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Abstract

We present new results for the likelihood-based analysis of the dynamic factor

model that possibly includes intercepts and explanatory variables. The latent factors

are modelled by stochastic processes. The idiosyncratic disturbances are specified as

autoregressive processes with mutually correlated innovations. The new results lead to

computationally efficient procedures for the estimation of the factors and parameter

estimation by maximum likelihood and Bayesian methods. An illustration is provided

for the analysis of a large panel of macroeconomic time series.

JEL classification: C33; C43

Some keywords: EM algorithm; Kalman Filter; Forecasting; Latent Factors; Markov

chain Monte Carlo; Principal Components; State Space.

1 Introduction

In this paper we consider likelihood-based inference for the dynamic factor model given by

yit = µi + xitβ + λ′ift + uit, i = 1, . . . , N, t = 1, . . . , T, (1)

where yit denotes the observed value for the ith time series at time t, µi is a fixed and

unknown constant, xit is a 1 × K vector of covariates, β is a K × 1 vector of regression

coefficients, λi is an r × 1 vector of factor loadings, ft is an r × 1 vector of common factors

and uit is the idiosyncratic component. We focus on the case where a high-dimensional

panel of time series depends on a relatively small number of dynamic factors, N > r. The
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factors are modelled by dynamic linear Gaussian processes. The idiosyncratic components

are modelled by autoregressive processes with mutually correlated zero mean innovations.

Since the number of unknown parameters can be very large in such models, likelihood-based

methods are usually regarded as computationally infeasible.

In this paper we present new results that lead to computationally efficient methods for

a likelihood-based analysis of high-dimensional dynamic factor models. We cover signal

extraction, parameter estimation via maximum likelihood and Bayesian estimation using

Markov chain Monte Carlo methods. In the empirical section of this paper we treat a panel

of 132 time series from which a maximum of seven dynamic factors are extracted. This

model requires the estimation of more than 1300 parameters. The new results of this paper

enable us to estimate this set of parameters in minutes.

We show how model (1) can be represented by two vector series, a low-dimensional

vector and a high-dimensional vector. The low-dimensional vector series is sufficient for

extracting the latent dynamic factors using Kalman filter methods while standard regression

calculations are employed to estimate mean and regression effects. The loglikelihood function

is evaluated efficiently since most computations are only concerned with the low-dimensional

series. As a result, large computational gains are achieved in classical as well as Bayesian

estimation procedures. We present evidence of the computational savings. Estimating a large

number of coefficients in high-dimensional dynamic factor models is not straightforward.

We present new devices for an effective implementation of the estimation methods. Finally,

we provide a typical empirical illustration for a macroeconomic data set to emphasize the

relevance of the new results.

Sargent and Sims (1977) and Geweke (1977) were the first to propose a dynamic factor

model. They obtain parameter estimates by maximizing the spectral likelihood function.

Engle and Watson (1981) propose the use of Fisher scoring to maximize the likelihood in

the time domain and apply this method to a one-factor model of wage rates. In Watson

and Engle (1983) the expectation-maximization (EM) algorithm of Dempster, Laird, and

Rubin (1977) is adopted, see also Shumway and Stoffer (1982). The EM algorithm has the

advantage that it is stable and it is sure to converge to an optimum. Watson and Engle

(1983) found however that convergence is often slow. Quah and Sargent (1993) use the EM

algorithm to estimate a factor model on employment data.

The high-dimensional data sets available in economics and finance have motivated the

work on alternative methods to estimate dynamic factor models. Chamberlain and Roth-

schild (1983) and Connor and Korajczyk (1986, 1988, 1993) show that if N goes to infinity

the factors are estimated consistently using the method of principal components. More re-
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cent contributions have focused on extending the inferential theory of this method, see e.g.

Stock and Watson (2002a) and Bai (2003). Stock and Watson (2002b, 2006) demonstrate

the value of this approach for the purpose of constructing diffusion indexes that can be used

in forecasting macroeconomic time series. Forni, Hallin, Lippi, and Reichlin (2000) propose a

different estimation procedure, based on frequency domain methods, that provides consistent

estimates of the factors for a general class of dynamic factor models.

Doz, Giannone, and Reichlin (2006) show that estimates of the factors obtained from a

likelihood-based analysis are consistent if both N and T are large, even if the dynamic factor

model is misspecified. Furthermore, they present evidence that in some cases a likelihood-

based analysis produces more precise estimates of the factors than a principal component

method.

The remainder of the paper is organised as follows. The dynamic factor model and its

state space form are presented in Section 2. The key results are presented in Section 3.

The new devices for parameter estimation using maximum likelihood methods and Bayesian

methods are discussed in Section 4. An empirical illustration is provided in Section 5 while

Section 6 concludes.

2 The dynamic factor model

2.1 Model specification

In vector form the dynamic factor model (1) is given by

yt = µ̄+ X̄tβ + Λ̄ft + ut, t = 1, . . . , T, (2)

where µ̄ = (µ1, . . . , µN)′, X̄t = (x′1t · · ·x
′
Nt)

′, ut = (u1t, . . . , uNt)
′, and Λ̄ = (λ1 · · ·λN)′.

The common factors ft are modelled as a stationary Vector Autoregressive Moving Average

(VARMA) process:

ft = Φ1ft−1 + · · ·+ ΦqΦft−qΦ + ζt + Θ1ζt−1 + · · ·+ ΘqΘζt−qΘ, ζt ∼ NIID(0,Σζ), (3)

for t = 1, . . . , T , where Φj are r × r autoregressive coefficient matrices for j = 1, . . . , qΦ

and Θj are r × r moving average coefficient matrices for j = 1, . . . , qΘ. The idiosyncratic

components uit in (1) are modelled as a Vector Autoregressive (VAR) process

ut = Ψ1ut−1 + · · · + ΨqΨut−qΨ + εt, εt ∼ NIID(0,Σε), t = 1, . . . , T, (4)
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where Σε is a N × N variance matrix and Ψi is a N × N matrix for i = 1, . . . , qΨ. The

innovations, εs and ζt, are independent for s, t = 1, . . . , T .

Generally, not all parameters in Λ̄, Φ1, . . . ,ΦqΦ , Θ1, . . . ,ΘqΘ and Σζ can be identified.

In such cases, it will therefore be necessary to restrict these matrices in a suitable manner,

depending on the specific form of the model. Parameter restrictions are common in the liter-

ature on factor models, see e.g. Geweke and Zhou (1996) for further discussions. Examples

are given in Illustrations 1 and 2.

2.2 State space representation

Next we show that the dynamic factor model (2), (3) and (4) can be expressed in the form

yt = µ+ dt +Xtβ + Zαt + εt, εt ∼ NIID(0,Σε), (5)

αt = Hαt−1 +Rηt, ηt ∼ NIID(0,Ση), (6)

where yt = (y1t, . . . , yNt)
′, µ and dt are vectors of constants, Xt is a N × K matrix of

covariates, Z is a N × p matrix, αt is the p × 1 state vector with initial specification α1 ∼

N(a, P ) for given a and P of suitable dimension, H is the p × p transition matrix, R is a

p× q matrix, Ση is a q× q variance matrix and the disturbances ηs and εt are independent of

each other for s, t = 1, . . . , T . The model consisting of the equations (5) and (6) is a special

case of the linear Gaussian state space model. The likelihood function for this model can

therefore be calculated by means of the Kalman filter while the unobserved factors ft can be

estimated using the associated smoothing algorithm. Detailed accounts of the state space

methodology can be found in textbooks such as Anderson and Moore (1979), Harvey (1989)

and Durbin and Koopman (2001).

We denote the lag operator by L and define the lag polynomial Ψ(L) as follows

Ψ(L) =

qΨ∑

i=1

ΨiL
i,

so that εt = {I − Ψ(L)}ut in (4). Applying I − Ψ(L) to both sides of equation (2) and

rearranging terms, we obtain

yt = µ+ dt +Xtβ + ΛFt + εt, εt ∼ NIID(0,Σε),

for t = qΨ + 1, . . . , T , where Ft = (f ′
t , f

′
t−1, . . . , f

′
t−qΨ

)′, µ = (I −
∑qΨ

i=1 Ψi) µ̄, dt = Ψ(L)yt,
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Xt = {I − Ψ(L)}X̄t and

Λ =
(
Λ̄ , −Ψ1Λ̄ , · · · , −ΨqΨΛ̄

)
.

The stacked vector Ft can be written as Gαt where G is a matrix of full rank and αt is of

the form (6). Finally, we can write

Z = ΛG. (7)

This shows that the state space model provides a general representation of dynamic factor

models.

To handle the initial stretch of observations y1, . . . , yqΨ explicitly, we can consider the

observation equation (5) with different system matrices Z and Σε for t = 1, . . . , qΨ. We give

an example in Illustration 1 below. In the remainder of the paper, we assume for convenience

that all system matrices are time-invariant. However, all results hold for time-varying system

matrices subject to some minor modifications.

Illustration 1. Consider the dynamic factor model yt = Λ̄ft + ut with N × r factor loading

matrix Λ̄ and where the r × 1 vector ft follows a VAR(1) process, that is equation (3) with

qΦ = 1 and qΘ = 0, and the idiosyncratic components uit are modelled as independent AR(1)

processes, that is equation (4) with qΨ = 1 and both Ψ1 and Σε diagonal, for i = 1, . . . , N .

To ensure that all parameters are identified, we restrict Σζ = I − Φ1Φ
′
1 in (3) such that

Var(ft) = Ir for t = 1, . . . , T . Additionally, we set Λ̄ = (Λ̄′
1, Λ̄

′
2)

′ where Λ̄1 is an r × r lower

triangular matrix and Λ̄2 is an (N − r) × r full matrix. The diagonal elements of Λ̄1 are

positive.

The state vector αt is specified as αt = Ft = (f ′
t , f

′
t−1)

′ so that G = I in (7). The

observation equation (5) for t = 2, . . . , T has µ = 0, dt = Ψ1yt−1, β = 0 and Z = Λ =

(Λ̄ , −Ψ1Λ̄). Since u1 ∼ N{0, (I−Ψ2
1)

−1Σε}, observation equation (5) for t = 1 has d1 = 0,

Z = (Λ̄ , 0) and ε1 = u1. The state equation (6) has

H =

[
Φ1 0

I 0

]
, R =

[
I

0

]
, Ση = Σζ ,

a = 0 and P is set to the unconditional variance of the stationary vector series (f ′
t , f

′
t−1)

′.

Illustration 2. Suppose yt is modelled by the one-factor model yt = Λ̄ft + ut with N × 1

factor loading vector Λ̄ and the single factor ft is modelled as an ARMA(1,1) process defined

as the autoregressive moving average process (3) with r = qΦ = qΘ = 1. We have

ft = φft−1 + ζt + θζt−1, ζt ∼ NIID(0, σ2
ζ),
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where φ, θ and σ2
ζ > 0 are unknown scalar coefficients. Furthermore, suppose that the

idiosyncratic components are independent Gaussian disturbances, that is qΨ = 0 and ut = εt

in (4). Identifiability of all parameters is guaranteed via the restriction σ−2
ζ = 1 + {(θ −

φ)2 / (1 − φ2)} such that Var(f1) = 1.

The state vector αt is specified as αt = (ft , θζ)
′ and since Ft = ft we have G = (1 , 0) in

(7). Then, µ = 0, dt = 0, β = 0 and Z = ΛG with Λ = Λ̄ in equation (5) for t = 1, . . . , T .

The state equation (6) for t = 1, . . . , T has

H =

[
φ 1

0 0

]
, R =

(
1

θ

)
, Ση = σ2

ζ ,

with initial conditions a = 0 and P such that P −HPH ′ = σ2
ζRR

′.

3 Estimation of factors and likelihood evaluation

The new results are firstly presented for the dynamic factor model in state space form (5) and

(6) without regression effects (and intercepts). We then consider the model with regression

effects in Section 3.2. The results are relevant for likelihood evaluation and estimation of

factors and regression effects.

3.1 A dynamic factor model without regression effects

The state space form of the dynamic factor model without regression effects is given by

yt = dt + Zαt + εt, αt = Hαt−1 +Rηt, εt ∼ NIID(0,Σε), t = 1, . . . , T, (8)

where yt is the N × 1 observation vector and αt is the p× 1 state vector. The loglikelihood

function of y1, . . . , yT is obtained using the Kalman filter. The Kalman filter and smoothing

(KFS) methods of Appendix A.1 can also be used to evaluate

at|s = E(αt|y1, . . . ys), Pt|s = Var(αt|y1, . . . ys), s, t = 1, . . . , T. (9)

Vector at|s is the minimum mean squared error estimator (MMSE) of αt conditional on

y1, . . . , ys and matrix Pt|s is its mean squared error. If the panel dimension is very large the

KFS methods are computationally infeasible, even when p is of modest size. Anderson and

Moore (1979) and Koopman and Durbin (2003) showed that, for models with diagonal Σε,

multivariate KFS methods can be made computationally more efficient by processing the
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elements of yt individually rather than the whole vector at once. This modification leads to

substantial computational gains, but they are not sufficient for the dimensions common in

recent applications of dynamic factor models.

3.1.1 Transforming the observation equation

Consider the dynamic factor model (8). Suppose y∗t = Ayt, for t = 1, . . . , T , for some

invertible matrix A. The MMSEs of αt in (9) are not affected if y1, . . . , ys is replaced with

y∗1, . . . y
∗
s . Furthermore, the loglikelihood functions of y1, . . . , yT and y∗1, . . . , y

∗
T differ only

by the Jacobian term log |A|T . We will show that for certain choices of A the loglikelihood

function and the MMSEs of α1, . . . , αT can be computed more efficiently based on y∗1, . . . , y
∗
T

rather than y1, . . . , yT .

Suppose

A =

[
AL

AH

]
, y∗t =

(
yLt

yHt

)
, with yLt = AL(yt − dt), yHt = AH(yt − dt), (10)

with N ×N matrix A, m×N matrix AL and (N −m) ×N matrix AH where m < N . The

observation vectors yLt and yHt have dimensions m × 1 and (N −m) × 1, respectively. We

aim to choose A such that yLt and yHt are uncorrelated and only yLt depends on αt. More

specifically, the model for y∗t will be of the form

yLt = ALZαt + eLt ,

yHt = eHt ,

(
eLt

eHt

)
∼ NIID

(
0,

[
ΣL 0

0 ΣH

])
, (11)

where ΣL = ALΣεA
L′ and ΣH = AHΣεA

H′. A suitable matrix A needs to fulfill the following

conditions

(i) A is full rank,

(ii) AHΣεA
L′ = 0,

(iii) Row{AH} = Col{Z}⊥,

where Col{X} and Row{X} denote the row and column spaces of a matrix X, respectively,

and the superscript ⊥ denotes the orthogonal complement. Condition (i) prevents any loss

of information due to the transformation Ayt. Condition (ii) ensures that both equations in

(11) are independent and Condition (iii) implies that the second equation does not depend

on αt. Condition (iii) is stronger than strictly necessary. The transformed model will still
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be of the form (11) if Condition (iii) is replaced with AHZ = 0. In its current form however,

condition (iii) ensures that the reduction in dimension is as large as possible, in the sense

that the dimension of yHt cannot be enlarged without comprimising the special form of (11).

This is in general not the case if we only require AHZ = 0. Finally, we add the following

condition

(iv) |ΣH | = 1.

Condition (iv) is not restrictive and it simplifies various calculations. For example, we can

express the determinant of A in terms of AL and Σε since

|A|2 = |Σε|
−1|AΣεA

′| = |Σε|
−1|ALΣεA

L ′||AHΣεA
H′| = |Σε|

−1|ΣL|. (12)

The Conditions (i)–(iii) imply a closed form for AL, which is given in the following lemma.

Lemma 1. Consider model (8). Suppose a matrix A is of the form (10), then AL satisfies

(i)–(iii) if and only if

AL = CΛ† ′Σ−1
ε , (13)

for some nonsingular m×m matrix C and for some N×m matrix Λ†, such that the columns

of Λ† form a basis for the column space of Λ.

Remark 1. It is evident that any matrix A with AL given by (13) fulfills Conditions (i)–(iii).

We prove the necessity part of the lemma in Appendix A.2.

Remark 2. From (7) we have Z = ΛG where G has full rank. If Λ is of full column rank,

we can choose Λ† = Λ. Column rank deficiency of Λ is rare in practice. However, if Λ

does not have full column rank it is straightforward to construct a suitable Λ†.

Remark 3. A closed form expression for AH will generally not be available. From condition

(iii) it follows that AH has to be chosen such that its rows form a basis for the null

space of Λ† ′. Condition (iv) can then be satisfied by rescaling the rows. Finding a basis

for the null space of a matrix requires computationally intensive numerical methods.

Fortunately, we can show that matrix AH is not required for any of our computations.

Remark 4. The results below are based on transformation (10) and model (11). Although

our results are more general and are developed for different purposes, a similar trans-

formation as (10) for a different class of factor models is considered by Fiorentini,

Sentana, and Shephard (2004, section 2.4.1).

8



Illustration 3. Consider the one-factor model yt = Λ̄ft + εt of Illustration 2. Apply trans-

formation (10) to yt where the row vector AL is given by (13) with scalar C = (Λ′Σ−1
ε Λ)

−1

and Λ† = Λ = Λ̄. For this choice of C, the scalar yLt is effectively the generalised least

squares (GLS) estimator of ft in the “regression model” yt = Λft + εt, for a given t. We

have

yLt =
(
Λ′Σ−1

ε Λ
)−1

Λ′Σ−1
ε yt, t = 1, . . . , T.

Model (11) for the univariate time series yLt is then given by

yLt = Gαt + eLt , eLt ∼ NIID(0, C), t = 1, . . . , T.

3.1.2 Estimation of factors

By considering a matrix A that satisfies the Conditions (i)–(iv) of Section 3.1.1, we can

efficiently compute MMSE estimators of the factors and their mean squared errors. Since

A has full rank it follows that E(αt|y1, . . . , ys) = E(αt|y
∗
1, . . . , y

∗
s) and Var(αt|y1, . . . , ys) =

Var(αt|y
∗
1, . . . , y

∗
s). Furthermore, from (11) it follows that yLt and yHt are independent of each

other and yHt does not depend on αt. Hence,

at|s = E(αt|y
∗
1, . . . , y

∗
s) = E(αt|y

L
1 , . . . , y

L
s ), Pt|s = Var(αt|y

∗
1, . . . , y

∗
s) = Var(αt|y

L
1 , . . . , y

L
s ),

for s, t = 1, . . . , T . The MMSEs of the states can therefore be obtained by applying KFS

methods to the low-dimensional model

yLt = ALZαt + eLt , eLt ∼ NIID(0,ΣL), t = 1, . . . , T. (14)

The high-dimensional matrix AH and vector yHt are not required for the estimation of αt. In

case of Illustration 3, the estimation of αt is simply carried out by univariate KFS methods.

3.1.3 Loglikelihood evaluation

Let ℓ(y) denote the loglikelihood function for the linear Gaussian state space model (5) –

(6), where y = (y′1, . . . , y
′
T )′. The loglikelihood ℓ(y) can be evaluated via the prediction error

decomposition, see Schweppe (1965). The prediction error vector vt and its variance matrix

Dt, obtained from the Kalman filter of Appendix A.1 applied to model (8), are required to

calculate

ℓ(y) = −
NT

2
log 2π −

1

2

T∑

t=1

log |Dt| −
1

2

T∑

t=1

v′tD
−1
t vt, (15)
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see also Harvey (1989, section 3.4).

A computationally more efficient way to evaluate (15) is to choose a matrix A that

satisfies the Conditions (i)–(iv) of Section 3.1.1, transform yt as in (10) and to consider

model (11). We then have

ℓ(y) = ℓ(yL) + ℓ(yH) + T log |A|, (16)

where yL = (yL ′
1 , . . . , yL ′

T )′ and yH = (yH ′
1 , . . . , yH ′

T )′. The first term ℓ(yL) can be evaluated

by the Kalman filter applied to the low-dimensional model (14). The second term is given

by

ℓ(yH) = −
(N −m)T

2
log 2π −

1

2

T∑

t=1

yH′
t Σ−1

H yHt , (17)

since |ΣH | = 1. Lemma 2 shows that the last term in equation (17) can be calculated without

constructing AH . The proof is given in Appendix A.3.

Lemma 2. Consider the dynamic factor model (8), transformation (10) and model (11).

For definition (13) of matrix AL, we have

yH′
t Σ−1

H yHt = e′tΣ
−1
ε et, (18)

where et = yt − Λ†
(
Λ† ′Σ−1

ε Λ†
)−1

Λ† ′Σ−1
ε yt is the GLS residual for data-vector yt, covariate

matrix Λ† and variance matrix Σε. The choice of C in (13) is irrelevant.

Given the expression for |A|2 in (12), loglikelihood function (16) can be expressed as

ℓ(y) = c+ ℓ(yL) −
T

2
log

|Σε|

|ΣL|
−

1

2

T∑

t=1

e′tΣ
−1
ε et, (19)

where c is a constant independent of both y and the parameters. It follows that for the

evaluation of the loglikelihood, computation of matrix AH and vectors yHt (t = 1, . . . , T ) is

not required. Expression (19) is instrumental for a computationally feasible approach to the

likelihood-based analysis of the dynamic factor model.

Illustration 4. In Illustration 3, the transformation (10) is based on matrix AL defined

in (13) with C = (Λ† ′Σ−1
ε Λ†)−1. It is more convenient to choose C such that C ′C =

(Λ† ′Σ−1
ε Λ†)−1 with C upper-triangular. For this choice, the variance matrix ΣL in (14)
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is the identity matrix and the loading matrix in (14) is ALΛ† = C−1 ′. We obtain the model

yLt = C−1 ′Gαt + eLt , eLt ∼ NIID(0, I), t = 1, . . . , T.

Since ΣL = I, the fast KFS methods discussed in Koopman and Durbin (2003) can be applied

straightforwardly. Furthermore, the loglikelihood function (19) reduces to

ℓ(y) = c+ ℓ(yL) −
T

2
log |Σε| −

1

2

T∑

t=1

e′tΣ
−1
ε et.

The computations for |Σε| and Σ−1
ε can exploit special structures in Σε such as the matrix

being diagonal or having Toeplitz, spatial or block structures.

3.2 Factor model with intercepts and regression effects

Consider the state space model (5) and (6) with intercepts and regression effects µ and β.

Suppose µ and β are treated as random variables (µ′, β ′)′ ∼ N(0, κIN+K) for some κ > 0. In

this case, µ and β can be added to the state vector and estimated by the Kalman filter. If

κ→ ∞, the Kalman filter estimators for µ and β converge to their minimum mean squared

error linear estimators (MMSLE), see e.g. Shephard (1993). Such random variables with

arbitrarily large variance matrices are said to be diffuse.

Following Ansley and Kohn (1985) and de Jong (1991), we define the diffuse likelihood

for the model (5) and (6) with regression effects µ and β by

pd(y)
def.
= lim

κ→∞
κ−(N+K) / 2

∫∫∫
p(y|µ, β, α)p(α)pκ(µ, β) dµ dβ dα. (20)

The diffuse likelihood pd(y) can be evaluated using a modified version of the Kalman filter,

see Appendix A.1. Unknown parameters can be estimated by maximizing the diffuse likeli-

hood. Tunnicliffe-Wilson (1989) and Shephard (1993) show that for small sample sizes such

estimators are preferred over maximum likelihood estimators. This is especially important

in macroeconomic applications, where the time series dimension can be small. Quah and

Sargent (1993), for example, consider a data set where T is only 42.

3.2.1 Transforming the observation equation

To facilitate evaluation of the diffuse likelihood and estimation of the regression coefficients

in the framework of Section 3.1 we proceed as follows. Choose matrix A such that Conditions

(i)–(iii) of Section 3.1.1 are satisfied. Pre-multiplying the observations with A, we obtain

11



the model

yLt = µL +XL
t β + ALZαt + eLt ,

yHt = AHµ+XH
t β + eHt ,

(
eLt

eHt

)
∼ NIID

(
0,

[
ΣL 0

0 ΣH

])
, (21)

where µL = ALµ, XL
t = ALXt and XH

t = AHXt and the other variables are defined below

(11). We show next that both estimation of µ, β and αt and likelihood evaluation can be

carried out in two steps: first processing the original time series yt and second applying KFS

methods to the time series yLt . The computational gains of Section 3.1 can therefore be

preserved.

3.2.2 Estimation of intercepts, regression coefficients and factors

Denote the MMSLEs of µ, β and α1, . . . , αT , based on y, by µ̂, β̂ and α̂1, . . . , α̂T . We develop

a two-step procedure for the computation of these MMSLEs by treating the two equations of

(21) separately. Since we are interested in the MMSLE of µ, not of µL and AHµ in (21), and

since β appears in both equations of (21), we propose the following method of estimation.

Define

PΛ = Λ†(Λ† ′Σ−1
ε Λ†)−1C−1, MΛ = I − Λ†(Λ† ′Σ−1

ε Λ†)−1Λ† ′Σ−1
ε .

We have PΛA
L = I −MΛ and µ = µH +PΛµ

L where µH
def.
= MΛµ. The MMSLE of µ is then

given by

µ̂ = µ̂H + PΛµ̂
L, (22)

with mean squared error matrix

Var(µ̂) = Var(µ̂H + PΛµ̂
L)

= Var(µ̂H) + PΛCov(µ̂L, µ̂H) + Cov(µ̂H, µ̂L)P ′
Λ + PΛVar(µ̂L)P ′

Λ, (23)

where µ̂L and µ̂H are estimates of µL and µH , respectively.

Our two-step procedure for computing the MMSLEs µ̂L, β̂ and α̂1, . . . , α̂T , together with

their mean squared error matrices, consists of:

Step 1. Compute

b = B−1
T∑

t=1

X̃ ′
tΣ

−1
ε ỹt, B =

T∑

t=1

X̃ ′
tΣ

−1
ε X̃t, (24)

12



where ỹt and X̃t are given by

ỹt = MΛ(yt − dt − ȳ), X̃t = MΛ(Xt − X̄), (25)

for t = 1, . . . , T , and

ȳ =
1

T

T∑

t=1

(yt − dt) , X̄ =
1

T

T∑

t=1

Xt. (26)

Step 2. Apply KFS methods to the state space model with observation equation

yLt = µL +XL
t β + ALZαt + eLt , eLt ∼ NIID(0,ΣL), t = 1, . . . , T, (27)

where µL has the diffuse prior distribution µL ∼ N(0, κIN), with κ → ∞, β has the

initial distribution β ∼ N(b, B−1) while the initial state vector has α1 ∼ N(a, P ). The

KFS produces β̂, µ̂L and α̂1, . . . , α̂T and the mean squared errors of these estimators.

Step 1 relies on standard regression computations while Step 2 applies the KFS to the low-

dimensional model (27) with the state vector αt extended by µL and β.

We prove the validity of the two-step procedure in Appendix A.4. It is also shown that

µ̂H = MΛ(ȳ − X̄β̂), Var(µ̂H) = MΛ{X̄Var(β̂)X̄ ′ + T−1Σε}M
′
Λ. (28)

and

Cov(µ̂H , µ̂L) = −MΛX̄Cov(β̂, µ̂L). (29)

These results enable us to obtain µ̂ from (22) and its mean squared error matrix from (23).

3.2.3 Likelihood evaluation

The diffuse loglikelihood function for the dynamic factor model with fixed effects and re-

gression effects is computed as part of the two step estimation procedure of Section 3.2.2.

Suppose ℓd(y
L) is the diffuse likelihood of a state space model consisting of (27) and (6). We

have

ℓd(y) = ℓd(y
L) + ℓd(y

H) −
1

2
(T − 1) log

|Σε|

|ΣL|
, (30)

where ℓd(y
H) is the diffuse likelihood for the model of yH in equation (21) and is given by

ℓd(y
H) = −

(N −m)

2
(T log 2π + logT ) −

T

2
log |B| −

1

2

T∑

t=1

ỹ ′
tΣ

−1
ε ỹt, (31)
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where B and ỹt are defined in (24) and (25), respectively. We prove expressions (30) and

(31) in Appendix A.5. Note that the evaluation of ℓd(y) does not require yHt .

3.3 Computational gains

The main purpose of the results of the previous sections is to obtain computationally efficient

inference procedures for the class of dynamic factor models discussed in Section 2. In this

section we report the gains in computing times that are achieved by our new methods.

The computational gains depend primarily on the panel dimension N and state vector

dimension p. To obtain some insight in the size of this gain we calculate the likelihood,

respectively diffuse likelihood, for different values ofN and p using both the standard Kalman

filter as well as the methods of Sections 3.2.3 and 3.2.3. In Table 1 we present the ratios of

the CPU times of these methods. The results are encouraging. For a typical model without

a constant and with N = 250 and p = 5, the Kalman filter computations are carried out 15

times faster as a result of our new device. We further see that the computational savings

are substantial for moderate values of N and relatively small values of p, say, 5 or 10. If p

is relatively large, say, 25, the gains are less dramatic but still substantial by any means.

We also achieve substantial computational gains if we apply the method of Section 3.2.3

to dynamic factor models with a constant vector µ, that is state space model (5) and (6)

with β = 0. The reported ratios are high because applying standard KFS methods to this

model requires the augmentation of the p× 1 state vector αt by the N × 1 constant vector

µ. The augmentation of the state vector for the model (27) and (6) is limited to the r × 1

constant vector µL.

Table 1: Computational Gains

The two panels below present the gains in computing time when evaluating the loglikelihood respectively the
diffuse loglikelihood functions of two types of dynamic factor models. Model A is of the form yit = λ′

i
ft + εit

and model B of the form yit = µi + λ′

i
ft + εit, where ft is a VAR(1), εit ∼ NIID(0, σ2), for some positive

scalar σ and µi is a scalar. The ratio d1/d2 is reported: d1 is the CPU time for the standard (diffuse) Kalman
filter and d2 is CPU time for the algorithms of Sections 3.1.3 and 3.2.3. The ratios are reported for different
panel dimensions N and different state vector dimensions p.

Model A Model B

N\p 1 5 10 25 50 1 5 10 25 50

10 2.0 1.3 – – – 10.4 2.3 – – –
50 5.7 4.7 3.1 1.5 – 50.6 40.0 18.0 3.4 –
100 6.7 7.5 5.6 2.5 1.5 55.0 62.0 47.2 13.5 3.2
250 8.7 14.8 12.4 5.5 3.0 79.0 82.2 82.9 63.6 22.6
500 12.5 15.9 21.2 10.2 5.4 107.5 108.9 109.5 108.7 69.7
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4 Likelihood-based methods for estimation

In this section we discuss procedures for the estimation of the unknown vectors and matrices

λi (i = 1, . . . , N), Φi (i = 1, . . . , qΦ), Θi (i = 1, . . . , qΘ), Ψi (i = 1, . . . , qΨ) and Σε in the

dynamic factor model of Section 2.1. These vectors and matrices depend on a vector of

unknown parameters that we denote by ψ. The dimension of ψ can be as high as 1, 000

or 2, 000. The results of Section 3 imply that likelihood evaluation can be fast for high-

dimensional dynamic factor models. We show in Section 4.1.1 that the new results also lead

to a very fast procedure for computing the score vector of ψ. Section 4.1.2 shows that the

same arguments can apply to the EM method of estimation. Finally, we show in Section 4.2

that the new results can also be useful for Bayesian methods.

4.1 Maximum likelihood estimation

Numerical optimization procedures, such as the quasi-Newton BFGS algorithm, see e.g.

Nocedal and Wright (1999), can be adopted to maximize the loglikelihood function with

respect to ψ. These methods require evaluation of the score vector. Since the dimension of

ψ is high, computing the score vector numerically is infeasible, even if the results of Section

3 are used. Fortunately, we can show that the exact score vector can be obtained by a single

KFS applied to the low-dimensional model (14) or (27).

Alternatively, the EM algorithm can be used to obtain the maximum likelihood estimator

of ψ. In Section 4.1.2 we show that each EM step also relies on a single KFS.

4.1.1 Exact score for models without regression effects

Koopman and Shephard (1992) develop analytical expressions for the score function of the

parameters in a state space model. They adopt the results in Louis (1982) and Ruud (1991)

and in particular the identity

∂ℓ(y;ψ)

∂ψ

⌋

ψ=ψ∗
=
Q(ψ∗|ψ)

∂ψ

⌋

ψ=ψ∗
, (32)

where Q(ψ∗|ψ) is the expected complete loglikelihood function, given by

Q(ψ∗|ψ) = E (log p(y, α;ψ) |y;ψ∗ ) ,
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and p(y, α;ψ) is the joint density of y and α1, . . . , αT . For the state space model (5) and (6),

Q(ψ∗|ψ) is given by

Q(ψ∗|ψ) = c−
T

2
log |Σε| −

1

2
trQε −

T − 1

2
log |Ση| −

1

2
trQη

−
1

2
log |P | −

1

2
tr[P−1{(a1|T − a)(a1|T − a)′ + P1|T}], (33)

where c is a constant independent of ψ and

Qε = Σ−1
ε

T∑

t=1

{ε̂tε̂
′
t + Var(εt|y)}, Qη = Σ−1

η

T∑

t=2

{η̂tη̂
′
t + Var(ηt|y)}, (34)

where ε̂t = E(εt|y), Var(εt|y), η̂t = E(ηt|y) and Var(ηt|y) can be expressed in terms of aj|T

and Pj|T for j = 1, . . . , T , which can be evaluated using the KFS methods discussed in

Appendix A.1. Since the estimation of factors can be based on the low-dimensional model

(14) while matrix AH and time series yHt are not needed, the KFS computations are fast.

Expressions for the derivatives of (33) with respect to the system matrices, evaluated at

ψ = ψ∗, are given in Appendix A.6. The score vector of ψ is then obtained via the chain

rule.

4.1.2 The EM algorithm for models without regression effects

The EM algorithm, introduced by Dempster, Laird, and Rubin (1977), is an iterative algo-

rithm that repeatedly performs two types of calculations: (E)xpectation and (M)aximization.

For a given value of ψ = ψ∗, the E and M steps are given by

• E step: determine the expected complete loglikelihood function Q(ψ∗|ψ) in (33).

• M step: maximize Q(ψ∗|ψ) with respect to ψ.

The M step produces a vector ψ+ with the property ℓ(y;ψ+) ≥ ℓ(y;ψ∗). If the EM steps are

continuously repeated, convergence to a (local) optimum of ℓ(y;ψ) is guaranteed, see Wu

(1983) for a more detailed discussion. Shumway and Stoffer (1982) and Watson and Engle

(1983) have proposed the use of the EM algorithm in the context of state space models. The

details of the EM algorithm are specific to the particular specification of the dynamic factor

model. In Appendix A.7 the EM algorithm is reviewed for the model of Illustration 1.
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4.1.3 Estimation for models with intercepts and regression effects

For the state space model (5) and (6) with regression effects, the score of the diffuse likelihood

can be obtained as in Section 4.1.1. The only difference being that Q(ψ∗|ψ) is evaluated

using the methods of Section 3.2.2, see Durbin and Koopman (2001, section 7.3). Similarly,

using this expected complete diffuse loglikelihood in the E step of the EM algorithm, the

algorithm will converge to the maximum of the diffuse likelihood. The MMSLEs of µ and β

and the corresponding mean squared errors are obtained from the diffuse Kalman smoother.

4.2 Bayesian Inference

As an alternative to the maximum likelihood estimation of Section 4.1 we can assume prior

distributions for the parameters, µ̄, β and ψ, and perform a Bayesian analysis. Examples of

Bayesian approaches to dynamic factor models are Aguilar and West (2000) and Fiorentini,

Sentana, and Shephard (2004) in the context of modelling volatility in time series. We follow

these contributions in adopting Markov chain Monte Carlo (MCMC) methods because closed

form expressions of posterior densities are not available. The MCMC method samples a

Markov chain that has the posterior density of the parameters as its stationary distribution.

After a burn-in period, the samples can therefore be used as correlated draws from the

posterior distributions. Reviews of MCMC algorithms are given by, amongst others, Gilks,

Richardson, and Spiegelhalter (1996) and Chib (2001).

4.2.1 A basic MCMC implementation

Consider the dynamic factor model (2), (3) and (4). Denote the set of parameters in

Φ1, . . . ,ΦqΦ by Φ, the set of parameters in Θ1, . . . ,ΘqΘ by Θ and those in Ψ1, . . . ,ΨqΨ by Ψ.

The other parameters are µ̄, β, Λ̄ and Σε. The set of factors f1, . . . , fT is denoted by f . A

typical MCMC algorithm for the dynamic factor model is given by:

(i) Initialize f , Φ, Θ, Ψ, µ̄, β, Λ̄ and Σε.

(ii) Sample f from p(f |Λ̄,Φ,Θ,Ψ,Σε, µ̄, β, y).

(iii) Sample Φ, Θ from p(Φ,Θ|f).

(iv) Sample µ̄, β, Λ̄, Ψ and Σε from p(µ̄, β,Σε, Λ̄,Ψ|f, y).

(v) Goto (ii).
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Steps (iii) and (iv) require the sampling from posterior densities associated with a VARMA

model and a VAR model with regression effects, respectively. For more details on the imple-

mentation in these specific cases, we refer to the Bayesian literature on linear models, see,

for example, Chib (1993).

4.2.2 MCMC step (ii)

The main computational difficulty is step (ii) and is caused by the high dimension of the

observation vector y. Fortunately, we can use the methods of Section 3 to perform this

step in a computationally efficient way. Since the dynamic factor model is a special case of

the linear Gaussian state space model, the sampling step (ii) reduces to sampling the state

vector from the conditional density p(α|y;ψ). We can sample the states αt conditional on

the observations, y, using algorithms as in Fruhwirth-Schnatter (1994), Carter and Kohn

(1994), de Jong and Shephard (1995) and Durbin and Koopman (2002).

The algorithm of Durbin and Koopman (2002) for sampling states is fast and easy to

implement. Consider the dynamic factor model in state space form. Suppose α+
1 , . . . , α

+
T and

y+
1 , . . . , y

+
T are samples from the unconditional density p(α, y;ψ) where α = (α′

1, . . . , α
′
T )′. A

sample α̃ from p(α|y;ψ) is then constructed as follows

α̃t = α+
t − E(αt|y

+
1 , . . . , y

+
T ;ψ) + E(αt|y1, . . . , yT ;ψ), t = 1, . . . , T. (35)

By choosing a matrixA such that it fulfills the conditions of Section 3.1.1, we have p(α|y;ψ) =

p(α|yL;ψ). Therefore, we can obtain the samples α̃t by sampling α+
1 , . . . , α

+
T and yL+

1 , . . . , yL+
T

from the state space model with observation equation (11) and setting

α̃t = α+
t − E(αt|y

L+
1 , . . . , yL+

n ;ψ) + E(αt|y
L
1 , . . . , y

L
n ;ψ), t = 1, . . . , T. (36)

This is computationally more efficient than the original algorithm since all computations are

done using the low dimensional vectors yLt , see the comparisons in Section 3.3.

To reduce correlation between subsequent draws, it is in general preferable to sample µ̄

and β in one block with the factors. This can be easily achieved using state space methods.

Suppose δ is a a vector of regression coefficients, Durbin and Koopman (2002) show that

we can sample from p(δ|y), by adding the variables to the state and using the diffuse KFS

to evaluate equation (35). The unconditional samples δ+ are set to zero. This suggests an

efficient method to sample from p(µ̄, β, f |y, ψ) in two steps. First, perform the two steps of

Section 3.2.2. Second, obtain samples µ̃, β̃ and f̃ by

• Sample µ̃L, β̃ and f̃ conditional on yL in the model defined in (27).
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• Set µ̃ = µ̃H + PΛµ̃
L, where µ̃H = MΛ(ȳ − X̄β̃ + ξ) and ξ ∼ N(0, T−1Σε).

This algorithm is easily modified to allow informative Gaussian priors for µ and β.

5 An empirical illustration

In this section we present an illustration of the likelihood-based treatment of the dynamic

factor model. We consider the data set of Stock and Watson (2005)1. From this data set

we constructed a balanced panel of N = 132 monthly US macroeconomic time series from

1960:1 through 2003:12 (44 years, T = 528). The data is transformed and differenced to

obtain a stationary set of time series; the details of each series and its transformation are

given in Appendix A of Stock and Watson (2005). The 132 series are categorized into the

15 sectors presented in Table 2. Each sector is indexed by a letter. Table 2 also contains

the number of time series in each sector. For all series, observations larger than 6 times the

standard deviation of the series, σ, (in absolute value) are set to ±6σ. In total, 46 (out of

69, 696) observations are Winsorized in this way (0.066%). Subsequently, each time series is

scaled such that its sample variance equals one.

The empirical analysis below differs from Stock and Watson (2005) and the related study

in Stock and Watson (2002b) since these studies are based on a principal components anal-

ysis (diffusion indexes). Our approach is closer in spirit to the likelihood-based analyses of

Bernanke, Boivin, and Eliasz (2005) and Boivin and Giannoni (2006). Maximum likelihood

estimates are asymptotically efficient provided that the model is not misspecified. In this

section we show that standard diagnostic tests for model misspecification can be carried out.

Tests for model specification can be based on standard likelihood ratio statistics. Further-

more, the dynamic properties of the factors can be analyzed by investigating the estimated

coefficients that are associated with the factors.

We consider the dynamic factor model discussed in Illustration 1 with intercept µ̄

yt = µ̄+ Λ̄ft + ut, ft = Φ1ft−1 + ηt, ut = Ψ1ut−1 + εt. (37)

We treat the unknown intercepts, µ̄, as diffuse and use the algorithm of Section 3.2. To ensure

identifiability of all parameters we adopt the restrictions set forth in Illustration 1. We note

that Var(ft) = I for t = 1, . . . , T . We have implemented the Bai and Ng (2002) procedure for

determining the number of factors based on their principal components analysis. We confirm

the findings in Stock and Watson (2005) and find seven factors. Therefore, we include seven

1We thank Mark W. Watson for kindly making the data set available on his website.
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Table 2: List of sectors

This table lists the 15 sectors in the data set that we consider in Section 5. For each sector, the code, a short
description and the number of series in the sector are given. Details of the 132 time series can be found in
Appendix A of Stock and Watson (2005).

Code Description Number of Time Series

A Real Output and Income 17
B Employment and Hours 30
C Real Retail 1
D Manufacturing and Trade Sales 1
E Consumption 1
F Housing Starts and Sales 10
G Real Inventories 3
H Orders 7
I Stock Prices 4
J Exchange Rates 5
K Interest Rates and Spreads 17
L Money and Credit Quantity Aggregates 11
M Price Indexes 21
N Average Hourly Earnings 3
O Miscellanea 1

factors in our dynamic factor model (r = 7).

The parameter vector ψ consists of elements of Λ̄ and Φ1, and the diagonal elements of

Ψ1 and Σε. The number of coefficients to estimate in Λ̄ is Nr − r(r − 1)/2 = 903, in Φ1

is r2 = 49 and in the diagonal matrices Ψ1 and Σε is 2N = 264. The dimension of ψ is

therefore 1216. Further, we estimate 132 intercepts, one for each time series. The dynamic

factor model is formulated in state space form with a state vector of dimension p = 14; see

Illustration 1. Since the intercepts are treated as diffuse variables we need to add the 14

elements of µL to the state vector.

5.1 Parameter estimates

We have estimated the parameters by the method of maximum likelihood using the results

of Sections 3.2 and 4.1. First we used the EM algorithm to find a point in the neigbour-

hood of the optimum. We then used the BFGS algorithm to find the maximum likelihood

estimates, starting from the value of the final iteration of the EM algorithm. On a standard

computer with 3 GB memory and a 2.2 GHz two-core processor this took less than 10 min-

utes. It is encouraging that the numerical maximization routine (based on the analytical

score calculations of Appendix A.6) converges rapidly to an optimum in a parameter space
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of 1216.

Figure 1 presents the estimates of the parameters in the diagonal matrices (i) Ψ1 and (ii)

Σε. The estimated idiosyncratic autoregressive coefficients in Ψ1 in Panel (i) are generally

small in the real sectors (A) real output and income and (B) employment and hours, implying

that the dynamic latent factors describe the dynamics appropriately for the series in these

sectors. This is not the case for series in sectors (F) housing starts and sales, (G) real

inventories and, possibly, (L) money and credit quantity aggregates, since most of these

estimated autoregressive coefficients exceed 0.75. We conclude that the dynamics in the (F),

(G) and (L) sectors can not be fully captured by the seven dynamic factors. The estimates

in Ψ1 for the series in the other sectors show a more erratic picture although the majority

have modest values. Panel (ii) of Figure 1 provides a graphical display of the estimates of

the diagonal elements of the variance matrix Σε.

Given the different scalings of the factors, the actual estimates of Λ̄ are of minor interest.

Stock and Watson (2002b) present the R2 goodness-of-fit statistic obtained from regressing

yit (i = 1, . . . , N) on a constant and each of the principal component estimates (diffusion

indexes). These R2 statistics are then regarded as proxies for the correlations (in absolute

values) between the series and each principal component. In our modelling framework, we

can evaluate the correlations between the series and each factor directly. The model-based

correlations are presented in Figure 2 for the seven dynamic factors. The clustering of

correlations within sectors is clearly visible. The first factor is mostly correlated with the

real variables, in particular those variables in the sectors (A) real output and income, (B)

employment and hours (G) real inventories and (H) orders. We will therefore refer to this

factor as the “business cycle” factor. The second factor is most prominently represented

by the sectors (I) stock prices and (M) price indexes. We therefore label the second factor

“inflation”. The correlations with the third factor resemble those with the inflation factor

although they are much smaller in the sector (I) stock prices and larger for the employment

series in sector (B). Since the correlations between the third factor and both the employment

and inflation series have the same sign but mostly an opposite sign with the unemployment

series in sector (B), we label this factor the “Phillips curve” factor. The fourth factor mostly

represents the industrial production indexes in sector (A). The money supply and monetary

base variables in sector (L) are strongly correlated with the fifth factor. The sixth and

seventh factors are strongly associated with sector (K) interest rates and spreads while the

sixth factor is also correlated with some material and manifacturing series in sector (A). The

sector (F) housing starts and sales is hardly represented by any of the factors.

Table 3 presents the maximum likelihood estimates of the VAR coefficients in Φ1 together
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Figure 1: Maximum likelihood estimates of AR parameters and variances

In this figure we present maximum likelihood estimates of the diagonal elements of (i) Ψ1 and (ii) Σε in
model (37). The estimates are grouped in sectors (A)-(O) of Table 2.
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Figure 2: Correlations between observations and factors

In this figure we present the uncondional correlations between the observed series and the seven latent
dynamic factors. The correlations presented are those implied by the maximum likelihood estimates of Φ1,
Ψ1, Σǫ and Λ̄.
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Table 3: Maximum likelihood estimate of VAR coefficient matrix

The table reports the maximum likelihood estimates of the VAR coefficient matrix Φ1 of model (37) estimated
from the data set of Stock and Watson (2005). The eigenvalues of the estimated Φ1 are reported in descending
order. For complex eigenvalues we present both the real and imaginary (img) components.

VAR coefficients Eigenvalues

Factor 1 2 3 4 5 6 7 real img

1 0.39 0.04 -0.01 -0.19 0.08 -0.23 -0.03 0.99 0
2 0.23 1.07 -0.48 -0.57 -0.12 0.31 -0.83 0.93 -0.09
3 -0.41 -0.26 0.72 0.38 0.02 -0.60 0.32 0.93 0.09
4 -0.58 0.16 0.16 0.42 -0.05 0.03 -0.2 0.64 0
5 -0.14 -0.23 0.24 0.76 1.03 -0.67 0.75 0.39 0
6 -0.30 -0.16 -0.13 -0.11 -0.11 0.21 -0.05 0.11 0
7 0.43 0.10 -0.49 -0.61 -0.17 0.36 0.03 -0.13 0

with the eigenvalues of Φ1. From the eigenvalues we learn that all factors are estimated as

stationary processes although some of the factor will be highly persistent because the largest

eigenvalue is 0.99. Furthermore, we find the presence of persistent cyclical behaviour in the

factors because one conjugate pair of complex eigenvalues is obtained with its real part equal

to 0.93. The remaining four eigenvalues are relatively small. Future work may investigate

whether changes in the cyclical properties of the factors have occurred before and after

the beginning of the 1980s. Since the factors of the VAR process have zero mean and a

variance matrix equal to the identity matrix, we can relate the individual coefficients in Φ1

to each other. However, as in any VAR analysis, it remains hard to comment on individual

coefficients in Φ1.

5.2 Signal extraction and diagnostic checking

The first three estimated factors are displayed in Figure 3. The “business cycle” factor is

displayed in the first panel together with the NBER business cycle reference dates of peaks

and throughs. The NBER dates do not coincide perfectly with the peaks and throughs

of the first factor but close enough to justify referring to it as the “business cycle” factor.

The “inflation” factor (opposite sign) shows the steady inflation increases in the 1960s, the

volatile inflation shocks in both the mid-1970s and early 1980s and the steady decline of

inflation after 1983. We have labelled the third factor the “Phillips-curve” factor given its

negative correlations with inflation and employment and its (weak) positive correlations with

the unemployment series. The three factors displayed in Figure 3 are relatively persistent

and cyclical. These characteristics are due to the three large eigenvalues of Φ1 (0.99 and
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Figure 3: Estimated common factors

This figure shows the first three common factors extracted from the observed series by applying the method
of Section 3.2.2 for model (37) from the data set of Stock and Watson (2005).
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0.93) and the pair of complex eigenvalues reported in Table 3. The remaining four estimated

factors are noisy series.

An appealing feature of our model-based analysis is that model misspecification tests and

diagnostics concerning normality, heteroskedasticity and serial correlation can be considered

as an effective tool for model selection. In time series, diagnostic test statistics are applied

to standardised one-step ahead prediction errors. If the model is correctly specified these

errors are IID. We will not argue that the dynamic factor model is the appropriate model

specification for a joint analysis of 132 time series. However, the model misspecification

diagnostics will indicate how far we are from a reasonable specification.

The KFS modifications of Section 3 allow us to compute the prediction errors for all 132
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series in a few seconds. More specifically, we have computed the generalised least squares

residuals as advocated by Harvey (1989, section 5.4) to allow for the intercept vector µ̄

in model (37). The residuals are standardized. To illustrate the effectiveness of residual

diagnostics in the context of dynamic factor analysis, we compute for each residual series

the serial correlation portmanteau χ2 test of Ljung and Box (1978). The Box-Ljung Q(q)

statistic is based on the first q sample autocorrelations r∗k, k = 1, . . . , q, of the residual series

and is computed by Q(q) =
∑q

k=1 r
∗2
k . The Box-Ljung statistics for the 132 time series are

graphically presented as index plots in Figure 4 for q = 5. The upper and lower index plots

are for the residuals from the DFM-IID and DFM-AR models, respectively. The displayed

Box-Ljung values are truncated at 100. It is evident that for many series the null hypothesis

of no serial correlation in the residuals is rejected. The current dynamic factor models are

therefore not fully satisfactory for this panel of macroeconomic time series. We can conclude

that the DFM-AR specification is more successful in capturing the collective dynamics in

the data set than the DFM-IID model.

6 Conclusions

We have presented new results which are instrumental for an effective likelihood-based analy-

sis of dynamic factor models. We have shown that a high-dimensional dynamic factor model

can be reduced to a low-dimensional state space model. This insight leads to substantial

computational savings when estimating the factors, evaluating the loglikelihood function or

sampling the factors in an MCMC algorithm. This state space formulation also allows us

to calculate misspecification diagnostics from the one-step ahead forecasting errors. An im-

portant motivation for this paper is macroeconomic forecasting. Stock and Watson (2002b)

advocate a two-step approach to the forecasting of macroeconomic time series: (i) extract

a sufficient number of principal components from the panel; (ii) include these factors as

(lagged) explanatory variables in a forecast model for a sub-set of the panel. With the re-

sults of this paper, likelihood-based methods become a viable alternative to the principal

component approach. Future work must establish whether these methods produce more ac-

curate forecasts. This paper is based on a fairly general modeling framework and we expect

that the new results can be exploited in other applications and for different purposes.
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Figure 4: Box-Ljung statistics

This figure presents Box-Ljung statistics Q(5) for the generalised least squares residuals of two dynamic
factor models: (i) DFM-IID and (ii) DFM-AR.
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A Appendices

A.1 Kalman filter and backward smoothing recursions

Consider the state space model (5) – (6) with initial state vector α1 ∼ N(a, P ). The Kalman

filter for a given time series yt and a given parameter vector ψ is given by

vt = yt − dt − µ−Xtβ − Zat|t−1, Dt = ZPt|t−1Z
′ + Σε,

Kt = HPt|t−1Z
′D−1

t , (38)

at+1|t = Hat|t−1 +Ktvt, Pt+1|t = HPt|t−1H
′ −KtFtK

′
t +RQR′,

for t = 1, . . . , T , with initialisations a1|0 = a and P1|0 = P , where vt is the one-step ahead

prediction error vector and Dt is its mean squared error, the one-step ahead predictor of the

state vector αt based on y1, . . . , yt−1 is at|t−1, its mean squared error matrix is Pt and the

Kalman gain matrix is Kt. Vector at+1|t and matrix Pt+1|t are evaluated recursively within

the Kalman filter. A proof and more details are provided, amongst others, by Anderson

and Moore (1979) and Durbin and Koopman (2001). For a linear state space model, the

state predictor at|t−1 is the minimum mean squared error estimator (MMSE) of αt based on

y1, . . . , yt−1; see Duncan and Horn (1972).

The smoothed estimators of the state vector can be obtained by the backward recursion

rt−1 = Z ′D−1
t vt + L′

trt, Nt−1 = Z ′D−1
t Z + L′

tNtLt, t = T, T − 1, . . . , 1,

with definition Lt = H−KtZ and initializations rT = 0 and NT = 0. From these recursions,

the MMSE of the state vector using y1, . . . , yT is computed by

at|T = at|t−1 + Pt|t−1rt−1, Pt|T = Pt|t−1 − Pt|t−1Nt−1Pt|t−1, t = T, T − 1, . . . , 1,

where at|T is the MMSE of αt and Pt|T is its minimum mean squared error. Expressions

for predictors of the state vector αt and its mean squared error Pt|s based on y1, . . . , ys for

s = t, t + 1, . . . , T − 1 can be found in Durbin and Koopman (2001). An expression for

the covariance between αt and αt−1 given y1, . . . , yT and denoted by Pt,t−1|T is presented by

de Jong and MacKinnon (1988) and given by

Pt,t−1|n = (PtNt−1 − I)L′
t−1Pt−1, t = 2, . . . , T,

which can be evaluated using the earlier recursions.
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In Section 3.2 we treat µ and β as diffuse variables and extend the state vector to include

µ and β. If the state vector contains diffuse variables, the corresponding diagonal values of

P depends on the diffuse scalar κ→ ∞, see Section 3.2. Harvey and Phillips (1979) propose

to handle diffuse variables by setting κ = κ∗ for some large value κ∗. This approach suffers

however from numerical instability. Exact KFS methods for state space models with diffuse

states are developed in Ansley and Kohn (1985), de Jong (1991) and Koopman (1997).

A.2 Proof of Lemma 1

From Conditions (ii) and (iii), we obtain

Col{Z} = Col{ΣεA
L ′},

since matrix ΣεA
L ′ has full column rank. It also implies that the columns of ΣεA

L ′ form a

basis for Col{Z}. Suppose Λ† is a full column rank matrix such that Row{Λ†} = Col{Z}.

Then there is a non-singular matrix C such that ΣεA
L ′ = Λ† ′C. This proves the necessity

part of Lemma 1.

A.3 Proof of equation (18)

We have

yH′
t Σ−1

H yHt = (yt − dt)
′AH′(AHΣεA

H′)−1AH(yt − dt)

= (yt − dt)
′JHΣ−1

ε (yt − dt),

where JH
def.
= AH′(AHΣεA

H′)−1AHΣε is the projection matrix for a GLS with covariate

matrix AH′ and variance matrix Σ−1
ε . Similarly, define

JL
def.
= AL ′(ALΣεA

L ′)−1ALΣε,

as the GLS projection matrix for covariate matrix AL′ and variance matrix Σ−1
ε . Since the

transformation matrix A = (AL′, AH′)′ is full rank and ALΣεA
H′ = 0, we must have

JH = I − JL.

The definition of AL implies that JH = I − Σ−1
ε Λ†(Λ† ′Σ−1

ε Λ†)−1Λ† ′ and

JH′ = ΣεA
H′(AHΣεA

H′)−1AH = I − Λ†(Λ† ′Σ−1
ε Λ†)−1Λ† ′Σ−1

ε

def.
= MΛ. (39)
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The proof of (18) is completed by the identity JHΣ−1
ε = JHΣ−1

ε JH′ and the definition

et
def.
= MΛ(yt − dt) as the GLS residual for data vector yt − dt, covariate Λ† and variance

matrix Σε.

A.4 Proof of two-step procedure in Section 3.2.2

For the proof of the two-step procedure we need the following lemma.

Lemma 3. Given the linear regression model

yx = Xxδ + ξ, ξ ∼ N(0,Ω), (40)

where yx is an n × 1 vector, Xx is an n × k matrix of full column rank and Ω is an n × n

positive definite matrix. Suppose that δ ∼ N(0, κIk) for some scalar κ > 0 and denote the

posterior distribution conditional on yx by pκ(δ|y
x). We then have

pd(δ|y
x)

def.
= lim

κ→∞
pκ(δ|y

x) = g(γ,Γ),

where g(γ,Γ) is the multivariate Gaussian density with mean γ and variance Γ given by

γ = (Xx′Ω−1Xx)−1Xx′Ω−1yx, Γ = (Xx′Ω−1Xx)−1.

Proof. See e.g. Ansley and Kohn (1985) and de Jong (1991).

Denote W = (I M ′
Λ)′. The MMSLE of MΛµ and β based on yH are given by

(
β̂H

M̂Λµ

)
= W

( ∑
tX

H ′
t Σ−1

H XH
t

∑
tX

H ′
t Σ−1

H AH
∑

tA
H ′Σ−1

H XH
t

∑
tA

H ′Σ−1
H AH

)+( ∑
tX

H
t Σ−1

H yHt∑
tA

H ′Σ−1
H yHt

)
,

where M+ denotes the Moore-Penrose inverse for some matrixM , see Magnus and Neudecker

(1988, Theorem 8, p. 273). The corresponding mean squared errors are given by

Var

(
β̂H

M̂Λµ

)
= W

( ∑
tX

H ′
t Σ−1

H XH
t

∑
tX

H ′
t Σ−1

H AH
∑

tA
H ′Σ−1

H XH
t

∑
tA

H ′Σ−1
H AH

)+

W ′.

Using the results from Appendix A.3 and a result on the Moore-Penrose inverse of partitioned
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matrices, see Rao and Mitra (1971, p. 41), we obtain

β̂H =

(
∑

t

X̃ ′
tΣ

−1
ε X̃t

)−1∑

t

X̃ ′
tΣ

−1
ε ỹt, Var(β̂H) =

(
∑

t

X̃ ′
tΣ

−1
ε X̃t

)−1

, (41)

where ỹt and X̃t are defined in (25).

The following arguments justify the particular application of KFS in the second step.

Lemma 3 implies that the MMSLE and the corresponding mean squared errors for β and µL

are equal to the posterior mean and variance if these coefficients are assumed diffuse. Let

pd(β, µ
L, α|y) be the posterior density for diffuse β and µL, then

pd(α, β, µ
L|y)

def.
= lim

κL,κH→∞
pκL,κH

(α, β, µL|y) = lim
κL,κH→∞

p(yL|α, β, µL)p(α)pκL
(µL)pκH

(β|yH)

pκL,κH
(yL|yH)

= p(yL|α, β, µL)p(α) lim
κL→∞

pκL
(µL)

pd,κL
(yL|yH)

lim
κH→∞

pκH
(β|yH)

= lim
κL→∞

p(yL|α, β, µL)p(α)pκL
(µL)pd(β|y

H)

pd,κL
(yL|yH)

(42)

where κL and κH refer to diffuse variables in the model equations for yLt and yHt , respectively,

and where

pd,κL
(yL|yH) =

∫
p(yL|β, µL)pκL

(µL)pd(β|y
H)dµLdβ.

From Lemma 3, pd(β|y
H) is a density with mean β̂H and variance Var(β̂H). Equation (42)

represents the smoothing density of the linear state space model (27) and (6). This completes

the proof of the two-step procedure.

The MMSLE of AHµ is given by

ÂHµ = ȳH − X̄H β̂ = AH(ȳ − X̄β̂).

Multiplying both sides of this equation with ΣεA
H ′(AHΣεA

H ′)−1 and using equation (39),

we obtain the MMSLE of µH = MΛµ as given by

M̂Λµ = MΛ(ȳ − X̄β̂).

The expressions in (28) and (29) follow straightforwardly.

A.5 Proof of diffuse likelihood in Section 3.2.3

The following two lemmas are required for the main proof.
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Lemma 4. Consider regression model (40) in Lemma 3 with δ ∼ N(0, κI) and κ → ∞.

The diffuse loglikelihood ℓd(y) defined in (20) is given by

ℓd(y) = −
n

2
log 2π −

1

2
log |Ω| −

1

2
|Xx′Ω−1Xx| −

1

2
ex′Ω−1ex,

where ex is the residual vector from a GLS regression on yx with covariate matrix Xx and

variance matrix Ω.

Proof. See e.g. Shephard (1993).

Lemma 5. Consider regression model (40) in Lemma 3 and its counterpart

yx = X̃xδ + ξ, ξ ∼ N(0,Ω), (43)

where X̃x is a full column rank matrix and Col{Xx} = Col{X̃x}. Denote the diffuse likelihood

of model (40) by pd(y
x) and p̃d(y

x) as the diffuse likelihood of model (43) for δ ∼ N(0, κI)

and κ → ∞. Then pd(y
x) and p̃d(y

x) are proportional. Without loss of generality, suppose

X̃x = XxM for some invertible matrix M then,

pd(y
x) = |M |p̃d(y

x).

Proof. From Lemma 4 we get

log pd(y
x) = −

n

2
log 2π −

1

2
log |Ω| −

1

2
log
∣∣Xx′Ω−1Xx

∣∣− 1

2
ex′Ω−1ex,

log p̃d(y
x) = −

n

2
log 2π −

1

2
log |Ω| −

1

2
log
∣∣M ′Xx′Ω−1XxM

∣∣− 1

2
ẽx′Ω−1ẽx,

where ex is defined in Lemma 4 and ẽx is the residual vector from a GLS regression on

yx with covariate matrix X̃x and variance matrix Ω. Since Col{Xx} = Col{X̃x}, we have

ex = ẽx. The result follows from
∣∣∣X̃x′Ω−1X̃x

∣∣∣ = |MXx′Ω−1XxM | = |M |2 |Xx′Ω−1Xx|.

Define

µ∗ =

(
µL

µH

)
=

(
ALµ

AHµ

)
,
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y = (y′1, . . . , y
′
T )′ and y∗ = (y∗′1 , . . . , y

∗′
T )′, we have

∫
p(y|µ, β)pκ(µ, β)dµdβ = |A|T

∫∫
p(y∗|µ, β)pκ(µ, β)dµdβ

= |A|T−1

∫∫
p(y∗|µ∗, β)pκ(µ

∗, β)dµ∗dβ (44)

= |A|T−1

∫∫
p(yH|µH , β)p(yL|µL, β)pκ(µ

∗, β)dµ∗dβ

where equation (44) follows directly from Lemma 5. An application of the monotone con-

vergence theorem and some elementary calculations give

lim
κ→∞

κ−(N+K)/2

∫∫∫
p(yH |µH, β)p(yL|µL, β)pκ(µ

∗, β)dµLdµHdβ

= pd(y
H) lim

κ→∞
κ−m/2

∫∫∫
p(yL|µL, β)pκ(µ

L)pd(µ
H , β|yH)dµLdµHdβ,

(45)

where p(yH) is the diffuse likelihood of the second equation,

pd(y
H) = lim

κ→∞
κ−(N+K−m)/2

∫
p(yH|µH , β)p(µH, β)dµHdβ,

pd(µ
H , β|yH) = lim

κ→∞
pκ(µ

H , β|yH).

Similarly to the argument leading to (42) we have

lim
κ→∞

κ−m/2
∫∫∫

p(yL|µL, β)pκ(µ
L)pd(µ

H , β|yH)dµLdµHdβ

= lim
κ→∞

κ−m
∫∫

p(yL|µL, β)pκ(µ
L)pd(β|y

H)dµLdβ

= exp{ℓd(y
L)},

and, using (12), we have

ℓd(y) = (T − 1) log |A| + log pd(y
H) + ℓ(yL)

=
T − 1

2
(log |ΣL| − log |Σε|) + log pd(y

H) + ℓ(yL).

The density pd(y
H) is the diffuse likelihood of the linear model

yHt = µH +XH
t β + eHt , eHt ∼ N(0,ΣH), t = 1, . . . , T. (46)
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Define Xa
t = (XH

t I) and Xa = (Xa
1 , . . . , X

a
T ) such that (46) can be written as the multiple

regression model

yH = Xa

(
β

µH

)
+ eH , eH ∼ N(0, I ⊗ ΣH),

where eH = (eH ′
1 , . . . , eH ′

T )′. From Lemma 4 we obtain

log pd(y
H) = −

T (N −m)

2
log 2π −

T

2
log |ΣH | −

1

2
log

∣∣∣∣∣
∑

t

Xa ′
t Σ−1

H Xa
t

∣∣∣∣∣−
1

2

∑

t

ē′tΣ
−1
H ēt,

where ēt are residuals from GLS on yH with covariates Xa and variance matrix I ⊗ΣH . By

using an argument similar to the one used in Appendix A.3, we have

∑

t

ē′tΣ
−1
H ēt =

∑

t

ỹ′tΣ
−1
ε ỹt.

Finally, it can be shown that

∣∣∣∣∣
∑

t

Xa ′
t Σ−1

H Xa
t

∣∣∣∣∣ =

∣∣∣
∑

t X̃
′
tΣ

−1
ε X̃t

∣∣∣
|ΣH |

TN−m,

and from Condition (iv) in Section 3.1.1, that is |ΣH | = 1, we have

log pd(y
H) = −

T (N −m)

2
log 2π −

N −m

2
log T −

T

2
log

∣∣∣∣∣
∑

t

X̃ ′
tΣ

−1
ε X̃t

∣∣∣∣∣−
1

2

∑

t

ỹ′tΣ
−1
ε ỹt.

The result follows.

A.6 The score function of Section 4.1.1

The derivatives of (33) with respect to the system matrices Z, H , Σε and Ση of the linear

Gaussian state space model (5) – (6), with µ = 0, β = 0 and R = I, are given by

∂ℓ(y)

∂Z
= Σ−1

ε (
T∑

t=1

{yt − dt}a
′
t|T − ZS

(0)
1:T ),

∂ℓ(y)

∂Σε

= Q∗
εΣ

−1
ε −

1

2
diag(Q∗

εΣ
−1
ε ),

∂ℓ(y)

∂H
= Σ−1

η (S
(1)
2:T −HS

(0)
2:T ),

∂ℓ(y)

∂Ση

= Q∗
ηΣ

−1
η −

1

2
diag(Q∗

ηΣ
−1
η ).
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where Q∗
ε = Qε − T , Q∗

η = Qη − T − 1, with Qε and Qη defined in (34),

S
(0)
j:k =

k∑

t=j

at|Ta
′
t|T + Pt|T , S

(1)
j:k =

k∑

t=j

at|Ta
′
t−1|T + Pt,t−1|T , (47)

for j, k = 1, . . . , T (j ≤ k), where at|T , Pt|T and Pt−1,t|T = P ′
t,t−1|T are evaluated by the

KFS methods of Appendix A.1. Matrices Qε and Qη depend on the smoothed disturbances

ε̂t = yt−dt−Zat|T and η̂t = at|T−Fat−1|T together with their variances which depend on Pt|T ,

Pt,t−1|T and the system matrices. The derivatives given above are evaluated at ψ = ψ∗. The

system matrices are functions of coefficient vector ψ. For cases where µ 6= 0, β 6= 0 and/or

R 6= I, similar expressions can be obtained for the derivatives but the expressions are more

lengthy and more intricate, see Koopman and Shephard (1992) for a detailed discussion.

A.7 EM algorithm of Section 4.1.2

The details of the EM algorithm are specific to the model specification. We illustrate the EM

for model (2), (3) and (4) with qΘ = 0, qΨ = 1 and diagonal matrix Ψ1. The details are given

for the likelihood function conditional on observation y1. The treatment of initial conditions

is intricate in its detail and does not provide further insight. The model considered is also

discussed by Watson and Engle (1983, section 5). Given the definitions in the previous

subsection, the M step provides new estimates of the system matrices and are given by

Z+
i = −

T∑

t=2

(yit − Ψiiyi,t−1)(at|T − Ψiiat−1|T )′[Ψ2
iiS

(0)
1:T−1 − ΨiiS

(1)
2:T − ΨiiS

(1) ′
2:T + S

(0)
2:T ]−1,

F+ = S
(1)
2:TS

(0)−1
2:T , (48)

Ψ+
ii =

T∑

t=2

ZiPt,t−1|TZ
′
i − ε̂itε̂i,t−1 / (ZiS

(0)
1:T−1Z

′
i +

T∑

t=2

yit{ε̂it − Ziat|T}),

where Zi is the ith row of Z and Ψii is the ith diagonal element of Ψ1 for i = 1, . . . , N .

Expressions for Σ+
ε and Σ+

η are obtained as solutions of Qε = 0 and Qη = 0, respectively.

The system matrices are evaluated at ψ = ψ∗. The new coefficients for λi are distilled from

Z+
i for i = 1, . . . , N while new coefficients for Φi (i = 1, . . . , qΦ) are distilled from F+.

The equations for Z+
i and Ψ+

ii in (48) can not be solved separately. Keeping S
(0)
jk , S

(1)
jk ,

at|T , Pt,t−1|T and ε̂it (i = 1, . . . , N , t = 2, . . . , T ) fixed, we obtain a solution by repeatingly

solving one equation separately and substituting its solution in the other equation. This

same scheme is also used in Watson and Engle (1983). Meng and Rubin (1993) show that

this algorithm retains the attractive properties of the EM algorithm. In particular, the

35



likelihood is monotonically increasing over the iterations and the algorithm converges to an

optimum.
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