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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game. A

(single-valued) solution for TU-games assigns a payoff distribution to every TU-game. A

well-known solution is the Shapley value.

In the literature various models of games with restricted cooperation can be found. So,

instead of allowing all subsets of the player set N to form, it is assumed that the set of

feasible coalitions is a subset of the power set of N . In this paper we consider such sets of

feasible coalitions that are closed under union, i.e. for any two feasible coalitions also their

union is feasible. We consider and axiomatize two solutions or rules for these games that

generalize the Shapley value: one is obtained as the conjunctive permission value using a

corresponding superior graph, the other is defined as the Shapley value of a modified game

similar as the Myerson rule for conference structures.

Keywords: TU-game, restricted cooperation, union closed system, Shapley value, per-

mission value, superior graph, axiomatization.

AMS subject classification: 91A12, 5C20

JEL code: C71



1 Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set of players

and for any subset (coalition) of players a worth representing the total payoff that the

coalition can obtain by cooperating. A (single-valued) solution is a function that assigns

to every game a payoff vector which components are the individual payoffs of the players.

A solution is efficient if it assigns to every game a payoff vector such that the sum of the

payoffs is equal to the worth of the grand coalition consisting of all players. The most

well-known efficient (single-valued) solution is the Shapley value (Shapley, 1953).

In its classical interpretation, a TU-game describes a situation in which the players

in every coalition S of N can cooperate to form a feasible coalition and earn its worth. In

the literature various restrictions on coalition formation are developed. For a survey we

refer to Bilbao (2000). In this paper we assume that the set of feasible coalitions is closed

under union, meaning that for any pair of feasible coalitions also their union is feasible. By

convention we assume that every union closed set of feasible coalitions contains the empty

coalition ∅. Some examples of cooperation structures that yield union closed systems are

the following.

Example 1.1 Suppose that only coalitions of a minimal size k are feasible. Then the set

of coalitions Ω = {S ⊆ N | |S| ≥ k} ∪ {∅} for some k ∈ {1, . . . |N |} is closed under union.

Example 1.2 To give a more general example, consider the situation where the player set

N is partitioned in a coalition structure P = {P 1, . . . , Pm} of nonempty coalitions such

that for every element P k, k ∈ {1, . . . ,m} there is a quota qk ∈ {1, . . . , |P k|} meaning that

a coaliton S ⊆ N can form if for every k = 1, . . . ,m, S contains at least qk players from

P k. So, given such a majority cooperation situation (N, v, {P 1, . . . , Pm}, {q1, . . . , qk}} with

{P 1, . . . , Pm} being a partition of N and qk ∈ {1, . . . , |P k|} for all k ∈ {1, . . . ,m}, the set

of feasible coalitions is given by

Ω = {S ⊆ N | |S ∩ Pk| ≥ qk for all k ∈ {1, . . . ,m}} ∪ {∅}.

Obviously, if min{|S ∩ Pk|, |T ∩ Pk|} ≥ qk for all k ∈ {1, . . . ,m}, then |(S ∪ T ) ∩ Pk| ≥ qk

for all k ∈ {1, . . . ,m}, and thus Ω is closed under union.

By definition antimatroids are closed under union1. Thus, the games considered in

this paper generalize the games on antimatroids as considered in Algaba, Bilbao, van den

Brink and Jiménez-Losada (2003, 2004a), and therefore also the games with a permission

1A set of feasible coalitions A ⊆ 2N is an antimatroid if, besides being union closed and containing ∅,

it satisfies accessibility meaning that S ∈ A implies that there is a player i ∈ S such that S \ {i} ∈ A, see

Dilworth (1940) and Edelman and Jamison (1985).
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structure of Gilles, Owen and van den Brink (1992), van den Brink and Gilles (1996), Gilles

and Owen (1994) and van den Brink (1997), where there are players who need permission

from other players before they are allowed to cooperate. Note that the two examples given

above yield union closed structures that are not antimatroids2. Therefore to deal with such

type of situations we need a more general approach.

We define and axiomatize two solutions for games on union closed systems, one is

based on games with a permission structure, the other on the approach of Myerson (1977,

1980) for communication graph games and conference structures. Both solutions generalize

the Shapley value in the sense that both are equal to the Shapley value when the union

closed system is the power set of player setN . First, for every union closed system we define

the corresponding superior graph being the directed graph that is obtained by putting an

arc from player i to player j if every feasible coalition containing player j also contains

player i. Then we consider the game with permission structure of the original game on

this superior graph, and define the superior rule as the conjunctive permission value of the

game with permission structure, see Gilles, Owen and van den Brink (1992) and van den

Brink and Gilles (1996). We also give an axiomatization of this superior rule.

Second, we apply the method of Myerson (1977, 1980) to define another solution for

games on union closed systems which generalizes the Shapley value for games on antima-

troids which is axiomatized in Algaba, Bilbao, van den Brink and Jiménez-Losada (2003).

First, we define a modified or restricted game in which any feasible coalition earns its own

worth. By union closedness, every nonfeasible coalition has a unique largest feasible subset.

The restricted game assigns to any nonfeasible coalition the worth of this largest feasible

subset. Then the union rule for games on union closed systems is defined as the Shapley

value of this restricted game. We provide an axiomatization for this solution.

This paper is organized as follows. Section 2 is a preliminary section containing

cooperative TU-games and games with a permission structure. Section 3 introduces games

on union closed systems. In Section 4 we define and axiomatize the superior rule. In

Section 5 we define and axiomatize the union rule. The axioms discussed in Sections 4 and

5 all concern a fixed union closed system. In Section 6 we discuss several issues concerning

a variable union closed system, and give a comparison with Myerson (1980)’s conference

structures. Section 7 contains concluding remarks.

2These structures do not satisfy accessibility. In Example 1.2 this can be seen since for S ∈ Ω with

|S| = k there is no i ∈ S such that S \ {i} ∈ Ω. In Example 1.1 this can be seen since taking a coalition

S ∈ Ω with |S ∩ Pk| = qk for all k ∈ {1, . . . ,m}, there is no i ∈ S such that S \ {i} ∈ Ω.
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2 Preliminaries

2.1 TU-games

A situation in which a finite set of players can obtain certain payoffs by cooperating can be

described by a cooperative game with transferable utility, or simply a TU-game, being a pair

(N, v), where N ⊂ IN is a finite set of n players and v : 2N → R is a characteristic function

on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S, i.e., the

members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. Since

we take the player set N to be fixed, we denote the game (N, v) just by its characteristic

function v. We denote the collection of all characteristic functions on N by GN and

n = |N | denotes the cardinality of N . A game v ∈ GN is monotone if v(S) ≤ v(T ) for all

S ⊆ T ⊆ N . We denote by GNM the class of all monotone TU-games on N .

A payoff vector for a game is a vector x ∈ IRn assigning a payoff xi to every i ∈ N .

In the sequel, for S ⊆ N we denote x(S) =
∑

i∈S xi.

A (single-valued) solution f is a function that assigns to any v ∈ GN a unique payoff

vector. The most well-known (single-valued) solution is the Shapley value given by

Shi(v) =
∑

S⊆N

i∈S

(|N | − |S|)!(|S| − 1)!

|N |!
(v(S)− v(S \ {i})) for all i ∈ N.

2.2 Cooperative games with a permission structure

A game with a permission structure on N describes a situation where some players in a

TU-game need permission from other players before they are allowed to cooperate within

a coalition. Formally, a permission structure can be described by a directed graph on N .

A directed graph or digraph is a pair (N,D) where N = {1, ..., n} is a finite set of nodes

(representing the players) and D ⊆ N × N is a binary relation on N . In the sequel we

simply refer to D for a digraph (N,D) . We denote the collection of all digraphs on N by

DN . For i ∈ N the nodes in SD(i) := {j ∈ N | (i, j) ∈ D} are called the successors of i,

and the nodes in PD(i) := {j ∈ N | (j, i) ∈ D} are called the predecessors of i. For a set

T ⊆ N , let SD(T ) = ∪i∈T SD(i) denote the union of the sets of successors of the players in

T , respectively PD(T ) = ∪i∈T PD(i) the set of all predecessors of the players in T . Further,

TD = {i ∈ N | PD(i) = ∅} denotes the set of top nodes in D, being the set of nodes not

having a predecessor. By ŜD(i) we denote the set of successors of i in the transitive closure

of D i.e., j ∈ ŜD(i) if and only if there exists a sequence of players (h1, . . . , ht) such that

h1 = i, hk+1 ∈ SD(hk) for all 1 ≤ k ≤ t− 1, and ht = j.

For given D ∈ DN , a (directed) path between i and j in N is a sequence of distinct
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nodes (i1, . . . , im) such that i1 = i, im = j, and (ik, ik+1) ∈ D for k = 1, . . . ,m − 1. A

directed path (i1, . . . , im), m ≥ 1, in D is a cycle in D if (im, i1) ∈ D. We call digraph D

acyclic if it does not contain any cycle. Note that acyclicity of a digraph D implies that

D is irreflexive, i.e., (i, i) �∈ D for all i ∈ N . Also, when D is acyclic then there is at least

one top node. A digraph is called quasi-strongly connected if there exists a node i0 ∈ N ,

such that for every j �= i0 there is a directed path from i0 to j. When D is acyclic and

quasi-strongly connected then it has exactly one top node. In the sequel we denote this

unique top node by i0, i.e. TD = {i0} when D is acyclic and quasi-strongly connected.

A tuple (v,D) with v ∈ GN a TU-game and D ∈ DN a digraph on N is called a

game with a permission structure. In this paper we follow the conjunctive approach as

introduced in Gilles, Owen and van den Brink (1992) and van den Brink and Gilles (1996)

in which it is assumed that a player needs permission from all its predecessors in order to

cooperate with other players3. Therefore a coalition is feasible if and only if for any player

in the coalition all its predecessors are also in the coalition. So, for permission structure

D the set of conjunctive feasible coalitions is given by

ΦcD = {E ⊆ N |PD(i) ⊆ E for all i ∈ E } .

For any E ⊆ N , let σcD(E) = E \ ŜD(N \ E) be the largest conjunctive feasible subset of

E in D.

Given the tuple (v,D) with v ∈ GN and D ∈ DN , under the conjunctive permission

structure the induced restricted game rcv,D : 2
N → R is given by

rcv,D(S) = v(σcD(S)) for all S ⊆ N. (2.1)

The conjunctive permission value ϕc then is the solution that assigns to every game with

a permission structure the Shapley value of the restricted game, i.e.

ϕc(v,D) = Sh(rcv,D).

These games with a permission structure and the conjunctive permission value are

generalized to games on antimatroids in Algaba, Bilbao, van den Brink and Jiménez-Losada

(2003, 2004a). In this paper we consider a further generalization to games on union closed

systems.

3As an alternative, Gilles and Owen (1994) and van den Brink (1997) consider the disjunctive approach

where it is assumed that a player needs permission to cooperate of at least one of its predecessors (if it

has any).
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3 Restricted games on union closed systems

We consider tuples (v,Ω), where v is a TU-game on player set N and Ω ⊆ 2N is a collection

of subsets of N . We call such a tuple a game with limited cooperation. In such a game

the collection of subsets Ω restricts the cooperation possibilities of the players in N . A set

S ⊆ N of players can only attain its value v(S) if S ∈ Ω. When S �∈ Ω then not all players

are able to cooperate within S, so that v(S) can not be realised. We say that a coalition

S ∈ 2N is feasible if S ∈ Ω. In this paper we only consider sets of feasible coalitions that

are closed under union.

Definition 3.1 A collection Ω ⊆ 2N is a union closed system of coalitions if

1. ∅, N ∈ Ω,

2. If S, T ∈ Ω, then S ∪ T ∈ Ω.

We assume that the ‘grand coalition’ N is feasible for notational convenience. The

results in this paper can be modified to hold without this assumption if in the axioms we

distinguish between players that belong to at least one feasible coalition and those that

do not belong to any feasible coalition. Note that by condition 2 the ‘grand coalition’ is

feasible if every player belongs to at least one feasible coalition. So, instead of assuming

that N ∈ Ω we could do with the weaker normality assumption stating that every player

belongs to at least one feasible coalition. In the sequel we denote the collection of all union

closed systems in 2N by CN .

Example 3.2

1. Ω = {∅, N} is union closed.

2. Ω = 2N is union closed.

3. Every antimatroid is union closed by definition, and thus also the sets of conjunc-

tive and disjunctive feasible coalitions of an acyclic permission structure are union closed

systems.

4. Note that the set of connected coalitions in an (undirected) communication graph is

not union closed, because in a communication graph the union of two connected coalitions

might not be connected.

For a system Ω ∈ CN , we define the function σΩ : 2N → Ω by

σΩ(S) =
⋃

{U∈Ω|U⊆S}

U,

5



so σΩ(S) is the largest feasible subset of S. By union closedness this largest feasible subset

is unique. For the tuple (v,Ω), the restricted game rv,Ω ∈ GN is defined by

rv,Ω(S) = v(σΩ(S)).

The restricted game assigns to each coalition S ⊆ N the worth of its largest feasible subset.

Notice that when v is monotone, it holds that for every Ω ∈ CN also the restricted game

rv,Ω is monotone since S ⊆ T implies that σΩ(S) ⊆ σΩ(T ).

Example 3.3

1. If Ω = {∅, N} then σΩ(N) = N and σΩ(S) = ∅ for all S �= N . So, rv,Ω(N) = v(N) and

rv,Ω(S) = 0 for every S �= N . Thus the restricted game rv,Ω is a multiple of the unanimity

game of N .

2. If Ω = 2N then σΩ(S) = S and rv,Ω(S) = v(S) for every S ⊆ N . The restricted

game rv,Ω coincides with v.

3. If Ω is the set of conjunctive feasible coalitions of some permission structure then

σΩ(E) = E \ ŜD(N \ E) = ∪{T ∈ ΦcD | T ⊆ E}, and rv,Ω is the conjunctive restriction.

Similar for the disjunctive case.

4 The superior rule

A solution for games on union closed systems is a function f that assigns a payoff dis-

tribution f(v,Ω) ∈ IRN to every v ∈ GN and Ω ∈ CN . In this section we introduce and

axiomatize a solution for games on union closed systems that is based on the conjunctive

permission value of a digraph associated to the union closed system.

4.1 The superior graph

The superior graph of a union closed system Ω ∈ CN assigns an arc from player i to player

j if every feasible coalition containing player j also contains player i. So, the arcs can

be seen as some kind of dominance relation in the sense that a player is a subordinate of

another player if it ‘needs’ the other player to be in a feasible coalition.

Definition 4.1 For two players i, j ∈ N , i �= j, player i is a superior of player j in

Ω ∈ CN , if i ∈ S for every S ∈ Ω with j ∈ S. In that case we call player j a subordinate

of player i. For Ω ∈ CN , the superior graph of Ω is the directed graph DΩ ∈ DN with

DΩ = {(i, j) ∈ N ×N | i is superior of j in Ω}.
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Notice that i is a subordinate (superior) of j in Ω ∈ CN if and only if i is a successor

(predecessor) of j in DΩ. The next corollary is straightforward for Ω ∈ CN .

Corollary 4.2 If i is a superior of j in Ω and k is a superior of i in Ω then k is a superior

of j in Ω.

Example 4.3

1. If Ω = {∅, N} then for every S ∈ Ω and for every i, j ∈ N it holds that i ∈ S when

j ∈ S. So every i ∈ N is a superior of every j ∈ N \ {i}, and thus DΩ = {(i, j) ∈ N ×N |

i, j ∈ N, i �= j}.

2. If Ω = 2N then {i} ∈ Ω for every i ∈ N , and thus DΩ = ∅.

3. Let D ∈ DN be a directed graph representing a permission structure and let Ω = ΦcD be

the union closed system of feasible coalitions under the conjunctive approach. Then DΩ is

the transitive closure of D.4

Having constructed the superior graph DΩ of a union closed system Ω, we consider

now the set of feasible coalitions of the permission structureDΩ according to the conjunctive

approach, and we denote this collection of coalitions by ΣΩ = Φc
DΩ

. Notice that this set is

again a union closed system.

Proposition 4.4 For Ω ∈ CN it holds that Ω ⊆ ΣΩ.

Proof. Let S ∈ Ω. By definition of superior it holds that S includes all superiors of i

for every i ∈ S. On the other hand it holds that (j, i) ∈ DΩ if and only if j is superior

of i, i ∈ S. It follows that S is feasible for the permission structure DΩ according to the

conjunctive approach. Hence Ω ⊆ ΣΩ. �

4.2 The superior rule

Now we define the superior rule SUP as the solution for games on union closed systems

which assigns to every (v,Ω) the conjunctive permission value of the game v with permission

structure DΩ, i.e.

SUPi(v,Ω) = ϕci(v,D
Ω) = Shi(r

c
v,DΩ) for all i ∈ N.

4Let D ∈ DN be an acyclic, quasi-strongly connected directed graph. Let Ω be the union closed system

of feasible coalitions under the disjunctive permission structure. Then (i, j) ∈ DΩ if and only if every path

from i0 to j contains player i.
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Next we give an axiomatization of the superior rule as a solution for games on

union closed systems. The axioms are generalizations of axioms used to axiomatize the

conjunctive permission value in van den Brink and Gilles (1996) and the Shapley value

for games on poset antimatroids in Algaba, Bilbao, van den Brink and Jiménez-Losada

(2003). First, efficiency states that the total sum of payoffs equals the worth of the ‘grand’

coalition.

Axiom 4.5 (Efficiency) For every game v ∈ GN and union closed system Ω ∈ CN , we

have
∑

i∈N fi(v,Ω) = v(N).

Additivity is a straightforward generalization of the well-known additivity axiom

for TU-games.

Axiom 4.6 (Additivity) For every pair of cooperative TU-games v,w ∈ GN and union

closed system Ω ∈ CN , we have f(v + w,Ω) = f(v,Ω) + f(w,Ω).

Next we introduce a generalization of the inessential player property stating that a

null player in v whose subordinates in Ω are all null players in v, earns a zero payoff. We

say that player i ∈ N is inessential in (v,Ω) if v(E ∪ {j}) = v(E) for all j ∈ {i} ∪ SDΩ(i)

and E ⊆ N \ {j}. For v ∈ GN , Ω ∈ CN , we denote by I(v,Ω) the set of all inessential

players in (v,Ω).

Axiom 4.7 (Inessential player property) For every game v ∈ GN and union closed

system Ω ∈ CN , we have that fi(v,Ω) = 0 for all i ∈ I(v,Ω).

The next axiom generalizes the necessary player property (which holds for monotone

TU-games) in a straightforward way, stating that a necessary player in a monotone game

earns at least as much as any other player, irrespective of the coalitions in the union closed

system. A player i ∈ N is necessary in game v if v(E) = 0 for all E ⊆ N \ {i}.

Axiom 4.8 (Necessary player property) For every monotone game v ∈ GNM and union

closed system Ω ∈ CN , we have fi(v,Ω) ≥ fj(v,Ω) for all j ∈ N , when i ∈ N is a necessary

player in v.

Finally, structural monotonicity is generalized using the superior graph, stating

that whenever player i is a superior of player j in the union closed system and the game is

monotone, then player i earns at least as much as player j.

Axiom 4.9 (Structural monotonicity) For every monotone game v ∈ GNM and union

closed system Ω ∈ CN , we have fi(v,Ω) ≥ fj(v,Ω) if i ∈ N and j ∈ SDΩ(i).

8



The five axioms above characterize the superior rule for games on union closed

systems.

Theorem 4.10 A solution f for cooperative games on union closed systems is equal to

the superior rule SUP if and only if it satisfies efficiency, additivity, the inessential player

property, the necessary player property and structural monotonicity.

P����

By efficiency of the conjunctive permission value (i.e.
∑

i∈N ϕ
c
i(v,D) = v(N) for every

v ∈ GN and D ∈ DN) we have that
∑

i∈N SUPi(v,Ω) =
∑

i∈N ϕ
c
i(v,D

Ω) = v(N), showing

that the superior rule satisfies efficiency. Additivity, the inessential player property, the

necessary player property and structural monotonicity follow from the corresponding ax-

ioms of the conjunctive permission value for games with a permission structure, see van

den Brink and Gilles (1996).

To prove uniqueness, suppose that solution f satisfies the five axioms. Let v0 be the null

game given by v0(E) = 0 for all E ⊆ N . The inessential player property then implies that

fi(v0,Ω) = 0 for all i ∈ N .

Next, consider union closed system Ω and the game wT = cTuT , cT > 0, T ⊆

N, T �= ∅. We distinguish the following three cases with respect to i ∈ N :

1. If i ∈ T then the necessary player property implies that there exists a c∗ ∈ IR such

that fi(wT ,Ω) = c∗ for all i ∈ T , and fi(wT ,Ω) ≤ c∗ for all i ∈ N \ T .

2. If i ∈ N \ T and T ∩ ({i} ∪ SDΩ(i)) �= ∅ then structural monotonicity implies that

fi(wT ,Ω) ≥ fj(wT ,Ω) for every j ∈ T ∩ ({i} ∪ SDΩ(i)), and thus with case 1 that

fi(wT ,Ω) = c∗.

3. If i ∈ N \ T and T ∩ ({i} ∪ SDΩ(i)) = ∅ then the inessential player property implies

that fi(wT ,Ω) = 0.

From 1 and 2 follows that fi(wT ,Ω) = c∗ for i ∈ T ∪ PDΩ(T ). Efficiency and 3 then

imply that
∑

i∈N fi(wT ,Ω) = |T ∪PDΩ(T )|c∗ = cT , implying that c∗, and thus f(wT ,Ω), is

uniquely determined.

Next, consider (wT ,Ω) with wT = cTuT for some cT < 0 (and thus we cannot apply

the necessary player property and structural monotonicity since wT is not monotone). Since

−wT = −cTuT with −cT > 0, and v0 = wT + (−wT ), it follows from additivity of f that

f(wT ,Ω) = f(v0,Ω) − f(−wT ,Ω) = −f(−wT ,Ω) is uniquely determined because −wT is

monotone.
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Finally, since every characteristic function v ∈ GN can be written as a linear

combination of unanimity games v =
∑

T⊆N ∆v(T )uT (with ∆v(T ) the Harsanyi div-

idend of coalition T , see Harsanyi (1959)), additivity uniquely determines f(v,Ω) =∑
T⊆N f(∆v(T )uT ,Ω) for any v ∈ GN and Ω ∈ CN . �

We end this section by showing logical independence of the five axioms stated in

Theorem 4.10.

1. The solution that assigns to every game on union closed system simply the Shapley

value of game v, i.e. f(v,Ω) = Sh(v), satisfies efficiency, additivity, the inessential

player property and the necessary player property. It does not satisfy structural

monotonicity.

2. For v ∈ GN and Ω ∈ CN , let v ∈ GN be given by v(E) = v(
⋃
i∈E{i} ∪ SDΩ(i)) for all

S ⊆ N . The solution f(v,Ω) = Sh(v) satisfies efficiency, additivity, the inessential

player property and structural monotonicity. It does not satisfy the necessary player

property.

3. The equal division solution given by fi(v,Ω) =
v(N)
|N |

for all i ∈ N , satisfies efficiency,

additivity, the necessary player property and structural monotonicity. It does not

satisfy the inessential player property.

4. The equal division over essential players, given by

fi(v,Ω) =

{
v(N)

|N\I(v,Ω)|
if i ∈ N \ I(v,Ω)

0 if i ∈ I(v,Ω),

satisfies efficiency, the inessential player property, the necessary player property and

structural monotonicity. It does not satisfy additivity.

5. The zero solution given by fi(v,Ω) = 0 for all i ∈ N satisfies additivity, the inessential

player property, the necessary player property and structural monotonicity. It does

not satisfy efficiency.

5 The union rule

In this section we introduce and axiomatize the union rule as a solution for games on union

closed systems. This rule is defined similar as the Myerson rule for conference structures

in Myerson (1980) and the Shapley value for games on antimatroids in Algaba, Bilbao,
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van den Brink and Jiménez-Losada (2003). The union rule U assigns to every (v,Ω) the

Shapley value of the restriced game rv,Ω, i.e.

Ui(v,Ω) = Shi(rv,Ω) for all i ∈ N.

This solution is different from the superior rule as illustrated in the following exam-

ple.

Example 5.1 Consider the unanimity game v = u{1} and union closed system Ω =

{∅, {1, 2}, {1, 3}, {1, 2, 3}} onN = {1, 2, 3}. The superior graph ofΩ isDΩ = {(1, 2), (1, 3)}.

Therefore, the superior rule equals SUP (v,Ω) = (1, 0, 0).

On the other hand, the restricted game is given by rv,Ω({1}) = rv,Ω({2}) = rv,Ω({3}) =

rv,Ω({2, 3}) = 0, rv,Ω({1, 2}) = rv,Ω({1, 3}) = rv,Ω({1, 2, 3}) = 1, and thus the union rule

equals U(v,Ω) = Sh(rv,Ω) = (
2
3
, 1
6
, 1
6
).

From the axioms that are used to characterize the superior rule in Theorem 4.10,

the union rule satisfies all the axioms except the inessential player property. The union

rule not satisfying the inessential player property is illustrated by the following example.

Example 5.2 Consider the union closed system

Ω = {∅, {1, 2}, {1, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {1, 2, 3, 4}} and game v = u{3} on N =

{1, 2, 3, 4}. The superior graph is given by DΩ = {(1, 2), (3, 4)}, and I(v,Ω) = {1, 2, 4}.

However, the restricted game is rv,Ω = u{1,3}+u{3,4}−u{1,3,4}, and thus U(v,Ω) = (
1
6
, 0, 2

3
, 1
6
).

The union rule satisfies a weaker axiom requiring zero payoffs for inessential players

only in games where the worth of any coalition equals the worth of its largest feasible

subset5.

Axiom 5.3 (Inessential player property for union closed games) For every game

v ∈ GN and union closed system Ω ∈ CN such that v(E) = v(σΩ(E)) for all E ⊆ N , we

have that fi(v,Ω) = 0 for every i ∈ I(v,Ω).

To characterize the union rule we add one more axiom which states that the payoffs

only depend on the worths of feasible coalitions.

Axiom 5.4 (Independence of irrelevant coalitions) For every pair of cooperative TU-

games v, w ∈ GN and union closed system Ω ∈ CN , we have f(v,Ω) = f(w,Ω) whenever

v(S) = w(S) for all S ∈ Ω.

5Note that the union rule satisfies the stronger property requiring zero payoffs for all null players in

games v such that v(E) = v(σΩ(E)) for all E ⊆ N .
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For Ω ∈ CN and T ⊆ N , we define ΩT = {H ∈ Ω | T ⊆ H} as the set of feasible

coalitions containing coalition T . In the proof of uniqueness in Theorem 5.6 we use the

following lemma.

Lemma 5.5 For every Ω ∈ CN , T ⊆ N and c ∈ IR, there exist numbers δH ∈ IR, H ∈ ΩT ,

such that rcuT ,Ω =
∑

H∈ΩT
δHuH.

P����

Consider Ω ∈ CN , T ⊆ N and c ∈ IR. If T ∈ Ω then T ∈ ΩT and we have δT = c and

δH = 0 for all H ∈ ΩT \ {T}. If T �∈ Ω, then define

T 1 = {H ∈ Ω | T ⊂ H and there is no Z ∈ Ω such that T ⊂ Z ⊂ H}

and, recursively, for k = 2, . . .

T k =

{
H ∈ Ω | T ⊂ H and for every Z ∈ Ω such that T ⊂ Z ⊂ H it holds that Z ∈

k−1⋃

p=1

T p

}
.

Since N is finite there exists anM <∞ such that T k �= ∅ for all k ∈ {1, . . .M}, T M+1 = ∅

and
⋃M

k=1 T
k = ΩT . Since by definition T k ∩ T l = ∅ for all k, l ∈ IN, we have that

T 1, . . . , T M is a partition of the set {H ∈ Ω | T ⊂ H} of feasible coalitions containing

non-feasible coalition T . (Note that this set equals ΩT since T �∈ Ω.) Then δH = c for all

H ∈ T 1 and, recursively for k = 2, . . . ,M , the numbers δH , H ∈ T k, are determined by

δH +
∑

{Z⊂H|Z∈
⋃
k−1
l=1

T l}

δZ = c.

�

Weakening, in Theorem 4.10, the inessential player property by requiring only the inessen-

tial player property for union closed games, and adding independence of irrelevant coali-

tions, characterizes the union rule.

Theorem 5.6 A solution f for cooperative games on union closed systems is equal to the

union rule U if and only if it satisfies efficiency, additivity, the inessential player prop-

erty for union closed games, the necessary player property and independence of irrelevant

coalitions.

P����

We first prove that U satisfies the five axioms. Let v ∈ GN and Ω ∈ CN .

1. By efficiency of the Shapley value and σΩ(N) = N , we have that
∑

i∈N Ui(v,Ω) =∑
i∈N Shi(rv,Ω) = v(N), showing that U satisfies efficiency.
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2. Additivity of the Shapley value and the fact that rv,Ω(S) + rw,Ω(S) = v(σΩ(S)) +

w(σΩ(S)) = (v + w)(σΩ(S)) = rv+w,Ω(S) for all S ⊆ N , imply for i ∈ N that Ui(v,Ω) +

Ui(w,Ω) = Shi(rv,Ω) + Shi(rw,DΩ) = Shi(rv+w,Ω) = Ui(v + w,Ω), showing that U satisfies

additivity.

3. U satisfying the inessential player property for union closed games follows directly from

the null player property of the Shapley value.

4. Let v be a monotone game on N . Since S ⊆ T implies that σΩ(S) ⊆ σΩ(T ), by

monotonicity of v we have that rv,Ω is a monotone game on N . The necessary player

property then follows from the necessary player property of the Shapley value.

5. If v(S) = w(S) for all S ∈ Ω, then rv,Ω = rw,Ω, showing that the union rule U satisfies

independence of irrelevant coalitions.

To prove uniqueness, let Ω ∈ CN . We first consider v = cuT for some c ∈ IR and ∅ �= T ⊆ N .

We distinguish two cases.

1. Let T ∈ Ω, i.e. T is feasible. Then rcuT ,Ω = cuT . From the necessary player property it

follows that there exists a c∗ ∈ IR such that fi(cuT ,Ω) = c∗ for all i ∈ T . Since i ∈ N \ T

is a null player in cuT , and cuT (E) = cuT (σΩ(E)) for all E ⊆ N if T ∈ Ω, the inessential

player property for union closed games implies that fi(cuT ,Ω) = 0 for all i ∈ N \ T . Then

efficiency implies that c∗ = fi(cuT ,Ω) =
c
|T |

for all i ∈ T , and thus f(cuT ,Ω) is determined.

2. Suppose that T �∈ Ω, i.e. T is not feasible. Let ΩT = {H ∈ Ω | T ⊆ H} be the

collection of feasible subsets of N that contain T . (Note that T �∈ ΩT since T �∈ Ω.) By

Lemma 5.5 there exist numbers δH , H ∈ ΩT , such that rcuT ,Ω =
∑

H∈ΩT
δHuH . Since

cuT (E) = rcuT ,Ω(E) for all E ∈ Ω, by independence of irrelevant coalitions it then follows

that f(cuT ,Ω) = f(rcuT ,Ω,Ω) = f(
∑

H∈ΩT
δHuH ,Ω). By additivity we then have that

f(cuT ,Ω) = f

(
∑

H∈ΩT

δHuH ,Ω

)
=
∑

H∈ΩT

f(δHuH ,Ω). (5.2)

Since all H ∈ ΩT are feasible in Ω, we know from case 1 that f(δHuH ,Ω) is uniquely

determined for every H ∈ ΩT . Thus, with (5.2) also f(cuT ,Ω) is uniquely determined.

It further follows that additivity uniquely determines f(v,Ω) =
∑

T⊆N f(∆v(T )uT ,Ω) for

any v ∈ GN . �

The following example illustrates that the superior rule does not satisfy independence of

irrelevant coalitions.
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Example 5.7 Consider the tuple (v,Ω) of Example 5.2, and let game w be the restriction

of v on Ω. Obviously, rv,Ω = rw,Ω. However, since the superior graph is given by DΩ =

{(1, 2), (3, 4)}, we have that rc
v,DΩ = u{3} = v and rc

w,DΩ = u{1,3}+u{3,4}−u{1,3,4} = w, and

thus SUP (v,Ω) = (0, 0, 1, 0) and SUP (w,Ω) = (1
6
, 0, 2

3
, 1
6
).

We end this section by showing logical independence of the five axioms stated in

Theorem 5.6.

1. The superior rule satisfies efficiency, additivity, the inessential player property for

union closed games and the necessary player property. It does not satisfy indepen-

dence of irrelevant coalitions.

2. The solution that assigns to every game on union closed system the weighted Shapley

of the restricted game rv,Ω for some exogenous weight system ω ∈ IRN with ωi �= ωj

for some i, j ∈ N , satisfies efficiency, additivity, the inessential player property for

union closed games and independence of irrelevant coalitions. It does not satisfy the

necessary player property.

3. The equal division solution given by fi(v,Ω) =
v(N)
|N |

for all i ∈ N , satisfies efficiency,

additivity, the necessary player property and independence of irrelevant coalitions.

It does not satisfy the inessential player property for union closed games.

4. The equal division over non-null players, given by

fi(v,Ω) =

{
v(N)

|N\Null(v,Ω)|
if i ∈ N \Null(v,Ω)

0 if i ∈ Null(v,Ω),

where Null(v,Ω) denotes the set of null players in the restricted game rv,Ω, satisfies

efficiency, the inessential player property for union closed games, the necessary player

property and independence of irrelevant coalitions. It does not satisfy additivity.

5. The zero solution given by fi(v,Ω) = 0 for all i ∈ N satisfies additivity, the inessential

player property for union closed games, the necessary player property and indepen-

dence of irrelevant coalitions. It does not satisfy efficiency.

6 Irrelevant players and fairness

As mentioned before in Section 3, we can define and axiomatize the superior- and union

rule also if we do not assume that the ‘grand coalition’ N is feasible in Definition 3.1. By

condition 2 in that definition, the players that do not belong to the largest feasible subset

of N do not belong to any feasible coalition. We refer to these players as irrelevant players.
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For such a union closed system Ω we denote by R(Ω) = {i ∈ N | there is an S ∈ Ω with

i ∈ S} the set of relevant players, i.e. the players that belong to at least one feasible

coalition. Then we can define the superior rule and the union rule by applying these two

rules to the game and union closed system restricted to R(Ω), and assign the payoff zero

to all irrelevant players. The corresponding two rules can be axiomatized similar as done

before in this paper, by adapting the axioms in a similar way (i.e. distinguishing between

relevant and irrelevant players), and adding the axiom which states that irrelevant players

get zero payoff.

Axiom 6.1 (Irrelevant player property) For every game v ∈ GN and union closed

system Ω ∈ CN , we have fi(v,Ω) = 0 for all i ∈ N \R(Ω).

As mentioned in the preliminaries, Myerson (1980) characterized the Myerson rule

for conference structures by component efficiency6 and fairness. Although a conference

structure is any set of feasible coalitions on N , i.e. any subset of 2N , by Myerson (1980)’s

definition of connectedness all singletons are connected and thus earn their own worth

in the restricted game. So, even singletons that are not feasible, in the sense that they

do not belong to the conference structure, earn their worth in the restricted game. Note

that in our approach we took rv,Ω({i}) = v({i}) only if {i} is feasible, and rv,Ω({i}) = 0

otherwise. Alternatively, in line with Myerson (1980) we could always take rv,Ω({i}) =

v({i}) irrespective of whether {i} is feasible or not.

Because of the definition of connectedness, and thus the restricted game, in Myerson

(1980), it does not matter whether a conference structure does or does not contain {i} for

any i ∈ N . Consequently, a conference structure F yields the same Myerson rule payoffs as

conference structure F ∪ {{i} | i ∈ N}. Considering the subclass of conference structures

where all singletons are feasible (i.e. {i} ∈ F for all i ∈ N), the proof that there is a unique

solution satisfying component efficiency and fairness is similar to that in Myerson (1980)7.

However, for union closed systems typically we do not have {i} ∈ Ω for all i ∈ N , since the

unique union closed system satisfying this property is Ω = 2N . Therefore, we only require

the conditions in Definition 3.1.

Continuing our comparison with conference structures, we now discuss a fairness

axiom for union closed systems similar as the one for conference structures. However,

6For any conference structure, two players are called connected if there is a feasible coalition that

contains both players. Moreover, also all players are defined to be connected with themselves. A component

in the conference structure then is a maximally connected set of players. Component efficiency states that

the sum of payoffs over all players in one component equals the worth of that component in the game.
7Allowing {i} �∈ F for some i ∈ N the axiomatization can be stated adding the irrelevant player

property.

15



while applying fairness to conference structures any coalition can be deleted from the set

of feasible coalitions, for union closed systems we can only delete coalitions such that the

remaining set of feasible coalitions is still union closed. (Similar restrictions on deleting

feasible coalitions hold for other types of structures satisfying specific properties.) In other

words, we can only delete coalitions that are not the union of other feasible coalitions.

Definition 6.2 Let Ω ∈ CN . A coalition T ∈ Ω is a basis coalition in Ω if there do not

exist U, V ∈ Ω with T = U ∪ V .

Alternatively we can say that a coalition T ∈ Ω ∈ CN is a basis coalition in Ω if

Ω \ {T} ∈ CN .

Axiom 6.3 (Fairness) For every game v ∈ GN , union closed system Ω ∈ CN and basis

coalition S ∈ Ω, we have fi(v,Ω)−fi(v,Ω\{S}) = fj(v,Ω)−fj(v,Ω\{S}) for all i, j ∈ S.

The superior rule does not satisfy fairness, as can be seen by comparing the game

v = u{2} on union closed systems Ω = {∅, {1}, {1, 2}, {2, 3}, {1, 2, 3}} and Ω \ {{2, 3}}

(on N = {1, 2, 3}), where DΩ = {(2, 3)} and DΩ\{{2,3}} = {(1, 2)}, and thus SUP2(v,Ω)−

SUP2(v,Ω \ {{2, 3}}) = 1−
1
2
= 1

2
�= 0 = SUP3(v,Ω)− SUP3(v,Ω \ {{2, 3}}).

The union rule satisfies fairness. However, not allowing all coalitions to be deleted

from the set of feasible coalitions restricts the applicability of the fairness axiom to char-

acterize solutions.

Besides fairness being a weaker axiom on union closed systems than on arbitrary

systems, also component efficiency is weak since, by union closedness, it boils down to just

efficiency and the irrelevant player property. Efficiency, fairness and the irrelevant player

property do not characterize the union rule for games on union closed systems. Another

solution that satisfies these axioms on the class of games on union closed systems is the

modified union rule where we take two disjoint coalitions of equal cardinality and in case

both are feasible we subtract a fixed amount, say 1, from all players in one coalition and

give it to all players in the other coalition. Formally, take two disjoint coalitions S, T ⊆ N

with |S| = |T |. Then the (S, T )-union rule is the rule U
(S,T )

given by

U
(S,T )

(v,Ω) =

{
U(v,Ω) if {S, T} �⊂ Ω

Ũ (S,T )(v,Ω) otherwise,

where

Ũ
(S,T )
i (v,Ω) =





Ui(v,Ω) + 1 if i ∈ S

Ui(v,Ω)− 1 if i ∈ T

Ui(v,Ω) otherwise.
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Note that the axioms discussed in the previous sections (see Theorems 4.10 and 5.6)

all are applied to a fixed union closed system Ω. Applying axioms like fairness requires

that we allow to change the set of feasible coalitions. This type of axiomatizations will be

studied in future research.

7 Concluding remarks

In this paper we introduced two generalizations of the Shapley value to games on union

closed systems. The superior rule is based on the conjunctive permission value of an

associated game with permission structure, while the union rule is based on the Shapley

value of the restricted game. We axiomatized both rules such that they differ in only

one axiom. Both rules satisfy efficiency, additivity, the inessential player property for

union closed games and the necessary player property. We obtain an axiomatization of the

superior rule by strengthening the inessential player property for union closed games to

the stronger inessential player property. We obtain an axiomatization of the union rule by

adding independence of irrelevant coalitions.
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