aumann and Maschler (1985), is obtained by distributing the aggregate loss

L = C − E among the players according to F , i.e., F ∗i (N,E, c) = ci − Fi(N,L, c), i ∈ N .

Note that F ∗ satisfies (i) and (ii), and thus also is a bankruptcy rule.

We now recall four bankruptcy rules on B with a long history of being applied in

real life situations2. For any (N,E, c), the four rules are defined as follows.

• Proportional rule P: Pi(N,E, c) = ci
C
E, i ∈ N .

2In Herrero and Villar (2001) the first three are called the ‘three musketeers’, while the fourth rule,

introduced formally by Aumann and Maschler (1985), plays the role of the most famous fourth musketeer

D’Artagnan.
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• Constrained Equal Awards rule CEA: Let λ∗ be the solution to
∑

i∈N min[ci, λ] =

E. Then CEAi(N,E, c) = min[ci, λ
∗], i ∈ N .

• Constrained Equal Losses rule CEL: Let λ∗ be the solution to
∑

i∈N max[0, ci−

λ] = E. Then CELi(N,E, c) = max[0, ci − λ∗], i ∈ N .

• Talmud rule T: For all i ∈ N ,

Ti(N,E, c) =

{
CEAi(N,E,

1
2
c) if E ≤ 1

2
C,

ci − CEAi(N,L,
1
2
c) if E ≥ 1

2
C.

The Proportional rule distributes E proportional to the claims; the CEA rule gives to any

player the same payoff, but bounded from above by its claim; the CEL rule distributes the

aggregate loss equal among the players, but no player gets a negative payoff; and finally

the Talmud rule applies the CEA rule with half of the claims if the estate is at most half of

the aggregate claim, otherwise each player first gets its claim and then the aggregate loss

L = C − E is distributed by applying the CEA rule with half of the claims. The Talmud

rule is the extension of the so-called Contested Garment rule for two players, which can

be found already in the Talmud, to more than two players.

Recently, Chun, Schummer and Thomson (2001) introduced the Reverse Talmud

rule RT, which applies the CEL rule with half of the claims if the estate is at most half of

the aggregate claim, otherwise each player first gets its claim and then the aggregate loss

L = C −E is distributed by applying the CEL rule with half of the claims.

• Reverse Talmud rule RT: For all i ∈ N ,

RTi(N,E, c) =

{
CELi(N,E,

1
2
c) if E ≤ 1

2
C,

ci − CELi(N,L,
1
2
c) if E ≥ 1

2
C.

For the two-agent problem with claims c1 < c2, the RT rule is illustrated in Figure 1.

The curve pqrs in Figure 1 shows how the payoffs depend on E. When E increases from 0

to C = c1+ c2, the corresponding payoff vectors first move from p = (0, 0) to q = (0, c2−c1
2

),

then from q to r = (c1,
c1+c2
2

) and then from r to s = (c1, c2).

Since the CEA and CEL rule are dual to each other, i.e. CELi(N,E, c) = ci −

CEAi(N,E, c), i ∈ N , the RT rule can also be written as

RTi(N,E, c) =

{
1
2
ci − CEAi(N,

1
2
C − E, 1

2
c) if E ≤ 1

2
C,

1
2
ci + CEAi(N,E −

1
2
C, 1

2
c) if E ≥ 1

2
C,

(2.1)
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Figure 1: The RT rule for two-agent problems with c1 < c2

showing that the RT rule first assigns to each agent half of its claim and then distributes the

remaining loss or surplus according to the CEA rule with half of the claims. Observe that

analogously we obtain the Talmud rule when we distribute the remaining loss or surplus

by applying the CEL rule with half of the claims instead of the CEA rule. From this it

follows that the RT rule, like the Proportional rule and the Talmud rule, is Self-Dual, see

also Chun, Schummer and Thomson (2001)3

Self-Duality SD: F (N,E, c) = F ∗(N,E, c).

The rules that we consider in this paper all satisfy the traditional property of Con-

sistency.

Consistency C: For any S ⊂ N , Fi(S,E
S, cS) = Fi(N,E, c), i ∈ S, where ES =∑

i∈S Fi(N,E, c).

In the literature several axiomatic characterizations of the Proportional, CEA, CEL

and Talmud rule can be found. In this paper we are, in particular, interested in the so-called

Exemption and Exclusion properties introduced by Herrero and Villar (2001). Exemption

states that an agent whose claim is at most equal to the Estate divided by the number of

agents earns it claim, while Exclusion states that an agent whose claim is at most equal to

the aggregate loss divided by the number of agents earns nothing. Let n = |N | denote the

cardinality of N .

3In fact, Thomson (2008) shows that the RT rule is the only self-dual CIC-rule, see also Section 4.
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Reverse Talmud rule Talmud rule

c1 = 100 c2 = 200 c3 = 300 c1 = 100 c2 = 200 c3 = 300

E = 100 0 25 75 331
3

331
3

331
3

E = 200 162
3

662
3

1162
3

50 75 75

E = 300 50 100 150 50 100 150

E = 400 831
3

1331
3

1831
3

50 125 225

E = 500 100 175 225 662
3

1662
3

2662
3

CEA rule CEL rule

c1 = 100 c2 = 200 c3 = 300 c1 = 100 c2 = 200 c3 = 300

E = 100 331
3

331
3

331
3

0 0 100

E = 200 662
3

662
3

662
3

0 50 150

E = 300 100 100 100 0 100 200

E = 400 100 150 150 331
3

1331
3

2331
3

E = 500 100 200 200 662
3

1662
3

2662
3

Table 1: T-, RT-, CEA- and CEL-rule applied to Example 2.1

Exemption Exe: For all i ∈ N , Fi(N,E, c) = ci if ci ≤
1
n
E.

Exclusion Exc: For all i ∈ N , Fi(N,E, c) = 0 if ci ≤
1
n
L.

In this paper we consider a class of bankruptcy rules that contains the CEA and CEL

rule as extreme elements, and the RT rule somehow ‘in the middle’. Within this class the

CEA rule is the only one that satisfies Exemption, while the CEL rule is the only one that

satisfies Exclusion.

We end these preliminaries with an example.

Example 2.1 We consider the well-known three-agent example from the Talmud with

claims 100, 200 and 300 and compute the outcome according to the Reverse Talmud-,

Talmud-, CEA- and CEL rules for estates verying from 100 to 500. The outcomes are

given in the Table 1. In this table the rows correspond to different values of the Estate,

while the columns correspond to the claims of the agents.

3 Weak Exemption and Weak Exclusion

Although the two principles of Exemption and Exclusion are appealing, the specific bounds

under which they hold seem rather arbitrary and have some problems. Both principles are
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applied in real life bankruptcy situations. The Exemption property says that small claims

are not held responsible for the shortages. When an agent has a claim that is smaller than

what should be received when the estate E is equally divided between the claimants, then

the agent should be granted its full claim. From the viewpoint of distributing aggregate

losses, i.e., the agents are first awarded their full claim and then are taxed to pay for the

aggregate loss, Exemption reflects the general principle of progressive taxation: agents with

small claims don’t have to contribute in sharing the aggregate loss. In contrast, Exclusion

ignores small claims. When an agent has a claim that is smaller than the average loss
1
n
L, then the claim is disregarded and the agent gets nothing. From the viewpoint of

distributing aggregate losses, Exclusion reflects the general principle of degressive taxation:

small claims are fully taxed away, whereas bigger claims are partially granted.

Although both principles seem appealing, a main problem is that there is no rule

that can satisfy the principles of Exemption and Exclusion simultaneously. Clearly, for

instance when C = 2E, we have L = E and for ci ≤
1
n
E = 1

n
L the two principles require

simultaneously that Fi(N,E, c) = ci and Fi(N,E, c) = 0, which is contradictory. However,

this is not due to the principles of Exemption and Exclusion, but is caused by what are

considered to be ‘small’ claims in relation to the size of the estate.

The main motivation of this paper is to give a rule that simultaneously satisfies a

type of Exemption and a type of Exclusion property. This rule has the property that small

claims are fully awarded when the estate is large, whereas small claims are fully ignored

when the estate is small. We call these properties Weak Exemption and Weak Exclu-

sion. They say that the claim of agent i is fully awarded when ci ≤
E−L
n

, while the claim

is fully ignored when ci ≤
L−E
n

. Observe that E − L ≥ 0 if and only if E ≥ 1
2
C.

11. Weak Exemption W-Exe: For all i ∈ N , Fi(N,E, c) = ci if ci ≤
E−L
n

.

12. Weak Exclusion W-Exc: For all i ∈ N , Fi(N,E, c) = 0 if ci ≤
L−E
n

.

Since E − L ≤ E and L − E ≤ L, the range of claims for which Weak Exemption (re-

spectively Weak Exclusion) requires the agent to be allocated its claim (respectively zero)

is smaller then those for which this is required under Exemption (respectively Exclusion).

Thus, Exemption (respectively Exclusion) implies Weak Exemption (respectively Weak

Exclusion). Observe that when E = L, the two properties do not require anything.

Note that none of the four classical bankruptcy rules (P, CEA, CEL and T) satisfy

both Weak Exemption and Weak Exclusion. However, it turns out that the RT rule satisfies

these two properties.

7



Lemma 3.1 The Reverse Talmud rule on B satisfies Weak Exemption and Weak Exclu-

sion.

Proof. First, consider the case that E − L ≥ 0 and thus E ≥ 1
2
C. Then RTi(N,E, c) =

1
2
ci + CEAi(N,E −

1
2
C, 1

2
c). If ci ≤

E−L
n

= 2E−C
n

, then ci
2
≤

E− 1

2
C

n
and we have that

CEAi(N,E −
1
2
C, 1

2
c) = 1

2
ci. Hence RTi(N,E, c) = ci.

Similarly, when E − L ≤ 0 and thus E ≤ 1
2
C, we have that RTi(N,E, c) = 1

2
ci −

CEAi(N,
1
2
C−E, 1

2
c). If ci ≤

L−E
n

= C−2E
n

, then ci
2
≤

1

2
C−E

n
and thus CEAi(N,

1
2
C−E, 1

2
c) =

1
2
ci. Hence RTi(N,E, c) = 0. �

To give a full characterization of the Reverse Talmud rule, we now state one more

property, to be called Weak Proportionality which says that when the estate becomes

larger, the increase in the payoffs of the players is nondecreasing in the size of the claims: a

player with a bigger claim receives at least the same of the additional amount of the estate

as a player with a smaller claim.

13. Weak Proportionality WP: For i, j ∈ N with ci ≥ cj it holds that Fi(N,E
′, c) −

Fi(N,E, c) ≥ Fj(N,E′, c)− Fj(N,E, c) for every E and E′ such that E′ > E.

Note that WP of a bankruptcy rule implies Claim Monotonicity saying that agents with

higher claims get at least as much than agents with smaller claims, i.e. Fi(N,E, c) ≥

Fj(N,E, c) if ci ≥ cj .

Lemma 3.2 The Reverse Talmud rule on B satisfies Weak Proportionality.

Proof. The RT solution first awards each agent half of its claim and then the remaining

Loss or Surplus |E − 1
2
C| is distributed according to the CEA rule with half of the claims.

It is easy to verify that the CEA rule satisfies Weak Proportionality. Indeed, two players

i and j receive the same additional payoff when the claim increases from E to E′ if both

still do not obtain their full payoff at E′. Otherwise the agent with the bigger claim gets

at least the same additional payoff as the agent with the smaller claim.

We now consider three cases for the RT rule. For two agents i and j, suppose that

ci ≥ cj . When both E and E′ are smaller than half of the aggregate claim C, then it

follows from the Weak Proportionality of the CEA rule that agent i faces at least the same

additional loss as agent j when the estate decreases from E ′ to E. Similarly, when both

E and E′ are larger than half of the aggregate claim, then agent i faces at least the same

additional payoff as agent j when the estate increases from E to E′. Finally, when E is at

most half of the aggregate claim and E ′ is at least half of the aggregate claim, then, first,

agent i faces at least the same additional loss as agent j when the estate decreases from

8



1
2
C to E and, second, agent i receives at least the same additional payoff as agent j when

the estate increases from 1
2
C to E′. �

We now come to the main theorem which characterizes the RT rule.

Theorem 3.3 The Reverse Talmud rule is the unique rule on B that satisfies Weak Ex-

emption, Weak Exclusion, Consistency and Weak Proportionality.

Proof. From the Lemma’s 3.1 and 3.2 we have that the RT rule satisfies Weak Exemption

and Weak Exclusion. Consistency is shown in Thomson (2008). It remains to show that

the four properties uniquely determine the outcome.

Let N ⊂ N . Without loss of generality we number the agents in N from 1 to n,

i.e. N = {1, . . . , n}, and withhout loss of generality we assume that c1 ≤ c2 ≤ . . . ≤ cn.

Let x ∈ IRn denote the vector of payoffs assigned by the RT rule. For n = 1, by definition

the only rule is to assign E fully to the single player in N , i.e., x1 = E. Next we consider

n = 2. Define E0 = −1
2
c1 + 1

2
c2 and E1 = 3

2
c1 + 1

2
c2. Observe E0 ≥ 0 and E1 ≤ C. We

distinguish three cases. First consider the case that E ≤ E0. This yields c1 ≤ c2− 2E and

thus 2c1 ≤ c1 + c2 − 2E = C − 2E = L− E. Hence Weak Exclusion implies that x1 = 0,

x2 = E and thus the payoffs are uniquely determined. The second case is E ≥ E1. This

yields 3c1 ≤ 2E − c2 and thus 2c1 ≤ 2E − (c1 + c2) = 2E − C = E − L. Hence Weak

Exemption implies that x1 = c1, x2 = E−c1 and again the payoffs are uniquely determined.

It remains to consider the case E0 ≤ E ≤ E1. We have seen that x01 = 0, x02 = E0 are the

payoffs at E = E0 and x11 = c1, x
1
2 = E1 − c1 are the payoffs at E = E1. So, when E goes

from E0 to E1, the payoff of agent 1 increases from x01 = 0 to x11 = c1 and the payoff of

agent 2 increases from x02 = E0 = −1
2
c1 + 1

2
c2 to x12 = E1 − c1 = 1

2
c1 + 1

2
c2. So, when E

goes from E0 to E1, the increase in both payoffs is equal to c1. Weak Proportionality now

requires that for any E between E0 and E1, x1 = x01+ 1
2
(E−E0) and x2 = x02+ 1

2
(E−E0).

Hence for any E the payoffs are uniquely determined when n = 2.

For n ≥ 2, we now proceed by induction. Suppose that the payoffs are uniquely

determined when the number of agents is at most n − 1. Define E0 = C
2
− nc1

2
≥ 0 and

E1 = C
2

+ nc1
2
≤ C. We distinguish three similar cases as for n = 2. First consider the case

that E ≤ E0 = C
2
− nc1

2
. This yields nc1 ≤ C − 2E = L− E and Weak Exclusion implies

that x1 = 0 and so that
∑n

i=2 Fi(N,E, c) = E. Then x2, . . . , xn follow from Consistency

and the induction hypothesis (i.e. the four properties uniquely determine the payoffs when

the number of agents is equal to n− 1.). Hence the payoffs are uniquely determined. The

second case is E ≥ E1. This yields nc1 ≤ 2E − C = E − L and Weak Exemption implies

that x1 = c1 and so
∑n

i=2 Fi(N,E, c) = E − c1. Again x2, . . . , xn are uniquely determined

by Consistency and the induction hypothesis. It remains to consider the case E0 ≤ E ≤ E1.

Let x0 ∈ IRn be the uniquely determined vector of payoffs at E0 and x1 ∈ IRn at E1. It

9



holds that x01 = 0 and x11 = c1. Further E1 − E0 = nc1. So, when E goes from E0 to E1,

the total payoff increases with nc1, whereas the payoff of the smallest claim increases from

0 to c1. Weak Proportionality now requires that the change in payoff for all agents should

be the same, and thus for any E between E0 and E1, xi = x0i + 1
n
(E − E0) for all i ∈ N .

Hence for any E the payoffs are uniquely determined. �

Realizing that Weak Exemption and Weak Exclusion are dual to each other, one

obtains immediately another characterization of the RT-rule. A property P ∗ is the dual of

a property P if for any rule F : F satisfies property P if and only if its dual F ∗ satisfies

property P ∗.

Lemma 3.4 The properties of Weak Exemption and Weak Exclusion are dual to each

other.

Proof. Let F be a bankruptcy rule. Then [F ∗ satisfies Weak Exclusion] if and only if

[ci ≤
L−E
n
⇒ F ∗i (N,E, c) = 0] if and only if [ci ≤

L−E
n
⇒ ci−Fi(N,L, c) = 0] if and only if

[ci ≤
L−E
n
⇒ Fi(N,L, c) = ci] if and only if [F satisfies Weak Excemption]. For the latter

assertion, recall that E + L = C. So when applying the bankruptcy rule F to L we have

that the loss is given by E = C −L and the condition for Weak Excemption becomes that

ci ≤
L−E
n

. �

Herrero and Villar (2001) already mention that the properties of Exemption and

Exclusion are each other’s dual. Since there does not exist a rule that satisfies both,

it follows that there does not exist a rule F that is Self-Dual and satisfies Exemption.

Also, there does not exist a rule F that is Self-Dual and satisfies Exclusion. Contrary to

Exemption and Exclusion, we have seen above that there do exist solutions that satisfy

both weak versions of these properties, such as the Reverse Talmud rule. Since F being

Self-Dual and satisfying a property P , implies that it also satisfies property P ∗, the next

corollary follows immediately from Theorem 3.3, Lemma 3.4 and the Reverse Talmud rule

satisfying Self-Duality.

Corollary 3.5 The Reverse Talmud rule is the unique rule on B that satisfies Weak Ex-

emption, Self-Duality, Consistency and Weak Proportionality. Also the Reverse Talmud

rule is the unique rule on B that satisfies Weak Exclusion, Self-Duality, Consistency and

Weak Proportionality.

4 A class of bankruptcy rules

Moreno-Ternero and Villar (2006) generalize the Talmud rule to a class of bankruptcy rules

that contains the CEA rule and the CEL rule as special (extreme) cases. In this section

10



we generalize the RT rule to a class of rules by parametrizing the properties of Exemption

and Exclusion for α, β ∈ [0, 1]. Also this class contains the CEA rule and the CEL rule as

two extreme cases.

11. α-Exemption α-Exe: For all i ∈ N , Fi(N,E, c) = ci if αci ≤
E−(1−α)C

n
.

12. β-Exclusion β-Exc: For all i ∈ N , Fi(N,E, c) = 0 if βci ≤
βC−E
n

.

Observe that for α = β = 1 we have Exemption and Exclusion and that for α = β = 1
2

we have Weak Exemption and Weak Exclusion. As we remarked before, a bankruptcy rule

cannot satisfy both properties for α = β = 1, but the RT rule satisfies both properties for

α = β = 1
2
. In fact, one can verify that there always exist bankruptcy rules that satisfy

α-Exe and β-Exc if α + β = 1, i.e. if β = 1 − α. Similar as the proof of Theorem 3.3

one can show that there always is a unique bankruptcy rule that satisfies these properties

together with Consistency and Weak Proportionality.

Theorem 4.1 For any α ∈ [0, 1] there is a unique rule on B that satisfies (1 − α)-

Exemption, α-Exclusion, Consistency and Weak Proportionality. For all i ∈ N , this rule

is given by

Tαi (N,E, c) =

{
CELi(N,E,αc) if E ≤ αC,

ci − CELi(N,L, (1− α)c) if E ≥ αC.

Proof. The proof of this theorem goes along similar lines as the the proofs of correspond-

ing results in the previous section and is therefore omitted. �

Clearly, the class described in Theorem 4.1 contains the CEA rule (for α = 0), the CEL

rule (for α = 1) and the RT rule (for α = 1
2
). Note also that the RT rule is the unique

Self-Dual rule in this class. Also note that this class is closed under Self-Duality in the

sense that if a rule F belongs to this class, then also its dual rule belongs to this class. More

precisely, the dual rule of Tα is T 1−α, α ∈ [0, 1]. Further, we remark that all these rules

are CIC rules as considered in Thomson (2008). According to these rules, when the Estate

increases starting at zero, the payoff of any agent i first is constant (at zero) upto some

Estate level ai (possibly 0) then increases upto the claim level ci and from there is constant

at the claim level. Moreover, if for some agents the payoff increases when the Estate goes

from E to E′ then the payoffs for all these agents increase by the same amount. Obviously,

if there are two agents then the class of CIC rules and the class of Tα rules coincide since

by α-Exclusion the payoff of the small claimant, say claimant 1, is constant at zero upto

11
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Figure 2: The class Tα for two-agent problems with c1 < c2

Estate level α(c2 − c1), while by (1− α)-Exemption it must be equal to the claim c1 if the

Estate is more than α(c2− c1) + 2c1. But this implies that between these two Estate levels

the payoffs of both agents increase by the same amount. However, if there are more than

two agents, then not all CIC rules are Tα rules.

For two agent problems the class is illustrated in Figure 2. The curve prs shows

how the payoffs depend on E for the CEA rule and the curve pqs for the CEL rule.

For 0 < α < 1, the curve of payoff vectors first goes from p in the direction of q, then

somewhere between p and q it moves from the boundary x1 = 0 upwards under 45 degrees

to the boundary x1 = c1 and then it moves to the point s.

Besides the properties mentioned in Theorem 4.1 the rules Tα, α ∈ [0, 1] are

parametric4 and satisfy other traditional properties such as Equal Treatment of Eequals5,

Continuity6,7 (see Thomson (2008)) and Scale Invariance8.

4A bankruptcy rule is parametric if there exists a function f : [a, b] × IR+ → IR+, where [a, b] ⊂

IR ∪ {−∞,+∞}, such that f is continuous and weakly monotonic in its first argument, such that (i)

Fi(N,E, c) = f(λ, ci) for all (N,E, c) ∈ B and for some λ ∈ [a, b], (ii) f(a, x) = 0, for all x ∈ IR+, and (iii)

f(b, x) = x, for all x ∈ IR+.
5A bankruptcy rule satisfies Equal Treatment of Equals if for all i, j ∈ N , Fi(N,E, c) = Fj(N,E, c) if

ci = cj .
6A bankruptcy rule satisfies Continuity (on E) ifn for all sequences of problems (N,El, c) such that

El → E, it holds that F (N,El, c)→ F (N,E, c).
7Note that from Young (1987) it follows that a bankruptcy rule satisfies Equal Treatment of Equals,

Continuity and Consistency if and only if it is Parametric.
8A bankruptcy rule satisfies Scale Invariance if for all λ > 0, Fi(N,λE,λc) = λFi(N,E, c), i ∈ N .
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5 Concluding remarks

The properties of Exemption (satisfied by the CEA rule) and Exclusion (satisfied by the

CEL rule) for bankruptcy rules have as major disadvantage that there is no bankruptcy

rule that satisfies both properties, although the principles behind both properties seem

reasonable. But the bounds on the claims under which these properties require that an

agent gets its claim, respectively gets zero, seem rather arbitrary. Therefore we weakened

these bounds in a very natural way by replacing the worth of the Estate (respectively Loss)

by the difference between the Estate and the Loss (respectively the difference between the

Loss and the Estate). It turned out that there is a unique bankruptcy rule satisfying

these weaker properties together with Consistency and Weak Proportionality which is

the Reverse Talmud rule. Moreover, this rule is characterized by Self-Duality, Consistency,

Weak Proportionality and either Weak Exemption or Weak Exclusion. We also generalized

this Reverse Talmud rule by parametrizing the properties of Weak Exemption and Weak

Exclusion, obtaining a class of bankruptcy rules that contains the CEA rule and the CEL

rule as extreme cases, and are all CIC rules as considered in Thomson (2008).

In order to compare the new rules with the four classic rules (CEA, CEL, Pro-

portional and Talmud rule) we conclude by recalling some known characterizations as

summarized by Herrero and Villar (2001). Moulin (2000) showed that a rule satisfies the

axioms ETE, SI, C, Composition (Comp)9 and Path independence (PI)10 if and only if it

is the P, CEA or CEL bankruptcy rule. It follows from Young (1988) that P is the unique

rule satisfying ETE, Comp, C and SD.11 Besides the characterization of the CEA rule by

PI, C and Exe, it follows from Dagan (1996) that the CEA rule is also the unique rule

satisfying ETE, Comp, C and Independence of Claims Truncation (ICT).12 Besides being

the only rule satisfying Comp, C and Excl, it follows from Dagan (1996) that the CEL

rule is characterized by ETE, PI, Cons and Composition from Minimal Rights (CMR).13

Finally, the Talmud rule is characterized by C, ICT and CMR. It is also characterized

by C, CMR and SD. From the properties mentioned above, the RT rule does not satisfy

9A bankruptcy rule satisfies Composition if Fi(N,E1+E2, c) = Fi(N,E1, c)+Fi(N,E2, c−F (N,E1, c))

for all i ∈ N , E1, E2 ≥ 0 and C ≥ E1 +E2.
10A bankruptcy rule satisfies Path Independence if Fi(N,E1, c) = Fi(N,E1, F (N,E1 + E2, c)) for all

i ∈ N , E1, E2 ≥ 0 and C ≥ E1 +E2.
11Young (1988) showed that on a fixed set of agents P is characterized by ETE, Comp and SD.
12A bankruptcy rule satisfies Independence of Claims Truncation if Fi(N,E, c̃) = Fi(N,E, c), where

c̃i = min[ci, E], for all i ∈ N . Dagan (1996) shows that on a fixed set of agents CEA is characterized by

ETE, Comp and ICT.
13A bankruptcy rule satisfies Composition fromMinimal Rights if Fi(N,E, c) = mi(N,E, c)+Fi(N,E, c),

wheremi(N,E, c) = max[0, E−
∑
j �=i cj ], i ∈ N , E = E−

∑
i∈N mi(N,E, c) and ci = ci−mi(N,E, c), i ∈

N . Dagan (1996) shows that on a fixed set of agents CEL is characterized by ETE, PI and CMR.

13



Comp, PI, ICT and CMR.
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