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Abstract

We introduce an efficient solution for games with communication graph structures and

show that it is characterized by efficiency, fairness and a new axiom called component

balancedness. This latter axiom compares for every component in the communication

graph the total payoff to the players of this component in the game itself to the total payoff

of these players when applying the solution to the subgame induced by this component.

Keywords: TU game, communication graph, Myerson value, fairness, efficiency.
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1 Introduction

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game, being

a pair consisting of a finite set of players and a characteristic function on the collection

of all coalitions of players, that assigns a worth to each coalition of players. In this note

we consider TU-games with limited cooperation possibilities, represented by an undirected

communication graph, as introduced by Myerson [7]. The nodes in the graph represent

the players and the edges represent the communication links between the players. Players

can only cooperate if they are connected. This yields a so-called (communication) graph

game, given by a triple consisting of a finite set of players, a characteristic function and a

communication graph.

A (single-valued) solution for communication graph games is a mapping that assigns

to every communication graph game a payoff vector. The best-known solution for commu-

nication graph games is the Myerson value [7], which is obtained as the Shapley value of

a restricted game, and is characterized by component efficiency and fairness. Component

efficiency states that for each component of the communication graph the total payoff to

the players of the component is equal to the worth of that component in the characteristic

function. Fairness says that deleting a link between two players yields for both players

the same change in payoff. Another single-valued solution concept, the so-called position

value, is introduced in Meessen [6] and developed in Borm, Owen and Tijs [1]. Slikker [10]

axiomatizes the position value using component efficiency and balanced total threats. For

cycle-free communication graph games, Herings, van der Laan and Talman [4] introduced

the so-called Average Tree solution, characterized by component efficiency and component

fairness, the latter axiom stating that deleting a link between two players in a cycle-free

graph game yields the same average change in payoff in the two components that result

from deleting the link. All these solutions satisfy component efficiency. Therefore, effi-

ciency is only guaranteed when the graph is connected and thus contains the player set

itself as its unique component.

In contrast to the reasoning that a set of players can only realise its worth when

they are connected, and thus eventually the players in each component distribute the

worth of that component among each other, in some situations efficiency is obtained, even

when the communication graph is not connected. As an example, consider a research fund

that has an amount of money available to distribute amongst individual researchers. Every

researcher that submits a proposal takes part in the distribution of the available budget, so

writing an individual proposal is the only requirement for a researcher to get access to the

fund. However, the board of the research fund has the policy to stimulate interdisciplinary

research and therefore joint proposals get priority. Researchers can secure some part of the
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fund by submitting joint proposals. For instance, suppose that the budget of the fund is

12 and there are three researchers, named A, B and C. An individual proposal just gives

access to the fund, but does not secure any amount of money. On the other hand, A en

B can secure themselves a grant of 3 when writing a joint proposal, A and C a grant of 2

and B and C a grant of 4. However, C does not communicate with the others, so the only

feasible coalition is A and B and the communication graph consists of two components:

the coalition of A and B that can secure themselves 3, and the singleton agent C that can

only secure itself 0. According to the Myerson value the total amount of money granted

to the researchers is only 3, but in this situation the board of the research fund will grant

3 to A and B and will then distribute the remaining 9 to the researchers. Although the

communication graph is not connected, the full budget of 12 is still available to the coalition

of all players. So, this requires a value satisfying efficiency.

Recently, also Casajus [2] argued by some motivating example that in some situa-

tions it seems reasonable to require efficiency, even when the communication graph is not

connected and thus has multiple components. He introduced a solution for communication

graph games that is characterized by efficiency, equivalence (meaning that the total payoff

in case of the complete graph is equal to the total payoff in case of the empty graph), com-

ponent merging (meaning that merging the components’ players into a single player does

not affect the total payoff to the component) and a modified version of Myerson’s fairness.

In this note we introduce a new solution for communication graph games that, besides

efficiency and Myerson’s fairness, satisfies a new axiom called component balancedness.

This component balancedness axiom compares for every component in the communication

graph the total payoff to the players of this component in the game itself to the total payoff

of this component when applying the solution to the subgame induced by this component.

It also can be seen as weak version of component efficiency. The new solution equals the

Shapley value when the graph is connected and is equal to the equal surplus division when

the graph is empty.

This note is organized as follows. Basic definitions and notation are introduced in

Section 2. The component balancedness axiom, the new solution and its characterization

are given in Section 3. At the end of that section we return to the research fund example

described above and compare our solution with several others.

2 Preliminaries

A situation in which a finite set of players can obtain certain payoffs by cooperating can

be described by a cooperative game with transferable utility, or simply a TU-game, being a

pair h i, where  ⊂ IN is a finite set of  ≥ 2 players and : 2 → IR is a characteristic
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function on such that (∅) = 0. For any coalition  ⊆  , () is the worth of coalition ,

i.e., the members of coalition  can obtain a total payoff of () by agreeing to cooperate.

We denote the set of all characteristic functions on given player set  by G .
Although is not fixed, nevertheless for simplicity of notation and if no ambiguity appears,

we write  instead of h i. For given  , the subgame of a game  ∈ G with respect to a
player set  ⊂  ,  6= ∅, is the game  ∈ G defined as  () = (), for all  ⊆  . We

denote the cardinality of a given set  by ||, along with lower case letters like  = | |,
 = ||, 0 = | 0| and so on. For  ⊂ IN, we denote IRK as the -dimensional vector space
which elements  ∈ IRK have components ,  ∈ .

For game  ∈ G , a vector  ∈ IR may be considered as a payoff vector assigning

a payoff  to each player  ∈  . A single-valued solution, called a value, is a mapping 

that assigns for every  and every  ∈ G a payoff vector () ∈ IR . A value  is efficient

if
P

∈ () = () for every  ∈ G and  ⊂ IN. The best-known efficient value is the
Shapley value [9], given by

() =
X

{⊆ |∈}

(− )!(− 1)!
!

(()− ( \ {})) for all  ∈ 

For  ⊂ IN, a communication structure on  is specified by a communication graph

hΓi with Γ ⊆ Γ = { { } |   ∈   6= }, i.e., Γ is a collection of (unordered) pairs of
nodes (players), where a pair { } represents a link between players   ∈  , and hΓi
is the complete graph on  . Again, for simplicity of notation and if no ambiguity appears,

we write graph Γ instead of hΓi. Let L denote the set of all communication graphs on

 . A pair hΓi ∈ G × L constitutes a game with (communication) graph structure or

simply a graph game on  . For given  , the subgraph of a graph Γ ∈ L with respect to

set  ⊆  ,  6= ∅, is the graph Γ| ∈ L defined by Γ| = {{ } ∈ Γ |   ∈ }.
For a graph Γ, a sequence of different nodes (1     ),  ≥ 2, is a path from 1 to

, if for all  = 1     −1, { +1} ∈ Γ. A graph Γ on a player set  is connected, if for

any two nodes in  there exists a path in Γ from one node to the other. For given graph

Γ on  , we say that the player set  ⊆  is connected, if the subgraph Γ| is connected.
For graph Γ on player set  and  ⊆  , a subset  ⊆  is a component of  if (i) Γ|
is connected, and (ii) for every  ∈  \  , the subgraph Γ|∪{} is not connected. For Γ
on  and  ⊆  , we denote by Γ the set of all components of , and by (Γ) the

component of  containing  ∈ . Notice that Γ is a partition of .

A single-valued solution for communication graph games, a graph game value, is

a mapping  that for every  ⊂ IN and every hΓi ∈ G×L assigns a payoff vector

(Γ) ∈ IR . A well-known graph game value is the Myerson value. In Myerson [7] it is

assumed that in a communication graph game hΓi only connected coalitions are able to
cooperate and to realise their worths. A non-connected coalition  can only realise the sum
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of the worths of its components in Γ. This yields the restricted game Γ∈G defined by

Γ() =
X
∈Γ

( ) for all  ⊆ 

Then the Myerson value for communication graph games is the graph game value  that

assigns to every communication graph game hΓi the Shapley value of its restricted game
Γ, i.e.,

(Γ) = (
Γ) for all hΓi ∈ G×L and every  ⊂ IN

It is well-known that the Myerson value is the unique graph game value that is component

efficient and satisfies the so-called Myerson fairness axiom. The aim of this paper is to

introduce an efficient and fair solution for communication graph games.

To conclude the introduction section we recall definitions of efficiency, component

efficiency and fairness. A graph game value  is

- efficient if for every graph game hΓi on any player set  , P∈ (Γ) = ();

- component efficient if for every graph game hΓi on any player set  , for every
 ∈ Γ,

P
∈ (Γ) = ();

- fair if for every graph game hΓi on any player set  , for every { } ∈ Γ,

(Γ)− (Γ−) = (Γ)− (Γ−) where Γ− = Γ \ {{ }}.

3 Efficiency, fairness and component balancedness

In this note we look for a graph game value that is characterized by efficiency, fairness and

a new axiom that we refer to as component balancedness.

Component balancedness (CB) For every graph game hΓi on any player set  , for
every component  ∈ Γ, it holdsP

∈ ((Γ)− ( Γ|))


=

P
∈

¡
(Γ)− ((Γ)Γ|(Γ)

¢




First, note that this axiom only states a requirement on the payoffs when the collec-

tion of components Γ contains at least two elements, otherwise the requirement reduces

to an identity. Further, notice that the games h Γ|i and h(Γ)Γ|(Γ)i are defined
on the reduced player sets , respectively, (Γ). For a component  ∈ Γ, the axiom

compares the payoffs that the players of  receive in the game itself to the payoffs that
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these players receive in the subgame on . Considering two components  0 ∈ Γ, this

axiom implies that

1



X
∈

((Γ)− ( Γ|)) = 1

0
X
∈0

((Γ)− (0 Γ|0)) 

meaning that considering only the players in component , the change in the average

payoff of the players in this component is the same as the change in the average payoff

of the players in any other component  0 resulting from considering only the players in

that component  0. We refer to this axiom as component balancedness because it has

some flavour of the balanced contributions1 property of Myerson [8], but in terms of the

average change of payoffs in components.2 Component balancedness also can be seen as a

weak version of component efficiency since every graph game value that satisfies component

efficiency satisfies component balancedness. This follows straightforward since component

efficiency implies that
P

∈ (Γ) =
P

∈ ( Γ|) = (), for all  ∈ Γ.

As mentioned, we will show that there is a unique graph game value that satisfies

efficiency, fairness and component balancedness. This solution is obtained by taking the

Shapley value of a slight modification of the restricted game Γ. If we want to obtain an

efficient graph game value as the Shapley value of some restricted game, then at least the

worth of the ‘grand coalition’  in the restricted game must be (). It turns out that

this modification is sufficient to obtain the unique graph game value satisfying efficiency,

fairness and component balancedness. So, for a player set  ⊂ IN and hΓi ∈ G×L ,

we define Γ ∈ G by3

Γ() =

(
Γ()  $ 

()  = 

and consider the graph game value  given by

(Γ) = (
Γ) for all hΓi ∈ G×L and every  ⊂ IN

We then have the following theorem.

1Balanced contributions for communication graph games states that isolating a player, say , in the

communication structure has the same effect on the payoffs of another player, say , as the effect on the

payoff of  as a result of isolating player , i.e., for every graph game hΓi and   ∈  , it holds that

(Γ)− (Γ \ Γ) = (Γ)− (Γ \ Γ), where Γ = {{ } ∈ Γ |  ∈ { }}.
2It is worth remarking that component balancedness also has the flavor of several other known types

of axioms such as consistency (looking at reduced games, but not saying that the payoffs of remaining

players do not change) or component fairness (comparing average changes of payoffs in a component, but

not after link deletion).
3So, Γ is the Myerson restricted game, except that Γ() = () instead of

P
∈Γ ().
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Theorem 3.1 The graph game value  is efficient, fair and satisfies component balanced-

ness.

Proof. Since Γ() = (), efficiency follows by efficiency of the Shapley value. So,

we only have to show fairness and component balancedness. By definition we have that

Γ = Γ + , where  ∈ G is given by

() =

(
0  $ 

()− Γ()  = 

i.e., game Γ is obtained by adding ()− Γ() times the unanimity game4 of  to the

Myerson restricted game Γ. From this and the additivity and symmetry properties of the

Shapley value it follows that

(Γ) = (
Γ) = (

Γ) + () = (Γ) +
()− Γ()


 (3.1)

where the last equality follows by definition of  and . Hence,

(Γ)− (Γ−) = (Γ) +
()− Γ()


−
µ
(Γ−) +

()− Γ−()



¶

= (Γ)− (Γ−)− Γ()− Γ−()



= (Γ)− (Γ−)− Γ()− Γ−


= (Γ)− (Γ−)

where the third equality follows by fairness of . Hence,  satisfies fairness.

To show component balancedness, by (3.1) we obtain for every  ∈ Γ thatX
∈

(Γ) =
X
∈

(Γ) +




¡
()− Γ()

¢


Further,
P

∈ (Γ) = () because of component efficiency of the Myerson value, and

the total payoff that  assigns to the players in  in the subgame h Γ|i is equal to
() because of the efficiency of  itself. Thus, with (3.1)X

∈
((Γ)− ( Γ|)) = () +





¡
()− Γ()

¢− () =




¡
()− Γ()

¢


Also, by efficiency of  we have
P

∈ ((Γ)Γ(Γ)) =
P

∈Γ
P

∈ ( Γ|) =P
∈Γ (), and thusX

∈

¡
(Γ)− ((Γ)Γ(Γ))

¢
= ()−

X
∈Γ

() = ()− Γ()

4It is well known from [9] that the collection of unanimity games {}⊆
 6=∅

, defined as  () = 1 if

 ⊆ , and  () = 0 otherwise, form a basis in G in the sense that every  ∈ G can be written as a

unique linear combination of unanimity games, where the coefficients are the Harsanyi dividends, see [3].
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Hence,  satisfies component balancedness. 2

Note that (3.1) gives an alternative definition of the graph game value  assigning

to every graph game its Myerson value and distributing the difference between the worth

of the ‘grand coalition’  and the sum of the worths of all components equally over all

players. In this sense the solution  can be seen as combining elements of the Shapley

value and equal division solution.5 The next theorem characterizes the graph game value

.

Theorem 3.2 There is a unique graph game value  satisfying efficiency, fairness and

component balancedness.

Proof. By Theorem 3.1 we only need to show uniqueness. We first consider the case that

Γ is the empty graph. Then Γ = {{}| ∈ }, i.e., every node is a singleton component,
and component balancedness requires for every  ∈  that

(Γ)− ({}Γ|{}) = 1



X
∈

¡
(Γ)− ({}Γ|{})

¢
 (3.2)

By efficiency
P

∈ (Γ) = () and also for every  ∈  , ({}Γ|{}) = ({}).
Hence, when Γ is the empty graph, then by (3.2) the payoffs

(Γ) = ({}) + 1


Ã
()−

X
∈

({})
!
  ∈  (3.3)

are uniquely determined.

We now proceed by induction similar as in [7], but replacing component efficiency

by efficiency and component balancedness. Consider graph game hΓi ∈ G×L , and

suppose that we determined the payoffs for every h0Γ0i ∈ ∪⊆ G×L with |Γ0|  |Γ|.
Efficiency requires thatX

∈
(Γ) = () (3.4)

Further, for a component  ∈ Γ, component balancedness implies thatP
∈ ((Γ)− ( Γ|))


=

P
∈

¡
(Γ)− ((Γ)Γ|(Γ)

¢


 (3.5)

5This idea is similar to Kamijo [5] who introduced a solution for games in coalition structure, i.e., the

player set is partitioned into unions, that allocates to every player its Shapley value in the game restricted

to its own union and distributes the Shapley value of its union in the (quotient) game between the unions

equally among the players in each union. Considering the associated communication graph, being the

graph where there is a link between any pair of players in the same union and no links between players in

different unions, the unions are exactly the components in that communication graph.
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When  =  , this is an identity and the equation is redundant. Otherwise, efficiency

requires that for every  ∈ Γ,X
∈

( Γ|) = () (3.6)

Using the equations (3.4) and (3.6), equation (3.5) reduces to

X
∈

(Γ)− () =




⎛⎝()−
X

∈Γ
()

⎞⎠  (3.7)

Let  = |Γ| be the number of components. Since summing up the equations (3.5) over
all components yields an identity, the number of independent equations (3.7) is − 1. So,
equations (3.4) and (3.7) yield together  independent linear equations.

Next, let Γ0 be a spanning subforest of Γ, i.e., Γ0 ⊆ Γ with |Γ0| =  − , and

Γ0 = Γ (both forests have the same collection of components). Note that for every

link { } ∈ Γ0 it holds that |Γ0−|  |Γ0| (deleting any link from Γ0 increases the

number of components). For every link { } ∈ Γ0, by fairness it holds that

(Γ)− (Γ−) = (Γ)− (Γ−) (3.8)

Since |Γ−| = |Γ| − 1, for every { } ∈ Γ0 all values (Γ−),  ∈  , have been

determined by the induction hypothesis. Then (3.8) yields  −  linearly independent

equations. So, together the system of equations (3.4), (3.7) and (3.8) yield 1 + (− 1) +
(−) =  linearly independent equations in  unknown payoffs (Γ),  ∈  , and so

all payoffs (Γ),  ∈  , are uniquely determined. 2

Notice from equation (3.3) that the solution  divides the excess ()−P∈ ({})
equally among the players when the graph is empty, and thus yields the equal surplus

division solution. On the other hand, when the graph is complete the solution  gives the

Shapley value of .

For the example given in the introduction we have ({}) = 0,  = ,

({}) = 3, ({}) = 2, ({}) = 4, () = 12 and Γ = {{}}. So

Γ = {{} {}}. The Shapley value of  is efficient and yields () = (31
2
 41

2
 4),

and the Myerson value is component efficient and yields (Γ) = (3
2
 3
2
 0). The new so-

lution is efficient and yields (Γ) = (41
2
 41

2
 3). Of course, efficiency requires that the

total budget of 12 is allocated. Since all singleton worths are zero, fairness implies that

the link between A and B gives them an equal payoff in this example6. So, we only need

6This follows since, as mentioned before, efficiency and component balancedness imply equal surplus

division (every player gets its singleton worth and the remainder is equally distributed over all players) for

the empty graph.
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to determine the shares in the total budget of C compared to A and B together. This is

done by component balancedness which requires that the total payoff of A and B together

minus their worth (being equal to 3) is twice the difference between the payoff of C and

its worth, implying that A and B together get a fraction 2
3
and C gets a fraction 1

3
of

the ‘surplus’ 12 − 3 = 9. As can be seen in this example, our solution favors cooperation
among players since the stand alone player C gets less than one third of the budget. The

outcome of Casajus’ value for this example is (31
4
 41

4
 41

2
), and thus the stand alone player

C gets more than one third of the budget. This occurs because this solution favors (non

cooperative) stand alone players.

Finally, we show logical independence of the axioms of Theorem 3.2. First, the

Myerson value is fair and satisfies component balancedness (there is zero excess to divide

among the components), but is not efficient. Second, the equal division solution given

by (Γ) =
()

| | ,  ∈  , hΓi ∈ G ×L   ⊂ IN, is efficient and fair, but is

not component balanced. Third, the component-wise equal division solution given by

(Γ) =
((Γ))

|(Γ)| +
1


³
()−P∈Γ ()

´
,  ∈  , hΓi ∈ G×L   ⊂ IN, is

efficient and component balanced, but not fair.
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