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Abstract

We propose a new class of observation driven time series models referred to as

Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS

model is the scaled score of the likelihood function. This approach provides a unified and

consistent framework for introducing time-varying parameters in a wide class of non-linear

models. The GAS model encompasses other well-known models such as the generalized

autoregressive conditional heteroskedasticity, the autoregressive conditional duration, the

autoregressive conditional intensity, and the single source of error models. In addition,

the GAS specification provides a wide range of new observation driven models. Examples

include non-linear regression models with time-varying parameters, observation driven

analogues of unobserved components time series models, multivariate point process mod-

els with time-varying parameters and pooling restrictions, new models for time-varying

copula functions, and models for time-varying higher order moments. We study the prop-

erties of GAS models and provide several non-trivial examples of their application.
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1 Introduction

In many settings of empirical interest, time variation in a selection of parameters of a model is

important for capturing the dynamic behavior of (multivariate) time series processes. Time se-

ries models with time-varying parameters have been categorized by Cox (1981) into two classes:

observation driven models and parameter driven models. In this paper we develop a new, gen-

eral framework for building observation driven time series models. In the observation driven ap-

proach, time variation of the parameters is introduced by making the parameters dependent on

(functions of) lagged dependent values, exogenous variables, and past observations. Although

the parameters are stochastic, they are perfectly predictable given past information. This ap-

proach simplifies likelihood evaluation and explains why these models have become popular

in the applied econometrics and statistics literature. Typical examples of observation driven

models are the generalized autoregressive conditional heteroskedasticity (GARCH) model of

Engle (1982), Bollerslev (1986) and Engle and Bollerslev (1986), the autoregressive conditional

duration and intensity (ACD and ACI, respectively) models of Engle and Russell (1998) and

Russell (2001), the dynamic conditional correlation (DCC) model of Engle (2002a), the Poisson

count models discussed by Davis, Dunsmuir, and Streett (2003), the dynamic copula models

of Patton (2006), and the time-varying quantile model of Engle and Manganelli (2004). Our

approach encompasses many of the existing observation driven models as mentioned above. In

addition, it allows the formulation of a wide range of new models.

The alternative to observation driven models are parameter driven models. In parameter

driven models, the parameters are stochastic processes which are subject to their own source

of error. Given past and concurrent observations, the parameters are not perfectly predictable.

Typical examples include the stochastic volatility (SV) model, see Shephard (2005) for a detailed

discussion, and the stochastic intensity models of Bauwens and Hautsch (2006) and Koopman,

Lucas, and Monteiro (2008). Estimation is usually more involved for these models because

the associated likelihood functions are not available in closed-form. Exceptions include linear

Gaussian state space models and discrete-state hidden Markov models, see Harvey (1989) and

Hamilton (1989), respectively. In most other cases, computing the likelihood function requires

the evaluation of a high-dimensional integral based on simulation methods such as importance

sampling and Markov chain Monte Carlo; see, e.g., Shephard and Pitt (1997). However, pa-

rameter driven models offer a conceptually straightforward way of introducing time-varying

parameters in a wide class of non-linear and non-Gaussian models.

The main contribution of this paper is the development of a common framework for time-

varying parameters within the class of observation driven models. The primary difficulty in

2



formulating a unified framework lies in the choice of a function that links the past observations

to future parameter values. Such a function should be applicable to a wide class of non-linear

and non-Gaussian models. In this paper, we argue that the scaled score function of the model

density at time t is an effective choice for the driving mechanism of the time-varying parameters.

By choosing the scaling appropriately, standard observation driven models such as the GARCH,

ACD, and ACI models are recovered. The scaled score is equally applicable to non-standard

multivariate models and leads to the formulation of new observation driven models.

We will refer to our observation driven model with a scaled score function as the generalized

autoregressive score (GAS) model. The GAS model has similar advantages as the GARCH

model. Likelihood evaluation is straightforward. Extensions to asymmetric, long memory, and

other more complicated dynamics can be considered without introducing further complexities.

Other frameworks for observation driven models within the exponential family of distributions

have been suggested in the literature, including the generalized linear autoregressive (GLAR)

models of Shephard (1995), the generalized autoregressive moving average (GARMA) models of

Benjamin, Rigby, and Stanispoulos (2003), and the vector multiplicative error models (MEM)

of Cipollini, Engle, and Gallo (2006). In contrast to these proposals, GAS models are able to

exploit the complete density structure rather than only means and higher moments.

To illustrate the applicability of GAS models, we study a number of interesting, non-trivial

settings for observation driven models. We consider linear and non-linear regression models

with time-varying coefficients as a typical class of models that we can treat within the GAS

framework. An example is the Nelson and Siegel (1987) model for analyzing the term structure

of interest rates which emphasizes that GAS can also treat multivariate models. Multivariate

non-Gaussian models for pooled marked point-processes with a GAS specification for latent

factors driving the log-intensities is a new model specification that can be used for the modeling

of credit rating transitions. A new class of time-varying copulas models based on the GAS

framework can also be formulated. Another challenging direction in the current literature is the

modeling of higher-order moments of financial returns as time-varying processes. We show that

GAS provides a generic tool to develop models that have time-varying higher-order moments.

A particular case is to consider linear regression models and GARCH models with Student t

distributions where the degrees of freedom parameter is allowed to be time-varying. Observing

trade by trade transaction prices on a discrete grid leads to some interesting research directions

as well. For example, price changes can be viewed as realizations of a multinomial distribution

which need to be subject to time-varying processes. We will discuss a GAS treatment for the

modeling of discrete price changes. Finally, a methodology for dynamic mixture distributions

based on the GAS framework can also be developed.
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The remainder of the paper is organised as follows. In Section 2 we provide the basic GAS

specification together with a set of motivating examples. Section 3 includes a discussion of

the statistical properties of GAS models. Section 4 contains a range of non-trivial examples of

GAS models, where we develop several new observation driven models. In Section 5 we provide

simulation evidence for the statistical properties of the estimators. Finally, Section 6 concludes

and provides directions for future research.

2 Model specification

In this section we formulate a general class of observation driven time-varying parameter models.

The basic specification is introduced and a set of examples is provided for illustrative purposes.

We also discuss some alternative specifications of the model.

2.1 Basic model specification

Let yt denote the dependent variable of interest, ft the time-varying parameter vector, xt a

vector of exogenous variables (covariates), all at time t, and θ a vector of static parameters.

Define Y t
1 = {y1, . . . , yt}, F t

1 = {f1, . . . , ft}, and X t
1 = {x1, . . . , xt}. The available information

set at time t consists of Y t−1
1 , F t−1

1 = {ft−1, F
t−2
1 }, and X t

1. We assume that yt is generated by

the observation density

p(yt|ft−1, Y
t−1
1 , X t

1, F
t−2
1 ; θ), (1)

for t = 1, . . . , n. Furthermore, we assume that the mechanism for updating the time-varying

parameter ft is given by the familiar autoregressive updating equation

ft = ω +

p−1
∑

i=0

Aist−i +

q
∑

j=1

Bjft−j, (2)

where ω is a vector of constants, coefficient matrices Ai and Bj have appropriate dimensions for

i = 0, . . . , p−1 and j = 1, . . . , q, while st is an appropriately scaled function, which depends on

past observations Y t−1
1 , the time-varying parameters in F t−1

1 , and the static parameter vector

θ. Furthermore, all unknown coefficients in (2) are functions of θ as well, that is ω = ω(θ),

Ai = Ai(θ), and Bj = Bj(θ). Our main contribution is the particular choice for the driving

mechanism st that is applicable uniformly over a wide class of densities and non-linear models.

Equation (1) differs from a typical parameter driven model specification. In a parameter

driven model, the parameter ft would evolve subject to its own source of error, say ηt. In

particular, st would be replaced by ηt in (2). Estimation of ft is then based on the conditional

(filtered) density p(ft|Y t
1 , X

t
1, F

t−1
1 ; θ). For linear Gaussian state space models, this density can
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be computed in closed form by the Kalman filter. In non-linear and non-Gaussian models,

conditional densities are generally evaluated via simulation methods; see, e.g., Durbin and

Koopman (2001) and Doucet, de Freitas, and Gordon (2001). The simulations are often most

effective when they are based on second order expansions of the log observation density (1).

For observation driven models, we propose to use the same intuition to update the time-varying

parameter from ft−1 to ft via (2) with

st = S(t, Y t−1
1 , F t−1

1 ) · ∇t = St−1 · ∇t, (3)

where

∇t = ∂ ln p(yt|ft−1, Y
t−1
1 , X t

1, F
t−2
1 ; θ) / ∂ft−1, St−1 = S(t, Y t−1

1 , X t
1, F

t−1
1 ; θ), (4)

with time dependent scaling matrix S(·). Given the reliance of the driving mechanism in

(2) on the scaled score vector (3), we let the equations (1) – (3) constitute the generalized

autoregressive score model with orders p and q. We abbreviate the resulting model by GAS(p, q).

There are several intuitive choices for the scaling matrix that we investigate here. Our first

choice is to set St−1 equal to the (pseudo)-inverse information matrix based on the density (1),

that is

St−1 = I−1
t−1 = Et−1 [∇t∇

′

t]
−1

= −Et−1

[

∂2 ln p(yt|ft−1, Y
t−1
1 , X t

1, F
t−2
1 ; θ)

∂ft−1∂f ′

t−1

]−1

. (5)

The updating mechanism (2) for ft now reduces to something close to a Gauss-Newton updating

step for every new observation yt that becomes available through time. Using this particular

choice for scaling the score vector, the GAS model encompasses the well-known observation

driven GARCH, ACD, and ACI models as well as most of the Poisson count models considered

by Davis et al. (2003). When the scaling matrix is the identity matrix, that is St−1 = I in (3),

the recursion captures models such as the autoregressive conditional multinomial (ACM) model

of Russell and Engle (2005). In addition, it gives rise to a number of useful observation driven

models that have not been investigated before. We first give some introductory examples of

GAS models. In Section 4, we provide a more systematic review of new, non-trivial models

within the GAS family. It will be shown that the GAS framework offers many interesting

directions for future research.

2.2 Some examples

Example 1 (GARCH model): Consider the basic model yt = σt−1εt where the Gaussian

disturbance εt has zero mean and unit variance while σt is a time-varying standard deviation.
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It is a basic exercise to show that the GAS(1, 1) model with St−1 = I−1
t−1 for ft = σ2

t reduces to

ft = ω + A0

(

y2
t − ft−1

)

+B1ft−1, (6)

which is equivalent to the standard GARCH(1,1) specification of Bollerslev (1986). However,

if we assume that εt follows a Student t distribution scaled to have variance one and with ν

degrees of freedom, that is εt ∼ tν , the GAS(1,1) specification for the conditional variance leads

to the updating equation

ft = ω + A0

(

1 + 3ν−1
)

·

(

(1 + ν−1)

(1 − 2ν−1)(1 + ν−1y2
t /(1 − 2ν−1) ft−1)

y2
t − ft−1

)

+B1ft−1. (7)

The update (7) collapses to (6) in case of the Gaussian distribution, that is ν−1 = 0. The

recursion in (7), however, has an important difference with the standard t-GARCH(1,1) model

of Bollerslev (1987) which has the Student t density in (1) and the updating equation (6). The

denominator of the second term in the right-hand side of (7) causes a more moderate increase

in the variance for a large realization of |yt| as long as ν is finite. The intuition is clear: if the

errors are modeled by a fat-tailed distribution, a large realization in yt does not necessitate a

substantial increase in the variance. The GAS updating mechanism for the model with Student

t errors therefore is substantially different from its familiar GARCH counterpart. We return to

this example in more detail in Section 4.

Example 2 (MEM, ACD, and ACI models): Consider the model yt = µt−1εt where εt

has a gamma distribution with density p(εt|α) = Γ(α)−1εα−1
t αα exp(−αεt). Using a change

of variables, we have p(yt|α, µt−1) = Γ(α)−1yα−1
t ααµ−α

t−1 exp(−α yt

µt−1
). Let ft = µt, then the

GAS(1, 1) model with St−1 = I−1
t−1 is given by

ft = ω + A0 (yt − ft−1) +B1ft−1. (8)

This specification is equivalent to the multiplicative error model (MEM) proposed by Engle

(2002b) and extended in Engle and Gallo (2006). The exponential distribution is a special

case of the gamma distribution when α = 1. This makes the ACD and ACI models a special

case of MEM and consequently GAS. The ACD model of Engle and Russell (1998) follows

straightforwardly with α = 1 and factor recursion (8). Suppose we parameterize the exponential

density in terms of the intensity rather than the expected duration so that λt = 1/µt and

p(yt|λt−1) = λt−1 exp(−λt−1yt). Let f̃t = log(λt). The GAS(1,1) model now has the updating

equation

f̃t = ω + A0

(

1 − yt exp(f̃t−1)
)

+B1f̃t−1, (9)

which is equivalent to the standard ACI(1, 1) model of Russell (2001).

6



Example 3 (Regression model): The linear regression model yt = x′tβt−1 + εt has a k × 1

vector xt of exogenous variables, a k× 1 vector of time-varying regression coefficients βt−1 and

normally distributed disturbances εt ∼ N(0, σ2). Let ft = βt. It follows that the scaled score

function based on St−1 = I−1
t−1 is given by

st = (x′txt)
−1xt(yt − x′tft−1), (10)

where the inverse of It−1 is now the Moore-Penrose pseudo inverse to account for the singularity

of xtx
′

t. The GAS(1, 1) specification for the time-varying regression coefficient becomes

ft = ω + A0(x
′

txt)
−1xt(yt − x′tft−1) +B1ft−1. (11)

In case xt ≡ 1, the updating equation (11) for the time-varying intercept reduces to the ex-

ponentially weighted moving average (EWMA) recursion by setting ω = 0 and B1 = 1, that

is

ft = ft−1 + A0(yt − ft−1). (12)

In this case, we obtain the observation driven analogue of the local level (parameter driven)

model,

yt = µt−1 + εt, µt = µt−1 + ηt,

where the unobserved level component µt is modeled by a random walk process and the distur-

bances εt and ηt are mutually and serially independent, and normally distributed, see Durbin

and Koopman (2001, Chapter 2). A direct link between the parameter and observation driven

models is established when we set ηt = α(yt − µt−1) = αεt while in (12) we set α ≡ A0 and

consider ft−1 as the (filtered) estimate of µt−1. The local level model example illustrates that

GAS models are closely related to the single source of error (SSOE) framework as advocated

by Ord, Koehler, and Snyder (1997). However, the GAS framework allows for straightforward

extensions for this class of models. For example, the EWMA scheme in (12) can be extended

by including σ2 as a time-varying factor and recomputing the scaled score function in (10) for

the new time-varying parameter vector ft−1 = (β ′

t−1 , σ
2
t−1)

′.

The GAS updating function (11) reveals that if x′txt is close to zero, the GAS driving

mechanism can become unstable. As a remedy for such instabilities, we provide an information

smoothed variant of the GAS driving mechanism which we discuss in the next subsection.

Alternatively, we may want to consider the identity matrix to scale the score with St−1 = I

and st = xt(yt − x′tft−1).

Example 4 (Dynamic exponential family models): Consider the exponential family of

distributions represented by

exp(η(θ)′T (yt) − C(θ) + h(yt)), (13)
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with scalar function C and vector function η. Let θ = Φft−1, such that the parameters in θ are

time-varying according to a factor structure. It is well-known that

Et−1[η̇
′T (yt)] = Ċ, (14)

and

Et−1[η̇
′T (yt)T (yt)

′η̇] =
∂2C

∂θ∂θ′
+
∂C

∂θ

∂C

∂θ′
.

with Ċ = ∂C/∂θ, η̇ = ∂η/∂θ′, see Lehmann and Casella (1998). The GAS driving mechanism

with information matrix scaling is given by

st = (Φ′It−1Φ)
−1

Φ′(η̇′T (yt) − Ċ),

and

It−1 =
∂2C

∂θ∂θ′
.

This is a general expression for any member of the exponential family. Shephard (1995) and

Benjamin et al. (2003) proposed observation-driven models for the subclass of natural ex-

ponential family members when η(θ)′T (yt) = θ′yt in (13). Expression (14) then reduces to

Et−1[yt] = ∂C/∂η = g(ft−1, Y
t−1
1 , X t

1, F
t−2
1 ) where g(·) is known as the link function. They then

model the link function using explanatory variables and autoregressive/moving average terms.

The advantage of the GAS model over these alternative specifications is that it exploits the full

density structure to update the time-varying parameters.

The main obstacle for using GAS models may be the computation of the information matrix

given a specific parameterization. To facilitate this task, we present the elements of the gradient

vector and the information matrix for a variety of exponential family models in Table 1. In

addition to the GARCH and MEM classes of models, the GAS framework also encompasses

the time-varying binomial models of Cox (1958) and Rydberg and Shephard (2003), the ACM

model of Russell and Engle (2005), and some of the Poisson models in Davis et al. (2003).

The latter three models can be obtained by scaling the relevant score vector from Table 1 with

either an identity scaling matrix, St−1 = I, or the matrix square root of St−1 = I−1
t−1.

2.3 Different GAS specifications

An important advantage of the GAS(p, q) specification is that its applicability is not restricted

to one specific model or choice of model parameterization. In contrast, the recursion scheme is

applicable to a wide range of models that are characterized by a parametric likelihood speci-

fication. The GAS framework is particularly relevant for the applications in Section 4, where

we generalize some well-known models with time-varying parameters outside their usual area

8



Table 1: Details for the GAS updates for a selection of exponential family distributions

Distribution ft ∇t It

Normal (1) µt 0.5(yt − µt)/σ
2

t It,11 = 0.5σ−2

t

exp(−0.5(y−µ)2)

(2πσ2)1/2
σ2

t −0.5σ−2

t + 0.5σ−4

t (yt − µt)
2 It,22 = 0.5σ−4

t

It,12 = 0

Normal (2) µt 0.5(yt − µt)/σ
2

t It,11 = 0.5σ−2

t

exp(−0.5(y−µ)2)

(2πσ2)1/2
ln(σ2

t ) −0.5 + 0.5σ−2

t (yt − µt)
2 It,22 = 0.5

It,12 = 0

Exponential ln(λt) 1 − λtyt It = 1

λ exp(−λy)

Gamma ln(αt) αt (ln(yt) − ln(βt) − Ψ(αt, 1)) It,11 = α2

t Ψ(αt, 2)

yα−1 exp(−y/β)
βαΓ(α)

ln(βt) yt/βt − αt It,22 = αt

It,12 = αt

Dirichlet ln(αit) αit (Ψ (
∑

αjt, 1) − Ψ(αit, 1)) It,ii = αit [1 + Ψ(αit, 1)+

+αit ln(yit) αitΨ(αit, 2)−

Ψ (
∑

αjt, 1) − αitΨ (
∑

αjt, 2)]

It,ij = αitαjtΨ (
∑

αjt, 2)

Poisson ln(µt) yt − µt I = µt

e−µµy

y!

Negative ln(rt) rt(ln(pt) + Ψ(yt + rt, 1) − Ψ(rt, 1)) It,11 = r2t (Ψ(rt, 2)−

Binomial E[Ψ(rt + yt, 2)])
(y+r−1

k

)

pr(1 − p)y ln(pt/(1 − pt)) rt(1 − pt) − ytpt It,22 = rt(1 − pt)

It,12 = −pt

Multinomial ln

(

pit

1−
∑J−1

j=1
pjt

)

yit − npit It,ii = npit(1 − pit)

n!
∏J

j=1
p

yj
j

y1!···yJ !
· j = 1, . . . , J − 1 It,ij = −npitpjt

yJ = n −

∑

j<J yj

pJ = 1 −

∑

j<J pj

The GAS model specification is given by the equations (1) and (2). We have defined ∇t in (4) and It in (5).

The (i, j) element of It is denoted by It,ij . We further note that Ψ(x, k) = ∂k ln Γ(x)/∂xk.

of application. For example, if the time-varying parameter is common across different obser-

vations, the specification in (3) gives an automatic and model consistent way to weight the

information provided by different observations.

A useful feature of the GAS updating equation (3) is that under the correct model specifica-

tion, st is a martingale difference, that is Et−1[st] = 0. This follows directly from the properties

of the score vector. Due to scaling by the matrix St−1, we also obtain Et−1[sts
′

t] = St−1·It−1·S ′

t−1.

This simplifies to I−1
t−1 and It−1 for St−1 = I−1

t−1 and St−1 = I, respectively. The first two mo-

ments of the driving mechanism st are therefore easily linked to the theoretical properties of

the postulated model density (1).
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An important ingredient of the GAS model is the scaling of the score based on the inverse

of the information matrix. A simpler alternative for scaling is the unit matrix, St−1 ≡ I.

In this case, the updating mechanism only uses the unscaled gradient making it close to a

steepest-descent optimization step of the likelihood at time t. Our experience, however, is that

this type of updating mechanism is often less stable. We therefore propose to scale the score

vector by the inverse of the information matrix whenever possible, St−1 = I−1
t−1. A potential

difficulty with this scaling is the computation of the inverse when the information matrix is not

full rank or numerically unstable for specific models. In this respect, we can refer to Example

3 in subsection 2.2 where we obtain a singular information matrix for the multiple regression

model. Another example is given by a time-varying autoregressive model of order one without

intercept, that is,

yt = φt−1yt−1 + εt,

where εt is standard normally distributed. The information scaled score step in this case reduces

to st = (yt−φt−1yt−1)/y
2
t−1. The GAS updating scheme becomes numerically unstable if yt−1 is

close to zero. In this case, the information matrix It−1 = y2
t−1 is close to zero and st can jump

to extreme values. In such cases, we introduce a form of information smoothing over the most

recent stretch of observations, that is St−1 = (Ic
t−1)

−1 where

Ic
t−1 = αIc

t−2 + (1 − α)It−1. (15)

for some 0 ≤ α ≤ 1. This is an EWMA smoothing scheme. Other weighting schemes for

smoothing the information are also possible. The smoothing parameter α determines the num-

ber of observations that St−1 takes into account. For α → 0, we recover the standard GAS

model with information scaling. For α → 1, the model tends to average the information over all

past observations. The optimal smoothing parameter could be fixed a priori, or be determined

from the data itself by treating α as part of the static parameter vector θ in the likelihood.

The basic dynamics of (2) may be further extended in obvious directions. For example, it

may be interesting to include exogenous variables in (2), or to generalize the evolution of ft to

include other non-linearities such as regime-switching. In addition, it may be useful in some

applications to consider long-memory versions of (2), for example

ft = ω +
∞
∑

i=0

(i+ d− 1)!

i!(d− 1)!
st−1−i,

for fractional integration parameter d < 1/2, such that we obtain a fractionally integrated

GAS or FIGAS model specification, similar to the ARFIMA and FIGARCH literature, see the

seminal paper of Hosking (1981). We leave such extensions for future research.
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3 Statistical properties

In this section we explore issues related to maximum likelihood estimation and parameter

identification. We also discuss whether standard statistical and asymptotic results apply in our

GAS framework.

3.1 Estimation and inference

A convenient advantage of observation driven models is the relatively simple way of estimating

parameters by maximum likelihood (ML). This advantage applies to the GAS model as well. For

an observed time series y1, . . . , yn and by adopting the standard prediction error decomposition,

we can express the maximization problem as

max
θ

n
∑

t=1

`(θ; yt, ft, Y
t−1
1 , X t

1, F
t−1
1 ), (16)

where `(θ; yt, ft, Y
t−1
1 , X t

1, F
t−1
1 ) = ln p(yt|ft, Y

t−1
1 , X t

1, F
t−1
1 ; θ) for an observed value yt. Similar

to the GARCH model, the GAS model defines a filter for the time-varying parameters. This

makes likelihood evaluation particularly simple. It only requires the implementation of the GAS

updating function (2) and the evaluation of p(yt|ft, Y
t−1
1 , X t

1, F
t−1
1 ; θ∗) for a particular value θ∗

of θ.

It is possible to formulate recursions for computing the gradient of the likelihood with respect

to the static parameters θ. Gradient recursions for the GARCH model have been developed by

Fiorentini, Calzolari, and Panattoni (1996). For the GAS(1,1) specification, we obtain

d`t
dθ′

=
∂ ln pt

∂θ′
+
∂ ln pt

∂f ′

t−1

∂ft−1

∂θ′
, (17)

∂ft

∂θ′
=

∂ω

∂θ′
+ A0

∂st

∂θ′
+B1

∂ft−1

∂θ′
+ (s′t ⊗ I)

∂ ~A0

∂θ′
+
(

f ′

t−1 ⊗ I
) ∂ ~B1

∂θ′
, (18)

∂st

∂θ′
= St−1

∂∇t

∂θ′
+ (∇′

t ⊗ I)
∂~St−1

∂θ′
, (19)

where `t = `(θ; yt, ft, Y
t−1
1 , X t

1, F
t−1
1 ), pt = p(yt|ft, Y

t−1
1 , X t

1, F
t−1
1 ; θ), ~A = vec(A) denotes the

vector with the stacked columns of the matrix A, and ⊗ is the Kronecker matrix product.

Higher order GAS specifications can be dealt with similarly by formulating the GAS model

updating equation in companion form. The log-likelihood derivatives can be computed simul-

taneously with the time-varying parameters ft. However, computing the analytic derivatives,

in particularly for (19), may be cumbersome. In practice, we therefore often turn to likelihood

maximization based on numerical derivatives.

The easiest way to conduct inference for GAS models is to apply a standard limiting result

and use the inverse information matrix at the optimum to compute standard errors and t-values
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for the estimated parameters. In particular, if θ gathers all static parameters of the model, we

conjecture that under standard regularity conditions, the maximum likelihood estimator θ̂ of θ

is consistent and satisfies

T 1/2(θ̂ − θ)
d
→ N(0, H−1),

with H = −E[∂2`/∂θ∂θ′].

It is not clear, however, that standard statistical results apply directly. As an example,

even though {st} forms a martingale difference sequence, it is not directly evident that the

GAS(1,1) model will be stable even if |B| < 1. Since the variance of st changes over time

in a stochastic way, precise conditions for stability need to be formulated. For example, the

GAS specification does not prevent the variance of st from becoming unbounded. If the model

density is such that the inverse information matrix with respect to ft−1 is uniformly bounded,

standard stability results apply for |B| < 1. This holds for a number of examples we discuss

in Section 4. It is clear that given the generality of the GAS specification, the conditions for

standard asymptotic theory to apply need to be validated on a case by case basis. We leave this

to future research and mostly concentrate on conceptual issues. To provide some indications

of statistical convergence, we complement our empirical examples of Section 4 by Monte Carlo

simulation experiments for a selected set of examples in Section 5.

3.2 Parameterization and identification issues

The GAS specification allows a freedom of choice with respect to the parameterization of the

model. In the GARCH example of Subsection 2.2, the time-varying parameter is ft = σ2
t . When

it is preferred to enforce the positivity of σ2
t , an obvious alternative would be to parameterize

the model in terms of f̃t = ln(σ2
t ). After some manipulations, the GAS(1,1) specification for

this alternative model is

f̃t = ω + A1 ·

(

y2
t

σ2
t−1

− 1

)

+B1f̃t−1. (20)

The GAS dynamics automatically adapt to the choice of parameterization. In general, assume

that one prefers a different parameterization f̃t = h(ft) for some invertible mapping h(·). Let

ḣt = ∂h(ft)/∂f
′

t and note that ḣt is deterministic given all information up to and including

time t. Let sf
t denote the GAS information scaled score step for parameterization ft. For well

behaved densities, the information matrix equals both the expected outer product of scores and

the expected second derivative of the log density. This allows the information scaled score step

to be written as

sf̃
t =

(

Et−1[(ḣ
′

t−1)
−1∇t∇

′

tḣ
−1
t−1]
)

−1

(ḣ′t−1)
−1∇t = ḣt−1s

f
t . (21)

12



Reparameterizing the model thus reduces to rescaling the information scaled score step by the

inverse gradient of the mapping h(·) in each period. For example, this confirms the transition

from (8) to (9) by defining f̃t = − log(ft).

Another important issue concerns parameter identification. Consider a model density of the

following form,

p(yt; Φft−1), (22)

where ft follows a GAS(1,1) specification and Φ is a matrix of constants. For example, Φft can

be a vector of volatilities of a vector time series driven by a single common factor ft. In this

case, it is not possible to define both Φ and all GAS parameters ω, A, and B, simultaneously.

Take the model in (22) and introduce an invertible matrix K. Define f̃t = Kft, s̃t = Kst,

Φ̃ = ΦK−1, ω̃ = Kω, Ã = KAK−1, B̃ = KBK−1. The likelihoods for p(yt; Φft−1) and

p(yt; Φ̃f̃t−1) are obviously identical. Pre-multiplying the GAS(1,1) transition equation for the

original parameterization by K, we obtain

Kft = Kω +KAK−1Kst +KBK−1Kft−1 ⇔ (23)

f̃t = ω̃ + Ãs̃t + B̃f̃t−1. (24)

From (21) it follows directly that s̃t is the GAS driver for the new parameterization f̃t. As K is

an arbitrary invertable matrix, restrictions must be imposed on Φ to ensure identification. For

example, specific rows of Φ can be set equal to corresponding rows of the identity matrix. Note,

however, that the identification problem cannot be solved by only imposing restrictions on the

matrix A in the GAS equation. For example, assume we impose the normalization condition

A = I. Then this normalization constraint also holds in the reparameterized model f̃t = Kft as

Ã = KAK−1 = KK−1 = I where K is an arbitrary invertable matrix. The other parameters in

the model, however, will not be the same as for ft (e.g., Φ versus Φ̃ = ΦK−1), but the likelihood

value remains unchanged. The fact that the identification issue can be solved via restrictions

on Φ but not on A in this illustration is a direct consequence of the equivariance of the score

and information matrix as a basis for the recursions in the GAS model. We therefore need to

take some care in normalizing the parameter spaces of models with a factor structure such as

those in (22).

4 Applications and new models

In this section we present illustrations to highlight the variety of cases in which the GAS

framework can be used. We provide several new models and non-trivial extensions of existing

models.
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4.1 Time-varying (non-linear) regression models

The term structure of interest rates plays a central role in both macroeconomics and finance as

it describes the linkage between monetary policymakers’ impact on the short term interest rate

and firms’ investment decisions at longer horizons. We develop an observation driven analogue

to the popular term structure model of Nelson and Siegel (1987) given by the partial non-linear

regression model

yt,τ = xτ (λ) β + εt,τ , t = 1, . . . , n,

where yt,τ is the interest rate at time t for an investment that matures after τ months. The

1 × 3 covariate vector xτ (λ) is defined as

xτ (λ) =
[

1 , (λτ)−1(1 − exp(−λτ)) , (λτ)−1(1 − exp(−λτ)) − exp(−λτ)
]

,

where the coefficients λ and β are unknown and with independent disturbance εt,τ ∼ N(0, σ2) for

a given time t. For the particular choice of xτ (λ), the three coefficients in β can be interpreted

as the level, slope, and curvature of the term structure, respectively. The slope and curvature

factors depend on the parameter λ that is non-linear in yt,τ . At time t, interest rates for m

maturities can be observed such that τ = τj for j = 1, . . . , m. Based on these m observations

(for a given t), parameters β, λ and σ2 can be estimated by non-linear least squares methods.

This estimation procedure can be repeated at each time t, resulting in a time series of parameter

estimates, see Diebold and Li (2006) for further details.

4.1.1 The dynamic Nelson-Siegel model

Diebold, Rudebusch, and Aruoba (2006) proposed analyzing the time series dimension simulta-

neously with the maturity dimension of interest rates by considering the Nelson-Siegel model as

a multivariate state space model. For this purpose, they treat β as a 3× 1 vector of unobserv-

ables, βt, that are modeled as a vector autoregressive (VAR) process. Furthermore, the interest

rates for all m maturities at time t are put into the observation vector yt = (yt,τ1, . . . , yt,τm)′

and modeled by yt = Xt βt + εt where Xt = [xτ1(λ)′, . . . , xτm(λ)′]′, with serially independent

m× 1 disturbance vector εt ∼ N(0, D) and m×m positive diagonal matrix D. The unknown

parameters in the VAR model for βt, as well as D and λ are then estimated by ML using the

Kalman filter in this parameter driven approach.

In our observation driven approach, we take the GAS factor as ft−1 = βt. For illustrative

purposes we consider the Gaussian density for yt − Xtft−1 ∼ N(0, D) and take the GAS(1, 1)

updating equation as ft = ω + A0st +B1ft−1 with

st =
(

X ′

tD
−1Xt

)

−1
X ′

tD
−1 (yt −Xtft−1) ,
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assuming that m > 3 so that matrix X ′

tD
−1Xt is nonsingular. The static parameter vector is

given by

θ =
(

diag(D)′ , ω′ , ~A0

′

, ~B1

′

, λ
)

′

.
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Figure 1: Three factor dynamic Nelson-Siegel model. Panels (ii-iv) compare the estimated factor from the GAS

model with the one-step ahead predicted estimate from the parameter driven DNS model. (i) term structure data;

(ii) level factors and the 120 month yield; (iii) slope factors and the spread from the 3 month yield minus the

120 month yield; (iv) curvature factors and the 24 month yield minus the 3 and 120 month yield.

4.1.2 Illustration using the Fama-Bliss data-set

To illustrate the GAS specification for the dynamic Nelson-Siegel model, we analyze the Fama-

Bliss data-set as in Diebold et al. (2006). It consists of monthly U.S. Treasury yields with

maturities 3, 6, 9, 12, 15, 18, 21, 24, 30, 36, 48, 60, 72, 84, 96, 108, and 120 months over the

period from January 1972 to December 2000. For comparison purposes, we have estimated both

the parameter driven (DNS) and observation driven (GAS) models by ML. The DNS estimates

are close to those reported by Diebold et al. (2006) while the GAS estimates are different than

those obtained for the parameter driven DNS model. For example, the estimate of λ is 0.0778
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in the DNS model while it is 0.0948 in the GAS model. The estimates of other coefficients are

also different, which emphasizes that the interpretation of “comparable” coefficients in both

models are different. Nevertheless, the estimates of the three factors in βt are similar as we

observe from the graphs in Figure 1. The three estimated factors in both models correspond

closely to the empirical proxies of the yield curve factors over time.
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(i) level Yield: 120m 

1975 1980 1985 1990 1995 2000
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(iv) lambda NLS 

Figure 2: Nonlinear dynamic Nelson-Siegel model: (i) level factor with the 120 month yield; (ii) slope factor

with the spread from the 3 month yield minus the 120 month yield; (iii) curvature factor and the 24 month yield

minus the 3 and 120 month yield; (iv) λt factor with the non-linear (cross-sectional) least squares estimates of

λ in each period.

4.1.3 Nonlinear extension

In case the coefficients of the Nelson-Siegel model are estimated for a given t by non-linear

least squares, the estimate of λ (based on m = 17 observations) varies considerably over time

for t = 1, . . . , n. We follow Koopman, Mallee, and van der Wel (2009) in extending the DNS

model by allowing λ to vary over time. However, here we adopt an observation driven approach

using a GAS(1, 1) model. We define 4 × 1 vector f+
t = (β ′

t, λt) and specify it as f+
t = φ0 + Φft

where ft is a 3 × 1 vector of factors. We thus impose a three-factor structure on the evolution
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of (βt, λt), such that we can also investigate the performance of the GAS model when there is

non-linearity as well as restrictions on the parameter dynamics. To identify the model, we set

the upper 3× 3 matrix of the 4× 3 matrix Φ equal to the identity matrix and the upper three

elements of the 4×1 vector φ0 equal to zero, see Section 3.2. As a result, λt is a linear function

of βt. The GAS(1, 1) recursion with information matrix scaling is ft = ω+A0st +B1ft−1 where

st =
(

Ẋ ′

tD
−1Ẋt

)

−1

Ẋ ′

tD
−1 (yt −Xtft−1) ,

and Ẋt = (Xt, (∂Xt/∂λt−1)βt−1). The results from estimating this model are shown in Figure

2. The first three factors are plotted with their empirical proxy from the data. Meanwhile the

time-varying λt factor is plotted with the nonlinear least squares estimates of λ from the cross-

section of yields in each period. The fourth factor λt varies considerably and roughly tracks

the estimates of λ from the cross-section. By allowing λ to vary over time, the log-likelihood

function substantially increases from −3861 to −3611 (an increase of 250 points for adding 4

parameters).

4.2 Pooled marked point-process models

Models with time-varying intensities have received much attention in the finance and microe-

conometric literature. The principal areas of application in economics include intraday trade

data (market microstructure), defaults of firms, credit rating transitions and (un)employment

spells over time. To illustrate the GAS model in this setting, we consider an application from

the credit risk literature in which pooled marked point-processes are playing an important role.

We develop a new and useful modeling framework that is based on the GAS specification.

Recently, a number of promising models with stochastically evolving intensities have been

proposed, see Bauwens and Hautsch (2006), Koopman, Lucas, and Monteiro (2008), Duffie,

Eckner, Horel, and Saita (2006), and Koopman, Lucas, and Schwaab (2008). The econometric

handling of these parameter driven models is intricate while parameter estimation can be com-

putationally demanding. In particular, likelihood evaluation for these models requires the com-

putation of high-dimensional integrals using importance sampling techniques or Markov chain

Monte Carlo algorithms. The use of such simulation-based techniques, however, may obstruct

the widespread application of these models in practice. A computationally less-demanding

alternative can be based on developing observation driven analogues of these models.

The first step would then be to consider multivariate generalizations of Russell (2001).

However, this is not straightforward. Most of the models of Russell (2001) are developed in the

context of high frequency data and in particular for stock trades. The structure of data sets of

trades is substantially different from the data sets that are used in credit risk. Whereas in high
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frequency data one typically observes many spells for a limited number of stocks, in modeling

credit data one typically works with many different companies that only have very few spells

each. This requires the pooling of data over different companies in the sample. Consequently,

different events might carry information that is relevant for the dynamic parameter at any point

in time. The GAS model provides a straightforward and consistent methodology to address

this issue.

Let yk(t) = (y1k(t), . . . , ynk(t))
′ be a vector of marks of n competing risk processes for firm

k = 1, . . . , N . We have yjk(t) = 1 if event type j materializes for firm k at time t, and zero

otherwise. By following the application in Koopman, Lucas, and Monteiro (2008), we model

the log intensities of these processes by

λjk(t) = ηj + ψ′

jft∗ , (25)

where ηj is the baseline intensity and ψj is the vector of loadings for ft, and t∗ the last event time

before t. The vector of dynamic factors ft is specified by the GAS(1,1) updating equation (2)

with ω = 0. Since ft is an unobserved process, we may impose sign restrictions for ψj to obtain

economic interpretations for the factors. This GAS specification states that the intensities of

all firms are driven by the same vector of time-varying systematic factors ft. Model (25) nests

the model of Russell (2001) when we set the dimension of ft equal to the number of firms N .

In a credit risk context, we typically have dim(ft) << N . Furthermore, we require parameter

restrictions for model identification, see the discussion in Section 3. In the illustration below,

it is sufficient to set one of the ψj’s equal to unity.

The log-likelihood specification using (25) is

`t =
∑

j,k

yjk(t)λjk(t) − Rjk(t) · (t− t∗) · exp(λjk(t
∗)), (26)

where t∗ is the last event time before t, and Rjk(t) is a zero-one variable indicating whether

company k is potentially subject to risk j at time t. Based on the first and second derivative

of `t, we obtain

st+1 =

[

∑

j,k

wjk(t)ψjψ
′

j

]

−1(
∑

j,k

yjk(t)ψj −Rjk(t) · (t− t∗) · exp(λjk(t))ψj

)

, (27)

where wjk(t) = Rjk(t) · exp(λjk(t)) /
∑

j,k Rjk(t) · exp(λjk(t)) = P[yjk(t) = 1] is the probability

of the next event being of type j for company k. Combining all these elements into a GAS

specification, we have obtained a new observation driven model for credit rating transitions.

As an illustration, we adopt the model described above for the CreditPro 7.0 data set which

contains the Standard and Poor’s (S&P) rating histories of all US corporates over the period
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Table 2: Estimation results for the parameters in the one-factor GAS(1,1) intensity model (25) in a two-

grade system, with ψ4 = 1, with the scaled scoring function (27) and based on the S&P ratings of all US

corporates between 1981 and 2005. The estimates are reported with asymptotic standard errors in parantheses

below the estimates. Parameter B1 is subject to a logistic transformation during estimation and ψ3 is subject to

a identifying restriction ψ3 < 0.

IG → SIG IG → DEF SIG → IG SIG → DEF

j 1 2 3 4

η -3.920 -7.360 -3.360 -3.330

(0.118) (0.353) (0.109) (0.217)

ψ 0.520 1.190 -0.470 1.000

(0.076) (0.330) (0.086) —–

A0 logit(B1) B1

0.024 6.415 0.998

(0.003) (0.537)

1981–2005. We distinguish two complementary credit rating classes: the investment grade (IG)

and the sub-investment grade (SIG). Event 1 represents a rating transition from IG to SIG

while events 2, 3 and 4 represent IG to default, SIG to IG and SIG to default, respectively.

The GAS(1,1) model has a univariate (single) factor ft and the updating equation has the

scaled score function (27). The resulting model is estimated under the restrictions ψ3 < 0 and

ψ4 = 1. The estimation results are presented in Table 2. The GAS parameter B1 is estimated

close to unity which implies a persistent dynamic process for ft. Given the estimates of ψj, the

downgrades appear to be most sensitive to the common factor ft. In particular, the baseline

downgrade from investment grade to default is small with an estimate of -7.4 while it is strongly

sensitive to the common factor ft with a loading estimate of 1.19. Interestingly, the estimated

pattern (not shown) of the systematic intensity factor ft is close to the estimated pattern of

the parameter driven model of Koopman, Lucas, and Monteiro (2008). However, in a GAS

framework we do not require computationally intensive methods such as importance sampling

for parameter and factor estimation.

It is straightforward in our GAS framework to generalize the model to a three-factor model.

In this case, A0 and B1 in the GAS updating equation become 3 × 3 matrices. To obtain

identification, we set the loading vector ψj equal to the jth column of a 4 × 4 identity matrix

for j = 1, 2, 3 while ψ4 = ψ3. This parsimonious specification implies that upgrades and

downgrades between IG and SIG have different factors while transitions to default also have

a distinct factor. The static parameter vector θ contains the elements of A0 and B1 together
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Figure 3: Marked point-process illustration: the estimated intensities in a two-grade system of the GAS(1,1)

model with three credit risk factors, based on the scaled score function (27) and using the S&P rating histories

of US corporates for the period 1981–2005.

with the baseline intensities ηj. These parameters can be estimated in the usual way by ML.

After parameter estimation, we obtain similar estimated patterns for the three factors in ft as

for the more involved parameter driven model of Koopman, Lucas, and Monteiro (2008). In

particular, we corroborate the finding that the dynamics of upgrades are substantially different

from those of downgrades and defaults as can be clearly viewed in Figure 3 where the estimated

intensities ηj + ψ′

jft−1 are displayed.

To conclude this example, note that by reparameterization this GAS model can also be

extended to incorporate the time-varying multinomial model of Russell and Engle (2005). To

see this for the case with information matrix scaling, consider as an example a setting with

two competing risks characterized by the log intensities f1t = ln(λ1t) and f2t = ln(λ2t). The

multinomial model is characterized by the log intensity of the pooled process, f̃1t = ln(λ1t +

λ2t), and the logit transform of the probability of observing state 1 if an event occurs, f̃2t =
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ln(λ1t/λ2t). Following (21), the GAS driver st then only has to be pre-multiplied by the matrix





λ1,t−1

λ1,t−1+λ2,t−1

λ2,t−1

λ1,t−1+λ2,t−1

1 −1



 .

4.3 Unobserved component models with a single source of error

Unobserved components or structural time series models are a popular class of parameter driven

models where the unobserved components (UC) have a direct interpretation, see Harvey (1989).

In this section, we describe observation-driven analogues to UC models. For a univariate time

series y1, . . . , yn, a univariate signal ψt can be extracted. The dynamic properties of ψt can

be broken into a vector of factors ft−1 that are specified by the updating equation (2). For

example, we can specify the signal as the sum of r factors, that is

ψt = f1,t−1 + . . .+ fr,t−1 (28)

with ft = (f1,t, . . . , fr,t)
′. In the case r = 2, we can specify the first factor as a time-varying trend

component (random walk plus drift) and the second factor as a second-order autoregressive

process with possibly cyclical dynamics. For this decomposition we obtain the GAS(1,2) model

with observation model yt = ψt + εt = f1,t−1 + f2,t−1 + εt, observation density p(yt|ψt; θ) =

N(f1,t−1 + f2,t−1, σ
2) and updating equation

ft =





ω

0



+





a1

a2



 st +





1 0

0 φ1



 ft−1 +





0 0

0 φ2



 ft−2. (29)

The constant ω is the drift of the random walk trend factor f1,t and the autoregressive co-

efficients φ1 and φ2 impose a stationary process for the second factor f2,t. The scaled score

function is given by

st = yt − ψt = yt − f1,t−1 − f2,t−1 = εt, (30)

and can be interpreted as the single source of error. The static parameter vector θ, consisting

of coeffients ω, a1, a2, φ1, φ2 and σ, can be estimated straightforwardly by ML. The estimates

of ft result in a decomposition of yt into trend, cycle, and noise. This GAS decomposition can

be regarded as the observation driven equivalent of the UC models of Watson (1986) and Clark

(1989), who also aim to decompose macroeconomic time series into trend and cycle factors.

The UC trend-cycle decomposition model is then given by yt = f1,t + f2,t with

f1,t = ω + f1,t−1 + a1ξ1,t, ξ1,t ∼ N(0, 1), (31)

f2,t = φ1f2,t−1 + φ2f2,t−2 + a2ξ2,t, ξ2,t ∼ N(0, 1), (32)
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Table 3: Estimation results for the parameters in the trend-cycle GAS(1,2) decomposition model (28) with the

updating equation (29) and the scaled scoring function (30) based on quarterly log U.S. real GDP from 1947(1)

to 2008(2). The estimates are obtained by ML and reported with asymptotic standard errors in parantheses

below the estimates. Furthermore, the ML estimates of parameters in the parameter driven trend-cycle UC

model (31)–(32) are reported which are based on the same data set.

ω a1 a2 φ1 φ2 σ log-like

GAS 0.825 0.723 0.563 1.328 -0.424 0.905 -324.51

(0.043) (0.206) (0.202) (0.130) (0.142) (0.041)

UC 0.825 0.604 0.621 1.501 -0.573 – -324.06

(0.040) (0.098) (0.112) (0.102) (0.106) –

where the disturbances ξ1,t and ξ2,t are mutually and serially independent.

To illustrate the GAS trend-cycle decomposition model, we consider the time series of

quarterly log U.S. real GDP from 1947(1) to 2008(2) obtained from the Federal Reserve Bank

of St. Louis. The vector of static coefficients θ is estimated by ML and the results are reported

in Table 3. The estimated autoregressive polynomial for factor f2,t has roots in the complex

range and therefore factor f2,t has cyclical properties. We may interpret f2,t as a real-time

business cycle indicator for time t which is displayed in Figure 4. To compare this indicator

with the indicator produced by the Watson (1986) model, we also report the ML estimates of

the corresponding coefficients in an UC trend-cycle model. These estimates are obtained by

using the Kalman filter for likelihood evaluation. Parameter estimates for the UC model are

reported in Table 3 and the one-step ahead predicted estimate of f2,t is plotted in Figure 4. We

find that the parameter estimates from each model correspond closely. The second factor from

each model exhibits cyclical behavior and the growth rate of the trend is estimated to be the

same. Estimates of the GAS and UC cycle factors in Figure 4 are almost indistinguishable.

The GAS framework is sufficiently general to provide an observation driven alternative for

the decomposition of univariate and multivariate time series based on UC models including

models with trend, seasonal, cycle and irregular components. For example, the GAS updating

equation can also be designed to incorporate the trend and cycle dynamics as formulated by

Harvey and Jaeger (1993). Regression and intervention effects can also be incorporated in the

GAS specification, see the discussion in Subsection 2.1. Since the resulting GAS models are

equivalent to single source of error models, we refer to Ord et al. (1997) for a more detailed

discussion on this class of models.
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Figure 4: Trend-cycle illustration: estimated cycles from the GAS and UC trend-cycle models based on quar-

terly log of U.S. real gdp from 1947(1) through 2008(1). NBER recession dates are indicated by the shaded

regions.

4.4 State space models with time-varying GAS parameters

The GAS framework can also be adopted to let the static parameters of linear Gaussian state

space models vary over time. To illustrate its relevance, we consider the local level model as

specified by

yt = µt + εt, µt = µt−1 + ξt, εt ∼ N(0, σ2
ε), ξt ∼ N(0, σ2

ξ ), t = 1, . . . , n. (33)

We treat the variances of the irregular and level disturbances, σ2
ε and σ2

ξ respectively, as GAS

factors in order to obtain a time-varying UC model. The resulting model is similar in spirit to

the model considered by Stock and Watson (2007) for forecasting quarterly U.S. inflation. The

details of our time-varying local level model are given below. A related idea is to combine state

space models with ARCH disturbances; see, e.g. Harvey, Ruiz, and Sentana (1992).

The variances σ2
ε and σ2

ξ of the local level model (33) can be replaced by two GAS factors to

obtain a model with time-varying variances. Since variances must remain positive, we specify

the two GAS factors as log-variances. Replacing the constant variances in (33) with the GAS

factors, new disturbances for the local level model are given by

εt ∼ N {0, exp(f1,t−1)} , ξt ∼ N {0, exp(f2,t−1)} , t = 1, . . . , n, (34)

with ft = (f1,t , f2,t)
′. Conditional on ft−1, the unobserved level µt in (33) remains linear in the

observations y1, . . . , yt and therefore the Kalman filter can be adopted to produce the optimal
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estimate of µt which is given by at = E(µt|ft−1, Y
t−1
1 , F t−2

1 ; θ) with its mean square error pt.

The log-likelihood function for the local level model (33) is given by

`(θ) =
n
∑

t=1

`t(θ; yt, Y
t−1
1 ), `t = `t(θ; yt, Y

t−1
1 ) = −

1

2
ln 2π −

1

2
ln dt −

1

2
v2

t / dt, (35)

where the prediction error vt and its variance dt are evaluated by the Kalman filter as given by

vt = yt − at, dt = pt + exp(f1,t−1), kt = pt / dt, (36)

at+1 = at + ktvt, pt+1 = (1 − kt)pt + exp(f2,t−1), (37)

for t = 1, . . . , n with diffuse initializations a1 = 0 and p1 = κ while κ → ∞, see Durbin and

Koopman (2001). The Kalman filter update can be carried out simultaneously with the GAS

updating equation (2) for ft and with the scaled score function defined by (3). In this case, we

have

∇i,t =
∂`t

∂ exp(fi,t−1)
×
∂ exp(fi,t−1)

∂fi,t−1
= exp(fi,t−1)

∂`t
∂ exp(fi,t−1)

(38)

for i = 1, 2. Given the Kalman filter equations (36)–(37), the latter term of (38) is evaluated

by
∂`t

∂ exp(fi,t−1)
= −

1

2

(

ḋit + 2vtv̇it

)

/ dt +
1

2
ḋit (vt / dt)

2 , (39)

where v̇it = ∂vt / ∂ exp(fi,t−1) and ḋit = ∂dt / ∂ exp(fi,t−1) are evaluated by the additional

recursions

v̇it = −ȧit, ḋit = ṗit + 1(i = 1), k̇it = (ṗit − ktḋit) / dt, (40)

ȧi,t+1 = (1 − kt)ȧit + k̇itvt, ṗi,t+1 = −k̇itpt + (1 − kt)ṗit + 1(i = 2), (41)

where 1(i = j) equals one if i = j and zero otherwise, with initializations ȧi1 = 0 and ṗi1 = 0,

for t = 1, . . . , n and i = 1, 2. For the local level model, we therefore obtain two additional

recursions to evaluate the score and they can be carried out simultaneously with the Kalman

filter. By following Harvey (1989, p 140–2), we approximate the information matrix by

It−1(i, j) = −Et−1

(

∂2`t
∂fi,t−1∂f

′

j,t−1

)

≈ exp(fi,t−1) exp(fj,t−1)×

(

1

2
ḋitḋjt / d

2
t + v̇itv̇jt / dt

)

, (42)

where It−1(i, j) is the (i, j) element of It−1 for i, j = 1, 2. The computation of this approxima-

tion is feasible given the additional recursions (40)–(41). However, in practice, the information

matrix may become singular or close to singular. We therefore have adopted the EWMA

smoothing scheme for the information matrix to obtain the scaled score function, see the dis-

cussion in Subsection 2.3.

The Kalman filter, the additional recursions for the score, and the GAS updating equation

for ft are carried out simultaneously. The parameter vector θ consists of the GAS updating
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coefficients in ω, A0, . . . , Ap−1, B1, . . . , Bq and, possibly, the smoothing coefficient α of the

EWMA smoothing recursion for the information matrix. The estimation of θ is done by ML

via the maximization of `(θ) in (35) with respect to θ. Given a value of θ, the recursions in real-

time provide estimates of µt via the Kalman filter and estimates of ft via the score recursions

and the GAS updating equation simultaneously.

To illustrate the new GAS model, we consider a time series of quarterly U.S. Consumer

Price Index inflation from 1959(1) to 2007(2) obtained from the FRED database. The lo-

cal level model with a GAS(1,1) updating equation for the log-variances is adopted and the

methodology of estimation as discussed above is implemented. The EWMA smoothing scheme

for the information matrix depends on α which is estimated as part of θ. The GAS coefficient

matrices A0 and B1 are chosen to be diagonal so that we need to estimate a total of seven

coefficients. The estimation results are given by

ω̂ =





0.122

0.003



 , Â0 =





0.426 0

0 0.081



 , B̂1 =





0.569 0

0 0.916



 , α̂ = 0.674,

with the maximized loglikelihood value given by −372.97. The loglikelihood value for a standard

local level model is given by −394.19 indicating a substantial improvement in fit with the GAS

model specification.

Panels (i) and (ii) of Figure 5 present the estimated factors exp(f1,t/2) and exp(f2,t/2),

which are the standard deviations for εt and ξt, respectively. The standard deviation of the

observation disturbance is moderate until the end of 2006 onwards at which time it has become

relatively high. The standard deviation of the level disturbance increased in the 1970’s during

the periods of higher inflation and then decreased steadily over the remaining sample. The

signal to noise ratio in our GAS framework is defined by the ratio qt = exp(f2,t) / exp(f1,t).

When it is low, the estimate of µt is based on a long range of past observations. When it is

high, µt is estimated using only a small set of recent observations. The third graph in Figure 5

displays qt based on the estimate of ft. As the properties of the model suggested, the estimate

of µt is only based on recent observations during the years of the oil-crisis, 1974–1976. From

1980 onwards, the level of inflation is more stable and a longer stretch of past observations are

used in the estimator of the trend. Finally, the (filtered) estimate of µt is displayed in graph (iv)

of Figure 5. The GAS framework captures the overall development of U.S. inflation effectively.

The estimated patterns of the time-varying standard deviations are similar to those obtained

by Stock and Watson (2007) who used Markov chain Monte Carlo to estimate the time-varying

variances in their parameter driven model.
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Figure 5: A local level model illustration: estimation results for the time-varying variances. Results are for the

quarterly U.S. inflation from 1959(1) to 2007(2): (i) estimated volatility exp(f1,t/2) of the irregular component;

(ii) estimated volatility exp(f2,t/2) of the trend component; (iii) estimated signal-to-noise ratio qt; (iv) U.S.

inflation and estimated trend µt.

4.5 Dynamic copula models

Copulas have become popular over the last decade in the literature on financial risk manage-

ment. A copula is a multivariate distribution function over a hypercube with uniform marginals.

The copula can be used to link marginal distributions into a multivariate distribution using

Sklar’s theorem. In this subsection, we demonstrate that the GAS framework provides new

model specifications for simple copulas such as the bivariate Gaussian copula. We then illus-

trate some of the numerical extensions of the GAS specification to mixture copulas that allow

for asymmetric tail behavior.

4.5.1 Gaussian copulas

We first focus on a simple Gaussian copula where the GAS model suggests an alternative

dynamic structure compared to earlier suggestions in the literature. Patton (2006) introduced
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the notion of time-varying copulas, see also Dias and Embrechts (2004) and van den Goorbergh,

Genest, and Werker (2005). Patton (2006) models1 the driving mechanism for the dynamic

bivariate Gaussian copula as

ft = ω + A

m−1
∑

i=0

Φ−1(u1,t−i)Φ
−1(u2,t−i) +Bft−1, (43)

where Φ−1 is the inverse normal distribution function, u1t and u2t are the probability integral

transforms using the univariate marginals and m is a smoothing parameter. The (Gaussian)

correlation parameter ρt is obtained via the transformation ρt = (1−exp(−ft))/(1+exp(−ft)).

Equation (43) is intuitively appealing and builds on our understanding of covariances: if the

transformed marginals have the same sign, the correlation should increase. The reverse holds

if the transformed marginals are of opposite sign.

By using the density of the Gaussian copula, we can derive the GAS specification for the

time-varying correlation parameter. The score with respect to the correlation parameter is the

same for the Gaussian copula and for the bivariate normal. Our results therefore also apply to

the Dynamic Conditional Correlation (DCC) framework of Engle (2002a).

Define xt = Φ−1(u1t)
2 + Φ−1(u2t)

2 and yt = Φ−1(u1t)Φ
−1(u2t). For m = 1, Patton’s model

(43) then reduces to

ft = ω + A · yt +B · ft−1. (44)

Deriving the score and information matrix of the bivariate normal for the transformed correla-

tion parameter, the GAS(1, 1) updating equation for ft is obtained as

ft = ω + A
2(yt − ρt−1 − ρt−1(1 + ρ2

t−1)
−1(xt − 2))

(1 − ρ2
t−1)

+Bft−1. (45)

The similarities and differences between (44) and (45) are clear. Both models are driven by yt

as positively clustered transformed marginals should increase the correlation parameter. The

additional scaling factor 2/(1 − ρ2
t−1) in (45) is a consequence of modeling the transformed

correlation parameter ft rather than ρt directly. The additional ρt−1 term in the numerator of

the second term in (45) enforces yt − ρt−1 to be a martingale difference. The most interesting

difference between the two model specification is the final term involving xt. The term xt − 2

is a martingale difference. The value of xt is large when an extreme observation occurs in u1t,

u2t, or particularly in both. The effect of such an event depends on the current estimate of

the correlation parameter ρt−1. If the correlation is positive, the impact on the value of xt−1

is negative. In this case, the xt term offsets part of the effect of yt if the latter has a positive

1We adapt Patton’s notation here slightly to correspond with the timing convention used in the current

paper, i.e., using ft−1 in the copula at time t rather than ft.
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value, i.e., if yt corresponds with the current positive estimate of ρt−1. If yt has a negative

value, however, the xt term reinforces the magnitude of the GAS step triggered by yt.

The effects are visualized in Figure 6 where the GAS (top graphs) and Patton (bottom

graphs) drivers for different values of (u1t, u2t) and three different values of the correlation

parameter, ρt−1 = −0.5, 0.2, 0.9, are peresented. Note that each pair of top and bottom graphs

has the same scale on the vertical axis. If we consider the plot for ρ = 0.9, we see two clear

differences. First, the GAS step results in a smaller increase in the correlation parameter along

the u1t = u2t axis. Particularly if u1t and u2t are both large or small, the step based on yt alone

(Patton; lower panels) results in a more pronounced increase of the transformed correlation

parameter. The same holds for the smaller positive correlation parameter of ρ = 0.2.
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Figure 6: A bivariate Gaussian copula illustration: comparisons between the GAS and Patton drivers as a

function of the uniforms (u1t, u2t). The top panels contain the graphs for the GAS step in (45) for ρt−1 =

−0.5, 0.2, 0.9 (left, middle, right). The lower graphs contain the (re-centered) steps yt − ρt−1 of the Patton

model, (44). The vertical axes have the same scale for each column of graphs.

A more striking feature, however, is the increased sensitivity along the off-diagonal areas for

positive ρ. If the current estimate of ρ is positive and one observes a combination of (u1t, u2t)

that signals negative rather than positive dependence, the GAS specification is more sensitive

28



to this occurrence and is more inclined to rapidly adjust the current estimate of ρ downwards

compared to the Patton step. For negative values of ρ, the left panels show that the effects

are reversed. The GAS specification becomes more sensitive to observations along the diagonal

than the specification based on yt alone.

4.5.2 Illustration for Gaussian copula

For illustrative purposes, we extend the example from Patton (2006) to investigate the depen-

dence of the daily exchange rates of the German Mark (later Euro), against the US dollar, with

the Japanese Yen and with the British Pound, both against the US dollar. The sample period

is January 1986 through August 2008. The log returns of the exchange rate series are analyzed

by an autoregressive model for the conditional mean and a GARCH model for the conditional

variance (an AR-GARCH model). We construct the transformed series for u1t and u2t and use

these as input for the Gaussian copula model. Apart from (44) and (45), we also estimate an

ad-hoc implementation of the DCC framework of Engle (2002a). In particular, we model the

correlation parameter directly using the updating equation

ρt = ω + A · yt +B · ρt−1. (46)

To enforce the stationarity property of this process, we estimate the logit transform of B. The

results are presented in Table 4 and Figure 7.
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Figure 7: A copula illustration: comparisons of the correlation parameter estimates for the GAS, Patton,

and DCC drivers in (44)–(46). The data are the marginal AR-GARCH transforms of log exchange rates for

the German Mark-US dollar and Japanese Yen-US dollar (left panel) and for the German Mark-US dollar and

British Pound-US dollar (right panel). The sample period is January 1986–August 2008.

Table 4 shows that the GAS specification increases the log-likelihood value 25 to 125 points

for the same number of parameters. The figures show the empirical estimates of the time-varying
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Table 4: Parameter estimates for the GAS, Patton, and DCC drivers in (44)–(46). The data are the marginal

AR-GARCH transforms of log exchange rates for the German Mark-US dollar and Japanese Yen-US dollar (left

panel) and for the German Mark-US dollar and British Pound-US dollar (right panel). The sample period is

January 1986–August 2008. Confidence interval in parentheses for B, otherwise standard errors in parentheses.

103ω A ln( B
1−B

) B log-like

German Mark (Euro)–US $, Japanese Yen–US $

GAS 6.11 0.058 5.30 0.995 1218.16

(2.48) (0.009) (0.37) (0.990,0.998)

Patton -1.60 0.036 4.27 0.986 1191.51

(0.85) (0.003) (0.10) (0.983,0.989)

DCC 1.03 0.008 4.65 0.991 1184.13

(0.29) (0.001) (0.09) (0.989,0.992)

German Mark (Euro)–US $, British Pound–US $

GAS 12.55 0.082 4.97 0.993 2218.82

(3.55) (0.008) (0.26) (0.988,0.996)

Patton -0.97 0.025 4.71 0.991 2090.42

(0.84) (0.002) (0.11) (0.989,0.993)

DCC 2.64 0.004 4.84 0.992 2060.43

(0.39) (0.000) (0.11) (0.990,0.994)

correlation. Based on the estimates of the parameter B, the GAS specification leads to the most

persistent correlation process, followed by the DCC and the Patton specifications. However, the

increased sensitivity of the score mechanism to correlation shocks reveals an opposite pattern

in the figures. Due to the sharpe decline at the edges as visualized in Figure 6, the GAS

specification reacts much more fiercely to exchange rate returns of opposite sign if the current

correlation estimate is positive. This is most clearly seen for the Mark-Pound example, but

also the Mark-Yen example shows similar features at the end of 1993 and 2003. The DCC

dynamics, and to a lesser extent the Patton dynamics, are much smoother in this sense. The

difference between the dynamics for the different specifications may be highly relevant for risk

managers, where changes in correlations and in particular correlation breakdowns are a major

concern.

4.5.3 Clayton copula

The GAS specification can also be considered for non-Gaussian copulas such as a mixture of

Clayton-type copulas. Patton (2006) proposes a generally applicable driving mechanism for
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copula parameters as given by

ft = ω −m−1A
m−1
∑

i=0

|u1,t−i − u2,t−i| +Bft−1, (47)

where ft captures the dependence between the coordinates. The intuition for (47) is clear.

If the most recent u1t and u2t are close together, this is a signal of strong dependence and,

therefore, ft is increased. Similarly ft is decreased if u1t and u2t are far apart.

Though the driving mechanism in (47) is intuitively straightforward, two issues are less

clear. First, (47) uses no information contained in the particular choice of the copula. As with

the Gaussian copula, such information may be helpful in specifying the dynamics. Second,

although (47) provides an easy updating scheme for the bivariate case, the extension to the

multivariate case is less obvious. In particular, if one has an Archimedian copula characterized

by a single dependence parameter, there are many different ways in which one could use the

differences |uit − ujt| for i 6= j to update the dependence parameter. Equation (47) provides

little guidance as to how these different and possibly conflicting signals should be weighed.

The Clayton copula for our example is a member of the Archimedian family. Its specification

in dimension d is given by

C(u1, . . . , ud) =

(

1 − d+

d
∑

i=1

u−α
i

)−1/α

. (48)

The Clayton copula is characterized by the dependence parameter α. Low values of α indicate

high levels of dependence. This is also captured by the tail dependence coefficient, which

measures the probability of joint extreme exceedances. For the Clayton, extreme joint crashes

receive positive probability, while joint extreme upward shocks have zero probability.

We specify α = ft−1 and define S(α) =
∑d

i=1 u
−α
i . The Clayton copula has pdf

c(u1, . . . , ud) = (1 − d+ S(α))−1/α−d ·
d−1
∏

i=0

(

(1 − i · α)u−α−1
i

)

. (49)

We obtain the score vector

∇t = −
d−1
∑

i=0

(

i

1 − i · α
− ln(ui)

)

+
1

α2
ln (1 − d+ S(α))+ (50)

(

1

α
+ d

) ∑d
i=1 u

−α
i ln(ui)

1 − d+ S(α)
.

The principal difficulty for some GAS-based dynamic copula models is deriving a closed-form

expression for the information matrix. Even for simple copula models, this may quickly become

unmanageable analytically. This certainly holds for mixtures of copulas that we consider next.
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To solve this analytical issue, we compute the information matrix numerically. In our current

example, the information matrix can be written as

It−1 = Et−1

[

(∇t)
2
]

≡ h(ft−1), (51)

with the score vector ∇t as defined in (50). Note that the function h(·) in (51) does not depend

on time or on any parameter other than ft−1. We can therefore construct a grid of values

f (0) < . . . < f (n) and compute the function value h(f (j)) at each of the grid points. Values

at intermediate points can be obtained by cubic spline interpolation or non-parametric kernel

smoothing to ensure continuity of first and second derivatives of the likelihood function. The

numerical procedure is then as follows. First, choose starting values of the parameter θ and

set the starting value f0. Using interpolation, compute h(f0) and use it to scale the score step

s1 = ∇1/h(f0). Compute the new parameter value f1 through the GAS recursion, and again

use interpolation to obtain h(f1). This process is repeated for the complete sample. Finally,

the likelihood can be computed.

4.5.4 Symmetrized Clayton copula

The Clayton copula accounts for lower tail dependence but not for upper tail dependence.

Therefore, it is useful to use a symmetrized version of the Clayton copula that allows for

non-zero, but different upper and lower tail dependence. The symmetrized Clayton copula is

a mixture of the Clayton and the survival Clayton copula. Consider a general mixture of r

copulas,

C(u1, . . . , ud) =

r
∑

i=1

piCi(u1, . . . , ud), (52)

with copula functions Ci and corresponding pdf ci. Define wi = pici/
∑r

j=1 pjcj as the weight

of copula i. It is straightforward to derive that

∂ ln c

∂θ
=

r
∑

i=1

wi ·
∂ ln ci
∂θ

, (53)

and

∂2 ln c

∂θ∂θ′
=

r
∑

i=1

wi ·

(

∂2 ln ci
∂θ∂θ′

+
∂ ln ci
∂θ

∂ ln ci
∂θ′

)

−

(

r
∑

i=1

wi ·
∂ ln ci
∂θ

)(

r
∑

i=1

wi ·
∂ ln ci
∂θ

)

′

, (54)

and thus,

Et−1

[

∂2 ln c

∂θ∂θ′

]

= −Et−1

[(

r
∑

i=1

wi ·
∂ ln ci
∂θ

)(

r
∑

i=1

wi ·
∂ ln ci
∂θ

)

′
]

,

such that the scores of the individual copulas can be used directly to build the driving mecha-

nism of the mixture copula. We illustrate this for a mixture of r = 2 copulas. The first one is
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the Clayton copula characterized by the parameter αL that accounts for lower tail dependence.

The second component of the mixture is the survival Clayton copula, characterized by the

parameter αU and accounting for upper tail clustering.

The GAS mechanism for the mixture of copulas has an intuitive interpretation. A given

observation may have a contribution to the evolution of either αL or αU , i.e., to either the

upper or lower tail dependence. The contributions are measured in terms of the likelihood of

each mixture component vis-a-vis the total likelihood. As a result, observations that cluster in

the upper tail automatically contribute to the evolution of αU , and similarly in the lower tail

for αL. By contrast, Patton’s methodology for the symmetrized copula cannot make automatic

use of such features, as its driving mechanism is given by averages of |uit − ujt| for both upper

and lower tail dependence.
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Figure 8: Symmetrized Clayton copula illustration: comparisons between the correlation parameter estimates

from the GAS framework and the Patton model based on a simulated data set.

To illustrate the differences between these two, we construct a simulated example. We

generate data from the symmetrized Clayton copula. The lower tail dependence coefficient

follows a sinusoidal pattern. The pattern of the upper tail dependence is also specified by a

sinusoidal function, but with a period that is half as long. This makes it difficult for a model
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with a uniform observation driving mechanism to capture both upper and lower tail dependence

dynamics within a single model. We plot the results in Figure 8 for smoothing parameter values

m = 1 and m = 10.

It is clear that the driving mechanism based only on averages of |uit − ujt| does capture

some of the variation in the dependence coefficients. However, as the same mechanism underlies

both types of dependence, it has difficulty in capturing the upper and lower tail dependence

dynamics simultaneously. The GAS specification on the other hand is more successful in picking

up both types of dynamics. The GAS(1,1) estimate is noisier compared to one obtained from

the Patton model, but it follows the true dependence pattern more closely. As a result, a

significant increase in the likelihood is achieved.

4.6 Time-varying higher order moments

Following the empirical successes in GARCH modeling, many authors have suggested further

generalizations, in particular to the model with Student t errors. Hansen (1994) proposed

to allow the degrees of freedom parameter to be time-varying. Harvey and Siddique (1999),

Jondeau and Rockinger (2003) and Brooks et al. (2005) consider models with time-varying

skewness and kurtosis. We develop a t-GAS(1, 1) model for yt = σt−1εt where εt ∼ tνt. The error

term is scaled to have unit variance such that σ2
t−1 is the conditional variance while νt is the time-

varying degrees of freedom parameter. Define the vector of factors as ft = (σ2
t ,− ln

{

b−a
νt−a

− 1
}

)

where the latter factor is the inverse of the logit transformation which is used to keep νt in

the interval [a, b]. In our empirical work, we select the interval [2.01, 30] to ensure that the

conditional variance exists, i.e. νt > 2. We note that it is possible to select the conditional

kurtosis as a factor instead of νt but for some time series the conditional kurtosis may not exist.

Taking derivatives of the observation density with respect to σ2
t and νt, we obtain the score

vector as given by

∇t =
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2σ2
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y2

t

(νt−2)σ2
t

)

−1
y2

t

(νt−2)σ4
t
,

1
2

{

Γ′(νt+1
2

) − Γ′(νt

2
)
}

− 1
2νt

− 1
2
ln
(

1 +
y2

t

(νt−2)σ2
t

)

+ (νt+1)
2

(
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 ,

and with some additional derivations the elements of the information matrix are given by

Et−1[∇t∇
′

t] =





− νt

2σ4
t (νt+3)

− 3
2σ2

t (νt+1)(νt+3)(νt−2)

− 3
2σ2

t (νt+1)(νt+3)(νt−2)
1
4

{

Γ′′
(

νt+1
2

)

− Γ′′
(

νt

2

)}

+ (νt+4)(νt−3)

2(νt−2)2(νt+1)(νt+3)



 ,

where the functions Γ′ and Γ′′ are the digamma and trigamma functions which can be evaluated

in any matrix programming software. Given the results above and the derivatives of the logit

transformation, it is straightforward to construct a GAS(1,1) recursion using the reparameter-

ization argument from (21). We label this model the tv-t-GAS(1,1) model.
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Figure 9: Time-varying degrees of freedom illustration: (i) estimated conditional variances from the t-

GAS(1,1), t-GARCH(1,1), and tv-t-GAS(1,1) models; (ii) differences between the two GAS(1,1) models and

the t-GARCH(1,1) model; (iii) estimated time-varying degrees of freedom from the tv-t-GAS(1,1) model; (iv)

estimated time-varying degrees of freedom from the GARCH model of Brooks et al. (2005).

We consider daily returns on the S&P 500 from February 1989 through April 2008 as an

illustration. We compare the tv-t-GAS(1,1) model described above to a t-GAS(1,1) model with

constant ν, that is equation (7), and a standard t-GARCH(1,1) model with constant ν as in

Bollerslev (1987). Parameter estimates from each of these models are reported in Table 5 and

estimates of the conditional variance are plotted in panel (i) of Figure 9. Focusing on the

t-GAS(1,1) model versus the t-GARCH(1,1) model, we see that the log-likelihood values are

close. Both the persistence parameter b11 and degrees of freedom are estimated to be larger for

the t-GAS(1,1) model than for the t-GARCH(1,1) model. Estimates of the conditional variance

in panel (i) are hard to distinguish from one another with the exception of those periods when

there are outliers. To see this more clearly, we also plot the differences between the estimates

from the two GAS models minus the GARCH model in panel (ii) of Figure 9. In the first

half of the sample before 1998, the level of volatility is lower and there are several outliers in

the series. The estimated conditional variance from the t-GARCH(1,1) model is larger than
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from both GAS models. These are the large negative values in panel (ii). The difference in

estimated degrees of freedom is due to the fact that the t-GAS model does not treat outliers

like a standard t-GARCH model. From 1998-2003, volatility increases and, relative to this

level, large returns are not outliers. Estimates of the conditional variance from the GAS and

GARCH models are still significantly different and economically meaningful during this period.

Turning our attention to the tv-t-GAS(1,1) model, the estimated time-varying degrees of

freedom from this model is plotted in panel (iii) of Figure 9 and these estimates demonstrate

significant variability. The log-likelihood for our new time-varying GAS model increases appre-

ciably relative to the t-GAS(1,1) model. Estimates of the conditional variance in panels (i) and

(ii) are reasonably similar to the t-GAS(1,1) model with some differences in 1998-2004 when

the time-varying degrees of freedom increases. We compare this model with the time-varying

higher-order GARCH model of Brooks et al. (2005), which we label as the tv-t-GARCH(1,1)

model. In their model, the conditional kurtosis evolves independently from σ2
t according to its

own GARCH(1,1) recursion. The implied estimates of νt can be calculated straightforwardly.

It is a notable result that the estimates of νt from our model shown in panel (iii) are

significantly different than the implied estimates of νt from the tv-t-GARCH(1,1) model of

Brooks et al. (2005). In the literature on time-varying higher-order moments, the factors are

typically forced to evolve independently by imposing zero restrictions on b12 and b21. The

estimated autoregressive coefficients b21 and b22 reported in Table 5 for the GAS model imply

that both σ2
t and νt are driven by the same factor because b22 is close to zero. Accordingly, the

estimates of νt in panel (iii) exhibit a similar pattern with the conditional variance in panel (i).

Estimates of νt from the tv-t-GARCH(1,1) model, which imposes these restrictions, result in a

different behavior for the time-varying degrees of freedom. The parameter b22 is estimated to

be significant and persistent in this model.

To investigate this result further, we split the sample in half before and after 1998 and

estimated ν using the t-GAS(1,1) model with constant degrees of freedom on the two sub-

samples. Estimates from this model on the two sub-samples are reported in the right-hand

columns of Table 5. The degrees of freedom parameter and its standard error clearly increase in

the second half of the sample. Estimates of ν on the two sub-samples from the t-GARCH(1,1)

model (not reported) are similar. Although this result may seem counterintuitive initially,

the reason is that large returns during this period are no longer extreme outliers because the

conditional volatility σ2
t is higher. This provides support for estimates of νt from our model and

some evidence that modeling higher-order moments independently of the conditional variance

may be inappropriate. The models described in this section might be improved further by

linking the time-varying behavior of the degrees of freedom with a time-varying level parameter
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Table 5: Estimates from the t-GARCH(1,1), t-GAS(1,1), and tv-t-GAS(1,1) models applied to

daily returns of the S&P500 from Feb. 1989 - April 2008. The tv-t-GARCH(1,1) model is

from Brooks et. al. (2005). The full sample results are on the left. Split sample results for the

t-GAS(1,1) model are on the right.

tv-t-GAS t-GARCH t-GAS tv-t-GARCH t-GAS t-GAS

pre-1998 post-1998

ω1 0.006 0.003 0.004 0.003 0.002 0.007

(0.005) (0.001) (0.001) (0.001) (0.001) (0.003)

ω2 -2.373 - - - -

(0.310)

a11 0.057 0.047 0.044 0.049 0.026 0.061

(0.007) (0.007) (0.006) (0.007) (0.006) (0.009)

a12 -0.128 - - - - -

(0.043)

a21 -0.219 - - - - -

(0.033)

a22 -1.498 - - 0.005 - -

(0.002) (0.006)

b11 0.994 0.951 0.997 0.949 0.997 0.995

(0.003) (0.007) (0.002) (0.007) (0.003) (0.004)

b12 0.000 - - - - -

(0.000)

b21 0.982 - - - - -

(0.154)

b22 0.026 - - 0.965 - -

(0.121) (0.024)

ν - 6.699 7.032 - 5.367 10.96

(0.622) (0.677) (0.610) (2.074)

log-like -6138.18 -6153.02 -6156.46 -6153.44 -2359.55 -3778.63

ωt in the variance. We leave this extension to future research.
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4.7 Time-varying multinomial

Trade by trade financial transaction prices lie on a discrete grid with most price changes taking

only a small number of values. Russell and Engle (2005) proposed modeling this behavior

using a conditional multinomial distribution with time-varying probabilities in conjunction with

their ACD model. We construct a GAS version of their model. Consider the case where the

observed series yt, for t = 1, . . . , n, has a J-dimensional multinomial distribution with vector of

probabilities πt and let πj,t be the jth element of this vector. The vector of factors ft will have

dimension J − 1 with elements fjt = ln πjt − ln(1 −
∑J−1

j=1 πjt) where the final probability πJ,t

is determined by the constraint that they sum to one. Denote ỹt and π̃t as the corresponding

J − 1 dimensional vectors with the Jth elemented omitted. The score with respect to fj,t−1 is

given by

∇jt = ỹjt − π̃j,t−1, (55)

while the diagonal and off-diagonal elements of the information matrix are given by

Iii,t−1 = π̃i,t−1(1 − π̃i,t−1), (56)

Iij,t−1 = −π̃i,t−1π̃j,t−1. (57)

Combining these results, a GAS(p, q) model for the multinomial distribution reduces to

ft = ω +

q−1
∑

i=0

AiSt−i−1(ỹt−i − π̃t−i−1) +

p
∑

j=1

Bift−j, (58)

where the scale matrix St−1 = I−1
t−1 can be constructed from (56) and (57). The ACM model of

Russell and Engle (2005) can be obtained as a special case of the GAS model (58) by selecting

the scale matrix St−1 to be the identity matrix. They also add the expected durations from an

ACD model as explanatory variables in (58).

As an empirical illustration, we use transaction data from the NYSE TAQ database on Royal

Dutch Shell A (RDSA) for the month of November 2007. After retaining trades between 9:30

and 4:00, there are 61,690 trades remaining. Panels (i)-(ii) of Figure 10 contain the observed

price changes and observed durations for the first 23,500 trades, while panel (iii) is a histogram

of all the trades. The observed durations give evidence of diurnal patterns that are typical

of transactions data. In addition, the observed price changes indicate that the probabilities

should contain a similar diurnal pattern, as trades with large tick sizes are less likely during

openning and closing of the market when volume is higher.

In our sample, 98% of the price changes fall within a ± 5 tick range of zero (see panel

(iii)), where a tick is now 1 cent after decimilization of the market in 2001. Decimilization
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Figure 10: Time-varying multinomial GAS(1,2)-ACD(1,2) illustration: (i) observed price changes; (ii) observed durations; (iii) histogram of price changes; (iv)

estimated expected duration from the ACD model; (v) estimated probability of an increase of 5 ticks or more; (vi) estimated probability of a trade with no change in

price.
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unfortunately causes an increase in the required dimension of the factor ft and a corresponding

increase in the number of parameters to estimate. For this example, ft will have a minimum

of 10 dimensions meaning that the A0 matrix in an ACM(1,1) model will have 100 parameters.

Our solution to this problem is to define new factors f̃t as ft = Φ0 + Φ1f̃t where f̃t has

dim(f̃t) << dim(ft). The GAS(1,1) model reduces to

f̃t = A0Φ
′

1I
−1
t−1Φ1Φ

′

1(ỹt − π̃t−1) +B1f̃t−1, (59)

where the matrix Φ1 must be restricted to identify the model. For illustration purposes, we

selected dim(f̃t) = 3 and set the upper 3 × 3 elements of Φ1 equal to the identity matrix for

identification. Following Russell and Engle (2005), we include expected durations in (59) and

jointly estimate the ACD model. We also restrict the matrices Bj to be diagonal. Specifying

a multinomial-GAS(1,2)-ACD(1,2) model for this series, some of the estimated time-varying

probabilities for the first third of the data set are shown in panels (v) and (vi) of Figure 10.

Panel (v) is a plot of the probability of a price increase of 5 ticks or more while panel (vi)

plots the probability of no price movement. The model picks up the diurnal dynamics of the

price changes reasonably well with the probability of an increase of 5 ticks or more changing

considerably throughout the day. An alternative observation driven model for trade-by-trade

data has been proposed by Rydberg and Shephard (2003) using the GLAR methodology of

Shephard (1995). We note that a GAS version of their model will be slightly different but close

to their specification.

4.8 Dynamic mixtures of models

The GAS specification can provide a mixture framework for probabilities of several competing,

possibly, time-varying models. Assume we have a mixture model with J components where

each component or sub-model has a likelihood Ljt. Define the vector of GAS factors as the

time-varying mixture probabilities πjt, which defines a new mixture model

Lt =
J
∑

j=1

πjtLjt. (60)

We parameterize the πjt’s using the logit transformation to ensure that the probabilities remain

in the zero-one interval. The GAS factors are

πjt =
efi

1 +
∑J−1

k=1 e
fk

⇔ fjt = ln(πjt) − ln

(

1 −
J−1
∑

k=1

πkt

)

, (61)

for j = 1, . . . , J − 1 with the probability of the last component determined by the constraint

πJt = 1−
∑J−1

k=1 πkt. Taking the derivative of the log-likelihood with respect to fj,t−1, we obtain
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the elements of the score vector

∂Lt

∂fj,t−1
=

πj,t−1Ljt
∑J

k=1 πk,t−1Lkt

− πj,t−1, (62)

for j = 1, . . . , J − 1. The interpretation of (62) is intuitive. The probability of model j is

increased if the relative likelihood of model j is above its expectation πj,t−1. Otherwise, it is

decreased. The information matrix for this GAS model is not easy to compute analytically.

In our empirical example below, we use a mixture of two normal densities φj(y) for j = 1, 2

implying an information matrix of the form

Et−1[∇t∇
′

t] = π1,t(1 − π1,t)Et−1

[

(

φ1(y) − φ2(y)

π1,tφ1(y) + (1 − π1,t)φ2(y)

)2
]

,

where the expectation is taken with respect to the mixture distribution. We use numerical

integration to compute the information matrix, which is feasible when the mixture model (60)

contains say J = 5 components or less.

To illustrate the methodology, we consider a time series of quarterly log U.S. real GDP

growth rates from 1947(2) to 2008(2) obtained from the Federal Reserve Bank of St. Louis.

The GAS model is a mixture of two normals with different means µi for i = 1, 2 and a common

variance σ2. The GAS factor is the probability that the data comes from the normal distribution

with low mean indicating the probability of a recession. The GAS(1,1) updating equation is

adopted with an information smoothed scaling matrix St as in (15) with α = 0.05. This

GAS model provides an observation driven alternative to a hidden Markov model (HMM).

We compare it to a simplied version of the model in Hamilton (1989) without autoregressive

dynamics, that is

yt = µt + εt, εt ∼ N (0, σ2),

µt =







µ1 if St = 0

µ2 if St = 1

pij = P (St = j|St−1 = i), i = 0, 1 j = 0, 1

In this model, the latent variable St is a regime-switching variable indicating whether the

economy is in a recession or expansion. We base our comparison on the one-step ahead predicted

estimates produced by the hidden Markov model because the GAS factor is effectively a one-step

ahead predictor.

Estimates of the parameters of both models are reported in Table 6. The estimated values

for each mean are reasonably close. The recession parameter µ1 for the HMM model is slightly

smaller and negative. Panel (i) of Figure 11 presents the growth rate of log U.S. real GDP along
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Figure 11: Mixture model illustration: (i) growth rate of log U.S. real GDP from 1947(2)-2008(2) and the

estimated conditional mean from the GAS(1,1) model and the hidden Markov model; (ii) one-step ahead predicted

probability of a recession from each model. NBER recession dates are represented by the shaded regions.

Table 6: Estimates from the GAS(1,1) mixture and hidden Markov models applied to U.S. log

real gdp growth rates from 1947(2) to 2008(2). Standard errors are in parenthesis.

µ1 µ2 σ ω A B log-like

GAS 0.208 1.127 0.869 0.360 2.333 0.672 -329.70

(0.008) (0.005) (0.003) (0.017) (0.113) (0.006)

µ1 µ2 σ p11 p22 -

HMM -0.090 1.106 0.830 0.741 0.918 -333.17

(0.019) (0.007) (0.003) (0.007) (0.003)

with the estimated conditional mean πtµ1 + (1 − πt)µ2 from the GAS and HMM models. The

GAS and HMM estimates nicely follow the changes in the mean of the series. The estimated

probabilities of a recession from each model are plotted in panel (ii) of Figure 11. The estimated

probabilities from the GAS model reflect the possibility of the model to rapidly adapt to new

signals concerning the current behavior of the time series. As a result, we obtain a clear division
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of regimes (switches) over time as depicted in the graph. In contrast, the one-step ahead

predicted probabilities produced by the hidden Markov model do not change as rapidly and are

not as clear. The GAS model offers a convenient method for forecasting economic downturns. A

multivariate model incorporating leading economic variables would be an interesting extension

of the GAS model presented here.

5 Simulation experiments

In this section, we provide simulation evidence on the statistical properties of the GAS ML

estimators for a selected set of three examples. We concentrate on the marked point process

model, the linear state space model with time varying variances, and the Gaussian copula model

with time-varying correlation.

5.1 The pooled marked point process model

To investigate the statistical properties of the GAS model for the marked point processes of

Section 4.2, we consider a simplified version of this model. We consider a cross-section of firms

with two possible ratings, R1 and R2, and possible transitions between them. Neither of the

states are absorbing so that no attrition of the panel of firms over time takes place. We consider

panel sizes of N = 250 and N = 2, 500 firms. Since the simulation results for both panel sizes

are similar, we only present the graphs for N = 2, 500.

The Monte Carlo study is based on the log intensity equation (25) and the GAS update

equation which in our case are given by

λ1t = η1 + ft, λ2t = η2 + αft, ft = Ast +Bft−1,

where st is given by (27). The intensities λ1t and λ2t are for a R1 firm becoming a R2 firm and

for a R2 firm becoming a R1 firm, respectively. The Monte Carlo data generation process is

based on the parameter values η1 = −3.5, η2 = −4.0, α = −1, A = 0.025 and B = 0.95. The

parameter values are roughly in line with the empirical estimates for the levels of intensities

and the magnitude of the systematic factor as reported in Table 2.

We consider the sample sizes T = 20, 50, 100 for the time series dimension in our data sim-

ulations. We generate 1,000 data sets for the Monte Carlo study. For each simulated data set,

we compute the ML estimates as well as their t-values based on the numerical second derivative

of the likelihood at the optimum. As in the empirical application, we enforce stationarity by

parameterizing and estimating the logit transform of B in the GAS equation.
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Figure 12: Simulation densities over 1,000 simulations of a marked point process model. The top panel

contains the densities of the parameter estimates, the bottom panels contain the densities of t-values computed

using the inverted second derivative of the Hessian at the optimum.

The Monte Carlo results are graphically presented in Figure 12. The densities of the param-

eter estimates reveal that for increasing sample sizes T , the estimates peak more at their true

values. There is some skewness in the densities for the estimates of α and A, particularly for

smaller sample sizes. If we consider the t-values, however, it appears that the approximation by

the normal distribution for purposes of inference is reasonable, even for sample sizes as small

as T = 20.

5.2 State space models with time-varying variances

The finite sample properties are also investigated for the UC model with time-varying variances,

see Section 4.4 for the details of this model. In particular, the local level model (33) is adopted

where we treat the log-variances of the irregular and the level disturbances, ln σ2
ε and ln σ2

ξ

respectively, as GAS factors. The model for the two log-variance factors is given by ft =

ω+Ast−1 +Bft−1 where ft is a 2× 1 vector and the 2× 2 matrices A and B are both diagonal.

The true parameter values in the Monte Carlo study below are chosen to be close to those
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obtained in the illustration of Section 4.4. To enforce a stable behaviour of the factors over

time, the GAS parameters ω = (ω1, ω2)
′, A = diag(A1, A2) and B = diag(B1, B2) are subject to

transformations. In the Monte Carlo simulations for generating data samples, we have adopted

the following values for the coefficients:

lnω1 = −4.5, lnω2 = 5.0, logitA1 = 0.1, logitA2 = 1.0,

logitB1 = 3.5, logitB2 = 3.2, logitα = −1.0,

where α is the parameter of the EWMA smoothing scheme for the information matrix, see the

discussion in Section 2.1. For each simulated series, the coefficients are estimated using the

methods described in Section 4.4.

The Monte Carlo design is similar to the one presented in the previous section. The number

of simulations equals 1, 000 while the time series dimension is set to T = 100, 250 and 1000.

Smaller values for T are not of interest since the time-variation of the variances of both εt and

ηt cannot be detected in a small time interval. This is certainly the case when dealing with

nonstationary time series. The results of the Monte Carlo study are given as the simulation

densities for parameter estimates in Figure 13 and as the corresponding densities for the t-values

in Figure 14.

It is clear that the GAS parameter estimates for our current model vary much more compared

to those obtained in the previous subsection for the marked point process model. It provides

evidence of the difficulty in empirically identifying the correct parameters that control the

time-variation of the variances in the nonstationary local level model. Given the flexibility of

the local level model, we are encouraged that the modes of the simulation densities are close

to the corresponding true values of the parameters. Although we may need relatively large

time series dimensions, the estimation methodology is able to detect the correct location of

the parameters in the majority of cases. In particular this applies to the coefficients of the

GAS factor for the time-varying variance of ηt (ω2, A2 and B2) and to the information matrix

smoothing parameter α. The latter is surprising given its peripheral role in our estimation

framework. We may expect even more encouraging results when we restrict ourselves to classes

of stationary time series models. The densities for the t-values of the estimated parameters are

presented in Figure 14 and they confirm that better estimation performance is obtained when

the sample size T increases.

5.3 Time-varying Gaussian copula model

In our final simulation study, we focus on the finite sample properties of the time-varying

Gaussian copula model described in Section 4.5. We consider the model specification in (45)
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Figure 13: Simulation densities for the estimated GAS parameters over 1,000 simulations of a local level model

with time-varying log variances.

with a GAS(1, 1) factor. The parameter settings for the model that generate the Monte Carlo

data-sets are given by ω = 0.02, A = 0.15, and B = 0.96. The simulation sample sizes are

T = 200, 400, 600. To ensure stationarity of the factor ft and for numerical stability, we carry

out logit transformations for both A and B.

The results from the Monte Carlo experiment using 1, 000 simulations are presented in

Figure 15. The density of the parameter estimates are converging toward their true values as

T increases. The rate of convergence appears to be slower for this model than for the marked

point process model in Subsection 5.1. The densities of the t-values appear slightly biased for

the ω and B parameters. However, the bias diminishes as the sample size increases.

6 Conclusions

We have introduced Generalized Autoregressive Score (GAS) models. A GAS model is a

uniformly applicable observation driven model specification to capture time variation in pa-

rameters. We have shown how GAS models encompass other well-known models, such as

generalized autoregressive conditional heteroskedasticty models and autoregressive conditional
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Figure 14: Simulation densities for the t-values of the estimated GAS parameters over 1,000 simulations of a

local level model with time-varying log variances. The t-values are computed using the inverted second derivative

of the Hessian at the optimum.

duration and intensity models as well as multiplicative error models and single source of error

models. The advantage of the GAS model is that it exploits the full likelihood information.

By making a scaled (local density) score step, the time-varying parameter automatically tries

to reduce its one-step ahead prediction error at the current observation with respect to current

parameter values. Although it is based on a completely different paradigm, the GAS model

provides a powerful and highly competitive alternative to other observation driven models as

well as parameter driven models. We have illustrated this extensively by describing a number of

non-trivial empirical and simulated examples. Some of these examples are interesting in their

own right and provide interesting extensions or alternative specifications for parameter driven

models with time-varying parameters, in particular for state space models with stochastically

time-varying parameters, for multivariate marked point processes, and for time-varying copula

models.

There are many interesting future research directions. The issues of identification, consis-

tency, stationarity, and asymptotic distribution theory require more work than presented here.
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Figure 15: Simulation densities over 1,000 simulations of a time-varying Gaussian copula model. The top

panel contains the densities of the parameter estimates, the bottom panels contain the densities of t-values

computed using the inverted second derivative of the Hessian at the optimum.

Due to its generality and applicability for a wide class of models, however, it appears difficult to

come up with an uniform set of conditions for stationarity and consistency that is applicable to

all situations of interest. A more promising route may be to formulate conditions for particular

sub-sets of models with a GAS specification. To investigate the finite-sample properties of GAS

models in more detail is a second direction for further research. Although we have provided

a number of interesting empirical and simulated examples, a more systematic study into the

statistical properties of parameter estimates for GAS models may be appropriate.

A third direction for future research concerns the development of misspecification tests for

GAS models. On the one hand, we require goodness-of-fit tests and model selection criteria for

GAS models. Many of such tests and diagnostics are already developed for the class of GARCH

models. On the other hand, the GAS model itself might provide a powerful basis for dynamic

misspecification tests. A similar approach to test for the presence of possible ARCH effects is

already widely applied in empirical studies. Lagrange multiplier based tests for the possible

presence of GAS effects are straightforward extensions of these. Such tests might provide a
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useful empirical tool for testing for possible time variation in parameters in the context of a

large class of non-linear and non-Gaussian models.

A fourth direction of research is the application of the GAS specification to new models.

In this paper, we have tried to review a number of interesting directions of new models with

time-varying parameters. However, the GAS framework is not restricted to these, and other

new and empirically relevant models with time-varying parameters would provide additional

support for the usefulness of GAS as an empirical modeling tool.

Long-memory versions of the GAS model would be a fifth direction for a possible research

project. However, the long-memory specification for GAS models is not trivial and therefore

more theoretical and empirical research is needed. A related issue is that GAS models may

be interpreted as discrete time approximation of their parameter driven counterparts. An

interesting research project may be to bridge the gap between GAS models and parameter

driven models in a similar continuous time limiting sense as obtained by Nelson (1996) who

has bridged the gap between GARCH models and stochastic volatility model specifications.

A sixth direction of future research is to provide a systematic comparison of the advantages

and disadvantages of parameter driven versus observation driven models in a wider setting

than GARCH and ACI. Given numerical advances for non-linear and non-Gaussian state space

models, and given the general applicability of the current GAS specification, such comparisons

have become feasible.

Developing Bayesian inference procedures for the GAS framework is an interesting sev-

enth possibility. We anticipate that the posterior densities for the latent GAS factors ft are

straightforward to formulate. Simulations for the latent factors can easily be generated. The

coefficients of the GAS model can then be estimated as part of a Markov chain Monte Carlo

analysis.

Finally, there are various computational details that need to be studied in further detail.

Three issues of particular interest are: finding starting values, finding the required degree of

information smoothing for the GAS updating step in particular models, and finding better

numerical approximations to the scaling matrix if it cannot be computed analytically. With

respect to the first issue, our findings so far are mixed. In relatively straightforward mod-

els, the problem of finding appropriate starting values does not exist. In particular, if the

information matrix is clearly non-singular for all sample observations, the maximum likelihood

maximization algorithm converges quickly and robustly. Introducing information smoothing as

well as finding reasonable starting values become more relevant when an observation contains

limited or no information on the parameter of interest. This is particularly relevant if there are

regions with a degenerate information matrix. In our experience, some degree of information
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smoothing is indispensable in such cases. In addition, automatic smoothing by estimating the

smoothing parameter directly from the data has increased the likelihood value in several cases.

In our current implementations, however, the information smoothing is rather rigid. One could

consider more involved specifications, where the degree of smoothing also depends on the cur-

rent position in the sample and the parameter space. The third issue concerns further progress

that is needed for models where the information matrix cannot be computed analytically. In

the illustration of time-varying copulas in Subsection 4.5, we provided some suggestions based

on numerical interpolation techniques using kernel smoothing in low-dimensional parameter

spaces. Further extensions are needed to develop computationally feasible estimation methods

for GAS models with large parameter spaces and possibly more complicated specifications.
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