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Abstract

In this paper we study the existence problem of a zero point of a function defined on a

finite set of elements of the integer lattice Zn of the n-dimensional Euclidean space IRn. It

is assumed that the set is integrally convex, which implies that the convex hull of the set

can be subdivided in simplices such that every vertex is an element of Zn and each simplex

of the triangulation lies in an n-dimensional cube of size one. With respect to this triangu-

lation we assume that the function satisfies some property that replaces continuity. Under

this property and some boundary condition the function has a zero point. To prove this

we use a simplicial algorithm that terminates with a zero point within a finite number of

iterations. The standard technique of applying a fixed point theorem to a piecewise linear

approximation cannot be applied, because the ‘continuity property’ is too weak to assure

that a zero point of the piecewise linear approximation induces a zero point of the function

itself. We apply the main existence result to prove the existence of a pure Cournot-Nash

equilibrium in a Cournot oligopoly model. We further obtain a discrete analogue of the

well-known Borsuk-Ulam theorem and a theorem for the existence of a solution for the

discrete nonlinear complementarity problem.

Keywords: Discrete system of equations, triangulation, simplicial algorithm, fixed point,

zero point.
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1 Introduction

Many problems arising from economics, engineering and mathematics can be formulated

as a system of equations. The existence problem of a solution to a system of equations

is called the zero point problem. This problem is associated with a function f : X → IRn

where X is a subset of the n-dimensional Euclidean space IRn. A point x ∈ X is a zero

point of f if the image of x is the origin, and x is a fixed point of f if x is a zero point of

the function g given by g(x) = f(x)− x and thus the image f(x) of x is x itself.

Several fundamental theorems such as Brouwer fixed point theorem and Kakutani fixed

point theorem concern the existence of fixed or zero point for the situation where the

domain of interest is a convex and compact set in IRn and the mapping is continuous or

upper semi-continuous. In his pioneering work Scarf (1967, 1973) gave the first constructive

method for finding a fixed point on a compact convex set. Later on, more efficient simplicial

algorithms for finding fixed or zero points were developed by Kuhn (1969), Eaves (1972),

Merrill (1972), van der Laan and Talman (1979) among others.

Most of the existing fixed point theorems require that the domain be a convex set. This

means that the components of the solution could be any real numbers. Such a solution

can be a good approximation when the economic value associated with it is rather small.

However, when the domain of interest involves significant indivisibilities such as houses,

employees and equipments, the argument is no longer valid. Indeed, overwhelmingly many

decision making variables of economic, business and engineering problems take only integer

or rational numbers. For instance, essentially all commodities including divisible goods

such as oil are traded in discrete quantities. Motivated by such practical consideration, we

will investigate the zero point problem on a finite subset of the integer lattice Zn in IRn.

This line of research can date back to Tarski (1955).

When the domain of interest is a discrete set, convexity and continuity have no direct

meaning and have to be replaced by a kind of discrete version. In particular, convexity

will be replaced by what is called integral convexity. The concept of integrally convex set

was introduced by Favati and Tardella (1990) and has been well studied in the literature,

see e.g. Murota (2003) and Fujishige (2005). Many well-known and important integral

polyhedra generate integrally convex sets, for instance, the set P ∩ Zn is integrally convex

for any base polyhedron or generalized polymatriod P . The basic property of an integrally

convex set is that its convex hull admits a simplicial subdivision or triangulation for which

the set of vertices is equal to the set itself and every simplex is contained in a cube in IRn

of size one.

In recent years several papers have appeared in which the existence of a discrete zero

point was established for functions satisfying some property replacing continuity. Direction

preserving functions are considered in Iimura (2003), Danilov and Koshevoy (2004), Iimura,
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Murota and Tamura (2005), and van der Laan, Talman and Yang (2006, 2007b). A function

f : Zn → IRn is direction preserving if for any two cell-connected points x and y in Zn, i.e.,

points within a same cube of size one, it holds that fj(x)fj(y) ≥ 0 for every component

j = 1, . . . , n. The more general class of locally gross direction preserving functions is

studied in Yang (2004, 2008), Iimura and Yang (2005), van der Laan, Talman and Yang

(2007a). A function f : Zn → IRn is locally gross direction preserving if the inner product

f(x) · f(y) ≥ 0 for any two cell-connected points x and y in Zn. Talman and Yang (2009)

showed existence of a zero point when f is positive maximum component sign preserving,

meaning that, for any two cell connected points x and y in Zn, fj(x) = maxh∈N fh(x) > 0

implies fj(y) ≥ 0. Although the class of positive maximum component sign preserving

functions is also more general than the class of direction preserving functions, it is not

comparable with the class of locally gross direction preserving functions in the sense that

these two classes do not imply each other.

In this paper we consider a new class of functions with a property replacing continuity,

namely the class of simplicially coordinatewise opposite extrema free (SCOEF) functions.

A function f on an integrally convex set is SCOEF if there exists a triangulation T of the

set such that for any two vertices x and y of any simplex in T it holds that when some

component of f(x) has the highest absolute value and the same component of f(y) has

opposite sign, then the latter component is not the highest absolute value of f(y). SCOEF

functions further generalize positive maximum component sign preserving functions.

In most of the literature the existence of a zero (or fixed) point is shown by proving

first that the piecewise linear approximation of the function on a simplicial subdivision

has a zero point, and next that this zero point induces a zero point of the function itself.

The existence of a zero point of the piecewise linear approximation can be proved either

directly by using a fixed point argument such as Brouwer or Kakutani fixed point theorem,

or constructively by applying a simplicial algorithm based on vector or integer labeling.

Both the piecewise linear approximation approach and the vector labeling technique cannot,

however, be applied to a SCOEF function, because the SCOEF function is so weak that

the piecewise linear approximation of such a function may have a zero point, when the

function itself does not have a zero point.

We adapt the integer labeling 2n-ray simplicial algorithm of van der Laan and Talman

(1981) and Reiser (1981) and provide a constructive proof of the existence of a zero point of

a SCOEF function from a finite integrally convex set in IRn to IRn satisfying some boundary

condition. This boundary condition is similar to the ones that are used to guarantee the

existence of a zero or fixed point of a continuous function on a compact convex set. Roughly,

the condition states that on the boundary of the convex hull of the finite set, the function

should point inwards. Starting at an arbitrary integral point of the set, the algorithm
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generates a unique sequence of adjacent simplices of variable dimension until a zero point

is found. Since no simplex can be generated more than once and the number of simplices

is finite because the set is finite, the algorithm terminates within a finite number of steps

with a discrete zero point.

The existence result is applied to a discrete oligopoly model. In this model there is

a finite number of firms, having quadratic individual cost functions. Firms produce a

homogeneous good in discrete amounts and the inverse demand function is assumed to

be linear. The equilibrium amounts are the fixed points of the reaction functions of the

firms. Because the strategy set of every firm is finite, the discrete oligopoly model has

an equilibrium in mixed strategies. We will show that the function whose components

are the reaction functions of the firms is a SCOEF function with respect to some specific

triangulation and satisfies the boundary condition. This will guarantee the existence of an

equilibrium in pure strategies.

We also establish a discrete version of the well-known Borsuk-Ulam theorem on an

arbitrary symmetric integrally convex set and a theorem for the existence of the discrete

complementarity problem. In the latter problem a solution is a complementary point

for a function that has the set of nonnegative integral vectors as domain. The SCOEF

condition is slightly modified for this problem and the algorithm is adapted in order to

find a complementarity point within a finite number of steps when the function satisfies

the modified SCOEF condition and some (upper) boundary condition.

This paper is organized as follows. In Section 2 we introduce the class of simplicially co-

ordinatewise opposite extrema free functions. In Section 3 we establish and prove the main

existence result and apply this result to the discrete oligopoly model. In Section 4 we prove

a discrete version of the Borsuk-Ulam theorem and discuss the discrete complementarity

problem.

2 Simplicially coordinatewise opposite extrema free

functions

For a given positive integer n, the set {1, 2, . . . , n} is denoted byN , IRn is the n-dimensional

Euclidean space, and Zn is the integer lattice of IRn. For i ∈ N , e(i) denotes the ith unit

vector of IRn and e(−i) denotes the ith negative unit vector, i.e., e(−i) = −e(i). Further

0n denotes the zero vector. A set X ⊂ IRn is symmetric if x ∈ X implies −x ∈ X. For an

arbitrary set X ⊂ IRn, X and ∂X denote the convex hull of X and the (relative) boundary

of X, respectively.

Two points x and y in Zn are cell-connected if maxi |xi − yi| ≤ 1. The convex hull

σ(x1, . . . , xt+1) of t + 1 affinely independent points x1, . . . , xt+1 in IRn is a t-simplex. A
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simplex is cubical if all its vertices belong to Zn and every pair of two simplices is cell-

connected. A subset D of Zn is integrally convex if (i) D = Zn∩D and (ii) the set D is the

union of a collection of cubical simplices. An integrally convex set D in Zn is regular if D

is n-dimensional and contains an integral point in its interior.

A collection T of m-simplices is a triangulation of an m-dimensional convex set X in

IRn if (i) X is the union of all simplices in T , (ii) the intersection of any two simplices in

T is either empty or a common face of both, and (iii) any neighborhood of any point in X

only meets a finite number of simplices in T . A triangulation is cubical if all its simplices

are cubical. See Todd (1976) for more details on triangulations. A triangulation T of a

symmetric convex set is symmetric if σ ∈ T implies −σ ∈ T . It is known from Iimura,

Murota and Tamura (2005) that for any integrally convex set D there exists a cubical

triangulation of its convex hull.

In the next section we prove that a function f from an integrally convex set D ⊂ Zn

to IRn has a zero point when f is simplicially coordinatewise opposite extrema free and

satisfies some boundary condition. The condition concerns only those coordinates of the

function having nonzero extreme value and states that there exists a triangulation of the

convex hull of the domain such that within any simplex of the triangulation no coordinate

of the function has values that are extreme in absolute value but are of opposite sign.

Definition 2.1 Let D ⊂ Zn be an integrally convex set. A function f :D → IRn is simpli-

cially coordinatewise opposite extrema free (SCOEF) if there exists a cubical triangulation

T of D such that for every simplex σ of T and every two vertices x and y of σ with

f(x) �= 0n and f(y) �= 0n, there exists no k ∈ N such that

fk(x)fk(y) = −max
h∈N

|fh(x)|max
h∈N

|fh(y)|.

The most widely used tool for showing the existence of a solution to a system of equa-

tions is the Brouwer fixed point theorem or one of its variants. Brouwer’s theorem states

that any continuous function from a convex and compact subset of IRn to itself leaves at

least one point fixed. In models where the domain of interest is a finite set, the continuity

and convexity requirement of Brouwer’s theorem is no longer fulfilled. In Definition 2.1

the SCOEF condition replaces continuity and convexity is replaced by the notion of an

integral convex set. As mentioned in the introduction the issue of existence of a zero point

on discrete sets has been addressed recently in several papers under various conditions.

Until now in almost all papers the set of interest has been taken to be a cube, in this paper

we generalize to an integrally convex set. Further it should be noticed that the class of

SCOEF functions includes the class of positive maximum component sign preserving func-

tions considered in Talman and Yang (2009), which class includes the class of direction

preserving functions. Also the class of locally gross direction preserving functions includes
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the class direction preserving functions. The following example shows that SCOEF func-

tions and locally gross direction preserving functions are not comparable in the sense that

they do not imply each other.

Example 2.2 Let f : Z6 → IR6 be defined by f(x) = (2, 1, 1, 1, 1, 1) for x = (0, 0, 0, 0, 0, 0),

f(x) = (−2, 1, 1, 1, 1, 1) for x = (1, 1, 1, 1, 1, 1), and f(x) = (0, 0, 0, 0, 0, 0) otherwise. Then

f is locally gross direction preserving but not SCOEF. Let f : Z2 → IR2 be defined by

f(x) = (2, 1) for x = (0, 0), f(x) = (−2,−3) for x = (1, 1), and f(x) = (0, 0) otherwise.

Then f is SCOEF but not locally gross direction preserving. �

We also want to stress that the existence of a locally gross direction preserving function

f on a discrete set D can be proved by extending f to a function f on the convex hull

of D with f the piecewise linear approximation of f on a cubical triangulation T of D.

Under some boundary condition the existence of a zero point of f follows from a standard

zero (or fixed) point argument and then the locally gross direction preserving condition

guarantees that when x is a zero point of f in some simplex σ of T , then σ contains at

least one vertex that is a zero point of f itself. This does not hold on the class of SCOEF

functions. The piecewise linear approximation of a SCOEF function may have a zero point,

whereas the function itself does not have a zero point. This means that the existence of a

discrete zero point of a SCOEF function can not be proven by applying a simplicial vector

labeling algorithm, which terminates with a zero point of f , and neither a standard fixed

point argument can be used.

Example 2.3 Let f : Z3 → IR3 be defined by f(x) = (2,−1,−1) for x = (1, 0, 0), f(y) =

(−1, 2,−1) for y = (0, 1, 0), f(z) = (−1,−1, 2) for z = (0, 0, 1), otherwise f(w) = (1, 1, 1).

Clearly, f is SCOEF. However, f has no discrete zero point, while the barycenter of the

triangle with vertices x, y and z is a zero point of the piecewise linear extension of f . �

3 Existence of discrete zero point and application

3.1 The main result

In this subsection we present the main theorem on the existence of a discrete zero point of

a SCOEF function defined on a finite and regular integrally convex set. Except convexity

of the domain set and continuity of the function, standard fixed (or zero) point arguments

require compactness and some boundary condition. Within the discrete setting the com-

pactness follows from the finiteness of the domain D, the boundary condition in the next

theorem can be seen as a discrete version of the standard condition that the function points

inwards on the boundary. For a set X in IRn, a vector w ∈ IRn is outgoing at x ∈ X if
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x + ǫw �∈ X for any ǫ > 0. Notice that for a finite and regular integrally convex set D, a

point x ∈ D does not have an outgoing vector when x is in the interior of D.

Theorem 3.1 Let D be a finite and regular integrally convex set in Zn and let f :D →

IRn be a SCOEF function satisfying for any x ∈ D ∩ ∂D with f(x) �= 0n that fh(x) <

maxi∈N |fi(x)| if e(h) is outgoing at x for some h ∈ N , and fh(x) > −maxi∈N |fi(x)| if

e(−h) is outgoing at x for some h ∈ N . Then f has a discrete zero point in D.

The boundary condition states that if at an integral point x on the boundary of the

convex hull of D the hth component of x cannot be increased, i.e., e(h) is an outgoing

unit vector at x, then the hth component of the function value f(x) does not have positive

extreme value, and if the hth component of x cannot be decreased, i.e., e(−h) is an outgoing

unit vector at x, then the hth component of the function value f(x) does not have negative

extreme value.

To prove Theorem 3.1, we implement an integer labeling rule ℓ(·) that assigns to each

point x of the discrete set D an integer label from the set N ∪ N− ∪ {0}, where N− =

{−1,−2, . . . ,−n}.

Definition 3.2 For f :D→ IRn, the labeling function ℓ:D→ N ∪N− ∪ {0} is as follows.

For x ∈ D, take any k ∈ N such that |fk(x)| = maxh∈N |fh(x)|. Then, ℓ(x) = 0 if

fk(x) = 0, ℓ(x) = k if fk(x) > 0, and ℓ(x) = −k if fk(x) < 0.

Notice that ℓ(x) = 0 if and only if x is a discrete zero point of f . The following lemma

shows that this integer labeling rule excludes the possibility that any two vertices of a

simplex are oppositely labeled when the function satisfies the SCOEF property.

Lemma 3.3 Let f :D → IRn satisfy the SCOEF conditions of Definition 2.1 for some

cubical triangulation T of D and let ℓ(·) be the integer labeling rule as given in Definition

3.2. Then there are no two vertices x and y of a same simplex of T such that ℓ(x) = k

and ℓ(y) = −k for any k ∈ N .

Proof. Suppose to the contrary that there is a simplex in T with two vertices x and y

such that ℓ(x) = k and ℓ(y) = −k for some k ∈ N . Then, by Definition 3.2, f(x) �= 0n

and f(y) �= 0n, fk(x) = maxh |fh(x)| and fk(y) = −maxh |fh(x)|. This contradicts that f

satisfies the SCOEF property of Definition 2.1. �

The next lemma states that under the boundary condition a vertex cannot carry label

h if e(h) is an outgoing vector.

Lemma 3.4 Let f :D → IRn satisfy the boundary condition of Theorem 3.1 and let ℓ(·)

be the integer labeling rule given in Definition 3.2. Then, for any x ∈ D ∩ ∂D, ℓ(x) �= h

whenever e(h), h ∈ N ∪N−, is an outgoing vector at x.
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Proof. Take any x in D ∩ ∂D. Let k ∈ N be such that e(k) is an outgoing vector at x.

From the boundary condition it follows that either f(x) = 0n or fk(x) < maxh |fh(x)|. In

both cases ℓ(x) �= k. Next, let k ∈ N− be such that e(k) is an outgoing vector at x. From

the boundary condition it then follows that either f(x) = 0n or fk(x) > −maxh |fh(x)|.

Again, in both cases ℓ(x) �= k. Therefore, ℓ(x) �= h whenever e(h), h ∈ N ∪ N−, is an

outgoing vector at x. �

To give a constructive proof of Theorem 3.1, let

I = {T ⊂ N ∪N− | k ∈ T implies − k �∈ T}

be the collection of all subsets of N ∪ N− not containing two opposite labels. Further,

let v be an arbitrarily chosen integral point in the interior of D. Since D is regular and

full-dimensional, such a point v exists. We then define for any T ∈ I the set A(T ) by

A(T ) = {x ∈ D | xi ≥ vi if i ∈ T ; xi ≤ vi if − i ∈ T ; and xi = vi otherwise}.

Clearly, A(∅) = {v}, and for any T ∈ I the set A(T ) is a t-dimensional convex set, where

t = |T |, satisfying that the ith component of an element x in A(T ) is at least (most) as

large as the ith component of v when i ∈ T (−i ∈ T ), and xi = vi when neither i nor −i

is in T . Let T be a cubical triangulation of D with respect to which f is SCOEF. Since

T is cubical, T induces for every T ∈ I a subdivision of A(T ) into t-dimensional cubical

simplices, with t = |T |. Any facet τ of a t-simplex in A(T ) is either a facet of exactly one

other t-simplex in A(T ) or lies on the boundary of A(T ). In the latter case τ is either a

(t − 1)-simplex in A(T \ {k}) for some unique k ∈ T or a facet in A(T ) on the boundary

of D. Furthermore, every t-simplex in A(T ) is cubical and therefore any two vertices of

a t-simplex in A(T ) are cell-connected. Given a t-dimensional simplex σ in A(T ), with

t = |T |, a facet τ of σ is T -complete if

T = {ℓ(x) | x is a vertex of τ},

i.e., its t vertices are differently labeled by the t elements of T . The next lemma shows

that a facet of a simplex in A(T ) on the boundary of D can not be T -complete.

Lemma 3.5 Let f :D → IRn satisfy the SCOEF conditions of Definition 2.1 for some

cubical triangulation T of D and let ℓ(·) be the integer labeling rule as given in Definition

3.2. Then there does not exist a T -complete facet of T in A(T ) ∩ ∂D.

Proof. Suppose that τ is a T -complete facet in A(T ) for some T ∈ I and that τ lies

on the boundary of D. Take any point x in the relative interior of τ and let K = {h ∈

N ∪N− | e(h) is outgoing at x}. Since D is integrally convex, K �= ∅. Moreover, for any
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k ∈ K, e(k) is an outgoing vector at every vertex of τ and therefore, by Lemma 3.4, no

vertex of τ has label k. To prove that τ can not be T -complete, we show that T ∩K �= ∅.

Suppose to the contrary that T ∩K = ∅. Then, no e(h), h ∈ T , is outgoing and thus

there exists ǭ > 0 such that for all ǫ, 0 ≤ ǫ ≤ ǭ,

x+ ǫe(h) ∈ D, for any h ∈ T.

Clearly, A(T ) ∩ ∂D is (t − 1)-dimensional. So, the (t − 1)-dimensional T -complete facet

τ ∈ ∂D can not be in A(T \ {h}) for any h ∈ T , because A(T \ {h}) ∩ ∂D is of dimension

t − 2. Hence, the relative interior of τ is in the relative interior of A(T ), and so is x,

implying that there exist unique λh > 0, h ∈ T , such that

x = v +
∑

h∈T

λhe(h).

For some ǫ, 0 < ǫ ≤ ǭ, let

y =
1

1− λ
(x− λv), (3.1)

where λ = ǫ
ǫ+µ

with µ =
∑

h∈T λh. Then substituting v = x −
∑

h∈T λhe(h) in equation

(3.1) yields

y =
1

1− λ
(x− λ(x−

∑

h∈T

λhe(h)) = x+
λ

1− λ

∑

h∈T

λhe(h))

= x+
ǫ

µ

∑

h∈T

λhe(h) =
∑

h∈T

λh
µ
(x+ ǫe(h)).

Since x + ǫe(h) ∈ D for every h ∈ T and µ =
∑

h∈T λh, it follows that y is a convex

combination of elements of D and thus y ∈ D, because D is convex. On the other hand,

equation (3.1) yields x = λv + (1− λ)y with 0 < λ = ǫ
ǫ+µ

< 1. Since v is in the interior of

D and y is in D, it follows that x is in the interior of D, contradicting that x lies on the

boundary of D. Consequently, T ∩K �= ∅ and therefore τ is not T -complete. �

We now apply the 2n-ray variable dimension algorithm of van der Laan and Talman

(1981) and Reiser (1981) in IRn on the set D to find a zero point of f . In the original

algorithm the sets A(T ) are defined as subsets in IRn and some convergency condition

guarantees that the algorithm stays within a bounded subset of IRn. Here the sets A(T )

are defined as subsets of D and the boundary condition replaces the convergency condition.

The 2n-ray algorithm.

Step 0. Set T = ∅, x = v, σ = {v}, and go to Step 1.
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Step 1. Calculate ℓ(x). If ℓ(x) = 0, stop. If ℓ(x) ∈ T , go to Step 2. Otherwise, go to Step

3.

Step 2. Let τ be the facet of σ opposite to vertex x. If τ is in A(T \ {k}) for some k ∈ T ,

go to Step 4. Otherwise, let σ′ be the unique simplex in A(T ) sharing τ with σ, then

σ becomes σ′, x becomes the vertex of σ′ opposite to τ , and go to Step 1.

Step 3. Set h = ℓ(x) and let σ′ be the unique simplex in A(T ∪ {h})) having τ as facet,

then T becomes T ∪ {h}, σ becomes σ′, x becomes the vertex of σ′ opposite to τ ,

and go to Step 1.

Step 4. T becomes T \ {k}, σ becomes τ , x becomes the vertex of τ with label k, and go

to Step 2.

We now show that the algorithm indeed terminates with a zero point of f within a finite

number of steps, which proves Theorem 3.1.

Proof of Theorem 3.1. The algorithm starts at v in A(T ) with T = ∅. If ℓ(v) = 0,

then v is a discrete zero point of f and the algorithm immediately terminates in Step 1.

If ℓ(v) �= 0, then, since ℓ(v) �∈ T , the algorithm goes to Step 3 and T becomes {ℓ(v)}.

Then {v} is a 0-dimensional facet of a unique 1-dimensional simplex σ0 in A(T ), where

σ0 = σ(x1, x2) with x1 = v and x2 = v + e(ℓ(v)), and the algorithm goes back to Step

1 with x equal to the vertex x2. The algorithm stops when ℓ(x2) = 0. Otherwise, when

ℓ(x2) �= ℓ(v), then the algorithm goes again to Step 3 and T becomes {ℓ(v), ℓ(x2)}. When

ℓ(x2) = ℓ(v), the algorithm goes to Step 2 and starting with σ0 the algorithm generates

a sequence of adjacent 1-dimensional simplices in A(T ) with T -complete common facets

where T = {ℓ(v)}. More general, for varying sets T ∈ I, the algorithm generates by

performing alternating Steps 1 and 2 a sequence of adjacent t-simplices in A(T ) with T -

complete common facets, where t = |T |. When a simplex is generated having a vertex

with label 0, the algorithm stops in Step 1. Otherwise, the set T is adapted when either

(i) in Step 1 a t-simplex σ in A(T ) is encountered having a vertex with a label h �= 0

that does not belong to T , or (ii) in Step 2 a simplex in A(T ) is encountered having a

T -complete facet τ in A(T \ {k}) for some k ∈ T . In case (i), it follows from Lemma 3.3

that the new found label h can not be the negative of a label that belongs to T , and thus

T ′ = T ∪ {h} ∈ I. Now, the algorithm goes to Step 3 and the algorithm continues in

A(T ′), starting from the unique (t+ 1)-simplex in A(T ′) having σ as its facet. In case (ii),

the algorithm goes to Step 4, where label k is deleted from T and the algorithm continues

in A(T \ {k}), starting with the (t− 1)-simplex that is the facet opposite the vertex of τ

carrying label k. Since each step of the algorithm is uniquely determined, it follows by the

well-known Lemke-Howson argument that a simplex will never be visited more than once
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(see van der Laan and Talman (1981) or Reiser (1981) for a more detailed description).

Since the number of simplices in the triangulation of D is finite, within a finite number of

steps the algorithm either terminates in Step 1 with a vertex having label 0, or generates,

for some T ∈ I, a simplex in A(T ) having a T -complete facet τ in A(T )∩ ∂D. By Lemma

3.5, the latter case can not occur and thus the algorithm terminates within a finite number

of steps with a simplex having a vertex x carrying label 0. Since all vertices of any simplex

generated by the algorithm are elements of D, x is a discrete zero point of f . �

Theorem 3.1 holds for any finite (regular) integrally convex set D. A special case is

that D is an n-dimensional rectangular set.

Corollary 3.6 Let f : Zn → IRn be a SCOEF function, satisfying that there exist a, b ∈ Zn

with bi > ai + 1 for every i ∈ N , such that for x ∈ Zn with f(x) �= 0n it holds that (i) if

xj = aj, then fj(x) > −maxh∈N |fh(x)|, and (ii) if xj = bj, then fj(x) < maxh∈N |fh(x)|.

Then f has a discrete zero point in the finite set D = {x ∈ Zn | ai ≤ xi ≤ bi, i ∈ N}.

In particular observe that the boundary conditions of Corollary 3.6 are satisfied when the

function f is pointing inwards on the boundary of the rectangular set D, i.e., fj(x) ≥ 0 if

xj = aj and fj(x) ≤ 0 if xj = bj .

3.2 Application: the discrete oligopoly model

Now we turn to the application of a Cournot oligopoly. Suppose there are n producers of

a homogeneous commodity with inverse market demand function specified by

P (q) = a− bq, q ∈ Z+,

where a and b are strictly positive real numbers. Firm i, i ∈ N , has a quadratic cost

function ci: Z+ → IR given by

ci(qi) = ciqi +
di
2
(qi)

2, qi ∈ Z+,

where ci and di are real numbers. We typically think of ci and di as being non-negative,

but this is not required. What we do require is 2b + di > 0, since otherwise it would be

optimal for firm i to produce infinite amounts. Firm i ∈ N maximizes his profit given the

quantities set by its competitors and thus faces the maximization problem

max
qi∈Z+

(a− bqi − b
∑

j �=i

qj)qi − (ciqi +
di
2
(qi)

2).

Treating qi as a real variable in IR, the first order condition is

a− 2bqi − b
∑

j �=i

qj − ci − diqi = 0,

10



so firm i’s optimal production quantity qi in IR, given the quantities qj , j �= i, of its

competitors, is given by

qi =
a− ci
2b+ di

−
b

2b+ di

∑

j �=i

qj.

For a real number x, let [x] denote the integer that results from the usual way of rounding

off, i.e., [x] is the integer nearest to x if the nearest integer is uniquely determined, and

the highest such integer otherwise.

Lemma 3.7 The quantity q∗i given by

q∗i = max{0, [qi]}

is firm ith optimal integer production, given the (integer) production quantities qj, j �= i,

of its competitors.

Proof. Let g: IR→ IR be a quadratic function given by

g(x) = αx2 + βx+ γ,

with α < 0. Its maximum on IR is obtained for x = −β/(2α) and it follows straightfor-

wardly that

g(x) = α(x− x∗)2 + g(x).

It is now seen easily that the non-negative integer nearest to x, i.e., x∗ = max{0, [x]} is a

solution to the maximization problem of g on Z+. Since the objective function of firm i,

i ∈ N , is a function of type g, it follows that q∗i = max{0, [qi]} maximizes firm i’s objective

function over Z+. �

Notice that in case qi equals a nonnegative integer plus 1/2, also q∗i − 1 maximizes

firm i’s objective function on Z+. However, Lemma 3.7 allows us to define for i ∈ N the

function ri: Zn+ → Z+ given by ri(q) = max{0, [qi]} as a selection of firm i’s optimal reaction

to the quantities qj, j �= i, of its competitors. A closer inspection of the function ri reveals

that [ a−ci
2b+di

] is the maximal amount firm i will ever choose as its optimal reaction. So,

when searching for a Cournot-Nash equilibrium in which every player i chooses a quantity

that is optimal against the quantities set by its competitors, we may restrict attention to

the set of discrete strategy combinations D = {x ∈ Zn | l ≤ x ≤ u} with li = 0 and

ui = max{2, a−ci
2b+di

}, i ∈ N .

Let f :D→ IRn be given by

fj(q) = rj(q)− qj , j ∈ N, q ∈ D.

11



It now follows that, when b+ di > 0 for all i, the discrete oligopoly model has a Cournot-

Nash equilibrium in D by showing that f is simplicially coordinatewise opposite extrema

free. For this, we take the H-triangulation of IRn with grid size equal to 1 (see Saigal

(1983)), restricted to D = {x ∈ IRn | l ≤ x ≤ u}. This triangulation is a cubical

triangulation and is defined as follows. Let the vectors ph ∈ IRn, h ∈ N , be given by

p1 = (1, 0, . . . , 0)⊤ and, for h = 2, . . . , n, ph = (0, . . . , 0,−1, 1, 0, . . . , 0)⊤ with 1 on the hth

place.

Definition 3.8 For y ∈ Zn and a permutation π = (π(1), . . . , π(n)) of the elements in

{1, . . . , n}, let σ(y, π) be the convex hull of the vectors y0, y1, . . . , yn given by

y0 = y and yh = yh−1 + pπ(h), h ∈ N.

Then the cubical H-triangulation of IRn restricted to D is the collection of all simplices

σ(y, π) that belong to D.

We call the cubical H-triangulation of IRn restricted to D for simplicity the cubical H-

triangulation of D.

Theorem 3.9 If b + di ≥ 0, i ∈ N , then f :D → IRn satisfies the SCOEF conditions of

Definition 2.1 for the cubical H-triangulation of D.

Proof. For i ∈ N and q ∈ D it holds that

fi(q) = ri(q)− qi = max

{

0,

[
a− ci
2b+ di

−
b

2b+ di

∑

j �=i

qj

]}

− qi

= max

{

−qi,

[
a− ci
2b+ di

−
b

2b+ di

∑

j �=i

qj − qi

]}

= max

{

−qi,

[
a− ci
2b+ di

−

(
b

2b+ di

n∑

j=1

qj +
b+ di
2b+ di

qi

)]}

.

Consider any two vertices qh and qk of a simplex σ and take any i ∈ N . By the H-

triangulation it holds that

|qhi − qki | ≤ 1 and

∣∣∣∣∣

n∑

j=1

qhj −
n∑

j=1

qkj

∣∣∣∣∣
≤ 1.

Since b+ di > 0 and thus 0 < b/(2b+ di) ≤ 1, it follows that
∣∣∣∣∣

(
b

2b+ di

n∑

j=1

qhj +
b+ di
2b+ di

qhi

)

−

(
b

2b+ di

n∑

j=1

qkj +
b+ di
2b+ di

qki

)∣∣∣∣∣
≤ 1
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and consequently that

|fi(q
h)− fi(q

k)| ≤ 1.

Hence fi(q
h) and fi(q

k) are both non-negative or both non-positive, and so f :D → IRn

satisfies the SCOEF condition of Definition 2.1. �

Theorem 3.10 If b + di ≥ 0, i ∈ N , then the discrete oligopoly model has a discrete

Cournot-Nash equilibrium.

Proof. By Theorem 3.9 the function f is SCOEF on the set D. Moreover, fi(x) > 0 if

xi = 0 and fi(x) < 0 if xi = max{2, a−ci
2b+di

}. So, by Corollary 3.6, f has a discrete zero

point q∗ in the set D. Since f(q∗) = 0n implies that q∗i = ri(q∗), i ∈ N , it follows that q∗

is a Cournot-Nash equilibrium in D. �

It should be noticed that a function has the SCOEF property if there exists a cubical

triangulation for which the conditions of Definition 2.1 hold. In the oligopoly model the

use of the H-triangulation is crucial, the next example shows that the function f may not

satisfy the conditions of Definition 2.1 for other cubical triangulations.

Example 3.11 Consider a discrete Cournot oligopoly model with two firms having zero

production costs and inverse demand function P (q) = 9− 2q, q ∈ Z+. The best response

of firm i, i = 1, 2, is given by ri(q) = 2 when qj ∈ {0, 1}, ri(q) = 1 when qj ∈ {2, 3}

and ri(q) = 0 for any other qj ∈ Z+, where qj is i’s competitor’s quantity. Clearly, the

function f given by f(q) = (r1(q)−q1, r2(q)−q2)⊤ is SCOEF for the H-triangulation of D

and there are two discrete Cournot-Nash equilibria, namely q∗ = (2, 1)⊤ and q∗∗ = (1, 2)⊤.

The cubical K-triangulation of IRn is the collection of simplices that are the convex hull

of vectors y0, y1, . . . , yn that, for some y ∈ Zn and permutation π = (π(1), . . . , π(n)) of the

elements in N , are given by

y0 = y and yh = yh−1 + e(π(h)), h = 1, . . . , n.

For y = (1, 1)⊤ and both permutations on N = {1, 2}, it follows that y0 = (1, 1)⊤ and y2 =

(2, 2)⊤. Therefore, both elements y0 = (1, 1)⊤ and y2 = (2, 2)⊤ of D are in a same simplex

of the cubical K-triangulation. Since f(y0) = (1, 1)⊤ and f(y2) = (−1,−1)⊤, it follows

that f does not satisfy the conditions of Definition 2.1 for the cubical K-triangulation

restricted to D. Notice that indeed y0 and y2 are not vertices of one simplex of the cubical

H-triangulation of D. �
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4 More existence results for SCOEF functions

4.1 A discrete version of the Borsuk-Ulam theorem

The next theorem might be viewed as a discrete analogue of the famous Borsuk-Ulam

theorem for continuous functions. Notice that as usual it is required that the domain set

D is symmetric (around the origin), i.e., x ∈ D implies −x ∈ D

Theorem 4.1 Let D ⊂ Zn be a finite, regular and symmetric integrally convex set and let

f :D → IRn be a function that satisfies the SCOEF conditions of Definition 2.1 for some

symmetric cubical triangulation T of D. Suppose that for any x ∈ ∂D ∩ D there exists

some k ∈ N such that fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|. Then f has a

discrete zero point in D.

The boundary condition in this theorem might seem to be rather strong, but it is

actually much weaker than the standard boundary condition for the Borsuk-Ulam theorem,

namely that f(−x) = −f(x) when x is on the boundary of the domain set. To prove

Theorem 4.1, when x ∈ D in the interior of D, the label ℓ(x) is as given in Definition 3.2.

When x is a point in ∂D∩D, the labeling is slightly modified as follows. If f(x) = 0n, then

ℓ(x) = 0. If f(x) �= 0n and f(−x) = 0n, then ℓ(x) is as given in Definition 3.2. If f(x) �= 0n

and f(−x) �= 0n, then, according to the boundary condition there exists k ∈ N such that

fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|. Take any of these, and set ℓ(x) = k if

fk(x) > 0 and ℓ(x) = −k if fk(x) < 0. Clearly, the modified labeling rule ℓ(·) satisfies that

two antipodal points x and −x on the boundary of D either have opposite labels or one of

the two points has label 0. The next lemma shows that no two vertices of a same simplex

can have opposite labels.

Lemma 4.2 Let f :D → IRn satisfy the conditions of Theorem 4.1. Then there is no

simplex in T carrying both labels k and −k for any k ∈ N .

Proof. Let x and y be two vertices of any simplex of T . When both x and y are in the

interior of D, then similarly as in the proof of Lemma 3.4 it follows that x and y can not

have opposite labels. So, let x be a vertex on the boundary of D with ℓ(x) �= 0. Without

loss of generality, suppose that ℓ(x) = k for some k ∈ N . From the modified labeling

rule it follows that fk(x) > 0 and fk(x)fk(−x) = −maxi∈N |fi(x)|maxi∈N |fi(−x)|. This

implies that fk(x) = maxi∈N |fi(x)|. We now consider two cases. First, when y is in the

interior of D, it follows by the SCOEF condition that y can not have label −k. The

second case is that also y is on the boundary of D. Since D is regular and thus D has

an interior point, two opposite points on the boundary can not belong to the same cell

and therefore also not to the same simplex of T . Hence, y is not opposite to x, i.e.,
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y �= −x. Suppose that y has label −k. Then, by the labeling rule we must have that

fk(y) < 0 and fk(y)fk(−y) = −maxi∈N |fi(y)|maxi∈N |fi(−y)|. However, this implies that

fk(y) = −maxi∈N |fi(y)|, which contradicts the SCOEF condition. �

To prove Theorem 4.1 we now take the origin as the starting point v of the 2n-ray

algorithm. So for any T ∈ I the set A(T ) is defined by

A(T ) = {x ∈ D | xi ≥ 0 if i ∈ T ; xi ≤ 0 if − i ∈ T ; and xi = 0, otherwise}.

Since the triangulation T for which f satisfies the SCOEF conditions is cubical, it induces

for every T ∈ I a subdivision of A(T ) into t-dimensional cubical simplices, where t = |T |.

Moreover, by the symmetry of D it follows that A(−T ) = −A(T ) and by the symmetry of

T that if σ is a t-simplex in A(T ), then −σ is a t-simplex in A(−T ). In particular, it holds

that when τ is a facet of a t-simplex σ in A(T ) lying on the boundary of D, then −τ also

lies on the boundary of D and −σ is the only t-simplex in A(−T ) having −τ as facet.

Proof of Theorem 4.1. We apply the 2n-algorithm starting from v = 0n with a mi-

nor modification. A similar modification has been used by Freund and Todd (1981) and

van der Laan (1984). The algorithm generates a unique sequence of adjacent t-simplices

in A(T ) with T -complete common facets for varying T ∈ I according to the Steps 1-4

with the modification that when in Step 2 a T -complete facet τ of a simplex σ in A(T )

is generated that lies on the boundary of D, then first the labels of the vertices of the

opposite facet −τ are investigated. If (at least) one of these labels is zero, then a zero

point of f has been found and the algorithm stops. Otherwise, the label of any vertex of

−τ is opposite to the label of its corresponding opposite vertex of τ and a reflection step

is made, i.e., the set T becomes −T , τ becomes −τ and the algorithm goes to Step 3 with

the unique simplex in A(−T ) having the new τ as its facet. Notice that this simplex is

equal to −σ.

By Lemma 4.2 there does not exist a simplex having two vertices with opposite label.

Similarly as in the proof of Theorem 3.1 it follows that every step is well-defined and each

step of the algorithm is uniquely determined. Therefore it follows by the Lemke-Howson

argument that no simplex can be visited more than once and the algorithm terminates

within a finite number of steps, because the number of simplices is finite. Moreover, when

a T -complete facet τ on the boundary of D is generated, then either one of the vertices

of −τ has label zero and the algorithm stops, or the algorithm makes a reflection step.

Therefore the algorithm always terminates with a simplex having a vertex x with label

0. Since all vertices of any simplex generated by the algorithm are elements of D, x is a

discrete zero point of f . �
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4.2 The Discrete Complementarity Problem

In this section we consider the so-called discrete nonlinear complementarity problem. Given

a function f : IRn+ → IRn, the nonlinear complementarity problem (NLCP) is to find a point

x∗ ∈ IRn+ such that

f(x∗) ≥ 0n and x∗ · f(x∗) = 0.

This problem has long been one of the most important problems in the field of mathemat-

ical programming and has been intensively studied for the case where f is a continuous

function; see for example Cottle, Pang and Stone (1992), Facchinei and Pang (2003) and

Kojima, Megiddo, Noma and Yoshise (1991). The discrete counterpart of this problem is to

replace the domain IRn+ by the discrete lattice Zn+ and is called the discrete complementarity

problem.

In the following we establish a theorem on the existence of solutions to the discrete

complementarity problem. For z ∈ Zn+, let S
+(z) = {h ∈ N | zh > 0}.

Definition 4.3 A function f : Zn+ → IRn is simplicially coordinatewise opposite extrema

free (SCOEF) on Zn+ if there exists a cubical triangulation T of IRn+ such that for any two

vertices x and y of a same simplex of T there does not exist k ∈ S+(x) such that

fk(x)fk(y) = −α(x)α(y) < 0,

where, for z ∈ Zn+, α(z) = max{maxh∈S+(z) |fh(z)|, maxh �∈S+(z)−fh(z)}.

To solve the discrete complementarity problem, the following labeling rule is imple-

mented.

Definition 4.4 For a function f : Zn+ → IRn, the labeling function ℓ: Zn+ → N ∪N− ∪ {0}

is given as follows. Take any x ∈ Zn+. If α(x) ≤ 0, then ℓ(x) = 0. If α(x) > 0, take any

k ∈ N such that fk(x) = −α(x) or both fk(x) = α(x) and k ∈ S+(x). Then ℓ(x) = k if

fk(x) > 0 and ℓ(x) = −k if fk(x) < 0.

The next lemma shows that a point with label 0 solves the discrete complementarity

problem with respect to f .

Lemma 4.5 If ℓ(x) = 0 for some x ∈ Zn+, then x is a solution to the discrete complemen-

tarity problem.

Proof. Let x ∈ Zn+ be such that ℓ(x) = 0. Then α(x) ≤ 0 and therefore fh(x) = 0 if

xh > 0 and fh(x) ≥ 0 if xh = 0. �
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Lemma 4.6 Let f : Zn → IRn satisfy the SCOEF conditions of Definition 4.3 for some

cubical triangulation T of IRn and let ℓ(·) be the integer labeling rule as given in Definition

4.4. Then there is no simplex in T whose vertices carry both labels k and −k for some

k ∈ N .

Proof. Suppose that simplex σ in T has vertices carrying labels k and −k for some k ∈ N .

Let x be a vertex of σ carrying label k and let y be a vertex of σ carrying label −k. From

ℓ(x) = k it follows that k ∈ S+(x) and fk(x) = α(x) > 0. From the SCOEF condition it

then follows that fk(y) > −α(y) when k ∈ S+(y) and α(y) > 0, and therefore ℓ(y) �= −k.

�

Theorem 4.7 Let f : Zn+ → IRn be SCOEF on Zn+. If there exists a vector u ∈ Zn with

uh > 1 for every h such that for any x ∈ Zn+ with x ≤ u, xk = uk implies fk(x) ≥

min{0,minh∈N fh(x)}, then the discrete complementarity problem has a solution.

To prove Theorem 4.7, we take any point v ∈ Zn+ satisfying 0 < vi < ui for all

i ∈ N . The point v is the starting point for the 2n-ray algorithm applied to the set Zn+.

For T ∈ I, the set A(T ) is defined by

A(T ) = {x ∈ IRn+ | xi ≤ vi if i ∈ T ; xi ≥ vi if − i ∈ T ; and xi = vi otherwise}.

Notice that the sets are now defined in the opposite direction compared with the sets we

used until now. For any T ∈ I it holds that the ith component of an element x in A(T ) is

not larger (smaller) than the ith component of v when i ∈ T (−i ∈ T ). The reason is that,

contrary to before, we should decrease (increase) the value of a variable xj when fj(x) is

positive (negative) in order to get a solution.

Proof of Theorem 4.7. Starting at v the 2n-algorithm described above generates, for

varying sets T ∈ I, a unique sequence of adjacent t-simplices in A(T ) with T -complete

common facets, where t = |T |. When the algorithm generates a simplex having a vertex

with a label h not in T , then it follows from Lemma 4.6 that the opposite label −h does

not belong to T , and thus all steps are feasible. We now show that the algorithm stays

within the bounded set U = {x ∈ IRn | 0 ≤ xi ≤ ui, i ∈ N}.

First, suppose the algorithm generates a T -complete facet τ of a t-simplex in A(T )

in the boundary of U at which xk = uk for some k ∈ N . Since xk = uk for all x ∈ τ it

holds that label −k is an element of T . Because τ is T -complete, there exists a vertex

y of τ carrying label −k. Since yk = uk, it follows from the boundary condition that

fk(y) ≥ min{0,minh∈N fh(y)}, so that y cannot carry label −k, which is a contradiction.

Second, suppose the algorithm generates a T -complete facet τ of a t-simplex in A(T ) such
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that τ lies in the boundary of U at which xk = 0 for some k ∈ N . Since xk = 0 for all

x ∈ τ it holds that label k is an element of T . Because τ is T -complete, there exists a

vertex y of τ carrying label k. Since yk = 0, it follows from the labeling function that y

cannot carry label k, which is a contradiction.

It follows that the algorithm cannot cross the boundary of the set U . Since the

number of simplices of T in U is finite, the algorithm terminates within a finite number

of steps with a simplex having a vertex x with label 0. Since the triangulation is cubical

and thus every vertex belongs to Zn+, it follows by Lemma 4.5 that x is a solution of the

discrete complementarity problem. �
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