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Abstract

There are various importance sampling schemes to estimate rare event probabilities in Markovian systems

such as Markovian reliability models and Jackson networks. In this work, we present a general state depen-

dent importance sampling method which partitions the state space and applies the cross-entropy method to

each partition. We investigate two versions of our algorithm and apply them to several examples of relia-

bility and queueing models. In all these examples we compare our method with other importance sampling

schemes. The performance of the importance sampling schemes is measured by the relative error of the esti-

mator and by the efficiency of the algorithm. The results from experiments show considerable improvements

both in running time of the algorithm and the variance of the estimator.

Keywords: Cross-Entropy, Rare Events, Importance Sampling, Large-Scale Markov Chains.

1 Introduction

Markov chain modeling is an important tool that is used heavily in many Applied Probability and Stochastic
Operations Research studies of systems such as communication, production, reliability, queueing, inventory,
etc (Dayar and Stewart 2000; Stewart 2007). For realistic system modeling these Markov chains become
enormously large with state spaces in the order of millions or even more. This large number of states that
we observe in Markov chain modeling results from the exponential increase of the number of states with the
number of state variables (the ‘curse of dimensionality’). The advantage of Markov chain modeling is found in its
computable quantities by solving systems of linear equations, for instance for the stationary distribution, or for
absorption probabilities. Clearly, when the state space is large enough, direct methods (e.g. Gauss elimination)
are inefficient. Other numerical techniques have been developed and analyzed which are based mostly on
iterative methods, projection techniques, and aggregation/disaggregation. The applicability and efficiency of a
method depend strongly on the structure of the Markov chain under study (Dayar and Stewart 2000; Stewart
1999).

Our interest is the computation of absorption probabilities of extremely small order, say 10−9 or less. That
is, the set of absorption states is a so-called rare event. Rare events are found typically in applications such
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as reliability systems where the set of states in which the whole system fails, should almost never occur, or in
queueing systems that model telecommunication technologies where loss of traffic packets should be unlikely. In
this paper we consider estimation of these absorbing probabilities by Monte Carlo simulation because we had
the following arguments not to choose one of the numerical techniques that we mentioned earlier.

1. We need the probabilities in a few states only whereas the numerical methods compute these quantities in
all states.

2. For large state spaces one needs to implement advanced numerical techniques that fall beyond our scope.

3. We like to have fast and efficient algorithms.

4. We do not know in advance the order of magnitude of the target probabilities, thus this makes the stopping
criterion in iterative methods uncertain, or maybe unnecessary small.

Since we deal with rare event probabilities of extremely small order, we execute the simulation under an
importance sampling measure. In many problems involving rare events, importance sampling has provided
efficient estimators with huge variance reduction and substantial running time improvement, see the recent
surveys Bucklew 2004; Juneja and Shahabuddin 2006; Rubino and Tuffin 2009. The challenge of importance
sampling is to come up with a biasing scheme or change of measure that indeed gives these improvements. There
is substantial literature available on importance sampling for rare event problems in Markov chains, both in a
more generic setting, and in specific models. Concerning the generic setting, the basic idea is to approximate
the zero-variance change of measure which is theoretically known but practically not implementable (Glynn and
Iglehart 1989). We mention (Bucklew et al. 1990) who applied large deviations techniques, (Dupuis and Wang
2005) who considered the importance sampling problem as a stochastic game, (Ahamed et al 2006; Randhawa
and Juneja 2004) who considered the rare event problem as an expected average reward in a regenerative Markov
chain and applied stochastic approximation techniques. Several adaptive techniques have been proposed which
attempt to learn the zero-variance change of measure for Markov chains by an iterative procedure: a number
of sample paths is generated and based on the ‘scores’ of these path the current change of measure is updated
(Desai and Glynn 2001; Kollman et al. 1999).

Many more research studies has been carried out to construct importance algorithms that are taylor-made for
specific problems, we refer to the surveys (Bucklew 2004; Heidelberger 1995; Juneja and Shahabuddin 2006;
Rubino and Tuffin 2009) for some details. Our paper has the intention to propose an importance sampling
algorithm that is generally applicable to rare events in multi-dimensional Markov chains, although our examples
will be taken from queueing and reliability. Our algorithm builds on the cross-entropy method (Rubinstein and
Kroese 2004) which we will describe in more detail in section 3. At this point it suffices to understand that
the cross-entropy method updates iteratively the change of measure by maximizing a parameterized nonlinear
program, where the parameters are the transition probabilities of the Markov chain. This approach breaks down
when there are too many parameters, i.e., when we deal with large Markov chains.

To tackle the problem of too many parameters we propose to partition the state space (and their associated
transitions) in smaller ‘patches’, and then apply the cross-entropy iterations on these smaller sets. We consider
two versions of this approach. In the first version we let each transition probability be a parameter that is to be
determined optimally by the cross-entropy method. Once the probabilities of a patch are determined, we keep
them fixed in the cross-entropy iterations on subsequent patches. The second version assumes a Markov chain
with a face-homogeneous structure such as we encounter typically in Jackson queueing networks (Ignatiouk
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2005). When we keep this structure in the change of measure, the number of parameters is already reduced to
a tractable size. Then we apply our patching algorithm but now we do not keep the parameters fixed while
iterating subsequent patches. Other attempts of reducing the parameter space in the cross-entropy method has
been reported in Boer and Nicola (2002). The authors use also a grouping idea, however they group states
along boundary layers that depend on the contents of the queues.

The rest of the paper is organized as follows. In Section 2 we define the performance measures to compare
importance sampling estimators, and we define the type of rare events that we shall consider in this paper. In
the first part of Section 3 we describe the classical cross-entropy method for Markov chains, and then we present
our patching algorithm that forms the basis of our study. Section 4 contains the face-dependent methods, and
Section 5 shows results of our methods applied to reliability models and to Jackson queueing networks.

2 Preliminaries

We assume some underlying probability space (Ω,A,P) of the Markov chain such that the chain has stationary
transition probabilities and is irreducible over its state space. We assume that a family of rare events {An} ⊂ A
is defined and parameterized by n such that limn→∞ P(An) = 0. Most often this decaying is exponentially fast
limn→∞

1
n log P(An) = −θ based on a large deviations asymptotic (Bucklew 2004). Let Yn be the unbiased

estimator of P(An) obtained by averaging i.i.d. replications of 1{An} (the indicator function of the set An)
which are generated under the original probability P, and let Y ∗n be an unbiased importance sampling estimator
obtained by averaging i.i.d. replications of

1{An}
dP
dP∗n

,

generated under a change of measure P∗n, where dP/dP∗n is the likelihood ratio, and where we assume that
1{An}dP is absolute continuous w.r.t. dP∗n. The performance of an importance sampling estimator is measured
commonly through its relative error, the exponential decay rate of its second moment, and its effort (Asmussen
and Rubinstein 1995; Heidelberger 1995). These three performance measures of the importance sampling
estimator are

RE[Y ∗n ] =

√
Var∗n[Y ∗n ]
E∗n[Y ∗n ]

;

RAT[Y ∗n ] =
log E∗n

[
(Y ∗n )2

]
log E∗n [Y ∗n ]

;

EFF[Y ∗n ] = − log (Var∗n[Y ∗n ]× CPU[Y ∗n ]) ,

where CPU means the running time of the importance sampling algorithm on our computer. Notice that we take
here expectations w.r.t. the probability measure P∗n. Clearly, our target is to obtain small variances (relative to
the mean), which is expressed by a small relative error RE. Ideally a zero-variance estimator is associated with
the change of measure P∗n(·) = P(·|An), but this measure is not implementable because it requires knowledge of
the unknown P(An) (Glynn and Iglehart 1989). A ‘second best’ estimator would have bounded relative error,
one says that the estimator is strongly efficient (L’Ecuyer et al. 2008): lim supn→∞RE[Y ∗n ] < ∞. It would
mean that the number of samples required to achieve a fixed relative error is constant for all n. Finding an
importance sampling estimator with this property is in most cases a hard problem, and thus one seeks usually an
asymptotically optimal, or logarithmically efficient estimator (L’Ecuyer et al. 2008): lim infn→∞RAT[Y ∗n ] ≥ 2.
It would mean that, assuming that the rare event probabilities P(An) decay exponentially fast, the required
sample sizes grow at most polynomially. Finally, we include the EFF-measure which takes into account the
computing time of the importance sampling algorithm (the − log is to get convenient numbers).
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2.1 The Rare Events

We restrict to rare events An in Markov chains that are given by hitting times to absorption sets of the state
space. To make this clear, we drop for the moment the rarity parameter n, thus, we deal with a discrete-
time Markov chain (X(t))∞t=0 on a finite but large state space X , and with a matrix of transition probabilities
P = (p(x, y))x,y∈X , i.e., p(x, y) = P(X(t + 1) = y|X(t) = x). The state space is partitioned into three sets: G
is a small set of ‘good’ states, F is a small set of ‘failed’ or ‘bad’ states, and the other states form the large set
of ‘internal’ states T = X \ (G ∪ F). For each internal state x ∈ T let γ(x) be the probability that the Markov
chain will hit the failure set before the good set when the chain starts in state x. (Equivalently, γ(x) is the
probability of absorption in the bad set of a Markov chain (Xabs(t)) that is constructed from (Xt) by making
the good and bad states absorbing: pabs(x, x) = 1 for all x ∈ G ∪ F .) Finally, let I ⊂ T be the set of internal
states that can be reached from the good states in one transition:

I = {y ∈ T : ∃ x ∈ G s.t. p(x, y) > 0}.

Typically we are interested in the probabilities of rare events A that the chain hits a bad state before a good
state starting from some x ∈ I, i.e., P(A) = γ(x). In some applications we let the chain start in a good state
while the first transition takes the chain out of the good set, i.e., we consider P(A) =

∑
y∈I p(x, y)γ(y) (for

x ∈ G).

3 State-Dependent Cross-Entropy

In this section we first give a short review of the state-dependent cross-entropy method for Markov chains
(Rubinstein and Kroese 2004, Section 3.3), after which in part 3.1 we describe our algorithm.

When we run the standard simulations, we generate sample paths X of the Markov chain by simulating its
consecutive states using the matrix P . The sample paths have random length

T = inf{t > 0 : X(t) ∈ G ∪ F},

where we assume for ease of notation that the chain starts at time 0 in some fixed state x0 ∈ I. (We still have
the rarity parameter n dropped). For importance sampling simulations we restrict the change of measure P∗

so that we retain a Markov chain, say with a matrix of transition probabilities P ∗. We restrict even further by
demanding for the individual transition probabilities to satisfy p∗(x, y) > 0 if and only if p(x, y) > 0, which is
sufficient for the absolute continuity requirement 1{A}dP � dP∗. Let P be the set of all feasible matrices of
transition probabilities. The idea of the cross-entropy method is to choose a feasible matrix which minimizes
the Kullback-Leibler divergence between the optimal (zero-variance) change of measure and the importance
sampling change of measure. After some standard algebraic manipulations, this comes down to solving

sup
P∗∈P

E[1{X(T ) ∈ F} log dP∗(X)]. (1)

Notice that the sample path probability dP∗(X) is a product of transition probabilities:

dP∗(X) =
T∏
t=1

p∗(X(t− 1), X(t)), (2)

and notice that we take expectations with respect to the original probability measure P. There are several
ways of attacking the cross-entropy optimization program (1), for instance, solving the first order conditions.
However, in almost all cases the program is not analytically nor numerically tractable, and thus one resorts
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to simulation. Again, several simulation techniques may be applied, for instance stochastic approximation,
however, it turns out that sample path optimization is most conveniently, i.e., one considers the stochastic
counterpart of (1), see Rubinstein and Kroese (2004). Since the program involves the rare event, we first apply
a change of measure:

E[1{X(T ) ∈ F} log dP∗(X)] = E(0)

[
dP
dP(0)

(X)1{X(T ) ∈ F} log dP∗(X)
]
. (3)

This is done for a probability measure P(0) such that (i) the Markov property is retained; (ii) the associated
matrix of transition probabilities is feasible P (0) ∈ P; (iii) the set A is ‘not so’ rare under P(0). The program
(3) is solved iteratively by estimation: let X1,X2, . . . ,Xk be i.i.d. sample paths of the Markov chain generated
by simulating the states according to a matrix of transition probabilities P (j) until absorption in the good or
bad states, then we calculate for j = 0, 1, . . .

P (j+1) = arg max
P∗∈P

1
k

k∑
i=1

dP
dP(j)

(Xi)1{Xi(T ) ∈ F} log dP∗(Xi). (4)

We repeat this ‘updating’ of the change of measure a few times until the difference P (j+1)−P (j) is small enough
(in some matrix norm).

It is straightforward to solve the optimization program (4) by considering its first order conditions, and using
the product form expression of the sample path probability (2). Denote by Ni(x, y) the number of times that
the i-th sample path of the Markov chain makes the transition from state x to state y, and denote by Li the
likelihood ratio of the i-th sample path. Then we get for the individual entries

p(j+1)(x, y) =
∑k
i=1 Li1{Xi(T ) ∈ F}Ni(x, y)∑k

i=1 Li1{Xi(T ) ∈ F}
∑
y∈X Ni(x, y)

. (5)

Clearly, we might get a zero update for a transition x → y which is not observed in the sample but which
has originally a positive probability p(x, y). To overcome this problem it is suggested to apply a weighting
combination (Rubinstein and Kroese (2004), Section 4.2), i.e., denote by p̂(j+1)(x, y) the expression of (5), then

p(j+1)(x, y) = αp(x, y) + (1− α)p̂(j+1)(x, y), (6)

for some α ∈ (0, 1).

3.1 The Patching Algorithm

The cross-entropy method breaks down when there are too many parameters to update. In this section we
consider an adaptation that decreases the number of parameters to update in each iteration. Recall that the
parameters in our study are the transition probabilities of a finite-state Markov chain.

The main idea of our so-called patching algorithm is to implement the iteration rule (4) recursively in small
portions of the state space. We start with a set of the state space that contains the good states, G, and a small
set of internal states some of which we specify as being ‘bad’. Being a small subset of the state space we call
it a patch. Then we restrict the Markov chain to this patch and apply the the cross-entropy iteration (4) for
finding a change of measure for the transition probabilities in the patch. These updated transition probabilities
are kept fixed for the rest of the algorithm. Next, we enlarge the patch and apply the same procedure to the
parameters which are introduced newly in the expanded patch. We continue enlarging the patch and updating
the parameters until the size of the patch matches the original state space. The construction of the patches
should be done in such a manner that the Markov chain restricted to a patch remains irreducible.
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As a simple example, consider a two-dimensional Markov chain on

X = {0, 1, ..., 10}2 = {x = (x1, x2) : x1, x2 ∈ {0, 1, ..., 10}},

with transitions ±e1 and ±e2 (whenever possible) where e1 = (1, 0) and e2 = (0, 1). The state space is
partitioned into the three sets as mentioned in Section 2.1: the good set G = {0} = {(0, 0)}, the bad set
F = {(10, 10)}, and the internal set T of all other states, see Figure 1. The initial state of all simulation paths
is (1, 0).

Figure 1: The state space of the simple example

Let the first patch be Patch1 = {0, 1, 2, 3, 4}2, which contains the good set G. Notice that Patch1 is proportional
to the state space X by the same reduction factor in both dimensions. Thus it is natural to let F1 = {(4, 4)}
be the bad set in Patch1. Next, we need to define the matrix of transition probabilities P1 by restricting P to
Patch1. Define the “border states”

B1 = {(x1, 4) : 0 ≤ x1 ≤ 4} ∪ {(4, x2) : 0 ≤ x2 ≤ 4}.

Clearly p1(x, y) = p(x, y) for all transitions x → y when x is not a border state. For the border states we
renormalize the probabilities of transitions to states in Patch1:

p1(x, y) =
p(x, y)∑

z∈Patch1
p(x, z)

, x ∈ B1, and y ∈ Patch1.

Finally, to start off the cross-entropy iterations with a matrix of transition probabilities P (0)
1 such that the bad

set F1 is less rare than simulating with matrix P1, we take the uniform transition probabilities, i.e.,

p1(x, y) > 0 ⇔ p
(0)
1 (x, y) =

1
number of transitions out of state x in Patch1

.

Then by using expressions (5) and (6), we update the transition probabilities for the change of measure a few
times. The resulting change of measure p∗1(x, y) for transitions out off x ∈ Patch1 \ B1 are stored permanently,
and will be used both in the subsequent steps of the algorithm, and in the final matrix of transition probabilities
P ∗ on the whole state space. We denote the set of these transitions by U and we call them permanent transitions.

After dealing with Patch1, we enlarge it to

Patch2 = {x = (x1, x2) : 0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 6}.

6



The bad set becomes F2 = {6, 6}. We get the matrix of transition probabilities P2 on Patch2 by restricting the
original matrix P in the same manner as above: p2(x, y) = p(x, y) for all transitions x → y when x is not a
border state (6, x2) or (x1, 6), and for the border states we renormalize. Now consider the matrix P (0)

2 to start
off the cross-entropy iterations on Patch2. We let it be the probabilities determined in Patch1 for the permanent
transitions, and otherwise they are uniform:

p
(0)
2 (x, y) =

p∗(x, y) for (x→ y) ∈ U ,
1

number of transitions out of state x in Patch2
otherwise.

Alternatively, also for the states x ∈ B1 \ F1 in the (previous) border set (except the bad states), we might
use the transition probabilities p∗1(x, y) (where y ∈ Patch1) and renormalize these after adding p(x, y) (where
y ∈ Patch2 \ Patch1). In our implementations we apply the latter.

Having set the initial matrix P
(0)
2 and the transitions whose probabilities need to be updated, we apply

again the cross-entropy method for finding a change of measure P ∗2 on Patch2. Recall that we keep p(j)
2 (x, y) =

p∗1(x, y) = p∗(x, y) for all transitions (x → y) ∈ U during the cross-entropy iterations, thus the updating rule
(5) is applied to the other transitions. With the resulting matrix P ∗2 we update the permanent set U by adding
the probabilities p∗2(x, y) of transitions (x→ y) that were not permanent and for which x ∈ Patch2 \B2 (clearly,
B2 is the set of border states of Patch2).

This procedure is repeated by enlarging Patch2 to Patch3, and later on to Patch4 which is the whole state
space X , see Figure 2. After these steps we have found our change of measure P ∗ for running the importance
sampling simulations and estimating the original rare event probability.

Figure 2: The steps in the patching algorithm.

In this small example we chose the patches having the same structure as the original state space, i.e., {0, 1, . . . ,m}2

where m increases with jumps. However, there are numerous other ways of defining the patches. Other choices
to be made are the number of sample paths in the cross-entropy iterations, the weighting factor α in the updat-
ing rule (6), and the number of cross-entropy iterations per patch. The performance of the resulting important
sampling estimator may depend on all these choices as we will see in Section 5 with the numerical results. There
are no general rules for deciding which choices will give the better results. Hence, our choices are mainly based
on “trial and error”.

Summarizing, the general cross-entropy patching algorithm reads as follows.

Algorithm 1.

1. Set i = 1.
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2. Choose Patchi.

3. Form P
(0)
i for Patchi.

4. Apply the updating formulae (5) and (6).

5. Stop when convergence has been obtained, otherwise set j = j + 1 and go to step 3.

6. Stop when Patchi matches with the original state space, otherwise set i = i+ 1 and go to step 2.

7. Estimate the rare event probability P(A) by using importance sampling.

4 Face-Dependent Cross-Entropy

In the previous section we considered the cross-entropy method for general finite-state (discrete-time) Markov
chains, and we described our approach to update the transition probabilities in smaller groups or patches. In
this section we shall consider face-homogeneous Markov chains with bounded jumps, to be explained shortly
(see for instance also Ignatiouk (2005)). It is even allowed that the state space of the chain is infinite. We shall
describe the “standard” cross-entropy method for finding a change of measure for each face, and we shall give
a cross-entropy algorithm that combines faces and patches.

We encounter face-homogeneous Markov chains typically in Jackson queueing networks. These networks are
modeled by continuous-time Markov chain, but by embedding at the jump times we obtain a discrete-time
Markov chain, (X(t))∞t=0, with state space X = Zd+ (assuming d queues). For any x ∈ Zd+, let Λ(x) be the set
of indices i for which xi > 0. For any subset Λ ⊂ {1, 2, ..., d}, define face FΛ by

FΛ = {x ∈ Zd+ : Λ(x) = Λ}.

Specifically we have F∅ = {0}. The face-homogeneity assumption is that the transition probabilities of the chain
should satisfy

p(x, x+ y) = P (X(t+ 1) = x+ y | X(t) = x) = pΛ(x)(y),

for all x, x+y ∈ Zd+. Hence, we can define 2d independent random variables ξΛ on Zd with probability densities

P(ξΛ = y) = pΛ(y) y ∈ Zd.

If we suppose that ξΛ(1), ξΛ(2), . . . are i.i.d. copies of ξΛ, then the Markov chain evolves according to

X(t+ 1) = X(t) + ξΛ(X(t))(t+ 1).

Notice that (SΛ(n) =
∑n
t=1 ξΛ(t))∞

n=1
is a (homogeneous) random walk in Zd, thus the Markov chain (X(t))

might be called a face-homogeneous random walk.

Again we assume some rare event probability P(A) given by absorption in the bad set before absorption in
the good set. We apply the cross-entropy method for finding a change of measure (or transition probability
matrix) P ∗ under which the importance sampling simulations will be executed. We restrict the class of feasible
transition matrices P in the optimization program (1) to those for which the face-homogeneity is retained.
Hence, the sample path probability (2) can be expressed as

dP∗(X) =
T∏
t=1

p∗Λ(X(t))(X(t+ 1)−X(t)).

8



Therefore, if we let MΛ denote the number of jumps of the jump variable ξΛ in face FΛ, we get a total of∑
Λ⊂{1,2,...,d}MΛ parameters to update during the cross-entropy iterations, whatever the size of the state space

of the Markov chain is. If we again denote by Ni(Λ, y) the number of times that the i-th sample path of the
Markov chain makes the the jump ξΛ = y, i.e., the associated transition (x→ x+y) for some x ∈ Λ, and denote
by Li the likelihood ratio of the i-th sample path, then the update rule (5) in the j-th cross-entropy iteration
becomes

p
(j+1)
Λ (y) =

∑k
i=1 Li1{Xi(T ) ∈ F}Ni(Λ, y)∑k

i=1 Li1{Xi(T ) ∈ F}
∑
y Ni(Λ, y)

(7)

The weighting expression (6) is still used with some parameter α ∈ (0, 1).

A similar idea of reducing the parameter space has been studied in Boer and Nicola (2002) for state-dependent
tilting under the method called “Boundary Layers”. The fundamental assumption this method is based on
is that when a queue’s content becomes large, the transition probabilities (in an optimal change of measure)
will hardly depend on that queue’s content. Therefore, it is suggested to assign the same set of transition
probabilities to a group of such states. Thus, the grouping is based on the levels of the queues. We, on
the other hand, consider the intrinsic homogeneous face structure of the Markov chain which we retain when
implementing the cross-entropy method. Specifically for queueing applications, the fundamental observation for
face-dependent cross-entropy method is that it is independent of the level of the queues.

4.1 The Patching Algorithm

As mentioned in Section 3.1, the main idea of the patching algorithm is to update the change of measures for
the whole state space in small portions. However, what matters in case of face-dependency is the size of the
total number of transitions

∑
Λ⊂{1,2,...,d}MΛ of the d random walks constituting the Markov chain. To explain

the patching idea, we return to the original setting in Section 2 and denote the rare event by An where the
rarity parameter n → ∞. For instance in the Jackson network applications, the rarity parameter n will be an
overflow level of one or more queues.

For the patching version of our algorithm we apply the same technique as the standard cross-entropy method
for level-crossing probabilities (Rubinstein and Kroese (2004)), and let the rarity parameter n increase as the
iterations go on. For the first Patch we set n0 to some low value. We update the change of measures according to
this level. The parameters updated in Patchi form a good initial probability matrix for Patchi+1. By gradually
increasing the value of the parameter n, the sample paths are more and more pushed to the rare event set.
However, as will be seen in Section 5, the starting and the increasing value of the parameter n play a crucial
role in the reduction of the variance.

5 Numerical examples

In this section we will discuss the performance of our algorithms mentioned in previous sections in two different
models: highly reliable Markovian systems and Jackson networks. These systems differ in terms of rare event
setting as mentioned in Heidelberger (1995). In reliability models there are a few events happening that create
the notion of rare events whereas in Jackson networks rare events happen as a combination of large number of
events. It is well known in the literature that different kinds of importance sampling schemes should be applied
to both type of problems. Since, our aim is to come up with a general algorithm which is applicable to any
type of Markov chain, we will discuss the performance of the algorithms for both models.

CE-D and Patch-D refer to the state-dependent cross-entropy algorithms in section 3 without and with
patching, respectively. Similarly, CE-F and Patch-F notify that we have implemented the face-dependent cross-
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entropy methods described in section 4. In the notation CE-D(n;k;α), n refers to the number of iterations the
cross-entropy is run, k refers to the number of sample paths produced in each iteration and α refers to the
weighting factor in equation (6). The same notation is valid also for the Patch-D, CE-F and Patch-F. For the
state-dependent and face-dependent patching algorithms we also add a number at the end of the usual notation
to indicate the form of clusters we take in every patch. That means, as the number decreases, we will have more
patches. In Figure 3 we give a few examples: Patch-F(n;k;α)−2 (clusters of 2), Patch-F(n;k;α)−5 (clusters of
5), and Patch-F(n;k;α)−2(4) (clusters of 2 but starting with a group of 4).

Patch-F(n;k;α)−2 Patch-F(n;k;α)−5 Patch-F(n;k;α)−2(4)

Figure 3: Examples of notation for face-dependent cross-entropy with patches.

The results for each example contain the probability estimation and the three performance measures discussed
in Section 2. We run the cross-entropy method with a predefined number of iterations with a predefined sample
size which refers to a fixed budget for running the algorithms. Then, we implement the importance sampling
to estimate the rare event probability and performance measures. We do not check whether the cross-entropy
method converged or not in every iteration. Our aim is to show the performance of the algorithms with a fixed
budget.

5.1 Reliability

Our first example is a model of highly reliable Markovian system which has been studied largely in relation
to importance sampling estimation of system failure and mean time to failure, for instance Alexopoulos and
Shultes (2001); L’Ecuyer and Tuffin (2007); Goyal et al. (1992); Juneja and Shahabuddin (2001a, 2001b);
Shahabuddin (1994a, 1994b). In this reliability system there are d different component types, where type i
contains Ki identical components. Each component fails, independently of other events, after an exponentially
distributed failure time, with failure rate λi for type i components. Failed components may be repaired by one
or more service men. The repair times of type i components are exponentially distributed with rate µi. We
make a few system assumptions.

Assumption 1.
(i) There is no failure propagation.
(ii) There is no group repair.
(iii) The failure rates are functions of a parameter ε according to

λi = εri , (8)

where ε > 0 small and ri ≥ 1.
(iv) The repair rates are several orders of magnitude larger: µi ≥ µmin = 1.
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However, we do allow priority of service. The system is modeled by a continuous-time Markov chain with states
x = (x1, . . . , xd) representing the number of failed components per type. Thus the state space is

X =
d∏
i=1

{0, 1, . . . ,Ki},

with cardinality |X | =
∏d
i=1(Ki + 1). Under assumptions 1 (i) and (ii) the Markov chain has jumps of size

one, viz. an operational component fails, or a failed component is repaired. It is easy to see that the chain
is irreducible over its state space. We might generalize to allow failure propagation, group repair and other
transition structures based on state information, but at the moment we consider the most simple models.

The associated discrete-time Markov chain (X(t))∞t=0 is constructed by embedding the continuous-time Markov
chain at its jump times. The good set G consists of the single ‘perfect’ state 0 = (0, 0 . . . , 0) with all components
operational, and the ‘bad’ or failure set F represents all states in which the system is down, for instance F is the
single state (K1,K2, . . . ,Kd) with all components of all types failed, or the set of states in which all components
of at least one type have failed. Let I be the states with one failed component, in other words, these are the
states that can be reached from 0 by one transition. Recall that γ(x) is the absorption probability in the failure
set when the chain starts in an internal state x ∈ T , and that we are interested in these absorption probabilities
specifically for x ∈ I. It is more convenient to have a single target. Therefore, we define the failure probability
(FP)

γ(0) =
∑
x∈I

p(0, x)γ(x),

which we wish to estimate by simulation. Besides its own interest, the FP is used for determining the system
unavailability and the mean time to failure (Goyal et al. 1992).

The rarity parameter in this reliability model is n = [1/ε] (see (8) for ε), thus we might denote the FP by γn(0).
Under the conditions of Assumption 1 it has been shown in Juneja and Shahabuddin (2001a) that γn(0) → 0
polynomially as n→∞, viz., let r = min {ri : i = 1, 2, . . . , d}, then

lim
n→∞

1
log n

γn(0) = −r.

Several importance sampling schemes have been proposed to give bounded relative error (in certain cases) or
asymptotically optimal estimators, notably: simple failure biasing (SFB) (Shahabuddin 1994a), balanced failure
biasing (BFB) (Shahabuddin 1994a), balanced likelihood ratio method (BLR) (Alexopoulos and Shultes 2001),
and more recently a zero-variance approximation method (ZVA) (L’Ecuyer and Tuffin 2007).

• SFB with parameter θ ∈ (0, 1): increase the total failure-transition probability at any state to a constant
θ while keeping their original mutual proportionalities; similarly, the repair-transition probabilities are
reduced to 1− θ.

• BFB with parameter θ ∈ (0, 1): similar to SFB(θ), however it distributes the total probability θ equally
to the failure-transitions.

• BLR: the crucial observation is that each repair must be preceded by a failure. Then one can force the
product of respective pairs of event likelihood ratios to be one, and thus, the likelihood ratio of a sample
path to be bounded above by one.

11



• ZVA: in the optimal change of measure the associated importance sampling estimator would have zero
variance. It is given by transition probability matrix (L’Ecuyer and Tuffin 2007)

popt(x, y) = p(x, y)
γ(y)
γ(x)

, x, y ∈ T ,

where γ(x) (and γ(y)) is the probability of absorption in the bad set starting from internal state x

(respectively y). The idea is to approximate popt(x, y) by

p∗(x, y) =
p(x, y)γapp(y)∑
y∈X p(x, y)γapp(y)

. (9)

In L’Ecuyer and Tuffin (2007) it is suggested to let γapp(y) = v0(y), where v0(y) is the maximal probability
of paths of states y = y0 → y1 → · · · → yk ∈ F going from state y to the bad set F . Notice that the
denominator in the approximation (9) is simply the normalizing constant. Also we have considered
a refinement suggested in L’Ecuyer and Tuffin (2007) to replace v0(y) by v1(y) = v0(y)α, where α is
determined by first executing an importance sampling procedure to get a rough estimate γ̂ of the failure
probability γ(0), and then matching v0(0)α = γ̂.

We have implemented the SFB, BFB and ZVA schemes to compare with our method in both statistical and
computational performance. We give three examples: the first example is a small test example with 1, 331
states and 7, 260 nonzero transition matrix entries (parameters). The second example is from L’Ecuyer and
Tuffin (2007) with 2, 197 states and 12, 168 nonzero matrix entries, and the third example has a large state
space of 759, 375 states and 4, 303, 124 parameters. To assess the estimations we computed numerically the
absorption probabilities in the two smaller examples by applying the Gauss-Seidel iteration using software with
arbitrary-precision arithmetic.

Example 1
There are 3 types, each with 10 components, with failure rates λ1 = ε, λ2 = 5ε and λ3 = 8ε (all failure rates
are of the same order as functions of ε: this is called “balanced”) and repair rates µi = 1 for all i. The rarity
parameter ε is taken to be 0.01. There is a single repairman but no priorities are applied between types. All the
repairs are made one by one as soon as one has failed, no group repairs are allowed. Finally, the system breaks
down when all components of all types have failed, which corresponds to F = {10, 10, 10}. The associated
failure probability is found by the Gauss-Seidel method to be 1.057E − 24.

The results for all the models can be found in Table 1. All results are averages of 5 repetitions, where the
sample size in the (final) importance simulations for estimating the rare event probability is 1, 000, 000 in all
experiments.

Recall the three performance measures of the importance sampling estimators introduced in Section 2:
RE (relative error), RAT (logarithmic ratio) and EFF (efficiency). The EFF measure takes into account the
total running time on the computer which includes the execution of the cross-entropy iterations and the final
importance sampling simulation. Better performance is obtained by a smaller RE, higher RAT ,and larger EFF.
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Method Estimation RE RAT EFF

SFB(0.7) 8.15E-25 0.3477 1.7950 48.7823

SFB(0.8) 7.20E-25 0.3167 1.7973 49.0323

SFB(0.9) 3.92E-25 0.2971 1.8022 49.6496

BFB(0.7) 8.19E-25 0.1735 1.8179 49.2005

BFB(0.8) 8.11E-25 0.1734 1.8201 49.4110

BFB(0.85) 7.39E-25 0.2141 1.8144 49.3780

ZVA(v0) 7.27E-26 0.4043 1.7964 50.9142

ZVA(v1) 2.95E-25 0.3298 1.8002 49.7402

CE-D( 7;20000;0.15) 5.90E-29 0.5433 1.0649 *

CE-D(10;30000;0.15) 3.77E-29 0.5544 1.0867 *

CE-D(15;80000;0.15) 3.29E-27 0.5798 1.8029 *

Patch-D(10;20000;0.05)-2 3.06E-25 0.0776 1.8476 49.2907

Patch-D(10;20000;0.15)-2 5.11E-25 0.1564 1.8252 48.3192

Patch-D(10;20000;0.05)-2(4) 4.08E-25 0.0861 1.8424 48.9142

Patch-D(10;20000;0.15)-2(4) 5.07E-25 0.0916 1.8408 48.7110

Patch-D(10;40000;0.05)-2 5.53E-25 0.0527 1.8612 48.7816

Patch-D(10;40000;0.15)-2 7.16E-25 0.0815 1.8446 48.2375

Patch-D(10;40000;0.05)-2(4) 6.42E-25 0.0718 1.8495 48.4291

Patch-D(10;40000;0.15)-2(4) 7.09E-25 0.0449 1.8663 48.7651

Table 1: Comparison of performances for Example 1.

Although the number of states is not very high, we noticed from the experiments that this kind of Markovian
reliability model with only one failure state is a hard problem for every approach. We experimented with a
large range of θ’s in the SFB(θ) and BFB(θ) schemes. Although they provide fast estimations, the relative
error is not very small (relative error of 17% or worse). Expectedly, BFB(θ) gives better results compared to
SFB(θ), but still poor. There is also not much difference in performance between ZVA and the biasing schemes.
ZVA(v1) gives slightly good results compared to ZVA(v0). However, none of them gives relative error smaller
than 10%.

Also, we experiment it with various CE-D(n; k;α) and Patch-D(n; k;α) schemes. For CE-D(n; k;α), we
could not get good performance (nor good estimates!) even not after increasing the number of sample paths
in each iteration. Consequently, the EFF performance measure for CE-D(n; k;α) is not compatible with other
methods. Though, Patch-D(n; k;α) schemes gave excellent performance when the number k of iteration sample
paths was sufficiently large. Clearly, Patch-D(k;n;α) schemes outperform the best bias schemes.

We observe the effects of different ways of clustering and weight factor α used in Equation (6) in the
algorithms in the last part of Table 1. We report a few combinations with clustering in groups of 2 starting
either with 2 or 4, because larger clusters showed worse results. Increasing the weight factor α from 0.05 to
0.15 gives sometimes worse results, but not always. As expected, if we increase the number of sample paths in
each iteration, the relative errors decrease. As a conclusion, the best combination of number of sample paths,
clustering and α factor should be found out by trial and error. Although the patching algorithm consumes more
computing time, the efficiency is about the same as the other algorithms due to its variance improvements.

Example 2
This is an example from L’Ecuyer and Tuffin (2007). There are again 3 types, this time each with 12 components,
with failure rates λ1 = ε, λ2 = 1.5ε and λ3 = 2ε2 (unbalanced) and repair rates µi = 1 for all i. We only give
results for ε = 0.001. There are ample repairmen who work simultaneously on all failed components. There is
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no priority or group repair. The system breaks down as soon as at least one component type has less than 2
operational units, i.e.,

F = {x = (x1, x2, x3) : ∃ i xi ≥ 11}.

The associated failure probability is found by the Gauss-Seidel method to be 3.892E − 28. The results for all
the models can be found in Table 2. All results are averages of 5 repetitions, where the sample size in the (final)
importance simulations for estimating the rare event probability is 1, 000, 000 in all experiments.

Method Estimation RE RAT EFF

BFB(0.7) 3.75E-28 0.6725 1.7597 54.0421

BFB(0.8) 4.43E-28 0.3749 1.7765 54.1473

BFB(0.9) 3.71E-28 0.3746 1.7766 54.3167

ZVA(v0) 3.88E-28 0.2563 1.8246 55.6483

ZVA(v1) 3.87E-28 0.0135 1.9306 58.7978

CE-D(7; 5000;0.15) 2.24E-28 0.3228 1.8824 60.1135

CE-D(7;10000;0.15) 2.05E-28 0.1801 1.9180 59.1779

CE-D(7;20000;0.15) 3.42E-28 0.1703 1.9089 57.7000

CE-D(7;50000;0.15) 3.83E-28 0.0048 1.9642 58.0076

Patch-D(2; 300;0.15)-2 3.24E-28 0.0554 1.9454 58.7695

Patch-D(3; 500;0.15)-2 3.84E-28 0.0086 1.9664 58.9652

Patch-D(1;1000;0.15)-2 3.90E-28 0.0140 1.9578 59.7262

Table 2: Comparison of performances for Example 2.

Observations in terms of comparison of methods are generally similar to Example 1. ZVA(v1) provided
better estimation, with a relative error around %1.3. Cross-entropy (without patching) showed small relative
error when we increased the sample size to 50, 000 in each iteration, whereas Patch-D(n; k;α) obtained the
same relative error with much less sample paths. All the patching results are given in clusters of 2 and for fixed
α = 0.15.

To check empirically the asymptotic efficiency of our Patch-D(n; k;α) algorithm for this specific problem
setting, the experiments are repeated for increasing number of components (where the failure set remains to be
a layer of two), and for decreasing ε values. All the simulation results for asymptotic efficiency can be found
in Table 3. It is clear from the table that as ε decreases, meaning as the event gets rarer, the method provides
better solutions. In all of the cases we see that the relative error grows linearly with a lower speed where as the
probability decreases fast. The last column with RAT values also approves the asymptotic efficiency observation.
As the number of components increase, RAT values approach to 2 as in the definition of asymptotic efficiency.
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Model Number Estimation RE RAT

Components

ε = 0.05 8 1.14E-06 0.0033 1.8224

3 iterations 12 6.59E-11 0.0081 1.8229

103 replications 20 1.56E-19 0.0354 1.8372

40 1.39E-42 0.3844 1.8788

60 3.88E-68 0.7191 1.9190

ε = 0.01 8 5.43E-11 0.0025 1.9182

3 iterations 12 4.27E-18 0.0034 1.9371

103 replications 20 2.00E-32 0.0068 1.9473

40 1.53E-68 0.0401 1.9532

60 4.59E-105 0.1204 1.9603

ε = 0.001 8 5.09E-17 0.0036 1.9396

3 iterations 12 3.86E-28 0.0029 1.9647

103 replications 20 1.69E-50 0.0070 1.9662

40 1.12E-106 0.0320 1.9718

Table 3: Test of asymptotic efficiency of Patch-D for Example 2.

Example 3
There are 5 types, with 14 components each, with unbalanced failure rates; 2.5ε, 3ε, ε2, 6ε, 2ε2 and repair rates
µi = 1 for all i. The rarity parameter ε is taken to be 0.001. There is a single repairman who applies preemptive
priority according to 1 > 2 > 3 > 4 > 5. Type 1 has the highest priority. All types are repaired one by one as
soon as one has failed. The system breaks down as soon as all components of at least one type have failed. All
results are averages of 5 repetitions. For results of Example 3, please refer to Table 4.

Method Estimation RE RAT EFF

BFB(0.7 ) 6.38E-24 0.5830 1.6753 *

BFB(0.8 ) 1.99E-21 0.5861 1.6419 *

BFB(0.9 ) 1.26E-21 0.7865 1.6299 *

BFB(0.95) 8.87E-21 0.8561 1.6588 *

ZRV(v0) 4.00E-18 0.0965 1.7737 36.8293

ZRV(v1) 3.98E-18 0.0999 1.7744 36.4315

CE-D( 7;10000;0.15) 3.21E-20 0.4006 1.7330 35.8264

Patch-D(7; 500;0.15)-2 8.61E-19 0.1897 1.7529 34.8303

Patch-D(7;1500;0.15)-2 1.84E-18 0.1139 1.7719 33.7477

Patch-D(7;2000;0.15)-2 2.22E-18 0.1373 1.7637 33.3438

Patch-D(7;3000;0.15)-2 2.73E-18 0.1263 1.7606 34.0231

Table 4: Comparison of performances for Example 3.

The BFB algorithms gave quite different estimates than all other algorithms with relative errors changing
between 50% and 85%, even after having increased the number of sample paths (for BFB only) form 106 to 108,
and thus we conjecture that the correct estimates are given by these other algorithms. The best and the fastest
performance among these four methods is given by ZRV(v0) and ZRV(v1) with relative error slightly lower than
%10. Also, the patching algorithm with only 1500 sample paths gives close performance to ZRV method with
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little bit higher relative error. However, since it takes longer time with patching algorithm, the efficiency is
lower compared to ZRV.

5.2 Jackson Network

Our second example comprises the well-known product-form Jackson queueing networks. There is ample liter-
ature on importance sampling simulation for estimating excessive backlogs (or buffer cq. population overflows)
in networks with more or less general network topologies, by algorithms with proven complexity or by heuristic
algorithms. We mention here a few.

• Tandem queue and total population overflow: Parekh and Walrand (1989) gave a state-independent
heuristic algorithm based on exchanging the arrival rate with the service rate of the bottleneck server.
Later, this heuristic has been analyzed in Boer (2006) and Glasserman and Kou (1995) to show that
asymptotic optimality is obtained only in certain specific parameter regions. In Dupuis et al. (2007) a
state-dependent change of measure has been developed and proven to be asymptotically optimal. The
method is based on connections between importance sampling, stochastic games and optimal control.

• Tandem queue and buffer overflow at the second queue: using a Markov additive process representation
(Kroese and Nicola 2002) construct a state-dependent change of measure (dependent on the content at
the first queue) and prove asymptotic optimality.

• This has been generalized to Jackson networks and buffer overflow at a single target queue in Juneja and
Nicola (2005). The resulting change of measure is obtained as a solution to a set of conditions and proven
to be asymptotically optimal.

• General topologies and population overflow: Frater et al. (1991) apply the large deviations heuristic of
Parekh and Walrand (1989) to come up with a set of nonlinear equations whose (unique) solution serves
as a state-independent change of measure. In Nicola and Zaburnenko (2007) heuristic state-dependent
algorithms are constructed based on the observation that the state-dependency of the optimal (zero-
variance) change of measure is strong along the boundaries and weak and diminishes in the interior. The
proposed solution is a state-dependent combination of matrix solutions.

• General Markovian queueing models and rare events: Boer and Nicola (2002) and Boer et al. (2004) report
cross-entropy based adaptive state-dependent algorithms. In Boer and Nicola (2002) the algorithm uses
boundary layers as we explained in Section 4. The method in Boer et al. (2004) is a three stage adaptive
importance sampling algorithm which uses cross entropy to update the arrival and departure parameters
together with routing probabilities. First, they estimate the minimum cross-entropy tilting parameter for
a small buffer level; next, they use this as the starting tilting parameter value for the estimation of the
optimal tilting parameter for the actual buffer level. Lastly, the tilting parameter obtained is used to
estimate the population overflow probability.

We will compare our algorithms with the heuristic methods of Boer et al. (2004) (in all our examples) and
Nicola and Zaburnenko (2006) (in example 6).

Suppose that the network consists of d queues, Poisson arrivals with rates λi (i = 1, . . . , d), single servers at
the queues and exponentially distributed service times with rates µi (i = 1, . . . , d), routing probabilities rij
(i, j = 1, . . . , d) such that the routing matrix R is substochastic. We make the usual stability assumption: let
(νi)di=1 be the traffic intensities determined as the solution to the traffic equations

νj = λj +
d∑
i=1

νirij , j = 1, . . . , d.

16



Assumption 2. For any i = 1, . . . , d the load ρi = νi/µi < 1.

The network is modeled by a continuous-time Markov chain with states x = (x1, . . . , xd) representing the
number of jobs present at the queues (including the servers). Again we consider its associated discrete-time
Markov chain (X(t))∞t=0 by embedding at the jump times. The state space of the chain has infinite size, being
the subspace of all nonnegative integer vectors, Zd≥0. However, we consider only the following two bad sets:

1. Total population exceeds n, i.e.,

F = {x :
d∑
i=1

xi ≥ n}.

2. At least one queue exceeds n, i.e.,
F = {x : max

i=1,...,d
xi ≥ n}.

In both cases we can reduce the infinite state space to a finite state space X . The good set consists of the single
empty state: 0 = (0, . . . , 0). Thus, similarly as in the reliability example we consider the failure probability
(FP)

γ(0) =
∑
x∈I

p0xγ(x),

where γ(x) is the probability of hitting the bad set F before hitting 0, when the chain would start in state x.

In this example the rarity parameter is the buffer or the population overflow level n. It has been shown in
Glasserman and Kou (1995) that

lim
n→∞

1
n

log γn(0) = −θ.

Example 4
This example of a five-node Jackson network is taken from Boer and Nicola (2002); Boer et al. (2004). We
have implemented the three stage method of Boer et al. (2004) (described above), which we denote by CE-
3-Stage(n; k; l0): n is the number of iterations where CE is implemented, k denotes the number of repetitions
used in each iteration whereas l0 refers to the small buffer level to obtain the starting tilting parameters.

Figure 4: Jackson Network with 5 queues.

Jobs arrive at the first queue according to a Poisson process with rate λ1 = 3. There are single servers at
each queue along with exponentially distributed service times with rates µ1 = 40, µ2 = 20, µ3 = 25, µ4 = 50
and µ5 = 60 with all routing probabilities equal to 0.5. Other than server 3, which is the bottleneck queue, all
the loads are equal to 0.1. Consider the estimation of the overflow probability that total population exceeds
level l = 80.
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In this example we have 614, 918, 628 states, which is quite high to implement the state-dependent change
of measure. That is why, here we will only present the results for the face-dependent cross-entropy methods.
We used 100, 000 replications in the final estimation by importance sampling. In all Patch-F implementations
we started with the lower level value of 10 and increased it by 10 in every patch until we hit the actual overflow
level of 80. All results in Table 5 are averages of 5 repetitions.

Method Estimation RE RAT EFF

CE-3Stage(7;100000;5) 7.60E-55 0.0170 1.9576 107.6620

CE-F(30;100000;0.001) 7.72E-55 0.0110 1.9793 108.9570

CE-F(30;400000;0.001) 7.74E-55 0.0096 1.9813 108.5420

Patch-F(10;10000 ;0.001) 7.38E-55 0.0744 1.9498 108.5244

Patch-F(10;50000 ;0.001) 7.77E-55 0.0626 1.9521 107.6283

Patch-F(10;100000;0.001) 7.69E-55 0.0710 1.9499 107.3333

Table 5: Comparison of performances for Example 4.

The most remarkable result we see in Table 5 is that CE-F gives estimations with much lower relative error
than Patch-F. We also observe that increasing the number of samples used in cross-entropy iteration from 10, 000
to 100, 000 does not improve the estimation in a considerable amount. If we want to get better estimations by
Patch-F with lower relative error, we should either increase the number of replications in the (final) importance
sampling implementation, or increase the number of replications within patches.
Equal Loads

Next, we simulate the same network, but with all servers having an equal load of 0.1, with λ = 3, µ1 = 40,
µ2 = 20, µ3 = 50, µ4 = 50 and µ5 = 60, and all routing probabilities equal to 0.1. For the final estimation by
importance sampling we used 1, 000, 000 samples and all results are average of 5 repetitions.

The simulation results are presented in Table 6. We found that the number of replications per patch could
be less compared to the previous bottleneck problem. The same observation is also true for CE-F. If we compare
the results in Boer et al. (2004) with CE-F and Patch-F, we see that CE-F outperforms for this problem.

Method Estimation RE RAT EFF

CE-3Stage(7;1,0000,000;4) 7.68E-16 0.0132 - -

CE-F(20;100,000 ;0.001) 7.78E-16 0.0058 1.8988 32.1707

CE-F(20;2,000,000;0.001) 7.75E-16 0.0049 1.9081 31.4587

Patch-F(15;100000;0.001) 7.82E-16 0.0204 1.8265 30.7792

Patch-F(15;50000 ;0.001) 7.74E-16 0.0221 1.8226 30.9362

Patch-F(15;10000 ;0.001) 7.63E-16 0.0392 1.8281 31.3089

Patch-F(15;5000 ;0.001) 7.55E-16 0.0329 1.8075 31.0556

Table 6: Comparison of performances for Example 4 with equal loads.

Example 5
In this example there are three single server queues. The jobs arrive at the first queue according to a Poisson
process of rate λ = 1. There are single servers at the queues each and exponentially distributed service times
with rates µ1 = 4, µ2 = 3 and µ3 = 5. The routing matrix R of the system is as follows:

R =

 0 1
2

1
2

0 0 1
1
3 0 0
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Each job can only go out of the system after receiving service at the third station. The corresponding Jackson
network is depicted in Figure 5.

Figure 5: Jackson Network with 3 queues.

The traffic intensities are ν1 = 1.5, ν2 = 0.75 and ν3 = 1.5 with corresponding loads ρ1 = 0.375, ρ2 = 0.25
and ρ3 = 0.30. Hence, the system is stable. The failure set is reached whenever at least one of the queues
exceeds n = 30. Hence, we have 29791 states and 157, 500 transitions with nonzero probability. For the final
estimation by importance sampling we used 1, 000, 000 samples. We compare the estimations with the algorithm
CE-3-Stage(n; k; l0) mentioned in the previous example. All results in Table 7 are averages of 5 repetitions.

Method Estimation RE RAT EFF

CE-3-Stage(7;100000 ;5) 7.34E-13 0.0329 1.8174 25.1203

CE-3-Stage(7;1000000;7) 7.32E-13 0.0159 1.7837 24.7847

CE-D(15;25000;0.05) 8.74E-16 0.4853 1.6670 *

CE-D(15;25000;0.10) 5.17E-15 0.3685 1.6597 *

CE-D(15;25000;0.25) 3.87E-15 0.6077 1.6394 *

CE-D(10;100000;0.10) 6.71E-16 0.1797 1.7028 *

Patch-D(15;25000;0.10)-10 2.22E-13 0.3954 1.5994 22.7849

Patch-D(15;25000;0.25)-10 4.08E-13 0.1165 1.6730 23.3132

Patch-D(15;10000;0.25)-5 1.72E-13 0.1695 1.6569 23.8863

Patch-D( 8;25000;0.25)-5 2.87E-13 0.1074 1.6771 23.6915

CE-F(15; 500;0.05 ) 6.60E-13 0.0036 1.9073 27.3627

CE-F(15; 500;0.15 ) 6.60E-13 0.0033 1.9129 27.3359

CE-F(15; 500;0.001) 5.90E-13 0.0262 1.7790 25.8970

CE-F( 7;5000;0.15 ) 6.59E-13 0.0028 1.9214 27.4325

Patch-F(15; 500;0.05 )-10 6.60E-13 0.0048 1.8869 26.7790

Patch-F(15; 500;0.05 )-15 6.59E-13 0.0036 1.9085 27.2608

Patch-F(15; 500;0.15 )-15 6.64E-13 0.0135 1.8580 26.5549

Patch-F(15; 500;0.001)-5 6.64E-13 0.0216 1.7810 24.9873

Patch-F( 5;5000;0.05 )-15 6.60E-13 0.0031 1.9167 27.4015

Table 7: Comparison of performances for Example 5.

If we compare the probability estimations in the second column of Table 7, we can see that the rare event
probability estimated by state-dependent CE is quite lower than the probabilities estimated by the other four
algorithms. By the “Underestimation Theorem” discussed in Devetsikiotis and Towsend (1993), we can say
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that state-dependent CE does not converge even after 10 iterations with 105 sample paths. Hence, the efficiency
results of CE-D is not comparable with the other efficiency results.

CE-3-Stage, the algorithm introduced in Boer et al. (2004) gives better results, relative error around %1,
compared to CE-D and Patch-D. However, for CE-F, sample size of 500 for 15 iterations is even enough to get
relative error between %0.3, %0.4. The same number of sample paths and number of iterations are run for
different values of weight factor α, which determines the dependency on the original transition probabilities.
For this example α = 0.15 gives the best answer for both runs with 500 and 5000 sample paths. As we decrease
the α value, decreasing the effect of original transition probabilities, we start to get higher relative errors. In
the Patch algorithms along with the weight factor α, the number of patches also plays an important role. For
instance, if we compare the RE results for patches in clusters of 5 with the rest, we see that they are considerably
higher. The best is obtained when we take patches with clusters of 15. That means, as we increase the number
of patches, meaning as we get smaller and smaller clusters, the algorithm gets more and more distracted which
results in increasing the variance of the estimation.

Example 6
This example of a four node feed-forward network is taken from Nicola and Zaburnenko (2006). We compare the
results of our algorithms to those obtained by the methods of Parekh and Walrand (1989) (indicated by PW),
Boer and Nicola (2002) (SDA), Nicola and Zaburnenko (2006) (SDH), and Boer et al. (2004) (CE-3-stage).
The results of the PW, SDA and SDH methods are given in Nicola and Zaburnenko (2006).

The network can be depicted in Figure 6. Jobs arrive at the first queue according to a Poisson Process with
rate λ = 0.074. There are single servers at each queue along with exponentially distributed service times with
rate µ1 = 0.617, µ2 = 0.024, µ3 = 0.135 and µ4 = 0.15, with the routing probability in the first queue equal
to 0.1. We are interested in the total-population overflow probability for level of 25. The parameters chosen in
this problem are chosen from the region where PW heuristic does not work. This is shown empirically in Nicola
and Zaburnenko (2006). All the results given in Table 8 are the average of 5 repetitions. In our methods, in
the final implementation of importance sampling to estimate the overflow probability we use 1, 000, 000 sample
paths.

Figure 6: Jackson Network with 4 queues.
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Method Estimation RE RAT EFF

PW 1.61E-6 0.0808 - -

SDA 1.70E-6 0.0011 - -

SDH 1.71E-6 0.0041 - -

CE-3-Stage(7;1000000;5) 1.71E-6 0.0173 1.5354 12.2764

CE-F(30;1000 ;0.25) 1.70E-6 0.0082 1.6826 13.3578

CE-F(30;3000 ;0.25) 1.68E-6 0.0074 1.6983 13.4429

Patch-F(10;50000 ;0.001)-2 1.69E-6 0.0087 1.6731 12.5455

Patch-F(20;10000 ;0.05 )-2 1.68E-6 0.0090 1.6676 12.6939

Patch-F(20;10000 ;0.15 )-2 1.68E-6 0.0097 1.6579 12.5621

Table 8: Comparison of performances for Example 6

Experimental results suggest that CE-F gives the best performance among the four approaches we introduce
in this paper for this example. CE-D and Patch-D do not converge even with 500, 000 sample paths for 20
iterations. Implementations with more than 500, 000 sample paths cause the EFF performance measure to
decrease due to the fact that the relative error is not low and the running time increases considerably. We tried
Patch-F with many combinations of cross entropy iterations, number of sample paths, forms of clustering and
different weight factors. The best 3 estimations are provided in the table. As observed in the previous Jackson
network examples, CE-F gives more stable estimations than Patch-F. Both CE-F and Patch-F provides better
estimations than PW. There is also not much difference in the performance between CE-3-Stage and Patch-F,
Patch-F giving slightly better results. However, Patch-F, CE-F and CE-3-Stage are worse compared to SDA
and SDH. While comparing these methods we have to keep in mind that the results provided in Nicola and
Zaburnenko (2006) are obtained by using 106 replications in each iteration, where the number of iterations is
unknown.

In all of the three examples studying Jackson networks we saw that Patch-F does not provide any better
estimation if CE-F already converges. Although we do not face convergence problems with Patch-F, the lowest
relative error we can get is higher than %1.

6 Summary & Conclusions

In the previous sections we considered state-dependent approach for two types of problems; reliability models
and Jackson networks. We observed that for Jackson networks with higher dimensions the state-dependent
cross-entropy method does not give good results. However, if we look at these problems in a more detailed way,
it is well known that the transition probabilities in reliability models depend on the state whereas in Jackson
networks the transition probabilities are the same for specific types of states. That is the main notion we try
to use in Section 4. As we have observed unnecessary usage of state dependency may cause

• enormous increment in the number of decision variables,

• increase in variance and computation time.

Another general observation is that the patching algorithms for both state and face-dependent methods do
not provide any improvement when state or face-dependent CE works. However, for Markovian systems where
standard cross-entropy is facing some problems with converging, then patching algorithms help cross-entropy
method to converge. For every system, there is an optimal way of choosing the patches. If we use less patches
than needed, then patching algorithms do not converge, or to put it in another way, we still need more sample
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paths in each iteration in order for the patching algorithm to converge. Similarly, if we use more patches than
needed, then the change of measure gets so distracted that the variance becomes high. Nonetheless, optimal
clustering can only be found through experimentation.
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