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Abstract
This paper considers a general class of stochastic dynamic choice models with discrete
and continuous decision variables. This class contains a variety of models that are
useful for modeling intertemporal household decisions under risk. Our examples are
drawn from the field of development economics. We formalize this class as a dynamic
programming problem, then propose a solution method that relies on value function
iteration. Finally, in an example we show how our algorithm can be applied to solve
and estimate a dynamic model with discrete and continuous controls.

Keywords: value function iteration, mixed continuous/discrete controls, stochastic dy-
namic choice model
JEL classifications: C61, C63, C51, E12, G11, Q12

1 Introduction

When a German manufacturing company decides to set up a new factory to increase its
capacity; when an American consumer is thinking about buying a new car or a home;
when an Ethiopian farmer decides to invest in a pair of oxen to increase his productivity
in cultivating crops, they are all facing the same kind of decision: they want to buy an
object that has a high cost compared to their income, and only whole units of it can
be purchased. In order to afford this investment, they need to save or take a loan in
continuous assets, like a savings or credit account. This paper analyzes a class of models
that deal with these kinds of decision problems under risk, assuming that the agents are
rational and fully informed about the probability distribution of future outcomes.

It is not hard to see that in an economy where it is easy to borrow, discrete investment
decisions can easily be handled by taking a loan in a continuous asset. In this case, it is
not that important to explicitly model the discrete choice, unless the investment causes
a shift in the profit function. This happens if the discrete and the continuous assets are
not perfect substitutes, i.e. they affect the income of the agent in a different way. On the
other hand, consider a credit constrained agent, who needs to accumulate savings before
he can invest in the discrete asset. He needs to delay the investment until he can finance
it from his savings. In this case, the optimal savings and investment decisions of the agent
will be quite different from the case where it is possible to buy increments of all assets.

Farming households in developing countries usually face both credit constraints and a
shift in productivity when they invest in a discrete asset, like cattle or land. Both credit
constraints and the discrete nature of investments hinder poor households in engaging in
more productive activities. If the prospect of higher earnings is too far away, poor house-
holds will not be motivated to save enough to invest in the technology enhancing asset,
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thereby inducing themselves to remain poor. When the poor do not have the possibility
to escape poverty we talk about a poverty trap. It is a central issue in development eco-
nomics to find out whether poverty traps keep households from accumulating wealth. For
example, Zimmerman and Carter (2003) find the existence of poverty traps in a stochastic
dynamic programming model with a savings and an investment asset (both continuous)
under risk and subsistence constraints. In the application part of this paper, we take
our turn at investigating the presence of poverty traps using a simplistic model including
indivisibility and credit constraints.

However, the main focus of this paper is to describe a solution method for a class
of stochastic dynamic choice models with both discrete and continuous controls. We
encountered this class of problems when investigating the vulnerability of African farm-
ing households to risk. In general, this paper can be useful for researchers analyzing
intertemporal consumption and wealth accumulation decisions of households under risk.
For example, Elbers et al. (2007) and Pan (2008) both estimate an infinite-horizon struc-
tural dynamic choice model with one continuous asset, livestock, to assess the effect of risk
on livestock accumulation of Zimbabwean and Ethiopian households, respectively. Using
counterfactual scenarios they also decompose the total effect of risk into ex ante behavioral
responses, and ex post adjustment effects. In order to measure these effects, it is neces-
sary to estimate all structural parameters of the dynamic choice model, which requires the
solution of the dynamic programming problem. The results of the estimations imply that
in both regions the anticipation of shocks significantly changes the livestock accumulation
decisions of households, with the effect that households hold less livestock.

Elbers et al. (2007) and Pan (2008) use only one continuous asset. On the other hand,
Rosenzweig and Wolpin (1993) (referred to as R&W in the following) estimate a finite-
horizon discrete dynamic choice model under credit constraints using data from India.
In their model, households can accumulate discrete values of bullock holdings (0, 1 or
2) to buffer income risk, but they assume that bullocks also play a role in crop income
generation.1 Additionally, they assume that installing a pump set, an irreversible discrete
asset (0 or 1), can further increase farming productivity. In the estimation of the structural
parameters, a numerical identification problem2 might arise due to the limited number of
asset combinations. Using simulation exercises, Elbers et al. (2008) indeed argue that
R&W needed to postulate the value of the discount factor because it is numerically not
well-identified in their estimation.

This identification problem can be overcome by introducing a continuous asset in the
dynamic choice model additional to the discrete asset(s). In a model of irreversible invest-
ment in well construction and continuous asset holdings, Fafchamps and Pender (1997)
investigate how the discrete and irreversible nature of the investment discourages poor
farming households from undertaking a highly profitable investment under risk and credit
constraints. They estimate the preference parameters of this infinite-horizon dynamic
choice model using a Full Information Maximum Likelihood estimator that consists of a
set of nested algorithms that iterate on the likelihood function and on the Bellman equa-
tion using value function iteration.3 Fafchamps and Pender utilize a subsample of the

1In their model, obtaining a bullock can take two forms: it is possible to purchase it, but households
can also decide to engage in breeding, which will produce a bullock in 3 periods.

2Numerical identification refers to the ability of numerical methods to recover the parameters of the
model in practice, given the available data. In theory, the maximum number of parameters that can be
identified in the estimation procedure is limited by the number of observed realizations of the dependent
variable.

3The income distribution of households, hence the magnitude of risk, is estimated separately, prior to
the estimation of the preference parameters. Fafchamps and Pender (1997) do not consider ex ante risk
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dataset used in R&W, and find that the discount rate of the households is around 18
percent, which is much higher than the 5 percent assumed in R&W.4

Dercon (1998) performs simulation experiments on a finite-horizon model that incor-
porates discrete cattle and continuous sheep holdings to shed light on the relevance of
lumpiness in livestock accumulation decisions. The model incorporates income risk, but
assets are assumed safe. Calibrating the model to features of rural Tanzania, he finds
that missing credit markets and the indivisibility of cattle appear to be important driving
mechanisms in the households’ asset allocation decisions.

Drawing on the findings on Dercon (1998), Vigh (2008) estimates the structural pa-
rameters of an infinite-horizon dynamic choice model with discrete oxen and continuous
other livestock holdings. Using these estimates Vigh determines the size of ex ante and
ex post effects of risk on livestock accumulation, following Elbers et al. (2007) and Pan
(2008). Her results suggest that when asset indivisibility is introduced in the model, risk
can have a positive ex ante effect on livestock holdings. Risk in the model is realized
through oxen-dependent income shocks and asset shocks. To estimate the model, Vigh
uses a Simulated Pseudo Maximum Likelihood estimator that updates the asset accumu-
lation rules of households using policy function iteration. However, due to the discrete
nature of the oxen holdings, her accumulation rules are only first order approximations to
the true policy functions.

In all of the above mentioned examples, the estimation of the structural parameters
involves the solving of a dynamic programming problem. Introducing discrete controls in
the model complicates the analysis because in this case it is not possible to rely on first
order conditions to find the optimal asset accumulation rules. Instead, in finite horizon
problems it is possible to use backward solution as done in Rosenzweig and Wolpin (1993)
and Dercon (1998). Fafchamps and Pender (1997) simplify the model structure by using
an absorbing state (owning a well), and use value function iteration to estimate the policy
function of the continuous asset and the timing of the irreversible investment. For the
case of the stochastic Ramsey model with a continuous asset, Pan (2008) notes that value
function iteration produces less accurate results than policy function iteration. However,
the policy functions of a dynamic programming model with mixed continuous/discrete
controls cannot be properly estimated using solely policy function iteration.

The purpose of this paper is twofold. First, we introduce a general class of mixed
discrete-continuous dynamic choice models, and propose a solution method using value
function iteration. Second, the use and accuracy of this method is demonstrated on a
simple example with a continuous saving and a binary investment asset under income
risk. Reference is made to the existence of poverty traps and estimation of the structural
parameters of such a model.

In the remaining sections of the paper we introduce the class of dynamic choice models
that we are interested in, and formulate it as a dynamic programming problem. Next, the
solution algorithm is described using value function iteration. We demonstrate the use
of this solution method on a simple application. Finally, we draw the conclusions on the
proposed solution method.

coping strategies.
4The difference in the estimated preference parameters can be caused by the different specification of

the utility function, i.e. the Fafchamps and Pender (1997) model does not include a minimum consumption
parameter.
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2 The model

We start with defining a class of economic models to investigate the agent’s decision to
invest in a lumpy asset under risk. This class can be written using a stochastic dynamic
choice model with the following structural assumptions: (1) in each period the agent
chooses d, a feasible number of lumpy asset he wants to own, and x, a feasible value
of his other continuous savings; (2) making these decisions the agent aims to maximize
the expectation of his discounted life-time utility from consumption, c; (3) the agent
anticipates that his choices this period affect the future realizations of his income and
also his future decisions on all assets; (4) the agent knows and rationally anticipates the
probability distribution of shock realizations that affect his income stream; (5) the agent
rationally chooses the optimal level of investment considering its effect on his future income
flows; (6) the agent decides on his asset holdings knowing the realization of st, the shocks
in the given period, but he is uncertain about the shock outcomes next period, st+1; (7)
the agent faces the same decision problem over an infinite time horizon. Using these
assumptions, the maximization problem of the agent in period τ can be formulated as

maxEτ
∞∑
t=τ

βt−τu(ct). (1)

with
ct = F (xt−1, dt−1, st)− g(xt, dt) (2)

and satisfying

ct ≥ 0 (3)
dt ∈ D = {0, 1, ..., D} (4)
xt ∈ X ⊆ R (5)

dt, xt are measurable w.r.t. the event space (sigma-field) (6)
generated by {F (xt−s, dt−s, st−s+1)|i = 1, ..., t− τ + 1}

for t = τ, τ + 1, ..., T ≤ ∞, given dτ−1, xτ−1.
In the maximization problem dt denotes the discrete asset, xt the continuous asset

and st the shock variables. X specifies all possible values of the continuous asset.5 F (·)
is the function that determines the wealth at hand. g(·) specifies the cost of investment
in d and x in terms of the consumption good. We assume that the shocks to the wealth
function are distributed i.i.d. Note that (3) represents the budget constraint stating that
the difference between income and non-consumption expenditure has to be non-negative.

3 Dynamic programming formulation

The utility maximization problem outlined in (1)-(6) can be reformulated as a dynamic
programming problem

5X can be defined flexibly. For example, it can be applied to an entry decision model with continuous
investment levels in x. In this model d is the binary entry decision variable such that d = 1 if entry and
d = 0 otherwise. Then, x = 0 if d = 0 and x ≥ Xmin if d = 1, which implies X = {0}

⋃
{x ∈ R|x ≥ Xmin}

with Xmin > 0.
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V (F (xt−1, dt−1, st)) = max
xt,dt

u(F (xt−1, dt−1, st)− g(xt, dt)) + βEtV (F (xt, dt, st+1))

s.t. (7)
F (xt−1, dt−1, st) ≥ g(xt, dt) (8)
dt ∈ {0, 1, ..., D} (9)
xt ∈ X ⊆ R (10)

where V (·) denotes the value function in the Bellman equation (7). The state variable of
the problem is wealth at hand, denoted by wt ≡ F (xt−1, dt−1, st). Note, that the dimension
of the state space is one, irrespective of the number of controls (xt, dt) and shock (st)
variables. Therefore, the curse of dimensionality does not apply. This formulation of the
problem assumes that there exists a market for all assets such that it is possible to buy
and sell each asset for a constant relative price in any period without transaction costs.
In this case, it is possible to describe the wealth of the household with only one state
variable, wt. Hence, knowing wt and the distribution of shocks is sufficient to make the
optimal investment (d(wt)) and savings (x(wt)) decisions.

Before proceeding to the description of the solution algorithm, we summarize all the
assumptions of the model together with the ones implied by the dynamic programming
formulation of model (1)-(6):

Assumption 1 (A1): Properties of the utility function: u′(·) > 0 and u′′(·) < 0.

Assumption 2 (A2): Properties of the profit function: Fx(·) > 0 and Fs(·) > 0, where
Fi(·) denotes the derivative of F (·) w.r.t. variable i. Further, F (x, d1, s)−F (x, d0, s) >
0 for all d1 > d0 ≥ 0.

Assumption 3 (A3): There is a functioning market for all assets in x and d, and there
are no transaction costs when buying and selling the assets.

Assumption 4 (A4): The cost of investment is a deterministic function of x and d, i.e.
s does not appear in g(·).

Assumption 5 (A5): Shocks are i.i.d., hence cov(st, sτ ) = 0 for all τ 6= t.6

Assumption 6 (A6): There is a finite number of possible values for the discrete asset,
d, with D <<∞.

Assumption 7 (A7): The continuous asset is bounded from below.

If a dynamic choice problem can be written in the form of (1)-(6) and Assumptions 1-7
are satisfied then the solution method of section 4 can be used to solve the problem. This
algorithm will be efficient if there is at least one discrete control in the problem at hand.
In case of problems with only continuous controls, Pan (2008) shows for the stochastic
Ramsey model that a solution method using policy function iteration outperforms the
method with value function iteration.

Note that formulation (1)-(6) is more general than that of Fafchamps and Pender (1997)
because it allows a decision on the discrete asset holdings in every period, irrespective of
the choices before. It is straightforward to extend the number of assets in x and d.

6In case of serially correlated shocks, the state space should be expanded by at least st, therefore we
do not consider this case.
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However, an expansion of the decision space will increase the computational burden of
approximating the policy function.

4 Solution algorithm using value function iteration

In this section, we describe a solution algorithm for problem (7)-(10). The algorithm
is based on value function iteration and it approximates the solution of the dynamic
programming problem in a non-parametric way. Since the problem is recursive, in the
description of the algorithm we leave away the time dimension, and use shorthand notation
x = xt, d = dt, s+ = st+1, w = F (xt−1, dt−1, st) and w+ = F (x, d, s+) to rewrite (7) as

V (w) = max
d,x

u(w − g(x, d)) + βEV (w+). (11)

4.1 Discretization of the state space and integration

To approximate the expectation in equation (11) we discretize the next period’s state
variable, w+ ∈ R, as w+ ∈ {w+

0 , w
+
1 , ..., w

+
N} for a sufficiently large N . We denote by

p(w+
n |x, d) the probability that next period’s wealth at hand will be w+

n given x and d.
Then,

V (w) = max
d,x

u(w − g(x, d)) + β
N∑
n=0

p(w+
n |x, d)V (w+

n ). (12)

The evaluation of V (w) involves the calculation of the conditional probabilities p(w+
n |x, d)

for all w+
n during the maximization procedure w.r.t. d and x. The expectation of next

period’s value function can also be approximated using a discretization of the shock vari-
able, s. Take M discrete realizations of the income shock, sm, and the corresponding
probability weights, θsm, for m = 1, ...,M . Then,

V (w) = max
d,x

u(w − g(x, d)) + β
M∑
m=1

θsmV (F (x, d, sm)). (13)

4.2 Numerical and Monte Carlo integration methods

The shocks and corresponding weights in (13) can be drawn is a number of ways. The most
popular of these are Monte Carlo integration and Gaussian quadrature methods. Gauss-
Hermite quadrature can be used if the underlying distribution has a factor of exp(−z2).
Hence, Gauss-Hermite quadrature can be used in case of normally or log-normally dis-
tributed disturbances. However, the approximation will only be accurate if the function
in the integral is close to a polynomial in the random variable, because the algorithm
chooses nodes and probability weights in such a way that with M number of nodes the
integral of a polynomial up to order 2M − 1 can be solved exactly.7

In case of Monte Carlo integration, a random sample from the true distribution is
drawn with probability weights 1/M . This algorithm performs well with multi-dimensional
integrals (with dimension 3 or larger), however it is not as efficient as numerical integration
in case of a single dimension.8

7For more information on the quadrature methods consult chapter 7 in Judd (1998) or Chapter 4 in
Press et al. (1992).

8For more information on Monte Carlo integration see chapter 8 in Judd (1998).
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As an alternative, we propose a third method that we use fruitfully in the applica-
tion of Section 5. We take equidistant nodes on interval (−4, 4) for the standard normal
disturbances, (e1, e2, ..., eM ), and then use these to construct the log-normal shocks as
sm = exp(α0 + α1em), where α0 and α1 are chosen such that

∑M
m=1 θ

s
msm = 1 and∑M

m=1 θ
s
m(log sm −

∑
m θ

s
m log sm)2 = σ2. Probability weights, θsm, are based on the stan-

dard normal density of em normalized such that
∑
θsm = 1.

Any of the three methods outlined above can be applied in the solution algorithm with
the appropriate choices for θsm and sm. However, depending on the nature of the problem
usually one integration method will prove to be more efficient and/or accurate than the
others for the specific case. Therefore, it is a good idea to experiment with different
methods to find the most suitable one for the problem at hand.

4.3 Value function iteration algorithm

Before we can start the value function iteration algorithm, we need to first specify the
state space, wi, the shock realizations sm and their probability weights θsm, and initial
guesses for the value and policy functions at each wi. We initially choose equidistant
wealth at hand realizations for wi on a relevant interval for the problem. Shocks and their
probability weights are chosen as discussed in section 4.2. An initial approximation of
the value function is necessary so that we can calculate the RHS values of V (·) in (13).
The initial guesses of the policy functions are used as starting values in the value function
maximization step. Choosing good starting values for the value and policy functions are
important in achieving a fast and accurate convergence.

In the iteration procedure we use the approximated value and policy functions from the
previous iteration, V r−1(·) and ψr−1

x (·), ψr−1
d (·), and their linear interpolation or extrapo-

lation9 to obtain the value of the value and policy functions at a given wealth level. There-
fore, in each iteration we evaluate the policy function at wealth levels {w1, w2, ..., wN},
which can serve as the value of next period’s value function at states {w1, w2, ..., wN} in
the next iteration. Thus, in each iteration we solve

V r(wi) = max
di,xi

u(wi − g(xi, di)) + β
M∑
m=1

θsmV̂
r−1(wm) (14)

with wm = F (xi, di, sm) and V̂ r−1(·) the interpolated or extrapolated values of the value
function for i = 0, 1, ..., N .10

The iteration procedure can be summarized in the following steps:

Step 1. Initialization: take N values of wi, such that w1 < w2 < ... < wN < ∞. These
are the nodes where the value function will be evaluated. Specify initial values V (wi)
and ψ0

x(wi), ψ0
d(wi) for each wi, which give the starting approximation for the value

and policy functions. Using the equidistant integration method in section 4.2, draw
M realizations of shocks, sm, and the corresponding probability weights, θsm.

9Linear interpolation or extrapolation uses known points of a function to approximate function values
at any points by calculating a weighted average of the neighboring known points. The weights are based on
the distance between the point to be evaluated and the neighboring known points. A simpler formulation
is the following: y = y0 + (x− x0)(y1 − y0)/(x1 − x0).

10A hat over a function denotes that we use interpolation or extrapolation to evaluate the function at
the given value.
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Step 2. Iteration: at each iteration, r, a new approximation of V r(wi) and ψrx(wi), ψrd(wi)
is calculated for each value of wi. In the evaluation, the approximations at the previ-
ous iteration are linearly interpolated or extrapolated to account for the approxima-
tion of the policy functions at wealth levels not included in wi. At each iteration the
following steps are implemented to find a new value function and optimal investment
rule for each wi:

Step 2.1. For all feasible values of the discrete asset, d̄k ∈ {di ∈ D|g(0, di) ≤ wi},
maximize

V r
k (wi) = max

xk

u(wi − g(xk, d̄k)) + β
M∑
m=1

θsmV̂
r−1(F (xk, d̄k, sm)) (15)

s.t. g(xk, d̄k) ≤ wi

and store the optimal values (V r
k (wi), xk, d̄k).

Step 2.2. Update the value function

V r(wi) = max
k

V r
k (wi)

and the policy functions

{ψrd(wi), ψrx(wi)} = {d̄k∗ , xk∗}

with k∗ = arg maxk V r
k (wi).

Step 3. Convergence: the approximation of the value and policy functions converges to
their true values, because V (w) satisfies Blackwell’s sufficient conditions.11 Hence,
the contraction mapping theorem applies to the value function iteration. In prac-
tice, we stop the iteration procedure when the difference between the values of
(V r−1(wi), ψr−1

x (wi), ψr−1
d (wi)) and (V r(wi), ψrx(wi), ψrd(wi)) becomes very small for

all i.

To demonstrate the use of the algorithm, in the next section we take a simple applica-
tion and show how our solution method can be used to approximate the policy function.

5 Application

In this section, we discuss a simple example to demonstrate the solution of a dynamic
choice model with both discrete and continuous controls. Additionally, we describe how
the structural parameters of such a model can be estimated, but leave the application of
the estimation procedure to a later stage.

5.1 The model

Imagine a farmer, who earns his income from cultivating land. He has an expected yield
of y0 = 0.5 units, however its value is affected by weather shocks summarized in s. He has
a possibility to save from his income through storing grains, x. For simplicity, we assume
that grain is a safe asset. In each period he also has the option to rent a pair of oxen, d,

11Blackwell’s sufficient conditions require V (w) to be monotonic and satisfy discounting. Further, V (w)
is bounded since 0 < wi < wN <∞ for all i.
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which he can use in ploughing. Oxen rental costs him 1 unit in each period, however, it
increases his expected income to y1 = 2 in the next period. This farmer realizes that it is
beneficial for him to rent the oxen if he has enough money, therefore he wants to make a
savings plan that would tell him how much he should save in each period, given his wealth
at hand.

This problem can be formalized in the dynamic programming framework with the
following Bellman equation:

V (w) = max
x,d

u(w − x) + βEV (x− d+ s(y0 + d(y1 − y0))) (16)

s.t.

w ≥ x (17)
x ≥ d (18)
d ∈ {0, 1} (19)

with y0 = 0.5 and y1 = 2. Let β = 0.9 and assume CRRA utility u(c) = (c1−γ−1)/(1−γ)
with γ = 0.95. The distribution of the shock is log s ∼ N(−σ2/2, σ2). Note that x
represents the total holdings of assets, while d denotes the part of assets that is invested
in the more productive technology.

For this problem we approximate the optimal savings and investment decision using
numerical optimization. However, for the deterministic case (s = 1 with probability 1),
we can derive the exact solution analytically. This is done in the next section, so that we
can compare the results of the approximated value and policy functions with σ = 0 to the
analytical solution.

5.2 Benchmark: analytical solution of the deterministic case

First, we solve the deterministic case of (16)-(19) analytically. Notice that in this setting
it is optimal for the agent to reach and stay at the steady state with d = 1 and x = 1. We
can simplify the problem by noting that once the farmer saves 1 in x, he will invest this
money in d. Thus, we can rewrite the problem without d as

V (w) = max
x

u(w − x) + βV (y0 + Ix≥1(y1 − y0 − 1) + x) (20)

s.t.

w ≥ x (21)
x ≥ 0. (22)

We have to find the wealth level, w̄1, at which the agent will decide to invest 1 unit
in d. At this wealth level the agent will be indifferent between investing 1 unit in d today
and making the same investment tomorrow. Hence, we can write that

V 0(w̄1) ≡ u(w̄1−1)+βV (y1) = max
x

u(w̄1−x)+βu(y0 +x−1)+β2V (y1) ≡ V 1(w̄1). (23)

Using the FOC for x in the RHS and the equality in (23) we can find the switching
wealth level, w̄1 and the savings level just below it, xl1. Equation (23) has two solutions but
we are only interested in the lower solution that gives us w̄1 = 1.093, which is the wealth
level below which the agent waits one more period to reach d = 1 and saves x = 0.780 unit

9



n w̄n x̄ln x̄hn V (w̄n)

0 2.000 1.000 1.000 0.000
1 1.093 0.780 1.000 -2.240
2 0.792 0.498 0.638 -3.483
3 0.532 0.230 0.335 -4.481
4 0.305 -0.017 0.069 -5.275

Table 1: Switch-points in the deterministic case using analytical solution, β = 0.9, γ =
0.95, y0 = 0.5 and y1 = 2

this period, and above which the agent invests in d = 1 period. There is a discontinuity
in the policy function of x at w̄1.

Next we want to find the switch point, w̄2, where the agent is indifferent between
investing in d = 1 next period and in two periods, and so on. A detailed description of the
analytical solution can be found in Appendix A Table 1 reports all the switching wealth
levels, savings decisions and value function values at these points. Note that an agent with
0.5 unit of income needs to save for three periods before he can invest in d. Therefore, in
a risk-free world there is no poverty trap for this parametrization of the model, because
each agent receives at least 0.5 unit of income, which is sufficient to build up savings to
invest in the higher technology.

The policy function of total savings, x, is shown in Figure 1. The graph indicates that
the policy function is linear between the switching points because on these intervals the
Euler equation of the problem is satisfied.12 Thus, the optimal savings decision is

x =
β1/γ

1 + β1/γ
w +

1
1 + β1/γ

(x∗i+1 − y0) (24)

for wealth levels wi+1 < w < wi, where i stands for the number of periods that are needed
to reach d = 1 and x∗i+1 denotes the optimal savings decision in the next period.

5.3 Solution method using value function iteration

Next, we solve (16)-(19) using value function iteration. For this model, Step 2.1 of the
solution algorithm involves maximizing

V r
0 (wi) = max

x0
i≥0

u(wi − x0
i ) + β

M∑
m=1

θsmV̄
r−1(x0

i + smy0) (25)

and

V r
1 (wi) = max

x1
i≥1

u(wi − x1
i ) + β

M∑
m=1

θsmV̄
r−1(x1

i − 1 + smy1) (26)

for every wealth level, where it is feasible.
In (25) and (26) the values of sm and θsm are chosen using the equidistant nodes

approach described in section 4.2. This approach to numerical integration does better
than the Gauss-Hermite quadrature or the Monte Carlo integration in case of this problem.
The bad performance of Gauss-Hermite quadrature can have two reasons: (1) the value
function cannot be well approximated with a polynomial, and (2) the algorithm chooses
too many nodes at the tails of the distribution, while we are more interested about what

12See Appendix A for further details.
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Figure 1: Policy function of the problem

happens within 3σ distance around the mean. As a result, the policy functions obtained
using Gauss-Hermite quadrature were coarse compared to the Monte Carlo integration
or the equidistant method. The handicap of Monte Carlo integration is that we need
more nodes to derive a precise estimate of the policy function compared to the equidistant
nodes.

Further details on the implementation of the solution algorithm can be found in Ap-
pendix B.

5.4 Simulation results

First, we report the results of the value function iteration for the deterministic case (σ = 0).
The results of the iteration procedure are plotted in Figure 2 and the estimates of the switch
points are reported in Table 2. In the table wl and wh denote the grid-points where the
discontinuities occur. The distance between wl and wh can be reduced by evaluating the
policy function at more nodes, however we did not do a finer grid. For wealth level wl, xl

is the estimated stock of assets held by the household, while it is xh at wh. V (wl) stands
for the level of the value function at wl. The shape of the obtained policy functions are
very similar to the analytical solution. The values of (w, xl, xh, V (w)) at all switch-points
are estimated with a high precision. The true switch-points, w̄, always fall in the range
found by the value function iteration algorithm. This result is dependent on the use of the
initial-value-search routine, which is described in Appendix B. Without this routine, the
switch-points are estimated several grid-points away the true value except at the wealth
level where the investment in d is made.13 The values of x also have the right magnitudes.
The values of xln are slightly lower than the analytical solution x̄ln because the estimated
values wln are also a little bit smaller than w̄n. The same holds with reverse sign for xhn
and x̄hn.

13In this case the discontinuity occurs due to a change in d, hence the flatness of the value function w.r.t.
x is not an issue here.
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wl wh xl xh V (wl)

1.999 2.006 1.000 1.000 0.029
1.089 1.096 0.777 1.000 -2.219
0.789 0.795 0.496 0.639 -3.463
0.527 0.534 0.227 0.335 -4.465
0.300 0.307 0.000 0.071 -5.262

Table 2: Switch-points in the deterministic case using value function iteration

Figure 2: Value function iteration results
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Next, we look at how the policy function of total asset holdings and the value func-
tion change shape as one of the parameter is altered from the set (β, γ, σ, y0, y1) =
(0.9, 0.95, 0, 0.5, 2). In Figures 3-6 we can observe the patterns in a risk-free environ-
ment. Figure 3 plots how the policy and value function depends on the time-preference
parameter, β. We observe that the more patient households are, the more they are going
to save from their income. Also, we see that only patient households (with β close to 0.9
and higher) can avoid the poverty trap by saving enough to invest in the better technology
with return y1. For households with a low β it is not optimal to accumulate assets in a
risk-free environment with income below 1.

Looking at Figure 4, we can see how the policy and value functions behave as the
rate of relative risk aversion, γ, changes. Note that the higher γ is the lower is the
household’s elasticity of intertemporal substitution. The graph shows that for wealth
levels below y1 the households are less willing to give up consumption this period for a
higher consumption in the next period. If the elasticity becomes too low (γ too high), the
households do not have sufficient incentive to save for the better technology. This poverty
trap can be observed in Figure 4 for γ = 1.6. On the other hand, if the household’s wealth
level becomes higher than the steady state level (w = y1 = 2 and x = 1), the households
with a higher γ will save more.

Figure 5 plots the policy and value function for different values of y0. We observe
that if the basic income of the households decreases then they will save more at low
wealth levels so that they build up enough wealth to invest in the higher return activity.
However, if y0 is too low such that the utility of consuming now becomes larger than
the future discounted benefits of the higher income, then the households cannot grow out
of poverty. As the payoff difference between the two activities, y1 − y0 approaches the
cost of switching between the activities (1), the switching becomes less attractive and the
investment into the better technology occurs at higher wealth levels. If the difference in
the returns becomes less than 1, the households will only save if their income is above y0

and will never invest in the high return activity. We observe the opposite pattern when
we look at Figure 6, which plots the value and policy functions as y1 changes.

Next, we investigate the policy function under risk. We set σ = 0.25, and look at
Figures 7-11 to discuss the shape of the policy and value function around the parameter
set (β, γ, σ, y0, y1) = (0.9, 0.95, 0.25, 0.5, 2). The change in the policy functions is very
similar to the case under no risk, however, we observe a smoother policy function with
less discontinuities in all cases.

Looking at Figure 9, which plots the policy function as the magnitude of risk increases,
we observe that for wealth levels below 1 the policy function smoothes out as risk increases.
At the end, we only have one discontinuity in the policy function when investing in the
high return technology. The investment happens at higher wealth levels as risk increases.
Also, the household builds up precautionary savings when his wealth level increases above
y1 due to a positive shock. In this case, savings are the only way to cope with income
risk and prevent the household form dropping back to the basic technology. Finally, we
observe that the household’s utility level decreases in the presence of risk.
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Figure 3: Policy and value function realizations for different values of β with σ = 0
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Figure 4: Policy and function realizations for different values of γ with σ = 0
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Figure 5: Policy and value function realizations for different values of y0 with σ = 0
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Figure 6: Policy and value function realizations for different values of y1 with σ = 0
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Figure 7: Policy and value function realizations for different values of β with σ = 0.25
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Figure 8: Policy and function realizations for different values of γ with σ = 0.25
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Figure 9: Policy and function realizations for different values of σ
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Figure 10: Policy and value function realizations for different values of y0 with σ = 0.25
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Figure 11: Policy and value function realizations for different values of y1 with σ = 0.25
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5.5 Estimation

For a sample of N observations, assuming that only the asset holdings for x and d are
observed for two consecutive periods (x̄ and d̄ for the earlier period and x and d for the
following period) but the structure of the income function is known, the log-likelihood
function can be written as

`(x,d|θ) =
N∑
i=1

log pθ
(
x = xi, d = di|x̄i, d̄i

)
(27)

=
N∑
i=1

∑
d∈{0,1}

log pθ(x = xi|di, x̄i, d̄i) + logPθ(d = di|x̄i, d̄i)

where pθ(x = xi, d = di|·) is the joint probability of observing x = xi and d = di, given
previous observations x̄i and d̄i and parameters θ = (β, γ, σ, y0, y1), while pθ(x = xi|·) is the
conditional probability of x = xi given di and the past observations. Similarly, Pθ(d = 0|·)
denotes the probability that di = 0 given the previous observations and parameter values.
Note that di can only take values 0 and 1, therefore, Pθ(d = 1|·) = 1− Pθ(d = 0|·).

First, we derive Pθ(d = 0|·). We denote the policy function for the discrete asset by
ψd(w), while ψ−1

d
(1) denotes the lowest wealth level for which di = 1. Risk in the model

is represented by s with log s ∼ N(−σ2/2, σ2). Φ(·) denotes the standard normal c.d.f.

Pθ(d = 0|x̄i, d̄i) = Pθ
(
ψd(x̄i − d̄i + s(y0 + d̄i(y1 − y0))) < 1

)
(28)

= Pθ

(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ−1

d
(1)
)

(29)

= Pθ

(
log s < log

(
ψ−1
d

(1)− x̄i + d̄i

y0 + d̄i(y1 − y0)

))
(30)

= Φ
(
σ

2
+

1
σ

log(ψ−1
d

(1)− x̄i + d̄i)−
1
σ

log(y0 + d̄i(y1 − y0))
)

(31)

Now, we turn to pθ(x = xi|di). We first derive Pθ(x < xi) =
∫ xi

−∞ pθ(x)dx. This is very
similar to (28)-(31). We denote the policy function for the continuous asset by ψx(w).
Note that φ(·) denotes the standard normal p.d.f.

Pθ(x < xi|x̄i, d̄i) = Pθ
(
ψx(x̄i − d̄i + s(y0 + d̄i(y1 − y0))) < xi

)
(32)

= Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ−1

x (xi)
)

(33)

= Pθ

(
log s < log

(
ψ−1
x (xi)− x̄i + d̄i
y0 + d̄i(y1 − y0)

))
(34)

= Φ
(
σ

2
+

1
σ

log(ψ−1
x (xi)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)
(35)

In Pθ(x < xi|di), the conditioning on di restricts the range of x’s that have a positive
probability. If di = 0 it has to be that x ∈

[
0, ψx

(
ψ−1
d

(1)
)]

, and Pθ(x < xi|di = 0) = 1

for xi ≥ ψx

(
ψ−1
d

(1)
)

. Similarly, Pθ(x < xi|di = 1) > 0 only for values xi ≥ ψx(ψ−1
d

(1)).
Let I(·) denote the indicator function. Then,
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Pθ(x < xi|di = 0) = I
(

0 ≤ xi < ψx(ψ−1
d

(1))
)
Pθ(x < xi) + I

(
xi ≥ ψx(ψ−1

d
(1))

)
(36)

Pθ(x < xi|di = 1) = I
(
xi ≥ ψx(ψ−1

d
(1))

)
Pθ(x < xi) (37)

Then, the conditional density of x = xi can be calculated for xi 6= {0, ψx(ψ−1
d

(1))} as

pθ(x = xi|di) =
d

dx
Pθ(x < xi|di)

= I
(
ψd(ψ−1

x (xi)) = di
) (

ψ−1
x

)′ (xi)
σ(ψ−1

x (xi)− x̄i + d̄i)
·

φ

(
σ

2
+

1
σ

log(ψ−1
x (xi)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)

(38)

The inverse of the policy function is not well-defined at xi = 0 and xi = 1. For these
observations we have to use the appropriate probabilities. Note that xi = 0 can only occur
when di = 0 and if xi = 1 then di = 1. Therefore,

Pθ(x = 0|x̄i, d̄i) = Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1

x (0)
)

(39)
= Pθ

(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1

x (0)
)

(40)

= Φ
(
σ

2
+

1
σ

log(ψ̄−1
x (0)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)

(41)

and

Pθ(x = 1|x̄i, d̄i) = Pθ

(
ψ−1
x

(1) ≤ x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1
x (1)

)
(42)

= Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ̄−1

x (1)
)

−Pθ
(
x̄i − d̄i + s(y0 + d̄i(y1 − y0)) < ψ−1

x
(1)
)

(43)

= Φ
(
σ

2
+

1
σ

log(ψ̄−1
x (1)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)

−Φ
(
σ

2
+

1
σ

log(ψ−1
x

(1)− x̄i + d̄i)−
1
σ

log(y0 + d̄i(y1 − y0))
)
(44)

where ψ−1
x

(χ) stands for the lowest wealth level for which xi = χ and ψ̄−1
x (χ) for the

highest wealth level for which xi = χ. Note that if ψ̄−1
x (0) < x̄i − d̄i then Pθ(xi = 0) = 0

and if ψ−1
x

(1) < x̄i − d̄i then the second term in (44) is 0.

Finally, we can write the log-likelihood function as
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(45)

`(x,d|θ) =
N∑
i=1

log
(
di + (1− 2di)Φ

(
σ

2
+

1
σ

log(ψ−1
d

(1)− x̄i + d̄i)−
1
σ

log(y0 + d̄i(y1 − y0))
))

+
N∑
i=1

I
(
xi 6= ψx(ψ−1

d
(di))

) [
log
((
ψ−1
x

)′ (x)
)
− log(σ(ψ−1

x (x)− x̄i + d̄i))

+ log φ
(
σ

2
+

1
σ

log(ψ−1
x (xi)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)]

+
N∑
i=1

I(xi = 0) log Φ
(
σ

2
+

1
σ

log(ψ̄−1
x (0)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)

+
N∑
i=1

I (xi = 1) ·

log
[
Φ
(
σ

2
+

1
σ

log(ψ̄−1
x (1)− x̄i + d̄i)−

1
σ

log(y0 + d̄i(y1 − y0))
)

−Φ
(
σ

2
+

1
σ

log(ψ−1
x

(1)− x̄i + d̄i)−
1
σ

log(y0 + d̄i(y1 − y0))
)]

where I(·) is the indicator function and φ(·) and Φ(·) denote the p.d.f. and c.d.f. of the
standard normal distribution, respectively.

We use Simulated Annealing14 in the estimation of the model because it does not
require differentiability of the objective function and it is a global optimization method.
For the estimation it is important that the policy function changes monotonically for
changes in the parameter values, otherwise the likelihood function will not be smooth.
Using the tools outlined in section 5.3 and Appendix B, our value function iteration
algorithm satisfies this monotonicity condition.

The estimation procedure is rather time consuming and we are still experimenting
with this Simulated Maximum Likelihood estimator, therefore we decided not to report
our results at this stage.

6 Conclusion

In this paper we have defined a general class of stochastic dynamic choice models with
discrete and continuous decision variables. We argue that this class contains a variety of
models that are useful in analyzing intertemporal consumption and wealth accumulation
decisions of households under risk. An essential feature of the models discussed is that all
the necessary information for making the decisions on consumption and asset holdings is
summarized in one variable, the wealth at hand of the agent, given the distribution of the
stochastic variables. For these models, we propose a solution method using value function
iteration.

This solution method is primarily developed for models that incorporate both discrete
and continuous decision variables. Hence, it can be fruitfully applied in settings where
agents face discontinuities (i.e. shifts) in their income function with respect to the invest-
ment asset(s). We are particularly interested in settings where credit constrained rural

14For details see Goffe et al. (1994).
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households make savings decisions in continuous assets (small livestock) and investment
decisions in discrete assets (cattle) under risk as in Vigh (2008). Therefore, we take a
simplified version of Vigh (2008) to demonstrate the working of the algorithm. The exam-
ple model can be solved analytically in the deterministic case, which allows us to study
the accuracy of our solution method. Finally, we show for the example model how a
Simulated Maximum Likelihood estimator of the model parameters can be based on the
solution method.
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Appendix A. Analytical solution of the deterministic model

This section describes the analytical solution of the model with Bellman equation (20)-
(22), which is presented again for convenience

V (w) = max
x

u(w − x) + βV (y0 + Ix>=1(y1 − y0 − 1) + x) (46)

s.t.

w ≥ x (47)
x ≥ 0 (48)

In order to solve the problem, first we have to find the wealth level, w̄1, at which the
agent will decide to invest 1 in d. At this will wealth level the agent will be indiffer-
ent between investing 1 in d today (V 0(w̄1)) and making the same investment tomorrow
(V 1(w̄1)). Hence, we can write that

V 0(w̄1) ≡ u(w̄1−1)+βV (y1) = max
x

u(w̄1−x)+βu(y0 +x−1)+β2V (y1) ≡ V 1(w̄1) (49)

First we need to find x as a function of w̄1 to be able to solve for w̄1. The FOC for
the RHS of equation (49) yield the Euler equation

u′(w̄1 − x) = βu′(y0 + x− 1). (50)

Now, using the Euler equation we can solve for x and get

x =
β1/γ

1 + β1/γ
w̄1 +

1
1 + β1/γ

(1− y0) (51)

Substituting for x we are now able to solve for w̄1 in (49). The equation has two
solutions as can be seen on Figure 12. We are interested in the lower solution that gives
us w̄1 = 1.080, which is the wealth level below which the agent waits one more period to
reach d = 1 and saves x = 0.720 today, and above which the agent invests in d = 1 today.
Hence, we observe that there is a discontinuity in the policy function for x at w̄1.

Next we want to find the switch point, w̄2, where the agent is indifferent between
investing in d = 1 tomorrow and in two days. Hence, we want to solve

V 1(w̄2) ≡ max
x

u(w̄2 − x) + βu(y0 + x− 1) + β2V (y1) (52)

= max
x0,x1

u(w̄2 − x0) + βu(y0 + x0 − x1) + β2u(y0 + x1 − 1) + β3V (y1) ≡ V 2(w̄2)

Again, we need to solve for the x’s first through the FOC’s, which yield

x =
β1/γ

1 + β1/γ
w̄2 +

1
1 + β1/γ

(1− y0) (53)

x0 =
β1/γ

1 + β1/γ
w̄2 +

1
1 + β1/γ

(x1 − y0) (54)

x1 =
β1/γ

1 + β1/γ
(x0 + y0) +

1
1 + β1/γ

(1− y0) (55)
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Figure 12: Solving for w̄1: value functions V 0(w̄1) and V 1(w̄1)

Equation (52) has two solutions again, from which the lower one is of interest to us:
w̄2 = 0.677. At this wealth level the savings of the agent who invests in d tomorrow is
x = 0.530, and the savings of the agent who invests in d in 2 days is x0 = 0.350 today and
x1 = 0.659 tomorrow. Between w̄1 and w̄2 agents reach d = 1 in one period, and their
savings decision follows the FOC of (51).

The next step is to find the switch point, w̄3, where the agent is indifferent between
investing in d = 1 in two days and in three days. However, we leave it to the reader to
derive the remaining switch points.

28



Appendix B. Notes on programming

This section contains our comments on the implementation of the solution algorithm
for the model of section 5. The algorithm is programmed in Ox.15

We set N = 300 with the values of w evenly spaced on [0.2, 2.2]. The iteration pro-
cedure terminates if the largest relative change in the value function and the policy func-
tions become very small. Attention should be paid to the initial values of the policy and
value functions and the starting values of the maximization algorithm. Choosing good
starting values is important in achieving convergence. When setting up the program,
it is a good idea to plot the function approximations after each iteration. For wealth
level wi we use ψ0

x(wi) = min{0.7wi, 1}, ψ0
d(wi) = 1 if ψ0

x(wi) ≥ 1 and 0 otherwise.
V 0(wi) = u(ψ0

x(wi) + y0 + ψ0
d(wi)(y1 − y0 − 1))/(1 − β) for the initial function values.

Before applying the initial-value-search routine, we observed that when initial values of
x contain zeros, those grids will not move away from zero anymore. This can occur as a
result of the flatness of the policy function at the switch points and the log transformation
in the optimization, which make the output of the optimization algorithm sensitive to
starting values. Therefore, to be on the safe side, it is a good idea to assume some savings
for every wealth level in the initial values.

In the optimization problem of Step 2.1 we apply the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method16 on the log-transformed variable x̃ = log(x − d), such that the
unconstrained maximization algorithm returns x > d. The starting value in the maxi-
mization is chosen as x̃rk = log(max{ψr−1

x (wi)− d̄k, ε}) with ε a small positive increment.
This value is, however, modified in the neighborhood of the discontinuities in the policy
function according to the initial-value-search routine.

The initial-value-search algorithm does the following: if |ψr−1
x (wi+1) − ψr−1

x (wi)| >
wi+1−wi or |ψr−1

x (wi)−ψr−1
x (wi−1)| > wi−wi−1, then in iteration r at wi before executing

the maximization routine, we evaluate value function V (x̃b|wi, di) at B equidistant values
of x̃b on range exp(x̃b) ∈ (min{exp(x̃) − 0.05, ε},min{ψr−1

x (wi+1), wi − ε}). From this
we use x̃b with maximal value of V (x̃b|wi, di) as the starting value in the maximization
procedure. The larger we choose B, the closer the initial value of x̃ is going to be to the
optimum.

The initial-value-search routine is an important part of the solution algorithm because
at the switch points the value function has the same value for two different saving strategies
(invest in the advanced technology after k or k+ 1 periods) that contain different optimal
savings in x today. Figure 12 in Appendix A illustrates the value function for different
values of wealth level assuming optimal decisions for x and d. From a different angle,
Figure 13 shows the shape of V (x̃b|wi, di) close to a switch point. This plot also highlights
the importance of good starting values. Starting at around x = 0.5 the BFGS algorithm
does not find a value of x that yield higher optimum, however thorough evaluation of the
value function using the initial-value-search routine shows that the value function takes its
optimum close to x = 0.63 instead of 0.5. Hence, without the initial-value-search routine
we were not able to locate the discontinuity points in the policy function accurately.

We observe that many times the maximization algorithm reports weak or no conver-
gence, however the value function iteration algorithm converges nonetheless. The prob-
lematic areas are (a) close to the discontinuities in the policy function, where the slope is

15The Ox code is available on request from Melinda Vigh (mvigh@feweb.vu.nl).
16See chapter 5 of Judd (1998) for more information on the BFGS method.
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Note: Output is without using smart algorithm.

Figure 13: Optimization routine at a switch point

very flat (see Figure 13); (b) the areas where x − d = 0, because there the optimum of
the log transformed problem is log(x− d) = −∞; and (c) sometimes it also occurs for the
optimum with d = 0 when the optimal chose is d = 1. Applying the initial-value-search
routine is able to reduce type (a) non-convergence messages.

In order to get a precise approximation of the critical points of the policy function
(i.e. where the discontinuities occur), we change the grid of wealth levels after the policy
function is close to convergence. More grid-points are added around the wealth levels
where the slope of the policy function is changing, and less nodes are used at the intervals
where the policy function is (close to) linear. Additional grid points are also added around
the location where x becomes positive and where it becomes 1.

With a convergence criterion of 0.001 for the largest relative change in function values
compared to the previous iteration, the policy functions converges in 10 iterations, while
it takes 40 iterations for the value function to achieve convergence with the same tolerance
level. In some cases it might occur that the algorithm diverges for a specific starting value.
To avoid the breakdown of the program, we restart the value function iteration with new
random starting values if the convergence condition becomes too large. This is useful when
estimating the model parameters.
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