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lowing aspects. First, we broaden the class of individual utilities in
Rubinstein (1974) that lead to two-fund separation. Secondly, we pro-
pose a linear programming SSD test that is more efficient than that of
Post (2003) and expand the SSD efficiency criteria developed by Dyb-
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1 Introduction

Stochastic Dominance (SD) is a probabilistic concept of superiority among
different random variables. Unlike parametric criteria such as Mean-Variance
analysis, SD accounts for the whole range of distribution function, rather than
its particular characteristics such as central moments. Although SD has ap-
plications in a huge variety of areas ranging from medicine to agriculture (see,
e.g., Bawa 1982 and Levy 1992, 2006 for a survey and references, Eeckhoudt
et al 2009 for recent applications), this paper focuses on its use in the area
of finance. In financial decision-making one has to select efficient portfolios
from an available portfolio possibilities set on the basis of a trade-off among
their expected returns, the associated risk of having extreme losses and the
potential of earning excessive gains.

We consider the expected utility framework whereby individuals select
portfolios maximizing the expected value of their utility function which can
capture different individual risk attitudes such as risk aversion, risk neutral-
ity, risk seeking, or a combination of those, for different levels of wealth.
The non-parametric nature of SD criteria allows us to identify efficient port-
folios without having to specify the utility functions explicitly. Instead, it
employs some general restrictions such as non-satiation and risk aversion.
The set of all portfolios supported by some utility function in a given class
is called the efficient set with respect to this utility class. It turns out that
convex efficient sets have a special economic content and hence necessary
and sufficient conditions leading to the convexity of efficient sets have been
puzzling researchers for more than three decades. Rubinstein (1974) showed
that when the preferences of all investors are similar enough, two-fund sep-
aration results. On the other hand, Dybving and Ross (1982) proved that
if no assumptions on investors’ preferences are made other than concavity
and monotonicity, the efficient set is generally non-convex. In line with this
concave and monotone utility class Ross (1978) derived some assumptions on
the distribution function of returns that lead to k-fund separation. Among
recent researchers, Versijp (2007) reviewed Rubinstein’s result in relation to
stochastic dominance and asset pricing models.

In this paper we point out the importance of Stochastic Dominance effi-
cient sets being convex, review classic convexity and efficient set characteri-
zation results and generalize them in the following aspects. First, we broaden
the class of individual utilities in Rubinstein (1974) that lead to two-fund sep-
aration. Second, we expand the SSD efficiency criteria developed by Dybvig
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and Ross (1982) onto the Third Order Stochastic Dominance and further to
Decreasing Absolute and Increasing Relative Risk Aversion Stochastic Dom-
inance. The efficient sets for those are finite unions of intersections of convex
sets. We also give a linear programming SSD efficiency test which is more
efficient than that of Post (2003) in case of unrestricted short sales.

This paper is focused on portfolio efficiency with respect to a diversified
portfolio possibilities set, normally a polytope whose vertices are the assets
available to investors. Further, we consider discrete distribution of returns
due to its interpretability via empirically observed data, as well as tractability
of the computational methods involved.

This paper is organized as follows: Section 2 provides general assumptions
and problem formulation, Section 3 points out the importance of efficient sets
being convex and reviews the associated necessary and sufficient conditions,
Section 4 suggests some efficiency tests for a given portfolio relative to various
economically meaningful classes of utility functions, and finally Section 5
summarizes the major results and concludes the paper.

2 Assumptions and problem formulation

Consider a single period investment decision-making problem under uncer-
tainty in a classic expected utility framework, in which:

1. Investors select investment portfolios to maximize the expected utility
of the return on their investment portfolio. Let U = {u : R → R}
denote the class of von Neuman-Morgenstern utility functions and X
be the m-by-n matrix of returns of n available assets in m states of the
world. The probability of occurrence of state i is denoted πi. Naturally,
0 < πi ≤ 1, i = 1, . . . ,m, and

∑m
i=1 πi = 1. Investors are uncertain

about which of the states of nature will occur, but they know the
underlying probabilities of the states with certainty.

2. Investors may diversify between available assets. Denote λ ∈ Λ for a
vector of portfolio weights. Unless otherwise specified, we assume that
short sales are allowed and unrestricted. The portfolio possibilities set
then becomes

Λ = {λ ∈ Rn : λTe = 1}
and the set of all available allocations is

MX = {x ∈ Rm : x = Xλ, λ ∈ Λ}
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3. If a riskless asset is available in the market, it will be used either as part
of X (a column with equal components), or separately (in which case
X will be the set of risky assets only), whichever is more convenient.

A given portfolio τ ∈ Λ is optimal for an investor with utility u ∈ U if
and only if

Eu(X) = sup
λ∈Λ

Eu(Xλ) (1)

where Eu denotes the expected value of u.
If π1, . . . , πm are probabilities of occurrence of the states of the world,

then (1) becomes
m∑
i=1

πiu(x
iλ) (2)

where xi is the i-th row of X. In practical applications full information about
utility functions is not available, and (2) cannot be verified directly. This pro-
vides the rationale for relying on a set of general assumptions, rather than a
full specification of the utility function. The Second Order Stochastic Dom-
inance criterion (SSD) restricts attention to the class of strictly increasing
and concave utility functions, modeling thereby non-satiable and risk-averse
preferences. The Third Order SD (TSD) assumes that in addition to SSD
utilities are positively skewed. A portfolio τ ∈ Λ is said to be optimal in a
given utility class U if and only if there exists u ∈ U such that τ is optimal
for u in the sense of (1).

A portfolio τ ∈ Λ is efficient if it is not dominated by any other portfolio,
that is

∀λ ∈ Λ\{τ} ∃u ∈ U : Eu(Xλ) < Eu(Xτ).

If both Λ and U are convex (as will be the case in this paper), efficiency is
equivalent to optimality due to the Minimax theorem (see e.g. Post (2003))
and thus the two concepts will henceforth be used interchangeably.

An individual investor with utility u ∈ U is facing the following portfolio
allocation problem:

max
λ

m∑
i=1

πiu(x
iλ)− ν

(
λTe− 1

)
(3)

where ν is the Lagrange multiplier. It is known that linearity constraints
do not alter convexity. So if we assume u(x) to be strictly concave and
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twice continuously differentiable in x, it will remain concave in λ. In fact,
the Hessian of u with respect to λ is Hu = −Y TY , where Y is an m-by-n
matrix defined by yij = −xij

√
−u′′(xiλ). Therefore, Hu is always negative

semidefinite, and u is concave in λ.
In light of the above-mentioned, the necessary and sufficient condition

for τ to be the solution of (3) is that there exists v ∈ R such that for all
j = 1 . . . n

m∑
i=1

πixiju
′ (xiτ

)
= ν. (4)

Note that if a risk-free asset is available, due to (4) there should hold:∑m
i=1 πiu

′ (xiτ) = ν
rF
, where rF is the risk-free return. Thus, the optimality

condition (4) takes on the form:

for all risky assets j:
m∑
i=1

πi(xij − rF )u
′ (xiτ

)
= 0. (5)

We could also relax the twice continuous differentiability assumption for
u; (4) would still hold in optimality if u is substituted by ∂u – any vector
from the supergradient correspondence.

3 Convexity

Program (3) represents the portfolio formation of an individual investor hav-
ing a particular well-behaved utility function u. In macroeconomic settings,
the aggregate investment decision of a large group of individuals, assuming
all of them to be well-behaved, for instance non-satiable risk averters, is of
primary importance. A reasonable theoretical model should allow us to ex-
tract information about all investors’ decisions based on a small number of
large composite portfolios. The largest of those, the total value-weighted
aggregate portfolio, is generally referred to as the market portfolio, the ef-
ficiency of which has been a starting point of many asset pricing theories,
including the capital asset pricing model (CAPM).

The simplest case when the market portfolio is efficient is two-fund sep-
aration, where any optimal portfolio is a linear combination of two assets,
normally a risk-free asset and the market portfolio. In such an economy
any individual investor will hold a share of the same (risky) market portfolio
and will invest the rest of his/her wealth in the risk-free asset available, i.e.
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either borrowing or lending at the risk-free rate. Various assumptions lead
to two-fund separation, such as: mean-variance setting (when investment
decision is a trade-off only between mean returns and variances of underly-
ing portfolios, see Markowitz (1952, 1987)), homogeneity of preferences (see
Rubinstein (1974)), joint normal distribution of asset returns, which is a
common assumption of the traditional Capital Asset Pricing Model (CAPM,
see Cochrane (2005) for an overview) and quadratic utility functions.

Despite its theoretical appeal, two-fund separation is extremely restrictive
and is very unlikely to hold in practice. A straightforward generalization of
the concept, preserving the market portfolio efficiency, is k-fund separation,
where each efficient portfolio is a linear combination of k fixed mutual funds.
Naturally, k-fund separation is of practical and theoretical interest only when
k ≪ n. Generally k-fund separation holds in complete markets (see e.g.
Dybving and Ross (1982)). Ross (1978) derives a necessary and sufficient
condition for k-fund separation which however involves returns only; the
result is hard to generalize on possible variation of individual preferences
and is therefore not particularly informative as far as variations in utility
functions are concerned.1

A natural further generalization of k-fund separability is the convexity of
efficient sets. Indeed, the market portfolio is nothing other than a convex
combination of all individual portfolios (with unknown positive weights),
and therefore the convexity of an efficient set suffices for the efficiency of
the corresponding market portfolio. Indeed, we may assume without loss of
generality that individual assets are optimal for at least one investor with
a well-behaved utility function and that therefore those assets are efficient.
(If, however, we do have an asset whose returns are strictly dominated by
another marketed asset or fund, we may as well discard it, as no rational in-
vestor will invest in it). Clearly, the market portfolio is now an interior point
of a polyhedron whose vertices are all efficient, and if the whole efficient set is
known to be convex, efficiency of the market portfolio automatically follows.
In addition to being an implication of various asset pricing theories, efficiency
of the market portfolio has an intuitive economic interpretation. Observing
the popularity of large composite index funds (which proxy the market port-
folio) among many individual and institutional investors in practice, many

1In fact, Theorem 3 in Ross (1978) can be seen as a refinement of the classic definition
of k-fund separability, as both are given solely in terms of returns and both assume k
generating factors.
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researchers argue that even heterogeneous investors models inconsistent with
two-fund separation should imply efficiency of the market portfolio. More-
over, 2- and k-fund separation are merely particular cases of efficient sets
being convex.

Conditions which lead to convexity of efficient sets have been challenging
researchers for more than three decades already, as it could deliver inter-
esting aggregation results for the models of heterogeneous investors. If an
economy is close to satisfying k-fund separation, there is no need for active
investment, as every investor is better off investing into k available mutual
funds (with specific allocation among those funds determined individually
for each investor) and saving on transaction costs associated with actively
trading strategies. The cases when k-fund separation does not hold but the
efficient set is convex are still of theoretical interest, as one could study util-
ity preferences that support large composite portfolios, or test implications
of heterogeneous investors models, refining the utility class on the basis of
observed individual allocations and composite market indices.

The convexity puzzle can be tackled from two different perspectives: re-
turns on underlying assets and preferences of individual investors. The for-
mer would lead the reader towards arbitrage pricing theories and various
factor models, while the latter remains not duly researched. Dybvig and
Ross (1982) do show with a simple example that SSD efficient set is gener-
ally non-convex. However, an SSD efficient set comprises portfolios optimal
for all non-satiable risk-averse preferences, many of which are known to be
unrealistic. For that reason, after reviewing and providing a more construc-
tive proof of the results in Rubinstein (1974) related to 2-fund separation,
we shall summarize the result of Dybvig and Ross (1982) and give efficiency
tests for some refined utility classes containing far less unrealistic preferences
than all risk averters.

3.1 Homogeneous preferences

Rubinstein (1974) considers three heterogeneous investors models in which
individual preferences are modeled according to the following utility func-
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tions:

u(x) ∼ − exp
(
− x

A

)
, A > 0 (6a)

u(x) ∼ − ln (A+ x) , A > 0 (6b)

u(x) ∼ (A+Bx)(1−b)

1− b
, A > 0, B > 0, b > 0, b ̸= 1 (6c)

Rubinstein shows that two-fund separation results if all agents have the
same taste parameters B and beliefs π, but may have different parameters A
in (6a) and (6b), and A and B in (6c). He assumes availability of a risk-free
asset and requires in addition that B = 1

b
in (6c). Below we sketch a more

constructive proof of two-fund separation than the original one of Rubinstein
and show that varying B’s across individuals will not alter the two-fund
separation, provided that the agents have the same power parameter b, even
if B ̸= 1

b
, thereby generalizing the result of Rubinstein.

Since all the functions above are strictly concave and twice continuously
differentiable, a sufficient and necessary condition for portfolio optimality
is (4). Let rF be the risk free rate, and X – all risky asset returns. It
is convenient to split the portfolio into its risk-free investment α and the
remaining risky part (1−α). The portfolio allocation program now becomes

max
λ∈Λ

m∑
i=1

πiu
(
1 + αrF + (1− α)xiλ

)
− ν

(
λTe− 1

)
(7)

The optimality conditions (4) are now:
m∑
i=1

πixij(1− α)u′(1 + αrF + (1− α)xiτ) = ν, ∀j ∈ N
m∑
i=1

πi(rF − xiτ)u′(1 + αrF + (1− α)xiτ) = 0
(8)

Let us start with the exponential utility class (6a). Suppose a portfolio
(α1, (1− α1)τ) is optimal for u(x,A1). By (8), this happens if and only if


m∑
i=1

πixij(1− α1) exp
(
−1+α1rF+(1−α1)xiτ

A1

)
= ν1, ∀j ∈ N

m∑
i=1

πi(rF − xiτ) exp
(
−1+α1rF+(1−α1)xiτ

A1

)
= 0

(9)
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One can check by straightforward substitution to (9) that for any A2 > 0
the optimal portfolio for the investor with utility u(x,A2) will be
(α2, (1−α2)), with α2 = 1− A2

A1(1−α1)
. This proves that the efficient portfolio

corresponding to u(x,A2) has the same composition of risky assets. Due to
the uniqueness of the solution to (9), and continuity of f(A2) = 1− A2

A1(1−α1)

as a function of A2, two-fund separation follows.
Note that we can make derivations above only if α1 ̸= 1, that is, not all the

budget is invested in the riskless asset. The portfolio (α = 1, 0) will not be
optimal for any agent u(x,A) with A > 0, except in cases where X happens
to satisfy the second equation in (9) for α = 1. However, the risk-free asset
will always be asymptotically efficient as risk aversion increases.

One can similarly check by substitution that (α2, 1− α2), where

α2 =
A1 + α1(1 + rF )− A2(1− A1)

A1 + 1 + rF
,

is optimal for u(x) = − ln(A2 + x), whenever (α1, 1 − α1) is optimal for
u(x) = − ln(A1 + x).

Analogously, as soon as (α1, 1−α1) satisfies (8) for u(x) =
1

1−b
(A1 +B1x)

(1−b)

with Lagrangean ν = ν1, optimality conditions (8) for u(x) = 1
1−b

(A2 +B2x)
(1−b)

will hold with the optimal portfolio (α2, 1− α2), where

α2 =
A2B1(α1 − 1) +B2B1(1 + rF ) + A1B2

B2(rFB1 + A1 +B1)
,

and new Lagrangean multiplier

ν2 = ν1

(
1− α2

1− α1

)1−b(
B2

B1

)−b

.

This proves the two-fund separation for homogeneous utility functions of the
form (6a), (6b) and (6c).

Note, that this proof generalizes Rubinstein’s result, as utility functions in
(6c) are allowed to have different taste parameters (B’s) now, provided they
agree on the power parameter b. The restriction B = 1

b
explicitly imposed in

Rubinstein (1974) can be omitted without distorting the two-fund separation.
Note also that one explicit assumption behind the derivations above is that
the number of underlying assets (including the riskless one) is less than or
equal to the number of states: n+ 1 ≤ m.
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4 Generalizing preferences: non-convexity and

some higher order efficiency tests

So far we have analyzed the set of utilities leading to two-fund separation.
Although this is a particular case of convex SD efficient sets, it only allows for
homogeneous utilities among all investors in the sense that the preferences of
all investors are assumed to be parameterized by one or two single parame-
ters, which implies that investors have very similar tastes and as a result take
similar investment decisions. Therefore we would like to broaden the class of
individual utility functions to allow for heterogeneity among investors. The
question is whether the efficient sets for those extended utility classes remain
convex. Consider first the set of all risk-averse and non-satiable investors.

Dybvig and Ross (1982) give a simple example of a non-convex sec-
ond order Stochastic Dominance (i.e. when U = U2 ≡ {u : R → R :
u′(x) > 0, u′′(x) < 0,∀x ∈ R}) efficient set with n = 3 assets and m = 4
states. They state the following necessary and sufficient conditions for SSD
efficiency of portfolio x0.

An allocation x0 ∈ MX is efficient in U2 if and only if there exists z0 ∈ Rm

such that:

(i) xTz0 is constant for all x ∈ MX (10a)

(ii) x0
i < x0

j ⇒ z0i
πi

≥
z0j
πj

, ∀i, j (10b)

(iii) z0 > 0 (10c)

Vector z0 can be interpreted as a vector of marginal utility rationalizing
portfolio x.

Condition (i) holds only if short sales are allowed and unrestricted. Other-
wise (i) holds only for strictly interior points. In general (i) reads:
(x0)Tz0 ≥ xTz0,∀x ∈ MX . Conditions (ii) and (iii) reflect the existence
of a strictly concave supporting utility function and the inequality sign may
be changed, depending on the properties of the utility class considered. For

instance, for strictly concave functions there should hold:
z0i
πi

≥ z0j
πj

⇒ x0
i ≤ x0

j ;

if the functions are in addition differentiable then
z0i
πi

>
z0j
πj

⇒ x0
i < x0

j .

The non-convexity example of Dybvig and Ross is both disappointing and
challenging. It shows on the one hand that even relative to the set of rather
well-behaved preferences the market portfolio can be inefficient. On the other
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hand, the result challenges us to examine more refined utility classes – af-
ter all, if the utility set is restricted to nearly-homogeneous investors as in
Rubinstein (1974), not only convexity follows, but even two-fund separation.
Taking this into account, below we derive efficiency tests for some higher
order SD criteria. In that same section we analyze the case when short sales
are allowed and unrestricted, for the following two reasons. Although by
far the majority of efficiency tests published assume away short sales, the
efficiency of a given portfolio in the unrestricted case implies its efficiency in
the restricted case too, whereas a portfolio efficient relative to a restricted
portfolio possibilities set may very well be inefficient with respect to the same
set with the short sales restriction relaxed. Therefore, the unrestricted case
can be seen as a generalization of the restricted short sales and has a prac-
tical advantage of not having to specify the exact boundaries for short sales.
Moreover, as we shall show further in this section, some algorithms proposed
below have superior properties in terms of computational complexity relative
to traditional methods in the case when no short sales are assumed. Finally,
some of the efficiency tests are only applicable when short sales are restricted,
for instance Post (2003) test assumes the portfolio possibilities set to be a
polyhedron, so the formulation of the test explicitly includes the vertices of
this set.

4.1 SSD Efficiency

Although many SSD efficiency tests have been proposed already (see Post
(2003), Dentcheva and Ruszczynski (2003), Kuosmanen (2004), Post and
Versijp (2007) among others) we shall focus on linear programming formu-
lations only, since such methods have the lowest computational complexity,
which is often a burden for real-life data sets, particularly when it comes to
repeating the test many times for statistical inference and bootstrapping or
high dimensionality of the data (see for instance Dentcheva and Ruszczyn-
ski, 2006). By far the least computationally demanding SSD efficiency test
known is Post (2003). In this section we derive another LP test that is
even more efficient than that of Post (2003) in the case when short sales
are unrestricted. In the following section we derive a TSD efficiency test,
also exploiting the special structure of portfolio possibilities sets and thereby
improving its computational complexity.

Consider a given portfolio x. As the ordering of states of the world is
not relevant, we may assume without loss of generality that x is sorted in
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ascending order: x1 ≤ x2 ≤ · · · ≤ xm. In order to determine if x is SSD
efficient, we need to find a supporting gradient vector z ∈ Rm. First note,
that condition (10a)

(Xα)Tz = C, ∀α ∈ Λ

is equivalent to XTz = Ce. We are interested in the case when the market is
incomplete and m > n. Without loss of generality we may assume that the
first n rows of X are linearly independent. Partitioning X into X1 (first n
rows) and X2 (the rest (m− n) rows), we may write:

XTz = [X1X2]
Tz = XT

1 z1:n +XT
2 zn+1:m = Ce.

Therefore, the general solution of (10a) can be expressed as

z =

[
(XT

1 )
−1(Ce−XT

2 β)
β

]
(11)

where β is (m− n)-parameter vector. Since only the ordering of elements of
z matters, z can be normalized, so that C = 1.

Given the criteria above, the portfolio x is efficient if and only if there
exists a decreasing positive vector z satisfying (11). If such z exists, it is also
a strictly interior point to the following set:{

β ∈ Rm−n : D

[
−(XT

1 )
−1XT

2

Im−n

]
β ≤ −D

[
(XT

1 )
−1e

0m−n

]}
, (12)

where D =


−1 1 0 0 0

0 −1 1
. . . 0

0
. . . . . . . . . 0

0 0 0 −1 1
0 0 0 0 −1

 ·


π−1
1

π−1
2
...

π−1
m

 .

This test can be equivalently formulated as the following linear program:

max
β∈Rm−n,θ∈R

{
θ :

[
−(XT

1 )
−1XT

2

Im−n

]
β +D

[
(XT

1 )
−1e

0m−n

]
+ θ ≤ 0

}
. (13)
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Allocation x is SSD efficient if and only if (13) is either unbounded or
θ∗ > 0.2

Efficiency test (13) is less computationally demanding than that of Post
(2003), since (13) has m − n + 1 variables and m constraints, which is n
variables and n2 non-zeros in the constraints matrix less than in Post (2003).
By changing variables

yi = π−1
n+i+1βi+1 − π−1

n+iβi, i = 1, . . . ,m− n− 1, and ym−n = −π−1
m βm−n,

one can transform (13) to the standard form

max{cTy : Ay ≤ b, y ≥ 0}

with an n-by-(m−n) matrix of constraints. The number of non-zeros in this
matrix is a good indicator of the computational complexity of a linear pro-
gram (for instance, Performance World (2009) ranks linear programs based
on this criterion). The test of Post (2003) in the same standard form will
have an n-by-m matrix of constraints, all the elements of which are generally
non-zeros. The difference of n2 non-zero elements confirms the computational
advantage of (13) relative to Post (2003).

The computational advantage of (13) becomes particularly eminent when
n approaches m and for instance in the case of bootstrapping, when the effi-
ciency test has to be run many times on multiple data samples generated from
the estimated joint distribution of asset returns. However, for large values
of n one needs to invert a larger X1 prior to solving (13). Should X happen
to be particularly ill-conditioned, one may use the following equivalent test
without decomposing X:

max
z∈Rm,θ∈R

{
θ : XTUd = e, d ≥ 0

}
. (14)

where U is an upper triangular m-by-m matrix adjusted by the probabilities
of the states of nature, d is an m-vector representing the probability-adjusted
step differences of vector z, that is

dj = π−1
j+1zj+1 − π−1

j zj, j = 1, . . . ,m− 1, and dm = π−1
m zm.

2Equivalently, x is SSD inefficient if (13) is infeasible. The case θ∗ = 0 also implies
inefficiency (non-optimality) by our definition. Some authors consider portfolios corre-
sponding to θ∗ = 0 efficient as well. In this case the efficiency criterion can be easily
adjusted without altering the computational complexity of (13).
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Program (14) has m+1 variables and n equality constraints and is there-
fore similar to Post (2003) test in terms of computational complexity. How-
ever, the two tests are applicable in different circumstances: (13) and (14)
apply when no short sales restrictions are postulated, whereas the test of Post
(2003) requires the portfolio possibilities set to be bounded and to contain
the subject portfolio x in its interior.

4.2 TSD Efficiency

A portfolio x0 ∈ MX is Third Order SD (TSD) efficient if and only if there
exists u0 ∈ U3 such that Eu0(x

0) = supx∈MX
Eu0(x), where

U3 = U2 ∩
{
u : u

′′′
(x) > 0

}
.

Employing concavity of the first derivative of any function in U3, it is
straightforward to formulate TSD efficiency criteria: A portfolio x0 ∈ MX is
efficient in U3 if and only if there exists z0 ∈ Rm such that:

(i) xTz0 is constant for all x ∈ MX (15a)

(ii) x0
i < x0

j ⇒
z0i
πi

≥
z0j
πj

, ∀i, j (15b)

(iii) z0 > 0 (15c)

(iv) x0
i < x0

j < x0
k ⇒

z0j
πj

≤ z0k
πk

+

(
z0i
πi

− z0k
πk

)
x0
k − x0

j

x0
k − x0

i

, ∀i, j, k (15d)

The corresponding TSD efficiency test for a given portfolio also leads to
a linear programming formulation. Indeed, the TSD criteria (15) is simply

D̄

[
−(XT

1 )
−1XT

2

Im−n

]
β ≤ −D̄

[
(XT

1 )
−1e

0m−n

]
, where (16)

D̄ =



a1 b1 c1 0 0 0

0 a2 b2 c2
. . . 0

0 0
. . . . . . . . . 0

0 0
. . . am−2 bm−2 cm−2

0
. . . 0 0 am−1 bm−1

0 0 0 0 0 am


, with



ai[i=1...m−2] =
−1

πi(xi+2−xi)

bi[i=1...m−2] =
1

πi+1(xi+2−xi+1)

ci[i=1...m−2] =
1

πi+2

(
1

xi+2−xi
− 1

xi+2−xi+1

)
am−1 = −π−1

m−1, bm−1 = π−1
m

am = −π−1
m
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System (16) can be solved for β via the same program (13) that was ap-
plied to the SSD test, with redefined matrix D̄. Therefore, the TSD efficiency
test is a linear program with m− n+ 1 variables and m constraints.

4.3 Stochastic Dominance for Decreasing Absolute Risk
Aversion (DSD)

It is well accepted within expected utility framework that rational individuals
possess decreasing absolute risk aversion (DARA).3 Let us examine Stochas-
tic Dominance efficiency relative to this class of utility functions. Define

Ud = U2 ∩
{

d

dx

(
−u′′(x)

u′(x)

)
< 0, ∀x

}
.

An allocation x0 ∈ MX is efficient in Ud (DSD efficient) if and only if there
exists u0 ∈ Ud such that Eu0(x

0) = sup{Eu0(x) : x ∈ MX}.
To express properties of the risk aversion in terms of supporting vectors,

we have to adapt the efficiency criterion. Let r(x) = −u′′(x)
u′(x)

be the absolute

risk aversion (ARA) of u(x). We have: u(x) = exp
(
−
∫
r(x)dx+ C

)
, and if

x1 < x2 < . . . < xn, then

u′(xi) = u′(xi−1) exp

−
xi∫

xi−1

r(x)dx

.

Therefore, it suffices to require that r(x) ≥ 0 and r′(x) < 0 for all x to ensure

that u ∈ Ud. With such r(x), the exp

(
−

xi∫
xi−1

r(x)dx

)
is bounded by

exp (−ri−1(xi − xi−1)) ≤ exp

−
xi∫

xi−1

r(x)dx

 ≤ exp (−ri(xi − xi−1)).

Thus, there should hold:

exp (−ri−1(xi − xi−1)) ≤
u′(xi)

u′(xi−1)
≤ exp (−ri(xi − xi−1)),

3See e.g. Pratt (1964) for formal derivation and discussion.
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and therefore:

rm ≤ . . . ≤ ri+1 ≤
− ln

(
u′(xi+1)
u′(xi)

)
xi+1 − xi

≤ ri ≤
− ln

(
u′(xi)

u′(xi−1)

)
xi − xi−1

≤ ri−1 ≤ . . . ≤ r1.

(17)
Clearly, a decreasing sequence {ri} in (17) exists if and only if

ln (u′(xi))− ln (u′(xi+1))

xi+1 − xi

≤ ln (u′(xi−1))− ln (u′(xi))

xi − xi−1

, for all i = 2, . . . ,m−1.

(18)
We are now ready to adapt the efficiency definition to the class of Ud.

An allocation x0 ∈ MX is efficient in Ud (DSD efficient) if and only if there
exists z0 ∈ Rm such that:

(i) xTz0 is constant for all x ∈ MX (19a)

(ii) x0
i < x0

j =⇒
z0i
πi

≥
z0j
πj

,∀i, j (19b)

(iii) z0 > 0 (19c)

(iv) x0
i < x0

j < x0
k =⇒

ln
z0j
πj

− ln
z0k
πk

x0
k − x0

j

≤
ln

z0i
πi

− ln
z0j
πj

x0
j − x0

i

, ∀i, j, k (19d)

Note that DSD efficiency implies TSD efficiency. This follows from the
fact that r′(x) = u′(x)−2 (u′′(x)2 − u′(x)u′′′(x)) .This is also consistent with
DSD-TSD criteria (15) and (19): (19d) implies (15d), since the geometric
average in (19d) can not exceed the arithmetic average in (15d).

We are now ready to formulate a test for DSD efficiency of a given port-
folio which will no longer be linear, but still a convex program. Indeed, any

z =

[
−
(
XT

1

)−1
XT

2

Im−n

]
β satisfying the DSD criteria (19) is also an interior

point to the set4

D̂ ln

([
−
(
XT

1

)−1 (
e−XT

2

)
Im−n

]
÷ π

)
≤ 0, where (20)

4By y = ln(x), x ∈ Rm, we mean the element-wise logarithm, that is, y ∈ Rm and
yi = ln(xi). Similarly, z = y ÷ x, x, y ∈ Rm, means z ∈ Rm s.t. zi = yi/xi.
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D̂ =


a1 b1 c1 0 0 0

0 a2 b2 c2
. . . 0

0
. . . . . . . . . . . . 0

0
. . . 0 am−2 bm−2 cm−2

0 0 0 0 am−1 bm−1

 , with


ai[i=1...m−2] =

−1
xi+1−xi

bi[i=1...m−2] =
1

xi+2−xi+1
− 1

xi+1−xi

ci[i=1...m−2] =
−1

xi+2−xi+1

am−1 = −1, bm−1 = 1

Even though the constraints on β are no longer linear, they are still
convex, and therefore we can find strictly feasible points (or establish that
they do not exist) efficiently.

4.4 SD for Decreasing Absolute and Increasing Rela-
tive Risk Aversion (DISD)

In addition to DARA, relative risk aversion is often postulated to be increas-
ing among rational individuals (see e.g. Pratt, 1964). In this section we
examine optimality conditions in the utility class Udi combining the two risk
aversion properties:

Udi = Ud ∩
{

d

dx

[
−xu′′(x)

u′(x)

]
≥ 0,∀x > 0

}
.

The utility functions under consideration are therefore those having de-
creasing absolute (DARA) and increasing relative risk aversion (IRRA). A
portfolio x0 ∈ MX is said to be efficient in Udi (DISD efficient) if and only if
there exists u0 ∈ Udi such that

Eu0(x
0) = sup

{
Eu(x0) : u ∈ Udi

}
.

Given the ARA values ri and ri+1 (such that ri ≥ ri+1) at nodes xi and

xi+1, the IRRA requirement restricts r(x) to lie above5 f(x) =
rixi

x
, for

xi ≤ x ≤ xi+1, imposing thereby an extra condition:

rixi ≤ ri+1xi+1, i = 1, . . . ,m− 1. (21)

5f(x) is a limiting case of ARA in order for RRA to remain non-decreasing in the
interval [xi−1, xi]. It is the solution of {(f(x)x)′ = 0, f(xi) = ri}.
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Conversely, if (21) holds, we can always construct f(x) =
rixi

x
, for

xi ≤ x ≤ xi+1, such that xr(x) will be non-decreasing, provided that

ri+1xi+1 + rixi

(
ln

ri
ri+1

− 1

)
=

xi+1∫
xi

max
{rixi

x
, ri+1

}
dx ≤

≤
xi+1∫
xi

r(x)dx = ln
u′(xi)

u′(xi+1)
≤

xi+1∫
xi

min
{ri+1xi+1

x
, ri

}
dx.

Therefore

ri+1xi+1 + rixi

(
ln

ri
ri+1

− 1

)
≤ ln

u′(xi)

u′(xi+1)
≤ ri+1xi+1

(
ln

ri
ri+1

+ 1

)
− rixi.

(22)
This leads to the following DISD efficiency criterion: An allocation x0 ∈ MX

is efficient in Udi (DISD efficient) if and only if there exist z0 and r ∈ Rm

such that:

(i) xTz0 is constant for all x ∈ MX (23a)

(ii) x0
i < x0

j =⇒
z0i
πi

≥
z0j
πj

,∀i, j (23b)

(iii) z0 > 0 (23c)

(iv) x0
i < x0

j < x0
k =⇒ rk ≤

− ln
x0
kπj

x0
jπk

x0
k − x0

j

≤ rj ≤
− ln

x0
jπi

x0
i πj

x0
j − x0

i

≤ ri (23d)

(v) x0
i < x0

j =⇒ rjx
0
j + rix

0
i

(
ln

ri
rj

− 1

)
≤

≤ − ln
x0
jπi

x0
iπj

≤ rjx
0
j

(
ln

ri
rj

+ 1

)
− rix

0
i

(23e)

The above condition is far less convenient than those for TSD or DSD, as
both r and x are now entering (23d) and (23e) in both linear and logarithmic
form.
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5 Concluding remarks

We have pointed out the importance of stochastic dominance efficient sets
being convex and further summarized and extended conditions leading to
convexity of efficient sets. This property has great importance both prac-
tically (passive vs. active investing strategies, efficiency of mutual funds)
and theoretically (heterogeneous investors models and asset pricing) and can
be analyzed from two different but interrelated approaches: the returns on
underlying assets and the utilities of individual investors. Restricting distri-
butions of returns typically leads to various factor models, where a complete
class of non-satiable and risk-averse investors is assumed. Restricting the set
of utilities can also affect efficient sets considerably, as can be seen, for ex-
ample, in Rubinstein (1974). Unfortunately the extent to which restrictions
on sets of utilities affect convexity has not been duly researched.

Based on the efficiency criteria (19), Dybving and Ross (1982) derive the
following characterization of SSD efficient sets ESSD:

ESSD =
∪
z∈Z

∩
(i,j):

zi
πi

<
zj
πj

{x ∈ MX : xi > xj} , (24)

where the union is taken over all z ∈ Z having different orderings
{

zj
πj

}
. Since

the dimensionality of z is m, the number of different orderings is at most m!.
Thus, ESSD is a union of a finite number of convex sets. By analogy, we can
explicitly characterize TSD efficient sets:

ETSD =
∪
z∈Z

( ∩
(i,j):

zi
πi

<
zj
πj

{x ∈ MX : xi > xj}

∩
(i,j,k):xi<xj<xk

{
x ∈ MX :

(
zj
πj

− zk
πk

)
(xk − xi) <

(
zi
πi

− zk
πk

)
(xk − xj)

})
,

(25)

Since all restrictions on x are linear, ETSD is again a finite union of convex
sets. The same applies for DSD:
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EDSD =
∪
z∈Z

( ∩
(i,j):

zi
πi

<
zj
πj

{x ∈ MX : xi > xj}

∩
(i,j,k):xi<xj<xk

{
x ∈ MX : ln

(
zjπk

zkπj

)
(xj − xi) < ln

(
ziπj

zjπi

)
(xk − xj)

})
,

(26)

The DISD efficiency characterization is slightly more complex, as r ap-
pears along with z:

EDISD =
∪
z∈Z,
r∈Rm

+

( ∩
(i,j):

zi
πi

<
zj
πj

{x ∈ MX : xi > xj}

∩
(i,j,k):xi<xj<xk,

x∈MX

{
rk ≤

− ln
xkπj

xjπk

xk − xj

≤ rj ≤
− ln

xjπi

xiπj

xj − xi

≤ ri

}

∩
(i,j):xi<xj ,

x∈MX

{
rjxj + rixi

(
ln

ri
rj

− 1

)
≤ − ln

xjπi

xiπj

≤ rjxj

(
ln

ri
rj

+ 1

)
− rixi

})
.

(27)

It is not clear whether EDISD is necessarily non-convex. On the other
hand, it is difficult to find a general set of assumptions that would guarantee
convexity of a union of convex sets, in contrast to the intersection of convex
sets which is automatically convex.

With regard to the link between utility functions and convexity of effi-
cient sets, there are only extreme cases known so far: when investors are
nearly homogeneous (as in Rubinstein (1974)), in which case efficient sets
are normally rays or lines, and when investors’ preferences are spanned un-
realistically broadly, such as the whole U2, where efficient sets are too large
(even without portfolio restrictions on short sales) and non-convex.

A possible extension of the current research could lie in searching for a
reasonable set of well-behaved utility functions for which the efficient sets
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would be large enough and convex. In analogy with arbitrage pricing theo-
ries and factor models for returns, one could try to parameterize investors’
preferences. The expo-power utility function of the form

u(x) = θ − exp(−βxα),

where θ > 1, α ̸= 0, β ̸= 0, and αβ > 0, seems to be suitable for that,
as it allows all possible combinations of absolute (increasing, decreasing or
constant) and relative (increasing or decreasing) risk aversion with only two
key parameters.

In addition to the convexity analysis, we have also derived some higher
order stochastic dominance efficiency tests in which we incorporate some
meaningful restrictions on the set of utilities well recognized in the expected
utility framework, such as decreasing absolute and increasing relative risk
aversion.

References

[1] BAWA V. S., Stochastic Dominance: A Research Bibliography, Man-
agement Science, 28, 1982, pp. 698–712.

[2] BIXBY R. E., Solving real-world linear programs: A decade and more
of progress. Oper. Res. 2002, 50(1) 3–15.

[3] COCHRANE J. H., Asset Pricing, 2nd Ed, Princeton University Press,
2005.
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