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Abstract 

This paper studies the regulation of an airline duopoly on a congested airport. Regulation 

should then address two market failures: uninternalized congestion, and overpricing due to 

market power. We find that first-best charges are differentiated over airlines if asymmetric, 

and completely drive out the least efficient airline from the market. This is not generally the 

case for an undifferentiated charge, which is found to be a weighted average of first-best 

charge rules for the two airlines, and is less-than-optimally efficient because of its inability to 

differentiate between them. Tradeable slots may yield the first-best outcome if the congestion 

externality is relatively important and the market power distortion relatively unimportant, but 

may be less efficient than non-intervention when the reverse is true.  
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1. Introduction 

Congestion is a growing problem in aviation, and is attracting growing attention from 

transport economists. Daniel (1995), for example, applied Vickrey‟s (1969) bottleneck model 

of traffic congestion to the case of congested air traffic to study optimal pricing. Indeed, 

transport analysts have looked for inspiration in the road pricing literature for modelling 

congestion at airports, but important conceptual differences exist between the economics of 

congestion in these two modes. These are due to the fact that, in contrast to individual road 

users, there are typically at least one or some airlines with substantial market power active at 

an airport. 

Bruecker (2002) pointed out that a conventional “Pigouvian” congestion charge, equal 

to the marginal external cost imposed upon all other flights at the airport, is excessive for an 

airline with market power, because the airline already internalizes the congestion that an 

additional flight would impose upon its own other services. The first-best congestion charge 

therefore requires a downward adjustment of the Pigouvian rule, multiplying it for airline i 

with a factor (1–si), with si denoting the airline‟s market share. This implies that airlines with 

a higher market share should pay lower charges; probably not always an easy message from 

the political perspective. 

Pels and Verhoef (2004) argued that if airlines with market power compete as Cournot 

oligopolists, a further downward adjustment in airport charges is in order, above that 

proposed by Brueckner, to reduce the oligopolists‟ incentive to apply a price mark-up – which 

decreases with demand elasticity – in setting ticket fares. They show that the second-best 

charge may then well be negative if demand is sufficiently inelastic, which follows 

Buchanan‟s (1969) findings for optimal environmental taxation of a monopolist. Basso and 

Zhang (2006) and Zhang and Zhang (2006) included the role of airports in modelling 

congestion between airlines at airports. 

 This paper looks into some alternative economic instruments for managing congestion 

at airports, notably slot sales and slot trading – which are frequently put forward as possibly 

promising instruments. Economic theory suggests that at least in idealized situations, tradable 

permits and Pigouvian charges should produce the same efficient outcome (e.g., Dales, 1968; 

Montgomery, 1972). Verhoef, Nijkamp and Rietveld (1997) argued that tradeable permits 

may offer an interesting option for managing road transport externalities, although practical 

applicable may of course be hampered by the large number of potential traders present in a 

road network. At first sight, such problems seem less likely for aviation, where only a limited, 

manageable number of trading airlines would be active at most airports. 

 The paper contrasts two slot-based policies with „classic‟ charges. The first is slot 

sales, where the regulator or airport (we assume a public, social welfare maximizing regulator 

controlling the airport) sells slots at a uniform price. The main shortcoming of this policy is 

that slot prices will be uniform over airlines, while efficiency may require the price for slots to 

be differentiated over airlines. This shortcoming would of course be relevant for any 

regulatory scheme that would lead to uniform slot prices. In fact, we will model the outcomes 

of this policy by treating it as a uniform charge; a policy that will not be first-best efficient 
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with asymmetric airlines for the reason mentioned above, but that may certainly be politically 

more acceptable. The second slot-based policy involves the case where slots are tradeable 

between airlines. Here we will see that the non-negativity of tradeable slot prices may cause 

another distortion, above that from uniformity of prices, compared to charges – which can be 

set below zero (i.e., as a subsidy) when the market power effect dominates the congestion 

effect. 

 The plan of the paper is as follows. We will use a simple analytical model for the 

analysis, describing a congested airport with two Cournot duopolists. That model is presented 

in Section 2 below. Section 3 analyzes first-best charges; Section 4 uniform charges or slot 

sales, and Section 5 slot trading. Finally, Section 6 concludes. 

2. A simple model of Cournot duopolists 

Consider two airlines serving a single market (i.e. a single origin-destination pair). The airport 

of interest is congested and publicly operated: the airport authority chooses social surplus as 

its objective. It is the sum of charge revenues, airline profits and consumer surplus for all 

consumers – which could reflect a situation where both the origin and destination are located 

in the same country and the airport of interest is operated by the national government. We 

thus ignore issues of tax competition that would arise if the airport authority would consider 

not all consumers‟ surpluses as relevant for its objective (Pels and Verhoef, 2004, consider 

this). Social surplus can also be defined as total consumer benefits minus the total cost of the 

airlines‟ operations. The other airport is not congested, has zero marginal cost, and is assumed 

not to charge an airport fee; so, we can ignore it altogether for welfare analyses (equivalently, 

we could assume that the cost functions defined below capture cost for both airports together, 

which are both run by the same public authority). 

 It is assumed that all demand and cost functions of interest are linear. This simplifies 

the analytics and facilitates the derivation of closed-form equilibrium expression, without 

compromising the results too much – at least when one is not primarily interested in second-

order effects or the effects of non-linearities. The inverse demand for (return) trips is given 

by: 

 BA nnD  10   (1) 

where An  and Bn  reflect the number of return trips served by airlines A and B, respectively. 

(All parameters in the inverse demand and cost functions are non-negative.) 

 We assume that the number of flights offered is proportional to the number of 

passengers served. Absent congestion, the marginal cost (per passenger) would be constant 

and equal to 0 . But congestion raises the cost per flight incurred by an airline. We assume 

that these congestion costs are symmetric in the sense that an extra flight by the competing 

airline raises an airline‟s average cost by the same amount as does an own flight. We allow 

for asymmetry between airlines by distinguishing airline-specific parameters in the resulting 

average cost functions, which – due to the assumption of constant passenger load factors – 

can be expressed directly in numbers of passengers:  

  },{10 BAinnc BAiii    (2) 
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In order to limit the number of potential cases to be considered, we restrict attention to cases 

where either both airlines have identical cost parameters, or one airline (to be denoted A 

without loss of generality) is more cost-efficient at all output levels: 

0}{sign}{sign 1100  ABAB   (3) 

Congestion could be assumed to enter also passengers‟ generalized cost functions, but doing 

so does not affect the analysis in any fundamental way (see also Pels and Verhoef, 2004). We 

also refrain from formalizing the counteracting force of „frequency benefits‟ that passengers 

might enjoy from higher aggregate output levels. 

 The airport of interest (“the airport”, in what follows) may levy an airport charge . 

The most general case allows for differentiation of charges τi between airlines, in which case 

subscripts again denote airlines. As for cost functions, we express this charge as a charge per 

passenger, which is again allowed because of the assumption of exogenous load factors. The 

airport behaves like a Stackelberg leader: airlines take charges as given while the airport sets 

these optimally taking into account how airlines will respond. 

 As customary in the aviation literature, we assume that the duopolists engage in 

Cournot competition.
1
 Furthermore, we will limit our attention to Nash games between the 

two airlines, with airline i taking the other airline‟s output, in , as given when setting its own 

output in . Passengers consider the two airlines as pure substitutes, implying that a single 

ticket price prevails in equilibrium. 

 Under these assumptions, airline i‟s profit function can be written as:  

      },{1010 BAinnnnnn iBAiiiBAii    (4) 

The first-order necessary condition for profit maximization is easily derived:  

      },{02 111100 BAinn
n

iiiiii

i

i 



  (5) 

The Nash equilibrium outputs can therefore be written as:  

 
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 (6a) 

or, in closed form, as:  
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 (6b) 

Note that an airline‟s equilibrium output, not surprisingly, rises with δ
0
 and falls with δ

1
, and 

furthermore decreases with the airline‟s own cost parameters and increases with those of the 

competitor. Furthermore, for an interior equilibrium with positive outputs, the second term on 

the right-hand side of (6b) should not exceed, in absolute value, the first term, which implies 

that there are certain boundaries on the feasible parameter space. 

                                                
1
 In an empirical analysis of Chicago-based airline routes, Oum et al. (1993) conclude that “the overall results 

indicate that the duopolists‟ conduct may be described as somewhere between Bertrand and Cournot behavior, 

but much closer to Cournot, in the majority of the sample observations”. Also Brander and Zhang (1990), using 

similar data, find “ strong evidence … against the highly competitive Bertrand hypothesis”, and find Cournot 

behavior plausible for the markets under consideration. 
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Finally, in a fully symmetric setting, with equal cost parameters and charges, (6b) can 

be further simplified to:  

},{
3

1
11

00

BAin N

i 








 (6c) 

3. First-best charges 

First-best pricing rules, set so as to maximize social surplus, can be found after specifying 

social welfare as total benefits (determined as the relevant area below the inverse demand 

function) minus total costs: 

         BABBBBAAAABABA nnnnnnnnnn  101021

2
10   (7) 

and determining the first-order necessary conditions:  

      },{02 1111100 BAinn
n

iiiiii
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These, in turn, imply the following optimal outputs:  
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As will become clear below, and will be intuitively clear in a set-up with homogeneous 

outputs, under asymmetric cost parameters only one airline will remain active in the optimum. 

The following closed-form optimum outputs then apply (anticipating that the more cost-

efficient airline A will be the one remaining active): 
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 (9b) 

When the cost parameters are identical across airlines, optimum outputs as implied by (9a) are 

in fact only determined uniquely up to the aggregate level:  

11

00
**

2 






 BA nn  (9c) 

Due to the neutral scale economies (for a given level of aggregate output and hence 

congestion), the shares of both airlines in the aggregate optimal output level are immaterial 

for efficiency. When symmetry in outputs prevails, we would of course find:  
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2 11
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1* BAini 
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 (9d) 

However, also unequal optimal firm-specific output levels can be supported by (unequal) 

first-best taxes when cost parameters are identical. To see why this is the case, first observe 

that the optimal taxes supporting the first-best equilibrium can be found by substituting (5) 

into (8), which yields: 

},{11 BAinn iiii     (10) 

This tax rule consists of two components. The first, positive term is equal to the marginal 

external congestion costs imposed upon the other airline. Congestion costs imposed upon own 
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aircraft is internalized by the airline, and requires no corrective taxes (which would, in fact, be 

distortionary), as in Brueckner (2002). The second, negative term corrects for overpricing in 

Cournot equilibria. This term increases in the slope of the inverse demand function, reflecting 

that a steeper function induces a greater degree of overpricing, as in Pels and Verhoef (2004).
2
 

The optimal tax will be negative when the market power effect outweighs the congestion 

effect. Should subsidization be considered unwarranted for political reasons, then a zero tax is 

preferable on efficiency grounds to a positive congestion tax in such cases. 

 The optimal taxes in (10) are equal across identical airlines only in a fully symmetric 

optimum, i.e. when not only their cost parameters are the same but also their equilibrium 

outputs are equal. Equation (6c) confirms that with equal taxes and equal cost parameters, 

equilibrium outputs will indeed be equal. But output levels may also differ, despite the equal 

cost parameters, in the first-best optimum as implied by (9c). Equation (10) shows that the 

optimal charge an airline faces is increasing in the other airline‟s size (reflecting greater 

congestion externalities imposed) and decreasing in the airline‟s own size (reflecting a smaller 

degree of market power). But is (9c) exactly satisfied with unequal tolls set according to (10) 

for two airlines with identical cost parameters? This answer appears to be “yes”: the implied 

different optimal tax levels would then still produce an optimal aggregate output as given by 

(9c).
3
 As a consequence, there is no unique decentralized optimum in terms of individual 

airlines‟ outputs when the airlines have identical cost parameters. 

 This has the interesting implication that the regulator has scope for giving the one 

identical airline preferential treatment over the other, by differentiating charges, without 

creating losses in social surplus. In the context of our model, there would be no inherent 

reason to do so, and the fully symmetric, equal-charges outcome would be the outcome when 

the regulator‟s secondary objective would – quite realistically – involve fairness between 

competing airlines. It is worth noting that the non-uniqueness of firm-specific first-best taxes 

and outputs in this model is caused by the assumption of neutral scale economies at the firm 

level (for a given congestion level). Economies of scale at the firm level would cause the 

optimum to have only a single supplier even if the airlines have equal cost structures; 

diseconomies of scale at the firm level would require the two identical airlines to split the 

optimal output in equal portions.  

                                                
2 This term vanishes under perfectly elastic demand (with δ1=0). Brueckner and Van Dender (2008), who want to 

consider the congestion externality as the only source of market failure, consequently assume demand to be 

perfectly elastic – which can certainly be justified on grounds of analytical tractability. Nevertheless, market 

power in real aviation markets appears important enough to warrant explicit treatment in the context of 

congestion regulation, and it fortunately appears that the simple set-up in this paper allows such treatment in an 
analytical model without compromising tractability too much.  

3 This can be verified by substituting, for the case of equal cost parameters, (10) into (6b) and summing over 

both airlines. This yields, after some manipulation: 

 
 BABA nnnn 
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3
2




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which in turn can be solved to yield (9c) (the steps involve multiplication of both sides by 3, and a multiplication 

of the left-hand side by (δ1+γ1)/(δ1+γ1). After taking the right-most term to the left-hand side, the result is 

straightforward to derive). 
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Let us now turn to asymmetry in cost parameters, with airline A more cost effective at 

all output levels as specified by equation (3). Under our assumptions, this will always result in 

optima with only one airline present in the market. This can be verified by noting that the two 

first-order conditions (8) can only be fulfilled simultaneously, as required for an interior 

solution with both airlines active, when the following equality holds: 

   

  A
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BAB

BABBABAA
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 (11) 

The assumption made in (3) prevents this from being possible for positive supply levels under 

asymmetric cost parameters: nB and nA would have opposite signs. An interior optimum 

therefore does not exist, and the optimum is the corner solution in which only the most 

efficient airline (A, without loss of generality) will remain active – as might have been 

anticipated.
4
 This means that under asymmetry in cost parameters, the optimal taxes in (10) 

will become: 


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1
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 (12) 

The subsidy for the „insider‟ (airline A) corrects for monopolistic pricing, while the positive 

tax for the „outsider‟ (airline B), by internalizing the congestion costs that a first unit of output 

sold would create, effectively prevents unwarranted entry by an inefficient competitor.
5
  

 If the airline cost function, apart from the congestion costs, would be assumed to 

reflect decreasing rather than constant economies of scale, interior optima with both airlines 

active would be possible also under asymmetry. But airline cost functions may in fact be more 

                                                
4 Pels and Verhoef (2004) find a similar result in a numerical model (their Section 4.2), but do not provide an 

analytical proof. 

5 This can be verified by noting that airline A will set its first-order condition for profit maximization (5) equal to 

zero, with A  from (12) and 0Bn  substituted: 

  02 1100  AAA n  

Airline B‟s first-order condition for profit maximization (5), with B  from (12) substituted, can be written as: 

    02 1111100  BBABAB nn   

After subtraction of airline A‟s first-order condition we find: 
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It is then easily verified that, because 
00

AB    and 
11

AB    by construction, this condition can only be 

fulfilled for a negative Bn  when 0An , and that airline B‟s profits are decreasing (or actually: losses are 

increasing) in Bn  as long as it is non-negative.  Therefore, B  in (12) effectively prevents entrance of the 

inefficient firm B. 
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likely to exhibit increasing rather than decreasing economies of scale,
6
 in which case the 

result that one firm will be priced off the market with first-best taxes would be reinforced. The 

survival of only one airline in the first-best optimum is, therefore, certainly not just a 

peculiarity due to an overly simplified analytical representation. At the same time, it should 

be acknowledged that the model does not allow for various inefficiencies from market power 

other than through pricing behaviour, such as through X-inefficiency and rent-sharing. These 

might of course cause smaller, competing airlines to become still more cost-effective than 

their larger counterparts. 

4. Uniform taxes and slot sales 

A second-best alternative to the first-best charges just described would be a regime of uniform 

charges τ, undifferentiated by airline. This instrument could be chosen for reasons of 

(perceived) fairness, or because political constraints make differentiated tolls undesirable, or 

perhaps for yet different reasons. The instrument is interesting to study in itself, but also 

because the resulting equilibrium corresponds to the outcome of a system of „slot sales‟, 

where the airport regulator sells landing rights at a uniform price τ. 

We solve for the second-best optimal uniform charge level by solving the Lagrangian 

that has social surplus as the objective and the airlines‟ first-order conditions for profit 

maximization, from equation (5), as the constraints: 
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The necessary first-order conditions are: 
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Substitution of (14c) into (14a) yields, after using (14b), the following expressions for the 

Lagrangian multipliers: 
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BAi
nn
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i 













  (14d) 

Summing over i and solving for  then yields the following second-best optimal uniform 

charge: 

                                                
6 An important reason for economies of scale might be that larger aircraft can be used for larger passenger flows 

at lower average cost. Swan and Adler (2006) for example report scale elasticities of cost for direct flights with 

respect to seats of around 0.6 for a Cobb-Douglas cost function (their Section 4.1). 
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  (15) 

The charge is a weighted average of the first-best charge rules of (10) – but, of course, 

evaluated in the second-best optimum so that the quantities ni will be different. Airline A‟s 

charge rule appears in the numerator of the first fraction in the expression‟s main numerator, 

and that for B in the second. An airline‟s weight increases when its equilibrium quantity 

offered is more sensitive to marginal toll changes than its competitor‟s quantity. More 

specifically, an airline‟s weight in the uniform charge of (15) amounts to: 

111 2
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iw



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 (16)  

The weights in (16) are in fact perfectly proportional with the airline‟s equilibrium demand 

sensitivities with respect to τ, defined as the derivative of (6b) with respect to a uniform toll τ 

= τi = τ–i:  
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This implies the following ratio of the firms‟ equilibrium demand sensitivities:  
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 (17b) 

The acclaimed perfect proportionality of weights wi from (16) with demand responsiveness 

from (17a) is immediately visible from (17b). This proportionality reflects the notion, well 

known from the optimal taxation literature (e.g., Sandmo, 1975, 1976), that deviations from 

first-best optimal prices are relatively more harmful for economic efficiency when 

equilibrium quantities are more sensitive to price changes. 

 The charge rule in (15) bears great similarity with the second-best undifferentiated 

congestion toll that Verhoef, Nijkamp and Rietveld (1995; equation (5)) derive for road traffic 

with group specific marginal congestion effects (e.g., with small cars and large cars), although 

the pricing rules are of course not identical between the two models. Specifically, the 

numerator‟s numerators for the atomistic car drivers in Verhoef et al. (1995) differ from the 

corresponding terms in (15) above in that they have the traditional „full‟ marginal external 

cost term (because there is no internalization of self-imposed congestion), and in that they 

lack the demand-related term (because individual road users have no market power and do not 

engage in monopolistic pricing). The weight for the second-best uniform road toll in Verhoef 

et al. (1995) has the (absolute value of the) slope of the inverse demand function, as in (15), 

and adds to this the slope of the average user cost function. These two terms together 

determine by how much a group‟s equilibrium demand changes after a marginal toll in the 

uniform road toll – so the function of the weights is exactly the same as in the current context, 

although the analytical expression is different.  
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 As in Verhoef et al. (1995), and in other studies on second-best pricing reviewed by 

Small and Verhoef (2007), non-zero equilibrium value of the Lagrangian multipliers λi reflect 

that social surplus could be improved further when moving from a constrained second-best 

equilibrium towards the first-best outcome. Note that these multipliers would be zero if 

differentiated charges were possible, or if the first-best charge rules happen to produce the 

same preferred charge level in the second-best optimum, or if the airline‟s equilibrium 

demand happens to be completely insensitive with respect to marginal charge changes. These 

are the situations where the lack of charge differentiation has no consequences for the social 

surplus that can be achieved with second-best charges, as compared to first-best pricing. 

The uniform charge  in (15) converges to first-best undifferentiated charges under 

symmetry, and that the multipliers λi will then both approach zero. Indeed, it is to be expected 

that the relative efficiency of this uniform charge increases when the degree of asymmetry 

reduces. This is of course the case if the cost parameters γ for the two firms are closer, and if 

(as a natural consequence) the equilibrium outputs n are closer. 

 As an aside, note that the weight in (16) will certainly be positive for airline B, but 

may appear to possibly take on a negative value for airline A, which would lead to difficulties 

in interpretation. However, a negative weight for airline A could only occur outside the 

feasible parameter space that can be identified on the basis of equation (6b) – that is, it 

corresponds with a negative equilibrium value for airline B‟s output – so that we can ignore 

this possible complication.
7
 

 When there is asymmetry, the common charge will not generally drive out the less 

efficient airline – unlike first-best differentiated charges do. And furthermore, because of the 

weighted-average structure of the second-best charge, the more efficient airlines faces a 

charge that is above, or a subsidy that is below, the charge or subsidy implied by the first-best 

charge rule evaluated in the second-best optimum. The reverse is true for the less efficient 

airline. It should be emphasized that the comparison between equilibrium levels of first-best 

and second-best charges or subsidies is not directly possible on the basis of tax rules (12) and 

(15) because also equilibrium passenger flows ni will differ between the first-best and second-

best optimum. But one may expect the more efficient airline to face an above-optimal charge 

or to receive a below-optimal subsidy, while the opposite is true for the less efficient airline. 

In conclusion, firm-specific outputs will generally differ between first-best and 

second-best equilibria, and social surplus for the latter will therefore typically be lower. For 

the aggregate output, we may expect a usually larger volume under first-best pricing than 

under second-best pricing, because marginal cost is higher in the latter case.  

This conclusion was confirmed by a closely related analysis by Brueckner (2008), who 

applied the model of Brueckner and Van Dender (2008) to study the efficiency of uniform slot 

prices. That model ignores the market power distortion by assuming perfectly elastic demand, 

                                                
7 A necessary condition for the output for the less efficient airline B in (6b) to be positive under a uniform tax is  

 11

2
111

BA   . Whenever 
00

BA   , an even stricter inequality applies (i.e., the factor 
2
1  on the 

right-hand side should be increased), so the inequality it is a necessary, not a sufficient condition. This necessary 

condition can be rewritten as 
111 2 BA   . Under the latter inequality, wA in (16) cannot be negative. 
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which requires airline cost functions to exhibit decreasing scale economies for an interior 

equilibrium to exist. The two airlines use the same airport, as in this paper, but serve different 

markets so that congestion is the only type of interaction between them. Again, first-best 

congestion charges decrease in a firm‟s market share of total airport operations, and a uniform 

slot price therefore cannot produce the first-best outcome. 

5. Slot trading 

We have treated slot sales as equivalent to uniform charging in the above. This seems justified 

at least as long as slot trading between airlines is prohibited. But slot trading is of course a 

third possible instrument, which has gained increasing interest over the past years. An 

important similarity between slot trading and slot sales or uniform charges as discussed above 

is that the same shadow price for slots applies for the two airlines, at least if there is a 

marginal slot traded between them. One important difference, however, between uniform 

charges and slot trading is that the former instrument allows for a negative shadow price – i.e., 

a subsidy. Indeed, in absence of congestion, both the first-best tax for the active airline A in 

(12) and the uniform charge in (15) will become negative. For slot trading, a negative market 

price for the associated permits appears impossible, at least when the owner of a slot has no 

„service obligation‟ as we will call it; that is, the owner of the permit is not obliged to actually 

use it. This means that in cases where the market power distortion outweighs the congestion 

distortion and optimal second-best charges would be negative, slot trading would become a 

useless mechanism: the number of permits that the regulator would like to see traded and 

especially used simply exceeds the airlines‟ aggregate demand for permits as it would be at a 

zero market price for permits. 

 The consideration of slot trading is therefore only meaningful when the congestion 

distortion outweighs the market power distortion, and that is the assumption we will be 

making in this section. Specifically, we assume that the initial equilibrium is the Nash 

equilibrium from equation (6) with taxes equal to zero, and that the regulator finds it attractive 

to reduce aggregate equilibrium outputs to a level N (to be optimized at a later stage) for 

which: 
N

B

N

A nnN   (18) 

There are basically two ways of introducing slot trading into the market. The first would be to 

sell slots at a predetermined price, and allowing slot trading afterwards. The second would be 

to distribute the permits between the airlines for free („grandfathering‟), in which case it 

appears natural that both airlines should receive fewer permits initially ( ini

iN ), than the initial 

outputs: 

N

B

ini

B

N

A

ini

A

nN

nN




 (19) 

We consider the case where permits are grandfathered in a way that satisfies (19). Both 

airlines would then in principle have a positive marginal willingness to pay for slots. This can 

be seen by consulting the „pre-slot-payment‟ profit functions: 

      },{1010 BAinnnnnn BAiiiBAii    (20) 



Congestion Pricing, Slot Sales and Slot Trading in Aviation 11 

Two derivatives are of interest now. The first is with respect to the own output, keeping the 

other airline‟s output fixed. In line with equation (5), we find: 

      },{2 111100 BAinn
n

iiiii

i

i 



  (21a) 

which implies that the „desired output‟ #

in , for a given in  and disregarding a purchase price 

for slots, amounts to: 
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 (21b) 

Both (21a) and (21b) imply that given an initial endowment of permits according to (19), both 

airlines would use all slots. When doing so, the derivative in (21a) is still positive, implying a 

desire to expand output further, which is confirmed by comparing (21b) with the Nash output 

in (6a) for N

ii nn   .This implies that: 

},{if# BAinNnNnn N

i

ini

ii

ini

i

N

ii    (21c) 

Both airlines would therefore like to expand output in principle, but whether this will lead to 

slot trading depends on the question of whether the one airline is willing to pay more for an 

additional slot or a set of slots than the other airline requires for giving it up. We first look at 

the question of whether there is an incentive to trade a single, marginal slot, in the case where 

the slot was initially used by the selling airline and will be used by the buying airline. 

The answer depends on the second type of derivative of (20), namely the one that 

considers simultaneous but opposite changes in in  and in , so that An  + Bn  remains constant 

(the case where the buying airline decides not to fully use the slot purchased is considered 

below). Using this derivative rather than the one in (21a) acknowledges that the trading 

airlines realize that the maximum total number of passengers is given and determined by N. 

The airlines therefore do not, naïvely, expect the other airline‟s output to be constant after 

buying or selling a used slot. We denote this as a derivative with respect to iiT , , where –i is 

the selling airline and i the buying airline, and where T stands for slots traded. Suppose airline 

A buys and B sells. The derivatives of the profit functions with respect to iiT , , for a 

negotiated permit price p, amount to: 

     

     



























pnnnn
T

pnnnn
T

BABBBA

nnAB

B

BAAABA

nnAB

A

BA

BA

1010

dd,

1010

dd,





 (22) 

If there exists a p for which both expressions become positive, one can expect a mutually 

beneficial trade to occur. Such a p always exists when airline A is more efficient than airline 

B. Slot trading can then be expected to continue until the output of airline B is completely 

eliminated (which is why our choice of considering a sale from B to A is consistent with the 

assumption that if the airline differs, A is more efficient). The result is that airline A obtains a 

monopoly position. And this, of course, raises the question of whether the assumption that 



Congestion Pricing, Slot Sales and Slot Trading in Aviation 12 

airline A fully utilizes every slot purchased is warranted. The answer depends on the number 

of slots available, N, relative to the profit-maximizing monopoly output for A, M

An . The latter 

follows as a special case of (21b): 

 
 11

00

2 A

AM

An







  (23) 

If M

AnN  , the derivative of airline A‟s profits with respect to its output is still positive even 

when owning all slots, and full utilization is the (constrained) profit maximizing strategy. If 
M

AnN  , there will be a certain level of permits traded beyond which airline A does not find it 

profitable to fully utilize each additional permit purchased from B. According to (21b), this 

occurs as soon as Bn  has become so low that BA nNn # . More specifically, (21b) shows 

that airline A, in these circumstances, prefers to use half of each additional slot purchased 

from B. Does this possibly eliminate the existence of a mutually attractive permit price p? No, 

it does not. Equation (22) shows that both airlines can always benefit from an additional 

permit traded if airline A is more efficient and fully utilizes the next slot. If it decides, for 

profit considerations, not to do so, it will profit even more than when utilizing it completely, 

so the same p that would support a trade under full utilization for A would also support half 

utilization. But also airline B can only be better off when making the trade and airline A does 

not fully utilize the additional slot. The ticket price for B‟s remaining output increases, and the 

congestion suffered decreases compared to full utilization by A. Therefore, A‟s decision not to 

fully utilize the slot can never cause B to refuse.
8
 

 As a first set of conclusions, we find that if airlines differ, a system of slot trading will 

cause the inefficient airline to be eliminated from the market. If airline A has no service 

obligation, it will offer the minimum of N and M

An  in the resulting equilibrium. If it does have 

a service obligation, it will offer N. But a service obligation for a monopolistic airline appears 

a rather theoretical construct, especially if the monopolist is free to charge any ticket price it 

prefers. 

 Given these results, we can now determine the optimal number of permits N, if 

satisfying (19): it can take on any value between M

An  and N

B

N

A nn  . Any value in this range 

will lead to the end result that the aggregate output will become equal to M

An . A lower output 

is socially less desirable, since M

An  in (23) is generally below the socially optimal output *

An  

in (9b) when only firm A is active (assuming finite demand elasticity). N should therefore not 

be below M

An . 

Tradeable slots thus produce the profit-maximizing monopolistic equilibrium with 

only firm A active. A positive consequence is that the less efficient airline B is no longer 

active, as in the first-best equilibrium. A negative consequence is that the lack of competition 

                                                
8
 We ignored one possibility in the reasoning above, and that is the situation where after some trading from 

airline B to A, B‟s output is still positive but below the number of slots it then holds. If such a situation would 

occur, A could simply bid a price p for the amount of B‟s unused slots plus 1, and otherwise the same reasoning 
applies as in the main text: whether or not A will in fact fully uses all slots purchased, it can make a mutually 

profitable bid even if constrained to fully replace the single unit of output that B gives up. 
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induces monopolistic price setting by airline A. It is not possible to decide whether the overall 

welfare effects of these two consequences is always positive. That is, it may be desirable not 

to have tradeable permits in place and having the free-market Nash outcome { N

B

N

A nn , } rather 

than the monopolistic outcome M

An . But the reverse may also be true. 

For example, if demand is perfectly elastic so that δ
1
 equals zero, the monopolistic 

output M

An  in (23) coincides with the socially optimal output *

An  in (9b); both being equal to 

100

2
1 /)( AA   . The issuing of M

An  tradeable slots then leads to a first-best welfare level. 

The free-market Nash aggregate output implied by (6c), in contrast, would, if the airlines 

become nearly identical, approximate 100

3
2 /)( AA   , which is socially excessive because 

the two airlines do not perfectly internalize the congestion externality. 

However, if congestion is absent so that γ
1
 is zero for both airlines, we find as the 

socially optimal output in (9b) 100* /)(  AAn  ; for the monopolistic output in (23) 

100

2
1 /)(  A

M

An  ; and an aggregate duopoly output implied by (6c) that would, if the 

airlines become nearly identical, approximate 100

3
2 /)(  A . The duopoly output is now 

closer to the socially optimal output, because overpricing due to market power has reduced. 

Therefore, depending on whether the congestion externality or the market power 

distortion dominates, tradeable slots and the associated monopolistic outcome may or may not 

be more attractive than the free-market Nash equilibrium. 

 Finally, for perfectly symmetric airlines, equation (22) might be taken to suggest that 

no slot trading will take place. But it is important to recall that airlines need not trade permits 

one by one. If N is not below the monopoly output Mn  (which now is equal for both airlines), 

freely tradable slots in fact give the duopolists the incentive and possibility to collude and 

maximize joint profits. By definition, the airline that out-buys the other airline will enjoy 

profits from monopolist operation that exceed the initial sum of duopoly profits, and can 

therefore make a mutually attractive bid for the full set of the other airline‟s slots. When N is 

smaller than Mn , the incentive for such collusion is in fact eliminated, and it is immaterial for 

total industry profits and for social surplus which of the identical airlines serves how many 

passengers. 

6. Conclusion 

Our simple model of airline duopoly competition on a congested airport produced the 

following conclusions. 

 First, consistent with Brueckner (2002) we found that first-best charges should be 

differentiated between asymmetric airlines. Following Pels and Verhoef (2004), the first-best 

charge comprises two elements: the marginal external cost imposed upon the competitor, and 

a demand-related subsidy to counter overpricing due to market power. We found that, with 

neutral or positive scale economies at the firm level (with the degree of scale economies 

defined for a given level of congestion), first-best charges will lead to the elimination of the 

least efficient airline when asymmetry exists. 
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 Next, undifferentiated charges, which we treat as an instrument similar to the selling 

of slots, do not generally drive out the least efficient airline. The optimal uniform charge is a 

weighted average of first-best charge rules, and is likely to be less efficient as airlines become 

more different in their cost-efficiency, so that first-best charges would be more strongly 

differentiated. 

The third instrument, slot trading, is an ineffective policy option when the market 

power distortion outweighs the congestion distortion so that the optimum requires an increase 

in output compared to the free market outcome. While charges may be negative, and hence 

become subsidies, a negative tradeable slot price is hard to imagine. 

If the number of tradeable slots is set below the free-market Nash levels, so that a 

positive shadow price results, slot trading will lead to the monopolistic outcome for the more 

efficient airline – provided the total number of permits is, as second-best optimality requires, 

not below the monopolistic output level for the most efficient airline. The policy drives out 

the less efficient airline, like first-best pricing does. In fact, also with symmetric airlines, the 

monopolistic outcome will result. The reason is that the opportunity to trade slots gives the 

airlines the possibility to maximize joint profits, without having to collude tacitly. Whether 

this monopolistic outcome is preferable to the free-market Nash equilibrium depends on the 

circumstances. If the congestion externality is relatively important and the market power 

distortion relatively unimportant because demand is relatively elastic, this monopolistic 

outcome becomes relatively more attractive from the social perspective. If the opposite 

occurs, the free-market Nash equilibrium may be more efficient than the monopolistic 

outcome that follows from tradeable permits. 

An unambiguous welfare ranking between the two second-best instruments cannot be 

given. The second-best undifferentiated charge will generally succeed in improving welfare 

beyond the level in the free-market Nash equilibrium, whereas tradeable permits may vary 

between being as efficient as first-best pricing and being completely ineffective, Numerical 

exercises, with realistically calibrated models, should give more insight into this matter. Some 

other aspects of the problem that seem to deserve further study include, in no particular order 

of priority, the consideration of multiple markets and more complex networks, interactions 

between congested airports, and private versus public airports. However, because the 

ambiguity in welfare ranking is already found in the most simple set-up considered here, it is 

unlikely to disappear for certain in more elaborate settings. 
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