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Abstract : This paper characterizes the set of equilibrium networks in the two-
way �ow model of network formation with small decay, and this for all increasing
bene�t functions of the players. We show that as long as the population is
large enough, this set contains large- as well as small-diameter networks. For
all bene�t functions, the periphery-sponsored star is the most stable. When
the marginal bene�ts of information are constant, all non-star networks are
equally stable. With increasing marginal bene�ts of information, small-diameter
networks in general tend to be more stable. However, with decreasing marginal
bene�ts of information, large-diameter networks tend to be the most robust
along with the periphery-sponsored star.

1 Introduction

In network formation models, information decay re�ects the intuition that infor-
mation becomes less valuable the further it has to travel through the network.2

Decay has two e¤ects on network formation. First, ex-ante, homogeneous play-
ers become heterogeneous by their position in the network. A player with many
direct links in the network, or a player who forms a bridge in the network
through which information between many other players travels, may be more
attractive to connect to. Second, decay may give the individual player an in-
centive to sponsor links to players from which he already indirectly receives

1This paper arose from comments by Ewa Mendys, and we are grateful to her. We also
thank Corinne Autant-Bernard, Pascal Billand, Christophe Bravard, Berno Büchel, Vincent
Buskens, Rense Corten, Marco van der Leij, Jacqueline Morgan, Stephanie Rosenkranz, Klaas
Staal and Bastian Westbrock for valuable comments, as well as the participants of the ISDG13
in Wroclaw, the 5th SFB/TR 15 workshop for young researchers in Berlin, the 7th workshop
on networks in economics and sociology: dynamic networks in Utrecht, the LSU Conference
on �Networks: Theory and Applications�, the 15th CTN workshop in Marseille, the EEA
conference in Glasgow, and a CREUSET seminar in St.Etienne.

2For example, consider a situation in which an agent bene�ts from connections to other
agents because other agents might hear information (say on job openings, or sales) which this
agent has missed. Having a connection to other agents allows the agent to bene�t from the
information which other players receive. Of course, information may be passed on by third
agents. As communication is typically imperfect, one could say that more of the information
is lost when it has to be passed on through more other agents. This is an example of decay.
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information; if these players are so distant that their information has decayed
a lot, it may still be of interest to the individual player to also connect directly
to them. The second e¤ect only exists for large enough levels of decay, but the
�rst e¤ect exists for all positive levels of decay. It follows that it is possible to
analyze the �rst e¤ect in isolation, which is the purpose of this paper. Roughly
speaking, we say that there is small decay when the second e¤ect does not play
a signi�cant role.
We use the two-way �ow model of network formation, as introduced in the

seminal Bala and Goyal (2000a).3 The authors provide a full characterization of
the set of strict Nash networks (SNNs) �so where every player strictly prefers
to keep his current strategy �for the case where there is no decay. They show,
for very general payo¤ functions, that there is just a single strict Nash network
architecture, namely the center-sponsored star4 . However they make another
important point. By means of a few speci�c examples in a setting with linear
bene�ts, they show that the set of strict Nash network architectures becomes
much richer when there is small decay. These examples are all small-diameter
networks, so in those example networks all players are close to each other.
Bala and Goyal (2000a) do not further investigate the necessary and su¢ cient
structural properties which strict Nash networks will satisfy under decay. Still,
it seems then that the general result of the stability of small-diameter networks is
maintained. This intuition is con�rmed in Hojman and Szeidl�s (2008) extension
of the two-way �ow model to the case of decay. They �nd that the unique
SNN architecture is the periphery-sponsored star5 if (i) the population is large
enough; (ii) there is a maximal distance at which information can �ow; (iii)
there is decay6 ; and (iv) the bene�t function is concave enough.
The two-way �ow model has been extensively studied and has been mod-

i�ed in several directions such as player heterogeneity7 , link reliability8 and
non-linear bene�ts9 . In contrast to many of those papers, we do not extend

3 In that network, the agents (who are the nodes) decide to which of the other agents they
sponsor links. This generates a network. Agents have incentives to sponsor links because
they receive some bene�t for each agent that they are connected to via a series of links (a
path). On the other hand, sponsoring links is costly. In their basic model the bene�ts which
a player derives from being connected to some other agent only depends on whether there is
a connection, not on the length of the path.

4A network where one player sponsors a link to each other player, while the other players
do nothing.

5A network in which there is a unique player who sponsors no links, say player i; and where
all other players sponsor one link each, namely to player i:

6Their decay function is a very nice generalization of the typical decay function which we
will use.

7For instance, Billand et al. (2006), Galeotti et al. (2006) and Kamphorst and Van der
Laan (2007).

8See for instance Bala and Goyal (2000b), Haller et al. (2005) and Billand et al. (2006).
9See Vergara-Ca¤arelli (2004) for an example in the one-way �ow model; Buechel (2007)

for an example with two sided link formation; Goyal and Joshi (2006) for an example with
two-sided link formation and non-linearity of payo¤s in the number of own links and the
number of links by others; and Bloch and Dutta (2009) for an example with endogenous link
strength (and non-linearity of bene�ts in link strengths).
Note also that, for the case without decay, Bala and Goyal (2000a) adopts a very general
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the two-way �ow model, but instead we continue the analysis of decay where
it stopped in Bala and Goyal (2000a). Speci�cally, the contribution of our pa-
per is a full characterization of strict Nash networks with decay. Contrary to
Hojman and Szeidl (2008), we do not consider an exogenously given maximal
distance at which information can �ow, and we do not just consider decreasing
marginal bene�ts of information, but any bene�t function that is increasing in
information. We focus on small decay, so that any minimal connected network
potentially is a strict Nash network, or such that the set of strict Nash networks
does not contain non-minimal networks.
Based on the simple principle that in a strict Nash network, every sponsor of

a link should connect to a unique best-informed player in the accessed compo-
nent, we are able to show that minimal connected networks that are candidate
strict Nash networks can be divided into two groups, namely networks with a
unique characterizing player who receives multiple links, and networks with a
unique characterizing player who does not receive any links. In both types of
candidate networks, with the exception of the links directly sponsored to the
characterizing player, the direction of sponsoring points away from the char-
acterizing player. The characterizing player is either the best-informed player
in the network, or sponsors a link to the best-informed player in the network.
In general, the more distant in the network a player is from the characterizing
player, the less information he has.
In any minimal connected network that is a potential strict Nash network,

each recipient of a link either sponsors no links, or sponsors at least two links.
In combination with the result that the direction of sponsoring tends to point
away from the characterizing player, this shows that as long as the population is
large enough, the diameter of a candidate strict Nash network can be arbitrarily
large.
We next importantly show that parameters exist such that the set of candi-

date strict Nash networks, i.e. the set of minimal connected networks that meet
the necessary conditions that we have listed so far, indeed fully characterizes the
set of strict Nash networks. The characterization is completed by deriving, for
small decay, a condition which we refer to as the balancing condition, and which
ensures that the architecture of the network is such that each sponsoring player
sponsors a link to the unique best-informed player in the component accessed.
The balancing condition further allows us to characterize the maximal-diameter
networks for a speci�c set of populations, and to con�rm that this maximal
diameter is arbitrarily large, as long as the population is su¢ ciently large.
We further investigate, for speci�c forms of the bene�t function, the stability

of the set of strict Nash networks to increases in linking costs. For all bene�t
functions, the architecture where all players sponsor a single link to a single
central player (periphery-sponsored star) is the most stable. Intuitively, the
bene�t of sponsoring a link to a peripheral player in such a network is large, as
the choice lies between having no information at all, or having all players close
by, thus obtaining high-quality information.

payo¤ function which is in no way restricted to linear bene�ts.
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Further stability results depend on the form of the bene�t function. With
constant marginal bene�ts of information, all networks that meet our necessary
conditions and are not periphery-sponsored stars, are equally stable. Under
increasing marginal bene�ts of information, small-diameter networks tend to
be more stable. Intuitively, with increasing marginal bene�ts of information,
players have more incentives to sponsor links the more information they already
have, i.e. the closer they already are to other players in the network. This
makes small-diameter networks more stable.
Under decreasing marginal bene�ts, however, with the exception of the

periphery-sponsored stars, large-diameter networks tend to be more stable. In-
tuitively, with decreasing marginal bene�ts of information, players have more
incentives to sponsor links the less information they already have, i.e. the fur-
ther away they are from other players in the network. This makes large-diameter
networks more robust. In a general version of this result, we show that a gap
exists in the diameters covered by the strict Nash networks. Further, for a
speci�c example, we show that cost levels exist such that the only strict Nash
networks are the periphery-sponsored stars, and the networks with maximal
diameter, or with diameter one unit lower than the maximal diameter. These
results go radically against the intuition that small-diameter networks are more
stable, re�ected by results presented in Bala and Goyal (2000a), and Hojman
and Szeidl (2008).
The paper is structured in such a manner that we start by deriving a maxi-

mum number of results for a minimal number of assumptions. Further assump-
tions, in particular about the form of the bene�t function and the level of decay,
are introduced later on to make the characterization more detailed. In Section
2 we present the game, introduce terminology and notation, and derive some
standard preliminary results. Section 3 characterizes the necessary structural
properties of mimimal connected SNNs, and this for a general increasing bene�t
function. The relative stability of di¤erent candidate SNN minimal connected
networks is then studied in Section 4 for three special types of bene�t functions:
concave, linear and convex. We are able to extend the characterization further in
Section 5 by looking at levels of decay which are su¢ ciently small. This results
in a condition which we call the balancing condition. This balancing condition
allows us to show that all networks which satisfy the balancing condition as well
as the properties derived in Section 3 are indeed SNNs for some positive range
of the parameters. Hence each such network is indeed relevant. Further, we use
the balancing condition to show that, as long as the population is large enough,
there is no upper limit on the maximal diameter that a strict Nash network may
have. Moreover, under concave bene�ts of information, we provide an example
where for high costs, the only stable networks are the periphery-sponsored star
and the candidate networks with the largest diameters. Section 6 concludes
with a discussion of the results.
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2 The Model

In this section we �rst present the game (Section 2.1), then we introduce some
useful notation and terminology, and two important architectures (Section 2.2).
We end this section by providing some standard results regarding the existence
and architecture of strict Nash networks (Section 2.3).

2.1 The game

LetN be the set of players with cardinality n, where n � 3: Each player faces the
choice which of the other players he will sponsor a link to. A link by player i (the
sponsor) to player j (the recipient) is denoted by ij. The set of all links that
a player i can possibly sponsor is given by Li�fkj 2 N �N : k = i; j 6= ig.
L is de�ned as the set of all possible links, meaning that L �

S
i2N Li =

fij 2 N �N : i 6= jg. We typically denote the strategy of player i �the set of
links that he sponsors �by gi. His strategy space Gi, where obviously gi 2 Gi, is
therefore the collection of all subsets of Li, speci�cally Gi�fgi � N �N : gi � Lig :
All links together form a network10 , typically denoted by g; so g�

S
i2N gi. The

strategy space G is the set of all possible networks, which is the collection of all
subsets of the set of all possible links. Thus G �fg � N �N : g � Lg. We can
depict such a network g in a graph, where the players are the nodes, and each
link ii0 2 g is represented by an arrow (directed arc) from i to i0: For example,
Figure 1 shows the network f12; 23; 43g.

1 2 43

Figure 1: Example of a 4 player network g; where g = f12; 23; 43g :

Now we come to the (dis)incentives for players to sponsor links. The dis-
incentives arise because sponsoring links is costly. The costs of a link ij are
denoted by c; and are incurred completely by the sponsor; the recipient incurs
no costs. Let N S

i (g) � N be the set of players to whom player i sponsors a link
in g; so N S

i (g) � fj 2 N : ij 2 gg : Hence the total costs for player i in network
g are equal to

��N S
i (g)

�� c:
The bene�ts of links comes from the need for information by players. Each

player owns a unit of (non-rival) private information. Players bene�t from
accessing the information of other players. A player can access another player�s
information (only) if the two players are connected by a path of links. On this
path, it does not matter who the sponsor of the links are. The bene�ts of a link

10Observe that the strategy pro�le coincides with the network. In this paper we will refer
to any strategy pro�le as a network. Similarly, we will refer to any (strict) Nash equilibrium
as a (strict) Nash network.
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��ow in two directions�. To make this precise, we let ij 2 g denote that ij 2 g
or ji 2 g or both11 . We say that in network g players i0 and ik are connected if
there exists some subset of players Ni0ik � N ; Ni0ik = fi0; :::; ikg such that for
all ` 2 f1; :::; kg we have that i`�1i` 2 g. Let Ni (g) denote the set of players to
whom player i is connected in network g:
When two players are connected, they exchange their private information.

However, information decays more the longer the path. We follow the literature
(see e.g. Bala and Goyal (2000a)) in our modeling of decay. In this literature
only the shortest path between any two players is relevant. The distance between
players i and j in network g is the length of the shortest path between these two
players. We denote this distance by dij (g) :12 Let N d

i (g) � N be the set of play-
ers at distance d from player i in network g: So N d

i (g) � fj 2 N : dij (g) = dg ;
where by de�nition N 0

i (g) = fig : Every time the information is passed on a
constant fraction (1� �) of the (remaining) information is lost, where � 2 (0; 1).
The total amount of information gathered by player i in network g is then

Ii (g) =
n�1X
d=0

�
�d
��N d

i (g)
��� : We call Ii (g) player i�s ex-post information, as it

is the information that i obtains after having decided to sponsor all links in
gi. The bene�ts derived by player i from network g; Vi (g) ; are an increasing
function of Ii (g) ; speci�cally Vi (g) = f (Ii (g)) where f 0 > 0.
Observe that decay gives players incentives to sponsor links to players to

whom they are already connected for the purpose of reducing the distance be-
tween them. However, throughout this paper we assume that � is large enough
to ensure minimality of any Nash network, meaning that any two players are
not connected by more than one path of links. So the amount of decay is small.
The utility which i obtains in g equals his bene�ts minus his costs. Formally,

Ui (g) = Vi (g)�
��N S

i (g)
�� c:

De�ne g�i as all the links in g excluding the links sponsored by player i. A
network g is a strict Nash network (SNN) if for each player i 2N and all g0i 2Gi;
g0i 6= gi; we have Ui (g) > Ui (g�i [ g0i) : Similarly, in a Nash network every player
plays a best reply strategy. Denote by BRfi (g) the set of best reply strategies
of player i versus network g under function f: Formally, for any bene�t function
f we have

BRfi (g
�) =

�
gi 2 Gi : Ui

�
g��i [ gi

�
� Ui

�
g��i [ g0i

�
for all g0i 2 Gi

	
:

If in a Nash network the best reply set for each player is singleton then the
network is a SNN. We denote the set of networks that are SNN by GSNN .

2.2 Terminology and notation

Having described the game, we introduce some useful terminology and nota-
tion. Each network g partitions the population into one or more components
11So ij 2 g says that the intersection of fij; jig and g is not empty.
12Note that two-way �ow implies dij = dji for all i; j 2 N:
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of g, where two players belong to the same component if and only if they are
connected. Component x is denoted as Cx (g). A network that contains only
one component is called a connected network. A network is minimal if the
deletion of any link in that network will result in an increase of the number of
components. A cycle is a set of links

�
j0j1; :::; jk�1jk

	
such that j0 = jk: This

implies that a component (or network) is minimal if and only if it contains no
cycles. We call a link which is not part of a cycle a minimal link, while any link
which is part of a cycle is called a non-minimal link. A non-recipient player is a
player that receives no links.13 We call a recipient that receives more than one
link a multi-recipient. Note that multi-recipients cannot be non-recipient play-
ers, since non-recipient players receive no links. E.g, in the network in Figure 1
player 3 is a multi-recipient, players 1 and 4 are both non-recipient players.
We now de�ne our concept of the best-informed player. For a network g

and for a set of players M , M � N , de�ne network gM as the set of links of
network g of which both the sponsor and the recipient of the link belong to M:
Formally, gM = fij 2 g : i; j 2Mg. Note that gM may be, but does not have
to be, a component.

De�nition 1 Let M � N be a connected subset of players in network g: Then
player i; i 2 M; is a best-informed player of M if Ii (gM ) � Ij (gM ) for all
j 2M:

Remark 1 If in network g some player i is not part of component Cx (g), then
the additional information he receives from sponsoring a link to some player
j; j 2 Cx (g) ; is �Ij (g) : Since all links cost the same, and because utility is
strictly increasing in information the best link which player i can have into the
component is to the best-informed player of Cx (g)14 . Moreover, by the same
arguments it follows that player i is indi¤erent between any two best-informed
players of a particular component.

Let ii0 2 g, then Aii0 (g) is the set of players which i observes in g exclusively
via link ii015 : Using this notation, gAii0 (g)

is the component to which player i
gains access by sponsoring a link to i0. More generally, Aii0 (g) is the set of
players which i observes in g exclusively via link ii0, where it is left open whether
ii0 = ii0 or ii0 = i0i. A link ii0 2 g is said to point to player j if j 2 Aii0 (g).
A link ii0 2 g is said to point away from player j if j 2 Aii0 (g) and ii0 = i0i.
Links ii0 2 g and jj0 2 g are said to point to each other if i 2 Ajj0 (g) and
j 2 Aii0 (g). Finally, we say that a link through which the sponsor observes only
the recipient of that link is an end link, formally a link ii0 2 g is an end link
if Aii0 (g) = fi0g : If ii0 is an end link then i is an end sponsor and i0 an end
recipient. To illustrate these concepts, we consider network g in Figure 1. It

13 In any connected network, a non-recipient player will also be transmitter, i.e. a player
who receives no links while he sponsors at least one link.
14Note that without decay (so � = 1), every player in any connected set is a most valuable

player in that set. This concept can also be useful when considering heterogeneous agents.
15So Aii0 (g)

T
Ni (gnii0) = ; and Aii0 (g)

S
Ni (gnii0) = Ni (g)
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consists of one component, and is thus a connected network. In this network,
A12 (g) = f2; 3; 4g, and A23 (g) = f3; 4g; gA12(g) = f23; 43g and gA23(g) = f43g;
link 23 points to players 3 and 4, and away from players 1 and 2, while links 12
and 43 point towards each other. Finally, there are no end links.
Two networks have the same architecture if one can obtain one network from

the other by permuting the strategies of agents. We use  to denote an individual
architecture. Two highly stylized architectures that play an important role in
our analysis are the center-sponsored star (CSS) and the periphery-sponsored
star (PSS). Stars are minimal connected networks where one player, the central
player, has a link (either as sponsor or as recipient) with every other player.
Networks A-C in Figure 2 are all stars. The CSS is a special case of the star
where the central player sponsors each link (Network A), while the PSS s a
special case of the star where the central player sponsors each link (Network C).
A star with both center-sponsored and periphery-sponsored links (e.g. Network
B) is called a hybrid star.

2.3 Preliminary results

We now derive some preliminary results. The de�nitions above imply the fol-
lowing lemma, which relates the number of non-recipient players to the number
of multi-recipients in minimal connected networks.

Lemma 1 Let network g be a non-empty minimal connected SNN. Then g ei-
ther contains one or more multi-recipients, in which case it contains multiple
non-recipient players; in this case, we call g a multi-recipient network. Or g
contains no multi-recipients, in which case it contains exactly one non-recipient
player; in this case, we call g a non-recipient player network.

Proof. Any minimal connected directed graph has precisely (n � 1) directed
links. These can be received by at most (n � 1) di¤erent recipients. It follows
that any minimal connected network contains at least one non-recipient player.
If there are no multi-recipients, then the directed links are each received by a
di¤erent player, so that there is exactly one non-recipient player. If there is at
least one multi-recipient, at least two of the (n� 1) directed links are received
by a multi-recipient, meaning that at least two players will not receive any links.
It follows that there must be at least two non-recipient players.

Further, we show that there exists a SNN, and that for small decay, all non-
empty SNNs are minimal and connected. We �rst show that in the absence of
decay, non-empty SNNs are always minimal.

Lemma 2 In the absence of decay, no player in any network g prefers to spon-
sor non-minimal links.

Proof. Any non-minimal link yields a marginal bene�t of zero. As linking is
costly, a player sponsoring a non-minimal link is better o¤ when deleting any
one of his non-minimal links.

8



We now de�ne two levels threshold levels of decay, and after that we show
that both are smaller than one.

De�nition 2 Let �M (c; n; f (I)) be the lowest level of decay such that for all
� > �M (c; n; f (I)) no player in any network prefers to sponsor a non-minimal
link.

De�nition 3 Let �R (c; n; f (I)) be the lowest level of decay such that for all
� > �R (c; n; f (I)) any SNN g is minimal.

We now show that both thresholds are strictly below 1.

Lemma 3 For any c > 0; n � 3; and f (I) > 0 we have �R(c; n; f (I)) �
�M (c; n; f (I)) < 1.

Proof. Note that the bene�t function is continuous in �: By this continuity
it follows from Lemma 2 that �M (c; n; f (I)) < 1: From the two de�nitions it
is apparent that �R(c; n; f (I)) � �M (c; n; f (I)) ; since if all players prefer to
delete non-minimal links, no SNN can contain a cycle.

The condition � > �M (c; n; f (I)) ensures that, in any given network, no
player wants to add a non-minimal link. Yet, even if this condition is not valid,
it may still be that all SNN are minimal. If there is a network to which a player
prefers to add a non-minimal link, then this new network itself need not be a
SNN. This is why the condition � > �R (c; n; f (I)), ensuring that all SNN are
minimal, cannot be a stronger condition than � > �M (c; n; f (I)), as stated in
Lemma 3.
The following two lemmas show together that all non-empty networks are

connected 16 .

Lemma 4 Let network g be a non-empty SNN and � > �R(c; n; f (I)). Then g
has no singleton component.

Proof. Suppose not. Then there exists a player, say j, who is isolated. More-
over, by minimality and non-emptiness of g; there exists some player i who
receives no links, but does sponsor a set of links himself, namely to all players
in N S

i (g) : Note that Ii (g�i) = Ij (g�i) = Ij (g) : Now let player j consider
strategy g0j in which he sponsors a link to every recipient of links from player i:
So g0j =

�
ji0 2 L : i0 2 N S

i (g)
�
: This costs him the same as gi costs player i: But

the bene�ts to player j are strictly larger because he accesses the same players
at the same distance as player i does and in addition he will be connected to
player i. Hence if gi is a best reply for player i to network g; then gj = f;g
cannot be a best reply to player j: Since g is a SNN by assumption, this forms
a contradiction.

16This result is a variant of Bala and Goyal (2000a), Proposition 5.1, which applied to linear
bene�t functions only.
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Lemma 5 Let network g be a non-empty SNN and � > �R(c; n; f (I)). Then g
is connected.

Proof. Suppose not. Then by Lemma 4 there is a strict Nash network g
which contains multiple non-singleton components. Without loss of generality
we have ii0; jj0 2 g such that i and i0 belong to one component, say C1 (g) ;
and j and j0 to another, say C2 (g) : Because g is a strict Nash network, player
i prefers to sponsor a link to i0 and not to any player in C2 (g) : So player i0

has access to more information in gn fii0g than j0 in g: Hence we obtain that
Ii0 (g) > Ii0 (gn fii0g) > Ij0 (g) > Ij0 (gn fjj0g) : Because g is Nash, we also have
that Ii0 (g) < Ij0 (gn fjj0g) ; which gives us a contradiction. Hence any Nash
network has only one component and is therefore connected.

So all non-empty SNNs are connected. Naturally, if costs are low enough
the empty network is not a SNN, implying that all SNNs are connected. Since
the minimal bene�t an isolated player would derive from sponsoring a link is
f (1 + �)� f (1), Lemma 5 implies the following corollary.

Corollary 1 Let c < f (1 + �) � f (1) ; then any network g which is a SNN is
connected.

Bala and Goyal (2000a) pointed out that there always exists a strict Nash
network. For example, for c � f

�
1 + � + (n� 2) �2

�
� f (1) the empty network

is a SNN, while for c < f
�
1 + � + (n� 2) �2

�
� f (1) the PSS is a SNN:

Before starting our actual characterization, we have thus shown that for
small decay all non-empty SNN must be minimal connected networks.

3 Characterization

The preliminary results of the previous section show that for small decay, all
non-empty SNNs are minimal and connected. In this section we will provide a
partial characterization of all minimal connected SNNs.
Speci�cally, we characterize the necessary structural properties for any min-

imal connected SNNs. This also covers minimal connected SNNs when there
is su¢ cient decay to allow for some non-minimal SNNs. It follows that all
minimal connected SNNs satisfy these properties for small decay (here for all
� > �R(c; n; f (I))). In Section 5 we will combine this with an additional prop-
erty, the balancing condition, to complete the characterization of non-empty
SNNs under small enough decay, as the balancing condition allows us to supply
su¢ cient structural properties17 .
The characterization in this section consists of two parts, namely Proposi-

tions 1 and 2. Proposition 1 presents structural properties that every minimal

17This will require an additional upper bound on the degree of decay. Therefore the results
in this section and Section 4 may hold for a range of decay which is not considered in Section
5. For this reason we present the results without the balancing condition �rst, and then add
the balancing condition to the characterization.
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connected SNN must have. Proposition 2 and its Corollary 3 relate the struc-
tural position of a player in the network to the player�s informedness. Both
propositions build further on the following lemma, which roughly states that
links in a SNN are sponsored to the recipients who have most information among
the set of players accessed through the link.

Lemma 6 Let g be a minimal connected SNN. For all ij 2 g, it must be the
case that, among the players in the set Aij(g), j is the unique best-informed
player in network gAij(g), and among the players in the set Aij(g) is the one to
receive strictly the most information from g.

Proof. Consider any minimal network g0; and any sponsor of a link, say player
i with link ij 2 g0: Then the amount of information gained by i through ij 2 g0

equals �Ij
�
g0Aij(g0)

�
; namely the amount of information which j gathers in the

network without link ij; discounted one time. If i would replace ij by the link

ij0; where j0 2 Aij (g0) ; then i would receive �Ij0
�
g0Aij(g0)

�
instead. As each

link costs the same i strictly prefers ij to ij0 if and only if Ij
�
g0Aij(g0)

�
>

Ij0
�
g0Aij(g0)

�
: As network g is a SNN, ij 2 g thus implies that Ij

�
gAij(g)

�
>

Ij0
�
gAij(g)

�
for any j0 2 Aij (g) : Moreover, j is also the best-informed player

of Aij (g) in network g: The reason is that the link ij increases the information
advantage of player j over the other players in Aij (g) ; since the information
which travels from i to j will decay at least one more time before it reaches any
other player in Aij (g) : This concludes the proof.

Lemma 6 allows us to derive a result central to the characterization, namely
that links pointing to one another must be sponsored to the same player.

Lemma 7 Let g be a minimal connected SNN. If j 2 Aii0 (g) and i 2 Ajj0 (g)
(meaning that links ii0 and jj0 point towards one another), then i0 = j0:

Proof. We prove this by contradiction. Suppose not, so i0 6= j0: Note that
by minimality there is one path connecting i and j; and this path goes via
players i0 and j0. By Lemma 6, among the nodes in the set Aii0(g), i0 is the
node that receives strictly the most information from network g, and in the set
Ajj0(g), j0 is the node that receives strictly the most information from network
g. But as j0 2 Aii0(g) and i0 2 Ajj0(g) we have that both Ii0 (g) > Ij0 (g) and
Ij0 (g) > Ii0 (g): a contradiction.

This implies that if no end-link is sponsored in a minimal connected SNN,
then all links are received by the same player. As this insight proves useful in
Section 4, we state it in the following Corollary.

Corollary 2 Let g be a minimal connected SNN. Then g is either a PSS, or g
contains at least one end link.
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From Lemma 7, we can derive a set of necessary conditions which all minimal
connected SNNs satisfy.

Proposition 1 Let g be a minimal connected SNN. Then g has the following
properties:

1. There is a unique characterizing player in g. If a multi-recipient player
exists in g, then he is the unique multi-recipient in g, and he will be the
characterizing player of g. If no multi-recipient player exists in g, then
there exists a unique non-recipient player in g and he will be the charac-
terizing player of g:

2. Network links tend to be outward-oriented in the following way:

(a) if the characterizing player is a multi-recipient, all links point away
from him, except for those links of which the characterizing player is
the recipient.

(b) if the characterizing player is a non-recipient player, then all links
point away from him.

3. Every recipient of a link in a SNN either has no other links, or at least
two other links.

Proof. ad 1. We know from Lemma 1 that every minimal connected graph
either has one or more multi-recipients, or has no multi-recipients, in which case
the minimal connected graph has a single non-recipient player. It remains to
be shown that networks with one or more multi-recipients in fact can only have
a single multi-recipient. Suppose that players i and j are both multi-recipient
players. Because g is minimally connected, players i and j are connected by at
most one path. This means that both players receive at least one link which is
not part of the path connecting them. These links point toward each other which
implies by Lemma 7 that i = j. Since i and j were arbitrarily chosen multi-
recipient players, it follows that there cannot be more than one multi-recipient
player.
ad 2a. Let player i0 be a multi-recipient player and let there be any link

pointing towards i0: So there exists some jj0 2 g such that i0 2 Ajj0 (g) : Since
player i0 receives at least two links, there exists some player i 2 Ajj0 (g) such
that ii0 2 g: It follows that j 2 Aii0 (g) : By Lemma 7 it must be that j0 = i0:
ad 2b. Let i be the non-recipient characterizing player. This implies that

there are no multi-recipient players in the network. We will now show that if
property 2b is not satis�ed, the network does contain a multi-recipient player:
a contradiction. Suppose that there exists a link jj0 2 g such that i 2 Ajj0 (g).
Because g is minimally connected and because i receives no links, there exists
a link ii0 2 g such that j0 2 Aii0 (g) : Lemma 7 then implies that i0 = j0; which
in turn implies that player i0 receives at least two links, namely one from i and
one from j: Thus i0 is a multi-recipient player, which cannot be.
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ad 3. Suppose not. Then ij 2 g, and j has a single link jk. There are
two cases: either Aij (g) contains players other than j and k; or not. If not, i
would be indi¤erent between the link ij and ik since either link would give him
access to one player at distance 1 and one at distance 2. This cannot be the
case, since g is a SNN. Thus other players are observed as well (Aij (g) n fj; kg is
not empty). However, then i strictly prefers to replace ij by ik; since replacing
the link would bring all players in Aij (g) n fj; kg one step closer as well: a
contradiction.

We will now relate the characterizing player identi�ed in Proposition 1 to
the best-informed player in the network. We show that, if the characterizing
player is a multi-recipient player, he is the unique best-informed player. If the
characterizing player is a non-recipient player, either he is the best-informed
player, or one of the recipients of the links he sponsors. When centrality is
measured in terms of information gathered (more central players acquire more
information), it appears that the characterizing player who is a multi-recipient
player is actually the central player of the network as well. In the same way, a
non-recipient characterizing player either is himself a central player, or he spon-
sors a link to each central player in the network. In that sense the characterizing
player is always central or almost central in the network.

Proposition 2 Let g be a minimal connected SNN. Then,

1. if the characterizing player is a multi-recipient player, then he is the unique
best-informed player in g:

2. if the characterizing player is a non-recipient player, then the best-informed
player is either the non-recipient player himself, or one of the recipients
of links sponsored by the non-recipient player.

Proof. Let player iV be the best-informed player and ich the characterizing
player in g. We show Part 1 by contradiction. If ich is not the best-informed
player in g; i.e. ich 6= iV , then because ich receives multiple links, there exists at
least one player i sponsoring a link to ich such that iV 2 Aiich (g). By Lemma
6, ich is the player receiving most information from g among the set Aiich (g).
But this contradicts iV being the best-informed player.
Part 2: there are two possibilities. Either ich is the best-informed player,

or ich is not the best-informed player. The �rst case satis�es our claim. In
the second case, by connectedness (Lemma 5) ich sponsors a link, say ichj 2 g,
through which he observes iV : By Lemma 6, j is the player receiving most
information from g among the set Aichj (g), so that iV = j:

Further, as a direct Corollary of Lemma 6, we can show that more peripheral
players tend to obtain less information in any SNN.

Corollary 3 Let g be a minimal connected SNN. Consider any path of links in
g pointing in the same direction, fj0j1; j1j2; :::; jk�1jkg. Then Ij1(g) > Ij2(g) >
::: > Ijk�1(g) > Ijk(g).
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Figure 2: Example networks �tting Proposition 1.
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Proof. By Lemma 6, among all players in the set Aj0j1(g), player j1 obtains the
most information from g. Further, among all the players in Aj1j2(g) � Aj0j1(g),
player j2 obtains the most information from g. The rest of the proof follows by
induction.

All minimal connected networks which satisfy the characterization of Propo-
sition 1 are called candidate networks. We denote the set of these networks as
GCAN . Denoting by GMINCON the set of all minimal connected networks,
we then know that for small decay (� > �R(c; n; f (I))) GCAN � GMINCON ,
as Proposition 1 clearly restricts the set of candidate SNN. Further, denot-
ing by GSNN the set of SNN and by ge the empty network, it is clear that
GSNNnge � GCAN , i.e. the set GCAN does not characterize the set of non-
empty SNN. This is for two reasons.
First, while the necessary conditions in Proposition 1 are based on the result

that each sponsor should sponsor a link to the unique best-informed player in
the accessed component (Lemma 6), we did not provide a rule specifying how
the best-informed player in a given component is identi�ed. Indeed, in some of
the networks of Figure 2, the identity of the best-informed player in any accessed
component is ambiguous, as it depends on the level of decay. But it depends
on nothing else. For this reason, we denote by GCAN (�) the set of candidate
networks which satisfy Lemma 6 for a given level of �. Given the ambiguity in
identifying the best-informed player, it follows that GCAN (�) � GCAN .
Second, GCAN , and for that matter GCAN (�), does not characterize the set of

non-empty SNNs because in the networks in GCAN and GCAN (�), some players
may still have incentives to delete links, because the cost c of sponsoring links
make one or more links too expensive. It follows that GSNNnge � GCAN (�).
Summarizing, we thus have GSNNnge � GCAN (�) � GCAN � GMINCON .
In the rest of the paper, we characterize GSNNnge as tightly as possible,

for a set of parameters as general as possible. In Section 4, we look �rst at
the condition that in an SNN, no player should want to delete a link. We can
investigate this question for general GCAN (�), without actually characterizing a
rule identifying the best-informed player in any component as a function of �.
In Section 5, we characterize GCAN (�) for high �. We do this by showing that
for high �, networks where each sponsor accesses a unique best-informed player
in any accessed component, should meet a condition which we call the balanc-
ing condition. We then show that any balanced network, namely a minimal
connected network which satis�es the balancing condition and the conditions
of Proposition 1, is a SNN for some positive range of parameters. Thus we
fully characterize GSNNnge for a particular range of parameters. Before doing
this, however, in the next section we �rst derive our results about the relative
stability of network in GCAN (�), which are valid for a weakly wider range for �
than the range implied by the balancing condition.
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4 Marginal bene�ts of information and relative
stability

In this section we compare the relative stability of the di¤erent network architec-
tures in GCAN (�), i.e. of candidate networks where for a speci�c level of �, it is
the case that Lemma 6 is valid. We restrict our attention to � > �M (c; n; f(I)):18

By � > �M (c; n; f(I)) we know that for any g 2 GCAN (�) no player wishes to
add a link to the already connected network g: Moreover, by Lemma 6 and
the construction of GCAN (�) we know that no player wishes to replace a link.
Hence, for the given parameters, we only need to consider whether players want
to delete one or more of their links.
To be precise, we say that, for a given decay factor �; a candidate architecture

1 is weakly more stable than another candidate architecture 2 if stability of
2 implies stability of 1. We say that 1 is strictly more stable than 2 if
stability of 2 implies stability of 1 but not the other way around. We say that
a candidate network is strictly (weakly) the most stable if it is strictly (weakly)
more stable than any other candidate architecture. Finally, we say that two
architectures 1 and 2 are equally stable if stability of 1 implies stability of
2, and vice versa.
Whether a player wishes to delete a link he sponsors depends on two factors.

First, this depends on the amount of additional information he gains by this
link. Second, it depends on how much he is willing to pay for the link. The
second factor in turn depends on the ex-ante information of the player. We
consider three speci�c bene�t functions. Under CMBI, the ex-ante information
of the player is irrelevant, as his willingness to pay for a link only depends on the
amount of information he receives. Under DMBI, the less ex-ante information
the player has, the more he is willing to pay for additional information. Finally
under IMBI, players are willing to pay more for additional information when
they have more ex-ante information already.19 We come to the following result
for these bene�t functions.

Proposition 3 For any n and f(I), �x any � and c such that � > �M (c; n; f(I))
and such that GSNN contains a non-empty network. Then for the n-player
networks in GCAN (�)

1. under CMBI, the PSS is strictly the most stable architecture, and all non-
PSS architectures are equally stable.

18Note that �M (c; n; f (I)) is decreasing in c: the higher the costs, the less willing players
are to sponsor non-minimal links.
19The network formation literature often focuses on CMBI bene�t functions. For instance,

Bala and Goyal (2000a) consider only CMBI when they discuss decay. DMBI is a natural
result if all players get a private signal from a common distribution. The �rst signals are more
informative than later signals. IMBI is a natural assumption (at least until some information
level), when some pieces of information are hard to interpret without other pieces of informa-
tion. In for instance Cohen and Levinthal (1989) knowledge of old research results increases
how much the agent can learn from new research results.
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2. under DMBI, the PSS is strictly the most stable architecture. All CSS and
hybrid star architectures are equally stable, and are strictly less stable than
any of the other network architectures.

3. under IMBI, a star with k center-sponsored links is weakly more stable
than stars with k0 center-sponsored links if k0 > k. Moreover for any non-
star network ĝ there exists a hybrid star, g�; which is weakly more stable
if ĝ has diameter 3 or 4 as well as a non-recipient characterizing player,
and which is strictly more stable otherwise.

Proof. Consider any network g 2 GCAN (�) and see whether it is a SNN. First
note that by Lemma 6 and the construction of GCAN (�) no sponsor wants to
replace his link. Second, by � > �M (c; n; f(I)) no player prefers to sponsor an
additional link. Hence if a network is not a SNN, then it must be that some
player prefers to delete a link. In the remainder of the proof we will compare
across networks the players who are in each network least willing to sponsor
their links.
Ad 1. Under CMBI, the only concern of the player is the amount of infor-

mation he gains through the link. Consider any link in a PSS architecture: each
sponsor gains

�
� + (n� 2) �2

�
information through his link. This is the maximal

amount of information which can be gained from a single link. In contrast, by
Corollary 2 each non-PSS architecture in GCAN contains an end sponsor. This
sponsor gains only � by that link, which is the minimal amount of information
which can be gained through a link in a minimal network. Hence the willingness
for end links is lower than that for the links in the PSS. Hence the PSS is strictly
most stable, while all other networks are equally stable.
Ad 2. Under DMBI the amount of ex-ante information is also relevant: the

less ex-ante information the more the sponsor is willing to sponsor his links. Now
note that any sponsor in the PSS has the minimal possible ex-ante information,
namely 1. Combined with the maximal amount of additional information gained
by these sponsors (see ad 1.) the PSS is strictly the most stable network.
Consider now the other stars. The central player in such stars, sponsors a link
through which he receives minimal extra information (�), while he has maximal
ex-ante information (speci�cally: 1 + (n� 2) �). Hence under DMBI any star
with at least one center-sponsored link is a least stable network.
Finally consider any other network g in GCAN (�). So g is not a star. All

sponsors in g gain less information by their links than the sponsors in the PSS,
while they have at least as much ex-ante information. Similarly all sponsors in
g gain at least the same amount of additional information as the central player
in a hybrid star or CSS does. However, each of these players has strictly less
ex-ante information. Hence all those sponsors are willing to pay more for their
link than a central player in a star for any one of his links. Concluding, the PSS
architecture is strictly most stable, all other stars are strictly least stable, and
any other g 2 GCAN (�) are strictly in between in terms of stability.
Ad 3.
(i) We will �rst show that if the PSS is not stable, than each non-recipient

player (weakly) prefers to delete all links. Suppose that the PSS is not stable.
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Then, by the fact that � > �M (c; n; f(I)), this must be because sponsoring no
links and receiving 1 unit of information is (weakly) better than sponsoring k
links and receiving (1+k�+(n�1�k)�2) information in total. As a non-recipient
sponsoring k links cannot gain more information than (1 + k� + (n� 1� k)�2)
(namely k players at distance 1 and the rest at distance 2), it follows that if
the PSS is not stable, no network with a non-recipient sponsor is stable. Thus
the PSS is weakly most stable among all networks in GCAN (�) ; as GCAN (�) �
GMINCON and as all minimal connected networks have at least one non-recipient
sponsor20 :
(ii) We now derive the result that the stability of the star is non-decreasing

in the number of center-sponsored links. Suppose that the peripheral-sponsored
links are stable. First observe that each link a central player in a star sponsors
gives him � additional information. Combined with the IMBI bene�t function,
it follows that if a central player would prefer to delete one link, then he would
prefer to delete all his other links too. The central player prefers to keep all
his links if the average bene�t of those links outweighs the average costs (c).
Consider the central players of two alternative stars, where the second star has
more center-sponsored links than the �rst. Let ic be the central player of the
�rst star, where ic sponsor k links. Let i0c be the central player of the second
star, where i0c sponsor k

0 links, thus k0 > k: Notice that the average bene�ts
which i0c receives on his �last�k links is the same as the average bene�t which ic
receives for his last k links, namely 1

k [f (1 + (n� 1) �)� f (1 + (n� 1� k) �)] :
However i0c has a lower average bene�t over his ��rst�k

0�k links, as his ex-ante
information is lower when he has less links. Thus i0c has a lower average bene�t
of his k0 links than ic of his k links. Hence the central player is less willing to
sponsor his links the more links he has to sponsor. Thus stars are weakly more
stable the less links are center-sponsored (note that if the sponsor most willing
to delete his link is a peripheral sponsor, any two stars with peripheral sponsors
are equally stable).
(iii) Now we show that for any non-star network ĝ; ĝ 2 GCAN (�) ; there is a

hybrid star g� which is weakly more stable. First we construct g�. By Corollary
2 ĝ contains an end sponsor, say j. Let j sponsor k end links. Then let g� be a
star network where the central player, j�; sponsors k links. Second we show that
j in network ĝ has strictly more incentives incentives to delete his links than j�

in g�: The k least informative links of j in ĝ are equally informative as the k
links by j� in g� (speci�cally � information per link). However Ij� (g�) > Ij (ĝ) ;
so j is strictly more willing to delete his k end links in ĝ than j� is in g�: Thus
if ĝ is weakly more stable than g�; then it is a peripheral sponsor in g�; say i�;
and not central player j� who wants to delete his links in g�: Note however, that
if g� is unstable because i� prefers to delete his link; then neither is the PSS
stable. As the PSS is the weakly most stable architecture, this implies that ĝ is
unstable too. Thus g� is weakly more stable than ĝ:
(iv) Finally suppose that ĝ and g� are equally stable. So if g� is not stable,

20By minimality, there is at least one non-recipient. By connectedness this recipient sponsors
a link.
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it is not the central player who prefers to delete his links. Let i� be a peripheral
sponsor in star g�. Suppose that i� is indi¤erent between keeping and deleting
his link. Then

� the PSS is not a SNN as the peripheral players in the PSS are indi¤erent
too (as f

�
1 + � + (n� 2) �2

�
� f (1) = c).

� ĝi is a best reply for each player in ĝ: If not, then ĝ is strictly less stable
then g�:

� each non-recipient player i in ĝ; weakly prefers to delete all their links.
This follows directly from ad 3.(i) above.

� in network ĝ no non-recipient player, say player i; is at more than distance
2 from any other player. Suppose not and let, without loss of generality
i sponsor k links in ĝ. Then i is indi¤erent between f (1) and f (Ii (ĝ))�
kc; where f (Ii (ĝ)) < f

�
1 + k� + (n� k � 1) �2

�
; as some information

has to travel at least distance three. However, this would imply that
f
�
1 + k� + (n� k � 1) �2

�
�kc > f (1) ; which is impossible (see ad 3.(i)).

� ĝ has a unique non-recipient player. Suppose not, and let i and i0 be non-
recipient players. As neither i nor i0 receives a link they are connected
because they both sponsor a link to a third player, say i00: By the previous
bullet, i00 cannot be at a distance of 2 or more, because then either i or i0

would be at distance 3 or more of that player. This implies that i00 is the
center of a star. As ĝ is a non-star network, this is a contradiction.

Thus if ĝ is equally stable as g�; then ĝ is equally stable as the PSS (�rst
bullet). Moreover, ĝ has a unique non-recipient player (last bullet). Thus there
is no multi-recipient player, and the non-recipient player is the characterizing
player. Finally, the diameter of ĝ is maximally 4 (fourth bullet). This concludes
the proof.

With respect to the case of IMBI we want to remark the following.

Remark 2 Consider the case of IMBI, and suppose that ĝ and g� as de�ned in
Proposition 3, point 3, are equally stable. Let i be the non-recipient player of ĝ;
where i sponsors l links. Then equal stability of ĝ and g� implies that

f
�
1 + � + (n� 2) �2

�
� c = Ii (ĝ)� lc:

If l = 1, then because ĝ is not a star, Ii (ĝ) < f
�
1 + � + (n� 2) �2

�
: Thus, if

the equality above holds, l is at least two. Moreover, if l is at least two, the
equality will only hold for very speci�c combinations of � and c: Hence, it is
almost always the case that ĝ is strictly less stable than g�; even if ĝ has a
non-recipient characterizing player and a diameter of 4 or less.
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Among the set of minimal connected networks, stars are obviously e¢ cient
networks: they keep everyone as close as possible. As we have seen in Section
3, our characterization does not exclude ine¢ cient, large-diameter networks.
However, it remains of interest which networks are SNN under the widest range
of linking costs, including large linking costs. For CMBI, the PSS is strictly
the most stable network; all other candidate networks are less stable than the
PSS, but equally stable with respect to one another. For IMBI, stars in general,
whether PSS or not, tend to be more stable, in that for any non-star network
there exists a hybrid star network that is not a PSS and that is (almost always)
strictly more stable. For DMBI, however, as shown in Proposition 3, non-PSS
stars are less stable than candidate larger-diameter networks. Lemma 8 now
shows that parameters exist such that there is no SNN of diameter 3, but there
is a SNN of diameter 4. This Lemma can the immediately be used to show in
Proposition 4 that under DMBI, for large c a gap exists in the diameters covered
by the networking in GSNN .

Lemma 8 Let n � 7 and �x � and c such that � > �M (c; n; f(I)). Then under
DMBI a candidate network g of diameter 4, say network g4 2 GCAN (�) ; is
strictly more stable than the most stable candidate network of diameter 3:

Proof. For n � 7; we can construct a diameter 4 candidate network which
is strictly more stable than any diameter 3 network. Take the PSS and delete
the links sponsored by two distinct peripheral players, j and j0: Consider two
distinct other peripheral players, i and i0 and let them form the links ij and
i0j0: This network, say g4; has diameter 4. The added bene�t of ij (and thus
of i0j0) is f

�
1 + 2� + (n� 4) �2 + �3

�
� f

�
1 + � + (n� 4) �2 + �3

�
: The added

bene�t of each other link in g4 is higher. Moreover each link is sponsored to
the best-informed player of the accessed set of players and by � > �M (c; n; f(I))
no player prefers to add a link. Thus if g4 is not a SNN, then it must be that
the added bene�t of ij does not outweigh its costs c: Moreover, if any link is
unstable, then ij and ij0 are unstable too.
Now we construct the most stable network of diameter 3. In all diameter 3

networks we can uniquely identify two adjacent players, say ic and i0c such that
for any other player j we have that either icj 2 g or i0cj 2 g: Of the remaining
(n � 2) players let k players, with 1 � k � (n � 3); have a link (as sponsor
or recipient) with ic and (n� k � 2) have a link i0c. By Lemma 7 some end
link is sponsored by either ic or i0c. Suppose, without loss of generality, that ic
sponsors an end link. In that case, this end link gives him an added bene�t of
f
�
1 + (k + 1) � + (n� k � 2) �2

�
�f

�
1 + k� + (n� k � 2) �2

�
: By DMBI, such

an end link adds the highest bene�t if k is as low as possible, i.e. if k = 1. Note
that any links received by ic and i0c yield higher added bene�ts (they give strictly
more added information, while its sponsor has no more ex-ante information). It
follows the most stable diameter 3 network in which ic sponsors an end link, is
where k = 1, ic sponsors one end link and i0c sponsors no end links (by the same
arguments as above). Denote this most stable network of diameter 3 by g3:
We now compare the stability of g3 to that of g4: The minimal added bene�t

of a link in g3 is
�
1 + 2� + (n� 3) �2

�
� f

�
1 + � + (n� 3) �2

�
which is strictly
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lower, by DMBI, than f
�
1 + 2� + (n� 4) �2 + �3

�
�f

�
1 + � + (n� 4) �2 + �3

�
:

The reason is that i in g4 and ic in g3 get the same increase in information
through their end link (�) ; but ic is without his end link better informed in g3

than i is without his end link in g4:

Without further proof, Lemma 8 gives us the following result:

Proposition 4 Under DMBI, a gap in the diameters of the networks in GSNN

can appear. In this case all SNN are either PSS (which have diameter 2), or
they have a network diameter of at least D�, with D� � 4:

Propositions 3 and 4 suggest the following intuition. There are two forces
that can drive a network to be stable, in giving the players incentives to sponsor
costly links. First, players may sponsor links because ex ante they have few
connections, but can access a lot of information by sponsoring a link to a well-
informed player. This e¤ect is equally at work for CMBI, DMBI and IMBI,
and is strongest in the PSS, explaining why overall this is the most stable
network. Second, players may sponsor a link even though they already have
many connections, if their marginal bene�t of an additional connection is large.
In the case of DMBI, the willingness of a player i to sponsor a link ij increases
in the distance to the other players to which i is connected ex ante. For this
reason, large-diameter networks with outward pointing links may be stable on
top of PSS networks. There is thus a gap in the diameters covered by the stable
networks. In the case of IMBI, the willingness of a player i to sponsor a link ij
decreases in the distance to the other players to which i is connected ex ante.
Thus, in the case of IMBI, the two di¤erent forces both lead to stable networks
with a small diameter.
We derived the former results despite the fact that we did not identify the

optimal recipient for each link. However, in Section 5 we derive a simple rule
identifying the best-informed player in any component for a range of � close to
1. We then show (Section 5.2) that all minimal connected networks satisfying
both the balancing condition and the conditions from Proposition 1 are an SNN
for some range of parameters. In this way, Proposition 1 and the balancing
condition are su¢ cient conditions. Using the balancing condition, we establish
our �nal two results in Section 5.3. First we derive the maximal diameter of
candidate networks meeting the balancing condition. Second, we give a speci�c
example of Proposition 4: in a network of 25 players (maximal diameter of
balanced networks is 25) we obtain that the most stable network architecture
(after the PSS) has a diameter of at least 7, so D� � 7:
In Section 5, the further assumptions made to make the characterization

more detailed again impose weakly smaller decay. While this approach has its
limits, it identi�es the impact which decay has even when it would not lead to
non-minimality of the network. Recall the well-known result that in the absence
of decay only the CSS is a SNN. In this sense, our results, as well as Proposition
5.3 and 5.4 by Bala and Goyal (2000a), clearly show that the result under the
absence of decay that only small-diameter networks are stable is not robust to
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the introduction of even a small level of decay. However from Bala and Goyal
(2000a) and Hojman and Szeidl (2008) a reader can easily get the impression
that with small decay the diameters of SNNs remain small. This impression
would be false, as our example at the end of Section 5.3 shows.

5 Small decay and no change in links: balancing
condition

As already pointed out, the necessary conditions of Section 3 for a given network
to be a SNN include the condition that each link is received by the unique best-
informed player of the accessed set of players (Lemma 6). The problem is that
the level of � can a¤ect which player is the best informed. Until now we did
not present any results identifying the best-informed player in a set. In this
section we do identify this player, but at the cost of a further restriction on �:
In Section 5.1, we show that for high �, all networks which satisfy Lemma 6
satisfy a structural property which we call the balancing condition. We de�ne
the set of networks within GCAN that meet this condition as GBAL, where GBAL
coincides with GCAN (�) for all � above a certain threshold �B (n). Intuitively,
for small levels of decay, each link is sponsored "to the middle" of any accessed
component, leaving no more players on one side than on the other sides combined
(hence the label "balancing condition"). Thus, for � large enough, all SNNs have
to satisfy the properties of Proposition 1 and the balancing condition. So for
small enough decay the balancing condition is a necessary condition for SNNs.
Section 5.2 is central to our paper, in showing the following su¢ ciency result:

each minimal connected network which satis�es the four properties of Proposi-
tion 1 as well as the balancing condition is indeed a SNN for some positive range
of parameters. In Section 5.3 we calculate the maximal diameter of networks in
GBAL as a function of n: An implication of the result is that there is no maxi-
mal diameter for SNNs provided that the population size can be chosen freely
to accommodate that diameter. From the last two results it follows that that
there are SNN with large diameters, although the diameter remains relatively
small with respect to the population size21 . Moreover, it allows us to provide an
example of Proposition 4 with 25 players where the most-stable networks after
the PSS have diameter at least 7, i.e. D� � 7:

5.1 The balancing condition

In this section we introduce the balancing condition. It roughly says that if �
is close enough to 1 and the network is a connected SNN, then the recipient of
each link is "in the middle" of the group that the sponsor connects to through
the link. More speci�cally, if he would sponsor the link to some neighbor of the
recipient instead, there are less players that he would get closer to than players

21The minimum population size needed for a diameter d candidate network which satis�es
the balancing condition is exponentially increasing in the diameter.
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that he would get further away from. Put otherwise, the balancing condition
says that in any accessed component, there should be no more players on one
side of the recipient than on the other sides combined. To formalize this result,
we will �rst de�ne the balancing condition and then a new threshold decay level.

De�nition 4 Network g satis�es the balancing condition if for any ij; jk 2 g
we have that jAij (g)j > 2

���Ajk (g)��� for all jk 2 g.
De�nition 5 Let �B (n) be the lowest level of decay such that for all � > �B (n)
all candidate networks which are SNN satisfy the balancing condition.

In Lemma 9, we now show that �B (n) < 1. This will immediately give us
the next Proposition which says that a given network satis�es Lemma 6 if and
only if � is large enough.

Lemma 9 For any c > 0; n � 3; and f (I) > 0 we have �B (n) < 1:

Proof. Denote by is a player at distance s from player i in component gAii0 (g)
.

Denote by dmax the maximal distance between i and any other player in gAii0 (g)
.

Finally, denote by N d
i

�
gAii0 (g)

; is
�
the set of players at distance d from player i

in network gAii0 (g)
to which player is gives access.

We now derive the condition under which a player i sponsoring a link to
i0 in g does not instead want to sponsor a link to any player i2 at distance 2
from player i in network gAii0 (g)

. The added information gain to player i of
sponsoring a link to player i0 = i1 in gAii0 (g)

equals

dmaxX
d=1

�d
��N d

i

�
gAii0 (g)

; i1
��� :

Consider next the added information gain to player i of sponsoring a link
to a player i2 at distance 2 from player i in network gAii0 (g)

. The marginal
information gain equals

dmaxX
d=1

n
�d+1

���N d
i

�
gAii0 (g)

; i1
���� ��N d

i

�
gAii0 (g)

; i2
����+ �d�1 ��N d

i

�
gAii0 (g)

; i2
���o :

where
��N r

i

�
gAii0 (g)

; ir
��� = 1, and ��N s

i

�
gAii0 (g)

; ir
��� = 0 if s < r. This formula

follows from observing that all players in set N d
i

�
gAii0 (g)

; i2
�
are one step closer

than before by switching the link from ii1 to ii2; while the remainder of the
players in Aii1 (g) ; namely

���N d
i

�
gAii0 (g)

; i1
���� ��N d

i

�
gAii0 (g)

; i2
���� ; are now one

step further away. So i strictly prefers to keep his link, rather than replacing it
with a link to i2 if the cost of getting one step further away from some agents
(
���N d

i

�
gAii0 (g)

; i1
���� ��N d

i

�
gAii0 (g)

; i2
����), outweighs the bene�ts of getting one
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step closer to some other agents (
��N d

i

�
gAii0 (g)

; i2
���): This is the case if and only

if

dmaxX
d=1

nh
�d � �d+1

i ��N d
i

�
gAii0 (g)

; i1
���+ h�d+1 � �d�1i ��N d

i

�
gAii0 (g)

; i2
���o > 0

(B)

De�ne as �B < 1 the largest root of the polynomial on the left-hand side of
(B) that is smaller than 1. Another root of (B) is � = 1, re�ecting the fact that
in the absence of decay, it does not matter where the player connects. If the
derivative with respect to � of the left-hand side of (B) is negative at � = 1, then
a range of large �s exists such that the player prefers to connect to i1 rather
than to any i2. Taking the derivative of (B) with respect to � and putting � = 1,
the condition becomes

�
dmaxX
d=1

��N d
i

�
gAii0 (g)

; i1
���+ 2 dmaxX

d=1

��N d
i

�
gAii0 (g)

; i2
��� < 0

or
dmaxX
d=1

��N d
i

�
gAii0 (g)

; i1
��� > 2 dmaxX

d=1

��N d
i

�
gAii0 (g)

; i2
���

However, this only shows that the condition stated in the proposition is
a necessary condition, as we have only derived a condition assuring that no
player wants to reconnect to a player at distance 2 in the accessed compo-
nent. To see that this condition is also a su¢ cient condition, consider a pathn
i1i2; i2i3; :::; ipip+1; ip+1ip+2; :::; iz�1iz

o
in gAii0 (g)

, where player iz has no other

links then iz�1iz. Then by the given condition, for high �, player i prefers con-
necting to ip rather than to ip+1 if jAiip (g)j > 2

��A
ipip+1

(g)
��. Note now that

jAiip (g)j = jAii0 (g)j, whereas
��A

ipip+1
(g)
�� < ���Ai0j (g)���. Thus, it follows from

condition (B) that player i prefers linking to any player ip rather than to player
ip+1 along the path. Condition (B) is thus su¢ cient.

The balancing condition translates Lemma 6 into a structural property of
the network, provided that there is small enough decay. This is stated in the
following Proposition.

Proposition 5 Let � > �R (c; n; f (I)), and let � > �B (n). Then a given net-
work satis�es Lemma 6 if and only if it meets the balancing condition.

Proof. This follows directly from the de�nition of the balancing condition, the
de�nition of �B (n), and from Lemma 9.
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We call networks in GBAL balanced networks, where

GBAL �
�
g 2 GCAN j g satis�es the balancing condition

	
:

As the necessary conditions characterizing GCAN (Section 3) do not specify the
best-informed player, it follows that GBAL �GCAN . It can be checked that all
the examples in Figure 2 satisfy the balancing condition. The best-informed
player in any accessed component can be considered as what sociologists call
the player with the highest centrality in the component. Several concepts of
centrality coexist in social network analysis (Freeman, 1978/1979). As can be
seen in networks (G) and (I) in Figure 2, the central player in our balanced
networks need not be the player with the highest degree, so that our concept of
centrality does not �t the network-analysis concept of degree centrality. Instead,
the concept of centrality implied by the balancing condition bears resemblance
to the network-analysis concept of betweenness centrality, which argues that the
player with the most power in a component is the player that to the largest
extent forms a bridge between the di¤erent players.

5.2 Are balanced networks indeed SNNs?

The main problem with having only necessary conditions for SNNs in a char-
acterization is that the characterization may include networks which are not
SNN. In this subsection we show that this problem does not apply to balanced
networks. In other words: for each balanced network there exists some feasible
positive range of parameters and some class of bene�t functions such that this
balanced network is in fact a SNN.

Proposition 6 Consider any network g that satis�es the properties of Propo-
sition 1 and the balancing condition. Then, for any CMBI and IMBI bene�t
function, levels of � and c exist such that g is a SNN. For DMBI, a DMBI
bene�t function and levels of � and c exist such that g is a SNN.

Proof. The proof consists of three steps. Steps (i) and (ii) together prove the
results for CMBI and IMBI. Step (iii) proves the result for DMBI.
(i) For g to be a SNN, it must be that every sponsor prefers to sponsor any

subset of his sponsored links rather than not sponsoring them. Put otherwise,
no sponsor should prefer to delete any of his sponsored links. As � > 0, the
average added bene�t of sponsoring any subset of links is positive. It follows
that we can �nd a small c such that no sponsor wants to delete any links.
(ii) The added information gain of sponsoring any k links is increasing in �,

as more added information is obtained from any sponsored links the less decay
there is. Also, ex ante information (before the k links are sponsored) is larger
the larger �. It follows that for CMBI and IMBI, the average added bene�t of
sponsoring any k links is increasing in �. Given this fact, for any su¢ ciently
low c obtained from (i), we can increase � until both � > �M (c; n; f(I)) and
� > �B(n), meaning that no player in g wants to add links, nor replace links,
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while it continues to be the case that no sponsor wants to delete links in g.
Hence g is a SNN.
(iii) The minimal added bene�t which any link can give in g under DMBI is

f(1 + (n� 1)�)� f(1 + (n� 2)�): So for c < f(1 + (n� 1)�)� f(1 + (n� 2)�)
no player wants to delete links. However, for DMBI, while it continues to be
true that the added information gain of sponsoring any k links is increasing in
�, any sponsor also has more ex ante information before sponsoring the links, so
that it is possible that f(1 + (n� 1)�)� f(1 + (n� 2)�) is decreasing in �. We
provide a DMBI bene�t function for which this is not the case. Let f(I) = Iy

with 0 < y < 1. Then it can be checked that f(1 + (n� 1)�)� f(1 + (n� 2)�)
is increasing in �.22 It follows that if for f(I) = Iy we take c such that c <
f(1 + (n � 1)�) � f(1 + (n � 2)�), no player in g wants to delete links. If we
further increase � until both � > �M (c; n; f(I)) and � > �B(n), by the above,
for f(I) = Iy it continues to be the case that no player wants to delete links.

Having shown that each balanced network is indeed a SNN for the right pa-
rameters, we are interested in the relationship between the maximal diameter of
balanced networks and the population size. We investigate this in the following
section.

5.3 Maximal diameter of balanced networks

In this section we derive the maximal diameter which a minimal connected
SNN can have as a function of n, if decay is small enough. Before doing this,
we present a lemma which speci�es the minimum number of players that can
be at a given distance from a sponsor i. We end the section by providing an
example where the most stable networks are the PSS, and networks with either
the maximal diameter minus one or the maximal diameter.
The balancing condition allows us to characterize the maximal-diameter SNN

for all n � 5 (for smaller n, only stars are SNN). We start by deriving a Lemma
that we need to �nd the maximal-diameter SNN.

Lemma 10 Consider a balanced network g. Let link ij 2 g be such that it gives
i access to an end recipient at distance d from player i. There are two cases.
In Case 1, i gets access to the end recipient through a link sponsored by j. In
Case 2, i gets access to the end recipient through a link received by j.

1. If i gets access to the end recipient at distance d through a link jk, then

in the component gAij(g) player i has at least
x+1X
l=1

2l players at distance

(d� x) or larger from him, where 0 � x � (d� 2).
22 @

@�
[(1 + (n� 1)�)y � (1 + (n� 2)�)y ] > 0 () y(n� 1)(1+ (n� 1)�)y�1 > y(n� 2)(1+

(n� 2)�)y�1: Canceling out y, and multiplying both sides by (1+ (n� 1)�)(1+ (n� 2)�), the
latter condition can be rewritten as (n � 1)(1 + (n � 2)�)(1 + (n � 1)�)y > (n � 2)(1 + (n �
1)�)(1 + (n� 2)�)y . It is easy to see now that (n� 1)(1 + (n� 2)�) > (n� 2)(1 + (n� 1)�).
Further, given that y > 0, (1 + (n� 1)�)y > (1 + (n� 2)�)y . It follows that the condition is
valid.
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2. If i gets access to the end recipient at distance d through a link kj (where
kj 6= ij), then in the component gAij(g), for d � 3; (a) player i has at least
x+1X
l=1

2l players at distance (d�x) or larger from him, where 0 � x � (d�4)

(with d � 4); (b) player i has at least 1 +
d�3X
l=1

2l players at distance 3 or

larger in component gAij(g); and (c) player i has at least 4+2
d�3X
l=1

2l players

at distance 2 or larger in component gAij(g).

Proof. We �rst prove 1. and 2(a), by induction. Note that by Lemma 7, in
gAjk(g)

, all links point away from k. If an end sponsor m receives a link from
a player l, then by Property 3 of Proposition 1, m should sponsor at least two
links.
Let an end sponsor m receiving a link from a player l sponsor exactly two

end links. Then, if player l is himself a recipient, by the balancing condition
(see Proposition 5), player l�s links should point to at least 6 players at distance
1 or 2 from him, and at least 2 players at distance 2 from him.
Let player l�s links point to exactly 6 players, at distance 1 or 2 from him,

and let player l himself receive a link from player h. Then, if player h is himself
a recipient, his links should point to at least 14 players at distance 1, 2 or 3
from him, at least 6 players at distance 2 or 3 from him, and at least 2 players
at distance 3 from him. And so forth.
We next prove 2(b). This follows simply from the fact that there must be

at least one player at distance 3, and as already shown, at least
d�3X
l=1

2l players

at distance 4 or larger.
In order to prove 2(c), note �rst that given the above, there is at least one

player k connected to player j who gives access to at least 1 +
d�3X
l=1

2l players.

This means that
���Ajk (g)��� � 2+ d�3X

l=1

2l, meaning that by the balancing condition,

jAij (g)j > 4+ 2
d�3X
l=1

2l.

We now derive the maximal diameter networks that can be achieved for a
particular range of n. In order to do this, we derive the minimal number of
players n that are needed to achieve a network of given diameter D. For this
n, and for a range of populations just above it, this is then also the maximal
diameter network that can be achieved.
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Proposition 7 A balanced network with even diameter D, D � 4, has at least

n = 4 + 3

D=2�1X
l=1

2l�1 players. For n = 4 + 3
D=2�1X
l=1

2l�1, a diameter-D network

exists.23

Proof.

Figure 3: Maximal-diameter network for n = 25.

We �rst show that the minimal number of players needed to achieve a net-
work with a multi -recipient characterizing player of even diameter D � 4 is the
given n. By the de�nition of a multi-recipient player, at least two of the players
at distance 1 from such a characterizing player must sponsor links towards him
(though the characterizing player may sponsor links himself as well). Consider
then one such sponsor of the multi-recipient characterizing player. In order to
put an end recipient at distance d from this sponsor using a minimal number of
players, it should be that he accesses this end recipient through a link received
by the multi-recipient characterizing player, and not through a link sponsored

23 In the working paper version of this paper, we also derive the minimal number of players
needed to achieve a diameter-d network with odd diameter. This yields a set of levels of
n minimally needed to achieve any diameter-d network. This then fully characterizes the
maximal diameter that can be achieved for any given n, as for an nx not included in the set of
levels of n, the maximal achievable diameter is then the diameter corresponding to the largest
n in the set of levels that is smaller than nx.
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by him. This follows from Lemma 10 and from the fact that 4+2
d�3X
l=1

2l <
d�1X
l=1

2l.

Thus, in order to construct, using a minimal number of players, a network with
a multi-recipient characterizing player where two end recipients are at distance
d from each other, we can limit ourselves to networks where for each of these
two end recipients, there is sponsor of the characterizing player accessing the
end recipient through a link received by the characterizing player.
Consider in particular such a diameter-D with two end recipients each at

distance D=2 of the multi-recipient characterizing player, and let us derive the
minimal number of players necessary to construct such a network (we will show
below that more players are needed to put the end recipients at di¤erent dis-
tances from the characterizing player and maintain diameter D). By Lemma
10, sponsor i (respectively k) of the characterizing player j must give sponsor

k (i) access to at least 1 +
D=2�1X
l=1

2l�1 players (where i (k) is included himself).

This means that sponsor k (respectively i) has this same number of players at
distance 2 or more in the component that includes i (k) and the links sponsored
by i (k). Applying the balancing condition now, it follows that k (i) should
have at least this same number of links at distance 2 or more in components
to which characterizing player j gives access, but to which i (k) does not give

access. It follows that n = 4 + 3

D=2�1X
l=1

2l�1 is the minimal number of players

necessary to construct a diameter-D with two end recipients at opposite sides
each at distance D=2 from the characterizing player.
To show that a balanced network with such a number of players indeed

exists, consider a network where exactly three players sponsor a link to the
multi-recipient characterizing player, and where each sponsor sponsors exactly
two links. We call this the two-sponsor network. There are exactly 3 � 2l�2
players at distance l from the characterizing player, with 2 � l � D=2, whose
links point away from the characterizing player. Such a network indeed meets
Property 3 of Proposition 1, and meets the balancing condition. An example is
the network in Figure 3 for n = 25 and D = 8.
Next, we show that alternative diameter-D networks with a multi-recipient

characterizing player, where at one end of the network an end recipient is at
distance smaller than D=2 of the characterizing player, and at the other end of
the network an end recipient is at distance larger than D=2, use a larger number
of players. By Lemma 10, an exponentially increasing number of players is
needed to increase the maximal distance between the characterizing player and
an end recipient. Thus decreasing the distance between the characterizing player
and an end recipient on one side of the network and increasing this distance at
the other side of the network while maintaining diameter D is only possible
when more players are used.
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Second, we show that with the given n = 4 + 3

D=2�1X
l=1

2l�1, one cannot

construct a network with a non-recipient characterizing player that achieves
a higher diameter than D. In order to show this, we show that, for even D,
the minimal number of players needed to achieve a diameter-D network with
a non-recipient characterizing player is always at least as high as the minimal
number of players needed to achieve a diameter-d network with a multi-recipient
characterizing player. Consider a diameter-D network with a non-recipient char-
acterizing player with two end recipients at distance D from one another, and
each at distance D=2 from the characterizing player. In such a network, the
characterizing player sponsors at least two links. By Lemma 10, the charac-

terizing player has at least 2
D=2�1X
l=1

2l players at distance 2 or more from him.

Together with the minimum of two players at distance 1, this means a minimum

of 2 + 2
D=2�1X
l=1

2l = 2

D=2X
l=1

2l�1 players at distance 1 or more. Thus, to construct

such a network, we need a minimum of n = 1 + 2

D=2X
l=1

2l�1 players. To show

that a network using this number of players indeed exists, consider a symmetric
network where there are exactly 2l players at distance l from the characterizing
player, with 1 � l � D=2, and note that this network meets Property 3 of
Proposition 1, and meets the balancing condition. By Lemma 10, decreasing
the distance between the characterizing player and an end recipient at one side
of characterizing player in order to increase the distance between the character-
izing player and an end recipient on the other side of the characterizing player

is only possible with the use of more players. It follows that n = 1 + 2
D=2X
l=1

2l�1

is the minimal number of players with which we can construct a diameter-D
network with a non-recipient characterizing player.

Finally, note that for D � 4, 1+2
D=2X
l=1

2l�1 � 4+3
D=2�1X
l=1

2l�1 (where equality

is obtained only for D = 4). It follows that to construct a network with even

diameter D � 4, one needs at least 4 + 3
D=2�1X
l=1

2l�1 players.

We conclude that networks of any diameter can be balanced networks, pro-
vided that n is large enough. Proposition 6 ensures that any such network can
indeed be a SNN. Therefore SNNs may have any �nitely large diameter, if the
population size can be freely chosen. This result di¤ers signi�cantly from the
small-diameter networks which were reported by earlier studies on this subject,
namely the stars and interlinked stars (diameter 3) in Bala and Goyal (2000),
and the PSS in Hojman and Szeidl (2008).

30



We now combine the result that large-diameter networks can be SNN with
the result from Proposition 4 that under DMBI, a gap in the diameters of
the networks in GSNN can appear. In Proposition 4, it is shown that under
DMBI this gap may take such a form that all SNN either have diameter 2, or
have diameter at least 4. Knowing now that networks with a large diameter
exist, it follows that this diameter gap may be even larger. Intuitively, sponsors
have less ex ante information the larger the diameter of the network, suggesting
that under DMBI the strictly most stable non-PSS balanced networks are the
networks with the largest diameters.
We show that this intuition is valid for the network game with n = 25

and DMBI, where for large � the maximal-diameter architecture in Figure 3
(D = 8) is strictly more stable than any balanced network with diameter 6 or
lower. As established before for, c low enough and � large enough any instability
of a balanced network comes from the desire to delete a link. As a �rst step,
we prove that the sponsor which is least willing to keep this link is the end
sponsor with the least information. In a second step, we construct a diameter
6 network which has an end sponsor i such that i has the least amount of ex
ante information over all n-player connected networks of diameter 6 or lower.
Finally, in a third step, we show that player i in this diameter-6 network, in
spite of his ex ante information being as small as it could be, still has more ex
ante information than any end sponsor in the network of Figure 3.
Step 1. By Corollary 2, each non-PSS network contains at least one end

sponsor. For � = 1, in any non-PSS network, the crucial sponsor is clearly an
end sponsor. It follows that this continues to be true for su¢ ciently large �.
In the maximal-diameter network of Figure 3, for large �, given the symmetry
of the network, each end sponsor is a crucial sponsor. For any end sponsor in
this network, the ex ante information before sponsoring a single end link equals
(1 + 2� + 2�2 + 3�3 + 2�4 + 2�5 + 4�6 + 8�7). Step 2. The least possible ex
ante information that an end sponsor can have in a network with diameter 6
or lower is when all players are at a distance as large as possible from the end
sponsor. This is the case in a diameter-6 network where an end sponsor has ex
ante information (1 + � + �2 + �3 + �4 + 19�5), i.e. in a network that takes the
form of a line connected to a star. Step 3. Finally, we show that for large �,
(1+�+�2+�3+�4+19�5) > (1+2�+2�2+3�3+2�4+2�5+4�6+8�7). The latter
condition can be restated as the inequality (1+�+2�2+�3+4�5+8�6�17�4) < 0.
As the left-hand side of this inequality is 0 for � = 1, its �rst derivative with
respect to � valued at � = 1 should be positive. The �rst-derivative of the left-
hand side is (1 + 4� + 3�2 + 20�4 + 48�5 � 68�3), which is indeed positive for
� = 1.
It follows that for n = 25, under DMBI and with large enough c, the diameter

gap can take such a form that all SNNs either have diameter 2 (the PSS), or
have the maximal diameter (diameter 8, Figure 3) or the maximal diameter
minus one (diameter 7).
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6 Conclusion

The purpose of this paper has been to investigate what happens when devi-
ating from a standard network formation model without decay by introducing
small levels decay. We wish to highlight three of the contributions of this pa-
per. A �rst contribution has been to derive necessary conditions that minimal
connected networks must have under decay in order to be strict Nash networks
(SNN). We showed that only two types of minimal connected networks can be
SNNs, namely networks with a unique characterizing player receiving multiple
links, and networks with a unique characterizing player not receiving any links.
Further, we showed that, with the exception of any links directly received by
the characterizing player, the direction in which links are sponsored points away
from the characterizing player. Moreover, each recipient of a link must either
not sponsor any links, or must sponsor at least two links. It follows that, as
long as the population is large enough, our necessary conditions do not impose
any limit on the diameter of candidate equilibrium networks. Finally, for small
enough decay any player sponsoring a link to a given component must sponsor
a link "to the middle" of the accessed components, since for small decay, the
node in the middle will also be the best-informed node. We called candidate
equilibrium networks with this property balanced networks.
A second contribution of this paper was a su¢ ciency result, namely that any

balanced network is indeed an SNN for some range of parameters.
A third contribution of this paper was to analyze the relative stability of

di¤erent network architectures. A general result is that if any non-empty net-
work is stable, then all periphery-sponsored stars are stable. This is because
the characterizing player in this case has the highest possible quantity of in-
formation, and connecting to him is an all-or-nothing decision. Under constant
marginal bene�ts of information, if any other non-empty networks are stable,
then all networks meeting our necessary conditions are stable. Under increas-
ing marginal bene�ts of information, the second-most stable networks are other
star networks. Intuitively, it is the fact that the characterizing player already
has a lot of information that under increasing marginal bene�ts of information
still gives him an incentive to sponsor another link. Under decreasing marginal
bene�ts of information, we showed that the second most stable network archi-
tecture (after the PSS) can have a diameter of at least D� � 4, leading to a gap
in the diameters covered by the SNN. For a particular example, we showed that
this gap may be large, in that only the PSS and the networks with maximal
diameter, or with diameter just below that, are stable. Intuitively, it is the fact
that players have relatively little information in a large-diameter network that
gives them strong incentives to sponsor their links.
Lacking from our analysis is the case of larger decay, where non-minimal

networks may be SNN. Yet, it should be stressed that even for this case, our
analysis characterizes those minimal networks that continue to be SNN under
larger decay. The characterization of non-minimal networks is a di¤erent prob-
lem, and requires full attention in separate work. This is the subject of future
research.
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