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1

COMPLEX EVOLUTIONARY SYSTEMS IN
BEHAVIORAL FINANCE

Abstract. Traditional finance is built on the rationality paradigm. This chapter
discusses simple models from an alternative approach in which financial markets are
viewed as complex evolutionary systems. Agents are boundedly rational and base
their investment decisions upon market forecasting heuristics. Prices and beliefs
about future prices co-evolve over time with mutual feedback. Strategy choice is
driven by evolutionary selection, so that agents tend to adopt strategies that were
successful in the past. Calibration of “simple complexity models” with heteroge-
neous expectations to real financial market data and laboratory experiments with
human subjects are also discussed.

Finance is witnessing important changes, according to some even a paradigmatic
shift, from the traditional, neoclassical mathematical modeling approach based on
a representative, fully rational agent and perfectly efficient markets (Muth (1961),
Lucas (1971), Fama (1970)) to a behavioral approach based on computational mod-
els where markets are viewed as complex evolving systems with many interacting,
“boundedly rational” agents using simple “rule of thumb” trading strategies (e.g.
Anderson et al. (1988), Brock (1993), Arthur (1995), Arthur et al. (1997a), Tesfat-
sion and Judd (2006)). Investor’s psychology plays a key role in behavioral finance,
and different types of psychology based trading and behavioral modes have been
identified in the literature, such as positive feedback or momentum trading, trend
extrapolation, noise trading, overconfidence, overreaction, optimistic or pessimistic
traders, upward or downward biased traders, correlated imperfect rational trades,
overshooting, contrarian strategies, etc.. Some key references dealing with vari-
ous aspects of investor psychology include e.g. Cutler et al. (1990), DeBondt and
Thaler (1985), DeLong et al. (1990a, 1990b), Brock and Hommes (1997, 1998),

5



6 COMPLEX EVOLUTIONARY SYSTEMS IN BEHAVIORAL FINANCE

Gervais and Odean (2001) and Hong and Stein (1999, 2003), among others; see e.g.
Shleifer (2000), Hirshleifer (2001) and Barberis and Thaler (2003) for extensive
surveys and many more references on behavioral finance.

An important problem of a behavioral approach is that it leaves “many de-
grees of freedom”. There are many ways individual agents can deviate from full
rationality. Evolutionary selection based on relative performance is one plausible
way to discipline the “wilderness of bounded rationality”. Milton Friedman (1953)
has argued that non-rational agents will not survive evolutionary competition and
will therefore be driven out of the market, thus providing support to a representa-
tive rational agent framework as a (long run) description of the economy. In the
same spirit, Alchian (1950) argued that biological evolution and natural selection
driven by realized profits may eliminate non-rational, non-optimizing firms and
lead to a market where rational, profit maximizing firms dominate. Blume and
Easley (1992, 2006) have shown however that the market selection hypothesis does
not always hold and that non-rational agents may survive in the market. Brock
(1993,1997), Arthur et al. (1997b), LeBaron et al. (1999) and Farmer (2002),
amongst others, introduced artificial stock markets, described by agent based mod-
els with evolutionary selection among many different interacting trading strategies.
They showed that the market does not generally select for the rational, fundamen-
tal strategy, and that simple technical trading strategies may survive in artificial
markets. Computationally oriented agent-based simulation models have been re-
viewed in LeBaron (2006); see also the special issue of the Journal of Mathematical
Economics (Hens and Schenk-Hoppé, 2005) and the survey chapter of Evstigneev,
Hens and Schenk-Hoppé (2009) in this Handbook for an overview of evolutionary
finance1.

Stimulated by work on artificial markets, in the last decade quite a number
of “simple complexity models” have been introduced. Markets are viewed as evo-
lutionary adaptive systems with boundedly rational interacting agents, but the
models are simple enough to be at least partly analytically tractable. The study
of simple complexity models typically requires a well balanced mixture of analyt-
ical and computational tools. This literature is surveyed in Hommes (2006) and
Chiarella (2007); see also Lux (2009), who discusses in detail how well models with
interacting agents match important stylized facts such as fat tails in the returns
distribution and long memory. Without repeating an extensive survey, this chapter
focuses on a number of simple examples, in particular the adaptive belief systems
(ABS) of Brock and Hommes (1997,1998). These models serve as didactic examples
of nonlinear dynamic asset pricing models with evolutionary strategy switching and
they illustrate some of the key features present in the interacting agents literature.
The model also has been used to test the relevance of the theory of heterogeneous
expectations empirically as well as in laboratory experiments with human subjects.
Simple complexity models may also be used by practitioners or policy makers. To

1Some other recent references are Amir et al. (2005) and Evstigneev et al. (2002, 2008).



COMPLEX EVOLUTIONARY SYSTEMS IN BEHAVIORAL FINANCE 7

illustrate this point, we present an example how such a model can be used to
evaluate how likely it is that a stock market bubble will resume.

Two important features of the ABS are that agents are boundedly rational and
that they have heterogeneous expectations. An ABS is in fact a standard discounted
value asset pricing model derived from mean-variance maximization, extended to
the case of heterogeneous beliefs. Two classes of investors that are also be observed
in financial practice, can be distinguished: fundamentalists and technical analysts.
Fundamentalists base their forecasts of future prices and returns upon economic fun-
damentals, such as dividends, interest rates, price-earning ratio’s, etc. In contrast,
technical analysts are looking for patterns in past prices and base their forecasts
upon extrapolation of these patterns. Fractions of these two types of traders are
time varying and depend upon relative performance. Strategy choice is thus based
on evolutionary selection or reinforcement learning, with agents switching to more
successful (i.e. profitable) rules. Asset price fluctuations are characterized by irreg-
ular switching between a stable phase when fundamentalists dominate the market
and an unstable phase when trend followers dominate and asset prices deviate from
benchmark fundamentals. Price deviations from the rational expectations funda-
mental and excess volatility are triggered by news about economic fundamentals
but may be amplified by evolutionary selection of trend following strategies.

There is empirical evidence that experience based reinforcement learning plays
an important role in investment decisions in real markets. For example, Ippolito
(1992), Chevalier and Ellison (1997), Sirri and Tufano (1998), Rockinger (1996) and
Karceski (2002) show for mutual funds data that money flows into past good per-
formers, while flowing out of past poor performers, and that performance persists
on a short term basis. Pension funds are less extreme in picking good performance
but are tougher on bad performers (Del Guercio and Tkac, 2002). Benartzi and
Thaler (2007) have shown that heuristics and biases play a significant role in re-
tirement savings decisions. For example, using data from Vanguard they show that
the equity allocation of new participants rose from 58% in 1992 to 74% in 2000,
following a strong rise in stock prices in the late 1990s, but dropped back to 54%
in 2002, following the strong fall in stock prices.

Laboratory experiments with human subjects have shown that individuals often
do not behave fully rational, but tend to use heuristics, possibly biased, in making
economic decisions under uncertainty (Kahneman and Tversky, 1974). In a similar
vein, Smith et al. (1988) have shown the occurrence of bubbles and the ease with
which markets deviate from full rationality in asset pricing laboratory experiments.
These bubbles occur despite the fact that participants had sufficient information
to compute the fundamental value of the asset. Laboratory experiments with hu-
man subjects provide an important tool to investigate which behavioral rules lay
a significant role in deviations from the rational benchmark, and they can thus
help to discipline the class of behavioral modes. Duffy (2007) gives a stimulating
recent overview concerning the role of laboratory experiments to explain macro
phenomena.
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Heterogeneity in forecasting future asset prices is supported by evidence from
survey data. For example, Vissing-Jorgensen (2003) reports that at the beginning
of 2000, 50% of individual investors considered the stock market to be overvalued,
approximately 25% believed that it was fairly valued, about 15% were unsure and
less than 10% believed that it was undervalued. This is an indication of heteroge-
neous beliefs among individual investors about the prospect of the stock market.
Similarly, Shiller (2000) finds evidence that investors’ sentiment varies over time.
Both institutional and individual investors become more optimistic in response to
significant increases in the recent performance of the stock market.

This chapter is organized as follows. Section 1.1 introduces the main features of
adaptive belief systems and Section 1.2 discusses a number of simple examples with
2, 3 and 4 different trader types. In Section 1.3 an analytical framework with many
different trader types is presented. Section 1.4 discusses the empirical relevance
of behavioral heterogeneity. The estimation of a simple model with fundamental-
ists and chartist on yearly S&P500 data shows how the worldwide stock market
bubble in the late 1990s, triggered by good news about fundamentals (a new, in-
ternet technology), may have been strongly amplified by trend following strategies.
Section 1.5 reviews some learning to forecast laboratory experiments with human
subjects, investigating which individual forecasting rules agents may use, how these
rules interact and which aggregate outcome they co-create. Section 1.6 concludes,
sketching some challenges for future research and potential applications for finan-
cial practitioners and policy makers. An appendix contains a short mathematical
overview of bifurcation theory, which plays a role in the transition to complicated
price fluctuations in the simple complexity models discussed in this chapter.

1.1 AN ASSET PRICING MODEL WITH HETEROGENEOUS BELIEFS

This section discusses the asset pricing model with heterogeneous beliefs as intro-
duced in Brock and Hommes (1998), using evolutionary selection of expectations as
in Brock and Hommes (1997a). This simple modeling framework has been inspired
by computational work at the Santa Fe Institute (SFI) and may be viewed as a
simple, partly analytically tractable, version of the more complicated SFI artificial
stock market of Arthur et al. (1997b).

Agents can either invest in a risk free or in a risky asset. The risk free asset is
in perfect elastic supply and pays a fixed rate of return r; the risky asset pays an
uncertain dividend. Let pt be the price per share (ex-dividend) of the risky asset
at time t, and let yt be the stochastic dividend process of the risky asset. Wealth
dynamics is given by

Wt+1 = RWt + (pt+1 + yt+1 −Rpt)zt, (1.1.1)

where R = 1 + r is the gross rate of risk free return and zt denotes the number of
shares of the risky asset purchased at date t. Let Eht and Vht denote the ‘beliefs’ or
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forecasts of trader type h about conditional expectation and conditional variance.
Agents are assumed to be myopic mean-variance maximizers so that the demand
zht of type h for the risky asset solves

Maxzt{Eht[Wt+1]− a

2
Vht[Wt+1]}, (1.1.2)

where a is the risk aversion parameter. The demand zht for risky assets by trader
type h is then

zht =
Eht[pt+1 + yt+1 −Rpt]
aVht[pt+1 + yt+1 −Rpt]

=
Eht[pt+1 + yt+1 −Rpt]

aσ2
, (1.1.3)

where the conditional variance Vht = σ2 is assumed to be constant and equal for all
types.2 Let zs denote the supply of outside risky shares per investor, also assumed
to be constant, and let nht denote the fraction of type h at date t. Equilibrium of
demand and supply yields

H∑
h=1

nht
Eht[pt+1 + yt+1 −Rpt]

aσ2
= zs, (1.1.4)

where H is the number of different trader types. The forecasts Eht[pt+1 + yt+1]
of tomorrows prices and dividends are made before the equilibrium price pt has
been revealed by the market and therefore will depend upon a publically available
information set It−1 = {pt−1, pt−2, . . . ; yt−1, yt−2, . . .} of past prices and dividends.
Solving the heterogeneous market clearing equation for the equilibrium price gives

Rpt =
H∑
h=1

nhtEht[pt+1 + yt+1]− aσ2zs. (1.1.5)

The quantity aσ2zs may be interpreted as a risk premium for traders to hold risky
assets.

1.1.1 The fundamental benchmark with rational agents

When all agents are identical and expectations are homogeneous the equilibrium
pricing equation (1.1.5) reduces to

Rpt = Et[pt+1 + yt+1]− aσ2zs, (1.1.6)

where Et is the common conditional expectation in the beginning of period t. It is
well known that, assuming that a transversality condition limt→∞(Et[pt+k])/Rk = 0

2Gaunersdorfer (2000) investigates the case with time varying beliefs about variances and
shows that the asset price dynamics are quite similar. Chiarella and He (2002,2003) investigate
the model with heterogeneous risk aversion coefficients.
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holds, the price of the risky asset is given by the discounted sum of expected future
dividends minus the risk premium:

p∗t =
∞∑
k=1

Et[yt+k]− aσ2zs

Rk
. (1.1.7)

The price p∗t in (1.1.7) is called the fundamental rational expectations price, or the
fundamental price for short. It is completely determined by economic fundamentals,
which are here given by the stochastic dividend process yt. In this Section we will
focus on the case of an independently identically distributed (IID) dividend process
yt, but the estimation of the simple 2-type model discussed in Section 1.4 uses a
non-stationary dividend process3. For the special case of an IID dividend process
yt, with constant mean E[yt] = ȳ, the fundamental price is constant:

p∗ =
∞∑
k=1

ȳ − aσ2zs

Rk
=
ȳ − aσ2zs

r
. (1.1.8)

Recall that, in addition to the rational expectations fundamental solution (1.1.7),
so-called rational bubble solutions of the form pt = p∗t + (1 + r)t(p0 − p∗0) also
satisfy the pricing equation (1.1.6). Along these bubble solutions, traders have
rational expectations (perfect foresight), but they are ruled out by the transversality
condition. In a perfectly rational world, traders realize that such bubbles cannot
last forever and therefore all traders believe that the value of a risky asset equals
its fundamental price forever. Changes in asset prices are then only driven by
unexpected changes in dividends and random ‘news’ about economic fundamentals.
In a heterogeneous world the situation will however be quite different.

1.1.2 Heterogeneous beliefs

It will be convenient to work with the deviation from the fundamental price

xt = pt − p∗t . (1.1.9)

We make the following assumptions about the beliefs of trader type h:

B1 Vht[pt+1 + yt+1 −Rpt] = Vt[pt+1 + yt+1 −Rpt] = σ2, for all h, t.
B2 Eht[yt+1] = Et[yt+1] = ȳ, for all h, t.
B3 All beliefs Eht[pt+1] are of the form

Eht[pt+1] = Et[p∗t+1] +Eht[xt+1] = p∗ + fh(xt−1, ..., xt−L), for all h, t.
(1.1.10)

3Brock and Hommes (1997b) also discuss a non-stationary example, where the dividend process
follows a geometric random walk.
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According to B1 beliefs about conditional variance are equal and constant for all
types, as discussed above already. Assumption B2 states that all types have correct
expectations about future dividends yt+1 given by the conditional expectation,
which is ȳ in the case of IID dividends. According to B3, beliefs about future prices
consist of two parts: a common belief about the fundamental plus a heterogeneous
part fht4. Each forecasting rule fh represents a model of the market (e.g. a technical
trading rule) according to which type h believes that prices will deviate from the
fundamental price.

An important and convenient consequence of the assumptions B1-B3 about
traders’ beliefs is that the heterogeneous agent market equilibrium equation (1.1.5)
can be reformulated in deviations from the benchmark fundamental. In particular
substituting the price forecast (1.1.10) in the market equilibrium equation (1.1.5)
and using Rp∗t = Et[p∗t+1 + yt+1]− aσ2zs yields the equilibrium equation in devia-
tions from the fundamental:

Rxt =
H∑
h=1

nhtEht[xt+1] ≡
H∑
h=1

nhtfht, (1.1.11)

with fht = fh(xt−1, ..., xt−L). Note that the benchmark fundamental is nested
as a special case within this general setup, with all forecasting strategies fh ≡ 0.
Hence, the adaptive belief systems can be used in empirical and experimental testing
whether asset prices deviate significantly from some benchmark fundamental.

1.1.3 Evolutionary dynamics

The evolutionary part of the model describes how beliefs are updated over time,
that is, how the fractions nht of trader types evolve over time. These fractions are
updated according to an evolutionary fitness or performance measure. The fitness
measures of all trading strategies are publically available, but subject to noise.
Fitness is derived from a random utility model and given by

Ũht = Uht + εiht, (1.1.12)

where Uht is the deterministic part of the fitness measure and εiht represents an
individual agent’s IID error when perceiving the fitness of strategy h = 1, ...H. In
order to obtain analytical expressions for the probabilities or fractions, the noise
term εiht is assumed to be drawn from a double exponential distribution. As the
number of agents goes to infinity, the probability that an agent chooses strategy h

4The assumption that all types know the fundamental price is without loss of generality, because
any forecasting rule not using the fundamental price can be re-parameterized or reformulated for
mathematical convenience in deviations from an (unknown) fundamental price p∗.
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is then given by the multi-nomial logit model (or ‘Gibbs’ probabilities)5

nht =
eβUh,t−1∑H
h=1 e

βUh,t−1
. (1.1.13)

Note that the fractions nht add up to 1. A key feature of (1.1.13) is that the
higher the fitness of trading strategy h, the more traders will select strategy h.
Hence, (1.1.13) represents a form of reinforcement learning: agents tend to switch
to strategies that have performed well in the (recent) past. The parameter β in
(1.1.13) is called the intensity of choice; it measures the sensitivity of the mass
of traders to selecting the optimal prediction strategy. The intensity of choice
β is inversely related to the variance of the noise terms εiht. The extreme case
β = 0 corresponds to noise of infinite variance, so that differences in fitness cannot
be observed and all fractions (1.1.13) will be fixed over time and equal to 1/H.
The other extreme case β = +∞ corresponds to the case without noise, so that
the deterministic part of the fitness can be observed perfectly and in each period,
all traders choose the optimal forecast. An increase in the intensity of choice β
represents an increase in the degree of rationality with respect to evolutionary
selection of trading strategies. The timing of the coupling between the market
equilibrium equation (1.1.5) or (1.1.11) and the evolutionary selection of strategies
(1.1.13) is important. The market equilibrium price pt in (1.1.5) depends upon the
fractions nht. The notation in (1.1.13) stresses the fact that these fractions nht
depend upon most recently observed past fitnesses Uh,t−1, which in turn depend
upon past prices pt−1 and dividends yt−1 in periods t−1 and further in the past, as
will be seen below. After the equilibrium price pt has been revealed by the market,
it will be used in evolutionary updating of beliefs and determining the new fractions
nh,t+1. These new fractions will then determine a new equilibrium price pt+1, etc.
In an adaptive belief system, market equilibrium prices and fractions of different
trading strategies thus co-evolve over time.

A natural candidate for evolutionary fitness is (a weighted average of) realized

5See Manski and McFadden (1981) and Anderson, de Palma and Thisse (1993) for extensive
discussion of discrete choice models and their applications in economics.
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profits, given by6

Uht = (pt + yt −Rpt−1)
Eh,t−1[pt + yt −Rpt−1]

aσ2
+ wUh,t−1, (1.1.14)

where 0 ≤ w ≤ 1 is a memory parameter measuring how fast past realized fitness
is discounted for strategy selection.

Fitness can be rewritten in terms of deviations from the fundamental as

Uht = (xt −Rxt−1 + aσ2zs + δt)
(
fh,t−1 −Rxt−1 + aσ2zs

aσ2

)
+ wUh,t−1, (1.1.15)

where δt ≡ p∗t + yt − Et−1[p∗t + yt] is a martingale difference sequence.

1.1.4 Forecasting rules

To complete the model we have to specify the class of forecasting rules. Brock and
Hommes (1998) have investigated evolutionary competition between simple linear
forecasting rules with only one lag, i.e.

fht = ghxt−1 + bh. (1.1.16)

It can be argued that, for a forecasting rule to have any impact in real markets, it
has to be simple, because it seems unlikely that enough traders will coordinate on
a complicated rule. The simple linear rule (1.1.16) includes a number of important
special cases. For example, when both the trend and the bias parameters gh =
bh = 0 the rule reduces to the fundamentalists forecast, i.e.

fht ≡ 0, (1.1.17)

predicting that the deviation x from the fundamental will be 0, or equivalently that
the price will be at its fundamental value. Other important cases covered by the
linear forecasting rule (1.1.16) are the pure trend followers

fht = ghxt−1, gh > 0, (1.1.18)

6 Note that this fitness measure does not take into account the risk taken at the moment
of the investment decision. In fact, one could argue that the fitness measure (1.1.14) does not
take into account the variance term in (1.1.2) capturing the investors’ risk taken before obtaining
that profit. On the other hand, in real markets realized net profits or accumulated wealth may
be what investors care about most, and the non-risk adjusted fitness measure (1.1.14) may thus
be of relevant in practice. See also DeLong et al. (1990) for a discussion of this point. Given
that investors are risk averse mean-variance maximizers maximizing their expected utility from
wealth (1.1.2), an alternative, natural candidate for fitness are the risk adjusted profits given by
πht = Rtzh,t−1 − a

2
σ2z2h,t−1, where Rt = pt + yt −Rpt−1 and zh,t−1 = Eh,t−1[Rt]/(aσ2) is the

demand by trader type h. Hommes (2001) shows that the risk adjusted fitness measure is, up to
a type independent level, equivalent to minus squared prediction errors.
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and the pure biased belief
fht = bh. (1.1.19)

Notice that the simple pure bias forecast (1.1.19) represents any positively or neg-
atively biased forecast of next periods price that traders might have. Instead of
these extremely simple habitual rule of thumb forecasting rules, some might prefer
the rational, perfect foresight forecasting rule

fht = xt+1. (1.1.20)

We emphasize however, that the perfect foresight forecasting rule (1.1.20) assumes
perfect knowledge of the heterogeneous market equilibrium equation (1.1.5), and
in particular perfect knowledge about the beliefs of all other traders. Although
the case with perfect foresight has much theoretical appeal, its practical relevance
in a complex heterogeneous world should not be overstated since this underlying
assumption seems rather strong7.

1.2 SIMPLE EXAMPLES

This section presents simple but typical examples of adaptive belief systems (ABS),
with two, three resp. four competing linear forecasting rules (1.1.16), where the
parameter gh represents a perceived trend in prices and the parameter bh represents
a perceived upward or downward bias. The ABS with H types is given by (in
deviations from the fundamental benchmark):

(1 + r)xt =
H∑
h=1

nht(ghxt−1 + bh) + εt (1.2.1)

nh,t =
e(βUh,t−1)∑H
h=1 e

(βUh,t−1)
(1.2.2)

Uh,t−1 = (xt−1 −Rxt−2)(
ghxt−3 + bh −Rxt−2

aσ2
) + wUh,t−2 − Ch, (1.2.3)

where εt is a small noise term representing, for example, a small fraction of noise
traders and/or random outside supply of the risky asset. In order to keep the
analysis of the dynamical behavior tractable, Brock and Hommes (1998) focused
on the case where the memory parameter w = 0, so that evolutionary fitness is
given by last period’s realized profit. A common feature of all examples is that,
as the intensity of choice to switch prediction or trading strategies increases, the

7Brock and Hommes (1997) analyze the cobweb model with costly rational versus cheap naive
expectations, and find irregular price fluctuations due to endogenous switching between free riding
and costly rational forecasting. In general however, a temporary equilibrium model with heteroge-
neous beliefs such as the asset pricing model, is difficult to analyze if one of the types has perfect
foresight. In a recent paper, Brock et al. (2008) discuss how a perfect foresight trader may affect
the dynamics in an asset pricing model with heterogeneous beliefs.
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fundamental steady state becomes locally unstable and non-fundamental steady
states, cycles or even chaos arise. In the examples below, we will encounter different
bifurcation routes (i.e. transitions) to complicated dynamics. A mathematical
appendix summarizes the most important bifurcations, that is, qualitative changes
in the dynamics (e.g. when a steady state loses stability or a new cycle is created)
when a model parameter changes.

1.2.1 Costly fundamentalists versus trend followers

The simplest example of an ABS only has two trader types, with forecasting rules

f1t = 0 fundamentalists (1.2.4)
f2t = gxt−1, g > 0, trend followers. (1.2.5)

The first type are fundamentalists predicting that the price will equal its funda-
mental value (or equivalently that the deviation will be zero) and the second type
are pure trend followers predicting that prices will rise (or fall) by a constant rate.
In this example, the fundamentalists have to pay a fixed per period positive cost C1

for information gathering; in all other examples discussed below information costs
will be set to zero for all trader types.

For small values of the trend parameter, 0 ≤ g < 1 + r, the fundamental steady
state is always stable. Only for sufficiently high trend parameters, g > 1 + r, trend
followers can destabilize the system. For trend parameters, 1 + r < g < (1 + r)2 the
dynamic behavior of the evolutionary system depends upon the intensity of choice to
switch between the two trading strategies8. For low values of the intensity of choice,
the fundamental steady state will be stable. As the intensity of choice increases,
the fundamental steady state becomes unstable due to a pitchfork bifurcation in
which two additional non-fundamental steady states −x∗ < 0 < x∗ are created.
As the intensity of choice increases further, the two non-fundamental steady states
also become unstable due to a Hopf-bifurcation, and limit cycles or even strange
attractors can arise around each of the (unstable) non-fundamental steady states9.
The evolutionary ABS may cycle around the positive non-fundamental steady state,
cycle around the negative non-fundamental steady state or, driven by the noise,
switch back and forth between cycles around the high and the low steady state, as
illustrated in Figure 1.1.
This example shows that, in the presence of information costs and with zero mem-
ory, when the intensity of choice in evolutionary switching is high fundamentalists

8For g > (1 + r)2 the system may become globally unstable and prices may diverge to infinity.
Imposing a stabilizing force, for example by assuming that trend followers condition their rule
upon deviations from the fundamental e.g. as in Gaunersdorfer, Hommes and Wagener (2008),
leads to a bounded system again, possibly with cycles or even chaotic fluctuations.

9See the appendix for a more detailed discussion of the pitchfork bifurcation and the Hopf
bifurcation.
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Figure 1.1. Time series of price deviations from fundamental (top left) and fractions of fun-

damentalists (top right) and attractor (bottom) in the (xt, n1t)-phase space, for 2-type model

with costly fundamentalist versus trend followers buffeted with small noise (SD=0.1). The

price dynamics is characterized by temporary bubbles when trend followers dominate the mar-

ket, interrupted by sudden crashes when fundamentalists dominate. In the presence of (small)

noise, the system switches back and forth between two co-existing quasi-periodic attractors

of the underlying deterministic skeleton, one with prices above and one with prices below its

fundamental value. Parameters are: β = 3.6, g = 1.2, R = 1.1 and C = 1.

can not drive out pure trend followers and persistent deviations from the funda-
mental price may occur.10

Figure 1.2 illustrates that the asset pricing model with costly fundamentalists versus
cheap trend following exhibits a rational route to randomness, that is, a bifurcation
route to chaos occurs as the intensity of choice to switch strategies increases.

10Brock and Hommes (1999) show that this result also holds when the memory in the fitness
measure increases. In fact, an increase in the memory of the evolutionary fitness leads to bifurca-
tion routes very similar to bifurcation routes due to an increase in the intensity of choice.
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Figure 1.2. Bifurcation diagram (left) and largest Lyapunov exponent plot (right) as a function

of the intensity of choice β for 2-type model with costly fundamentalist versus trend followers.

In both plots the model is buffeted with very small noise (SD = 10−6 for the noise term

εt in (1.2.1)), to avoid that for large β-values the system gets stuck in the locally unstable

steady state. Parameters are: g = 1.2, R = 1.1, C = 1 and 2 ≤ β ≤ 4. A pitchfork

bifurcation of the fundamental steady state, in which two stable non-fundamental steady

states are created, occurs for β ≈ 2.37. The non-fundamental steady states become unstable

due to a Hopf-bifurcation for β ≈ 3.33, and (quasi-)periodic dynamics arises. For large values

of β the largest Lyapunov exponent becomes positive indicating chaotic price dynamics.

1.2.2 Fundamentalists versus opposite biases

The second example of an ABS is an example with three trader types without any
information costs. The forecasting rules are

f1t = 0 fundamentalists (1.2.6)
f2t = b b > 0, positive bias (optimists) (1.2.7)
f3t = −b − b < 0, negative bias (pessimists). (1.2.8)

The first type are fundamentalists as before, but there are no information costs for
fundamentalists. The second and third types have a purely biased belief, expecting
a constant price above respectively below the fundamental price.

For low values of the intensity of choice, the fundamental steady state is stable.
As the intensity of choice increases the fundamental steady becomes unstable due
to a Hopf bifurcation and the dynamics of the ABS is characterized by cycles
around the unstable steady state. This example shows that, even when there are
no information costs for fundamentalists, they cannot drive out other trader types
with opposite biased beliefs. In the evolutionary ABS with high intensity of choice,
fundamentalists and biased traders co-exist with fractions varying over time and
prices fluctuating around the unstable fundamental steady state. Moreover, Brock
and Hommes (1998, p.1259, lemma 9) show that as the intensity of choice tends
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to infinity the ABS converges to a (globally) stable cycle of period 4. Average
profits along this 4-cycle are equal for all three trader types. Hence, if the initial
wealth is equal for all three types, then in this evolutionary system in the long run
accumulated wealth will be equal for all three types. This example shows that the
Friedman argument that smart-fundamental traders will always drive out simple
rule of thumb speculative traders is in general not valid11.

1.2.3 Fundamentalists versus trend and bias

The third example of an ABS is an example with four trader types, with linear
forecasting rules (1.1.16) with parameters g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2;
g3 = 0.9, b3 = −0.2 and g4 = 1+r = 1.01, b4 = 0. The first type are fundamentalists
again, without information costs, and the other three types follow a simple linear
forecasting rule with one lag. The dynamical behaviour is illustrated in Figures 1.3
and 1.4.
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Figure 1.3. Chaotic (top left) and noisy chaotic (top right) time series of asset prices in

adaptive belief system with four trader types. Strange attractor (bottom left) and enlargement

of strange attractor (bottom right). Belief parameters are: g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2;

g3 = 0.9, b3 = −0.2 and g4 = 1 + r = 1.01, b4 = 0; other parameters are r = 0.01, β = 90.5,

w = 0 and Ch = 0 for all 1 ≤ h ≤ 4.

For low values of the intensity of choice, the fundamental steady state is sta-
ble. As the intensity of choice increases, as in the previous three type example,

11This result is related to DeLong et al. (1990ab) who show that a constant fraction of noise
traders can survive in the market in the presence of fully rational traders. The ABS however are
evolutionary models with time varying fractions, driven by strategy performance.



SIMPLE EXAMPLES 19

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 40  50  60  70  80  90  100

-0.1

-0.05

 0

 0.05

 0.1

 40  50  60  70  80  90  100

Figure 1.4. Bifurcation diagram and largest Lyapunov exponent plot for 4-type model, buf-

feted with very small noise (SD = 10−6 for noise term εt in (1.2.1)), to avoid that for large

β-values the system gets stuck in the locally unstable steady state. Belief parameters are:

g1 = 0, b1 = 0; g2 = 0.9, b2 = 0.2; g3 = 0.9, b3 = −0.2 and g4 = 1 + r = 1.01, b4 = 0; other

parameters are r = 0.01, β = 90.5, w = 0 and Ch = 0 for all 1 ≤ h ≤ 4. The 4-type model

with fundamentalists versus trend followers and biased beliefs exhibits a Hopf bifurcation for

β = 50. A rational route to randomness, i.e. a bifurcation route to chaos, occurs, with positive

largest Lyapunov exponents, when the intensity of choice becomes large.

the fundamental steady becomes unstable due to a Hopf bifurcation and a stable
invariant circle around the unstable fundamental steady state arises, with peri-
odic or quasi-periodic fluctuations. As the intensity of choice further increases, the
invariant circle breaks into a strange attractor with chaotic fluctuations. In the
evolutionary ABS fundamentalists and chartists co-exist with time varying frac-
tions and prices moving chaotically around the unstable fundamental steady state.
Figure 1.4 shows that in this 4-type example with fundamentalists versus trend
followers and biased beliefs a rational route to randomness occurs, with positive
largest Lyapunov exponents for large values of β.

This 4-type example shows that, even when there are no information costs for
fundamentalists, they cannot drive out other simple trader types and fail to stabilize
price fluctuations towards its fundamental value. As in the three type case, the
opposite biases create cyclic behavior and, while trend extrapolation turns these
cycles into unpredictable chaotic fluctuations.

1.2.4 Efficiency

What can be said about market efficiency in an adaptive belief system (ABS)?
The (noisy) chaotic price fluctuations are characterized by an irregular switching
between phases of close-to-the-fundamental-price fluctuations, phases of ‘optimism’
with prices following an upward trend, and phases of ‘pessimism’, with (small) sud-
den market crashes, as illustrated in Figure 1.3. In fact, in the ABS prices are
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characterized by evolutionary switching between the fundamental value and tem-
porary speculative bubbles. Hence, prices deviate persistently from fundamental
value and therefore, prices are excessively volatile and do not reflect economic fun-
damentals. In this sense the market is inefficient. But are these deviations easy to
predict? Even in the simple, stylized 4-type example in the purely deterministic
chaotic case, the timing and the direction of the temporary bubbles seem hard to
predict, but once a bubble has started, the collapse of the bubble seems to be pre-
dictable. In the presence of (small) noise however the situation is quite different,
as illustrated in Figure 1.3 (top right): the timing, the direction and the collapse
of the bubble all seem hard to predict.
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Figure 1.5. Forecasting errors for nearest neighbor method applied to chaotic and noisy chaotic

returns series, for different noise levels, in the 4-type adaptive belief system. All returns series

have close to zero autocorrelations at all lags. The benchmark case of prediction by the mean

0 is represented by the horizontal line at the normalized prediction error 1. Nearest neighbor

forecasting applied to the purely deterministic chaotic series leads to much smaller forecasting

errors at all prediction horizons 1-20 (lowest graph). A noise level of say 10% means that the

ratio of the variance of the noise εt and the variance of the deterministic price series is 1/10.

As the noise level increases, the graphs shift upwards indicating that prediction errors increase.

Small dynamic noise thus quickly deteriorates forecasting performance.

To stress this point further, we investigate this (un)predictability, by employing
a so called nearest neighbor forecasting method to predict the returns, at lags 1 to 20
for the purely chaotic as well as for several noisy chaotic time series, as illustrated
in Figure 1.512. Nearest neighbor forecasting looks for patterns in the past that are
close to the most recent pattern, and then predicts the average value following all
nearby past patterns. According to Takens’ embedding theorem this method yields
good forecasts for deterministic chaotic systems13. Figure 1.5 shows that as the

12I would like to thank Sebastiano Manzan for providing this figure.
13See Kantz and Schreiber (1997) for an extensive treatment of nonlinear time series analysis

and forecasting techniques.
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noise level increases, the forecasting performance of the nearest neighbor method
quickly deteriorates. Hence, in our simple nonlinear evolutionary ABS with noise
it is hard to make good forecasts of future returns and to predict when prices will
return to fundamental value. Our simple nonlinear ABS with small noise thus
captures some of the intrinsic unpredictability of asset returns also present in real
markets and in terms of predictability the market is close to being efficient.

1.2.5 Wealth accumulation

The evolutionary dynamics in an adaptive belief system (ABS) is driven by realized
short run profits, and chartists strategies survive in a world driven by short run
profit opportunities. In this subsection, we briefly look at the accumulated wealth
in an ABS. Recall that accumulated wealth for strategy type h is given by

Wh,t+1 = RWht + (pt+1 + yt+1 −Rpt)zht. (1.2.9)

The first term represents wealth growth due to the risk free asset, while the last
term represents wealth growth (or decay) due to investments in the risky asset.
Because of market clearing, the average net inflow of wealth due to investment in
the risky asset is given by∑

h

nhtzht(pt+1 + yt+1 −Rpt) = zs(pt+1 + yt+1 −Rpt). (1.2.10)

This is the average risk premium required by the population of investors to hold
the risky asset. In the special case zs = 0 the risk premium is 0 and on average
wealth of each strategy grows at the risk free rate.

Figure 1.6 shows the development of prices and wealth of each strategy in the
3-type and 4-type examples of subsections 1.2.2 and 1.2.3. Prices fluctuate around
the fundamental price. For the 3-type example, the wealth accumulated by each
of the three strategies, fundamentalists, optimistic biased and pessimistic biased
grows over time, at an equal rate. Recall that in the 3 type example, for an infinite
intensity of choice β, the system converges to a stable 4-cycle with average profits
equal for all three strategies. At each time t, profits of fundamentalists are always
between profits of optimists and pessimists, but on average all profits are (almost)
equal, and thus accumulated wealth grows at the same rate.14

In the 4-type example, trend following strategies are profitable during temporary
bubbles. Fundamentalists suffer losses during temporary bubbles, but these losses
are limited. When the bubble bursts, fundamentalists make large profits while trend
followers suffer from huge losses. On average accumulated wealth of fundamentalists
increases, while wealth of chartists decreases, as illustrated in Figure 1.6.

14For finite intensity of choice, e.g. β = 3000 as in Figure 1.6, wealth of the 3-types grows at
almost the same rate. For initial states chosen as in Figure 1.6, wealth of the optimistic types
slightly dominates the other two types.
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Figure 1.6. Time series of prices (left) and accumulated wealth in 3-type ABS (top panel),

4-type ABS (middle panel) and 5-type ABS (bottom panel). Belief parameters are b = 0.2

for the 3-type ABS (see subsection 1.2.2) and as in Figure 1.3 in the 4-type case. Other

parameters are: β = 3000 and σε = 0.025 (3-type ABS); g4 = (1 + r)2 = 1.0201, β = 180,

ȳ = 0.1, R = 1.01, σε = 0.2 (4-type ABS), and σε = 0.1 and threshold parameter ϑ = 0.5

for switching strategy (5-type ABS).
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The wealth in (1.2.9) corresponds to the accumulated wealth of a trader who
always uses strategy h. How would a switching strategy perform in a heteroge-
neous market? Figure 1.6 (bottom panel) illustrates an example of an ABS with 5
strategies, where a switching strategy has been added to the 4-type ABS. The 5th
switching strategy is endogenous in the 5-type ABS, and thus affects the realized
market price in the same way as the other 4 strategies. The switching strategy
always picks the best of the other 4 strategies, according to last period’s realized
profits, conditional on how far the price deviates from the fundamental benchmark.
In the simulation, when the price deviation becomes larger than a threshold param-
eter (ϑ = 0.5), the switching strategy switches back to the fundamental strategy to
avoid losses when the bubble collapses. Figure 1.6 (bottom panel) illustrates two
features of the 5-type ABS. Firstly, due to the presence of the switching strategy,
the amplitude of price fluctuations (bottom panel, left plot) is somewhat smaller
than in the 4-type ABS. This is caused by the switching strategy switching back to
the fundamental strategy when the price deviation exceeds the threshold. Secondly,
the accumulated wealth of the switching strategy outperforms all other strategies,
including the fundamental strategy (Figure 1.6 (bottom panel, right plot). Notice
that the two best strategies, the switching strategy and the fundamental strategy,
also require most information. The trend following strategies only use publically
available information on past prices.15 The fundamental strategy uses fundamental
information, while the switching strategy uses fundamental information as well as
information about competing strategies in the market and their performance.

In the ABS evolutionary framework agents switch strategies based on short
run realized profits. In the long run, a fundamental strategy often accumulates
more wealth than trend following rules. However, fundamental strategies suffer
from losses during temporary bubbles when prices persistently deviate from funda-
mentals, and may therefore suffer from “limits of arbitrage” (Shleifer and Vishny
(1997)). Fundamentalists can stabilize price fluctuations, but only if they are not
limited by borrowing constraints or limits of arbitrage. In the long run, a simple
switching strategy may accumulate more wealth than a fundamental or technical
trading strategy. The fact that a simple switching strategy performs better in a
heterogeneous market shows that the ABS-model is behaviorally consistent. Agents
have an incentive to keep switching strategies. The switching strategy is very risky
however, because it requires good knowledge of the underlying fundamental and
good market timing to “get off the bubble before it bursts”. Interestingly, Zwart
et al. (2007) provided empirical evidence, analyzing 15 emerging market currencies
over the period 1995-2006, that a combined strategy with time varying weights
may generate economically and statistically significant returns, after accounting for
transaction costs. Their strategy is based on a combination of fundamental infor-
mation on the deviation from purchasing power parity and the real interest rate

15Recall that these strategies can be formulated without knowledge of the fundamental price,
see footnote 4.
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differential and chartist information from moving average trading rules, with time
varying weights determined by relative performance over the past year.

1.2.6 Extensions

Several modifications and extensions of a adaptive belief systems (ABS) have been
studied. In Brock and Hommes (1998) the demand for the risky asset is derived
from a constant absolute risk aversion (CARA) utility function. Chiarella and He
(2001) consider the case with constant relative risk aversion (CRRA) utility. This
is complicated, because under CARA utility investors’ relative wealth affects asset
demand and realized asset price, and one has to keep track of the wealth distribu-
tion among the population of agents16. Anufriev and Bottazzi (2006) and Anufriev
(2008) study wealth and asset price dynamics in a heterogeneous agents frame-
work and are able to characterize the type of equilibria and their stability under
fairly general behavioral assumptions. Chiarella, Dieci and Gardini (2002,2006) use
CRRA utility in an ABS with a market maker price setting rule. Chiarella and He
(2003) and Hommes et al. (2005) investigate an ABS with a market maker price
setting rule, and find quite similar dynamical behavior as in the case of a Walrasian
market clearing price. De Fontnouvelle (2000) and Goldbaum (2005) apply strategy
switching to an asset pricing model with heterogeneous information. Chang (2007)
studies how social interactions affect the dynamics of asset prices in an ABS with
a Walrasian market clearing price. DeGrauwe and Grimaldi (2005,2006) applied
the ABS framework to exchange rate modeling. Chiarella (2009, this handbook)
discusses some of these extensions in more detail17.

1.3 MANY TRADER TYPES

In most heterogeneous agent models (HAMs) in the literature, the number of trader
types is small: usally only two, three or four types are considered that use simple
fundamentalist or chartist strategies. Generally, analytical tractability can only be
obtained at the cost of restricting a HAM to just a few types. Brock, Hommes and
Wagener (2005) have however developed a theoretical framework to study evolu-
tionary markets with many different trader types. In this subsection, we discuss
their notion of Large Type Limit (LTL), a simple, low dimensional approximation
of an evolutionary adaptive belief system (ABS) with many trader types. The LTL
can be developed in a fairly general market clearing setting, but here we focus on
its application to the asset pricing model with heterogeneous beliefs.

16In the artifical market of Levy et al. (1994), asset demand is also derived from CRRA utility.
17Another related stochastic model with heterogeneous agents and endogenous strategy switch-

ing similar to the ABS has been introduced in Föllmer et al. (2005). Scheinkman and Xiong (2004)
review related stochastic financial models with heterogeneous beliefs and short sale constraints.
Macro models with heterogeneous expectations have been studied, for instance, in Branch and
Evans (2006) and Branch and McGough (2008).
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Recall from (1.1.11) that in the asset market with H different trader types, the
equilibrium price (in deviations xt from the fundamental benchmark) is given by

xt =
1

1 + r

H∑
h=1

nhtfht. (1.3.1)

Using the multi-nomial logit probabilities (1.1.13) for the fractions nht we get

xt =
1

1 + r

∑H
h=1 eβUh,t−1fht∑H
h=1 eβUh,t−1

. (1.3.2)

It is assumed that prediction and fitness functions take the form fht = f(x, λ, ϑh)
and Uht = U(x, λ, ϑh) respectively, where x = (xt−1, xt−2, · · · ) is a vector of lagged
deviations from the fundamental, λ is a structural parameter vector (e.g. containing
the risk free interest rate r, the risk aversion parameter a, the intensity of choice
β, etc.) and ϑh is a multidimensional variable that characterizes the belief type h.

The equilibrium equation (1.3.2) determines the evolution of the system with H
trader types - this information is coded in the evolution map ϕH(x, λ, ϑ):

ϕH(x, λ, ϑ) =
1

1 + r

∑H
h=1 eβU(x,λ,ϑh)f(x, λ, ϑh)∑H

h=1 eβU(x,λ,ϑh)
, (1.3.3)

where ϑ = (ϑ1, · · · , ϑH). At the beginning of the market, a large number H of be-
liefs ϑh is sampled from a general distribution of beliefs. For example, all forecasting
rules may be drawn from a linear class of rules with L lags,

ft(ϑ0) = ϑ00 + ϑ01xt−1 + ϑ02xt−2 + · · ·+ ϑ0Lxt−L, (1.3.4)

with ϑ0h, h = 0, · · · , L, drawn from a multivariate normal distribution.
The evolution map ϕH in (1.3.3) determines the dynamical system correspond-

ing to an asset market with H different belief types. When the number of trader
types H is large, this dynamical system contains a large number of stochastic vari-
ables ϑ = (ϑ1, ..., ϑH), where the ϑh are IID, with distribution function Fµ. At the
beginning of the market H belief types are drawn from this distribution, who then
compete against each other. The distribution function of the stochastic belief vari-
able ϑh depends on a multi-dimensional parameter µ, called the belief parameter.
This setup allows to vary the population out of which the individual beliefs are
sampled at the beginning of the market.

Observe that both the denominator and the numerator of the evolution map ϕH
in (1.3.3) may be divided by the number of trader types H and thus may be seen as
sample means. The evolution map ψ of the large type limit (LTL) is then obtained
by replacing sample means in the evolution map ϕH by population means:

ψ(x, λ, µ) =
1

1 + r

Eµ
[
eβU(x,λ,ϑ0)f(x, λ, ϑ0)

]
Eµ
[
eβU(x,λ,ϑ0)

] =
1

1 + r

∫
eβU(x,λ,ϑ0)f(x, λ, ϑ0)dνµ∫

eβU(x,λ,ϑ0)dνµ
,

(1.3.5)
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where ϑ0 is a stochastic variable, distributed in the same way as the ϑh, with
density νµ. The structural parameter vector λ of the evolution map ϕH and of the
LTL evolution map ψ coincide. However, whereas the evolution map ϕH in (1.3.3)
of the heterogeneous agent system contains H randomly drawn multi-dimensional
stochastic variables ϑh, the LTL evolution map ψ in (1.3.5) only contains the belief
parameter vector µ describing the joint probability distribution. Taking a large
type limit thus leads to a huge reduction in stochastic belief variables.

According to the LTL-theorem of Brock et al. (2005), as the number H of trader
types tends to infinity, the H-type evolution map ϕ converges almost surely to the
LTL-map ψ. This implies that the corresponding LTL dynamical system is a good
approximation of the dynamical behavior in a heterogeneous asset market when the
number of belief types H is large. In particular, all generic and persistent dynamic
properties will be preserved with high probability. For example, if the LTL-map
exhibits a bifurcation route to chaos for one of the structural parameters, then,
if the number of trader types H is large, the H-type system also exhibits such a
bifurcation route to chaos with high probability.

A straightforward computation using moment generating functions shows that,
for example, in the case of linear forecasting rules (1.3.4) with three lags (L = 3),
the corresponding LTL becomes a 5-D nonlinear system given by

(1 + r)xt = µ0 + µ1xt−1 + µ2xt−2 + µ3xt−3 (1.3.6)

+ η(xt−1 −Rxt−2 + aσ2zs)(σ2
0 + σ2

1xt−1xt−3 + σ2
2xt−2xt−4 + σ2

3xt−3xt−5),

where η = β/(aσ2). The simplest special case of (1.3.6) that still leads to interesting
dynamics is obtained when all ϑ0k = 0, 1 ≤ k ≤ d, that is, when the forecasting
function (1.3.4) is purely biased: ft(ϑ0) = ϑ00. The LTL then simplifies to the
linear system

Rxt = µ0 + ησ2
0

(
xt−1 −Rxt−2 + aσ2zs

)
. (1.3.7)

This simplest case already provides insight into the (in)stability of the (fundamen-
tal) steady state in an evolutionary system with many trader types. When there is
no intrinsic mean bias, that is when the mean of the biases ϑ00 equals 0 (i.e. µ0 = 0),
and the risk premium is zero (zs = 0), the steady state of the LTL (1.3.7) coincides
with the fundamental: x∗ = 0. When the mean bias and risk premium are both
positive (negative) the steady state deviation x∗ will be positive (negative) so that
the steady state will be above (below) the fundamental. The natural bifurcation
parameter tuning the (in)stability of the system is ησ2

0 = βσ2
0/aσ

2. We see that
instability occurs if and only if η increases beyond the bifurcation point ηc = 1/σ2

0 .
Hence this simple case already suggests forces that may destabilize the evolution-
ary system: an increase in choice intensity β for evolutionary selection, a decrease
in risk aversion a, a decrease in conditional variance of excess returns σ2, or an
increase in the diversity of purely biased beliefs σ2

0 . All of these forces can push η
beyond ηc, thereby triggering instability of the (fundamental) steady state.
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For the large type limit (LTL) in (1.3.6), in the case of linear forecasting rules
with 3 lags, a bifurcation route to chaos, with asset prices fluctuating around the
unstable fundamental steady state, occurs when η increases. This shows that a
rational route to randomness can occur in an asset market with many different
trader types, when traders become increasingly sensitive to differences in fitness
(i.e. an increase in the intensity of choice β) or traders become less risk averse (i.e.
a decrease of the coefficient of risk aversion a). In a many trader types evolutionary
world fundamentalists will in general not drive out all other types and asset prices
need not converge to their fundamental value.
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Figure 1.7. Bifurcation diagram in the (η, µ1) parameter plane for the large type limit

(LTL) (1.3.6), where µ1 represents the mean of the first order stochastic trend variable

ϑ01 in the forecasting rule (1.3.4). For µ0 = aσ2 = 0, with µ0 the mean of the constant

ϑ00 in the forecasting rule (1.3.4), the LTL is symmetric and thus non-generic (dotted

curves); when µ0 6= 0 the LTL is non-symmetric and generic. The diagrams show Hopf

(H), period doubling (PD), pitchfork (PF) and saddle-node (SN) bifurcation curves in

(η, µ1) parameter plane, with other parameters fixed at R = 1.01, zs = 0, µ2 = µ3 = 0,

σ0 = σ1 = σ2 = 1 and σ3 = 0. Between the Hopf and PD curves (and the PF curve when

µ0 = 0) there is a unique, stable steady state. This steady state becomes unstable when

crossing the Hopf or the PD curve. Above the PF curve or the SN curve the system has

three steady states. The PF curve is non-generic and only arises in the symmetric case

with mean bias µ0 = 0. When the symmetry is broken by perturbing the mean bias to

µ0 = −0.1, the PF curve ‘breaks’ into generic Hopf and SN curves.
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Figure 1.7 shows a 2-dimensional bifurcation diagram in the (η, µ1) parameter
plane, where µ1 represents the mean of the first order stochastic trend variable
ϑ01 in the forecasting rule (1.3.4). Recall that µ0 is the mean of the constant
term ϑ00 in the forecasting rule (1.3.4); it models the ‘mean bias’ of the trader
type. When µ0 = 0 and aσ2zs = 0 (expressing that the risk premium is zero), the
LTL is symmetric with respect to the fundamental steady state.
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In the symmetric case ( dotted lines in figure 1.7), for parameters taking val-
ues in the region enclosed by the Hopf, period doubling (PD) and pitchfork (PF)
bifurcation curves, the fundamental steady state is unique and stable18. As the
parameters cross the PF curve, two additional non-fundamental steady states are
created, one above and one below the fundamental. Another route to instability
occurs when crossing the Hopf curve, where the fundamental steady state becomes
unstable and a (stable) invariant circle with periodic or quasi-periodic dynamics
is created. The pitchfork bifurcation curve is non-generic, and only occurs in the
symmetric case. When the symmetry is broken by a non-zero mean bias µ0 6= 0,
as illustrated in figure 1.7 (bold curves) for µ0 = −0.1, the PF curve disappears,
and “breaks” into two generic co-dimension one bifurcation curves, a Hopf and a
saddle-node (SN) bifurcation curve. When crossing the SN curve from below, two
additional steady states are created, one stable and one unstable. Notice that, as
illustrated in figure 1.7, when the perturbation is small (in the figure µ0 = −0.1),
the SN and the Hopf curves are close to the PF and the Hopf curves (dotted lines) in
the symmetric case. In this sense the bifurcation diagram depends continuously on
the parameters, and it is useful to consider the symmetric LTL as an “organizing”
center to study bifurcation phenomena in the generic, non-symmetric LTL.

The most relevant case from an economic viewpoint arises when the mean µ1 of
the first order coefficient ϑ01 in the forecasting rule (1.3.4) satisfies 0 ≤ µ1 ≤ 1. In
that case, the (fundamental) steady state loses stability in a Hopf bifurcation as η
increases. Figure 1.8 illustrates the dynamical behavior of the LTL as the parameter
η further increases. After the Hopf bifurcation periodic and quasi-periodic dynamics
on a stable invariant circle occur, and for increasing values of η a bifurcation route
to strange attractors occurs. Figure 1.8 thus presents numerical evidence of the
occurrence of a rational route to randomness, that is, a bifurcation route to strange
attractors as the intensity of choice to switch forecasting strategies increases. If such
rational routes to randomness occur for the LTL, the LTL convergence theorem
implies that in evolutionary systems with many trader types rational routes to
randomness occur with high probability.

Diks and van der Weide (2003,2005) have generalized the notion of LTL and
introduced so-called Continuous Belief Systems (CBS), where the beliefs of traders
are distributed according to a continuous density function. The beliefs distribution
function and the equilibrium prices co-evolve over time. The LTL theory discussed
here as well as its extensions can be used to form a bridge between an analytical
approach and the literature on evolutionary artificial market simulation models
reviewed in LeBaron (2000,2006).

18See the appendix for a brief introduction to bifurcation theory, illustrated by simple examples
of the saddle-node, period doubling, pitchfork and Hopf bifurcations.
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(a) η = 1.4 (b) η = 1.51 (c) η = 1.52

(d) η = 1.57 (e) η = 1.59 (f) η = 1.6

Figure 1.8. Attractors in the phase space for the 5-D LTL with parameters R = 1.01,

zs = 0, µ0 = 0, µ1 = 0, µ2 = µ3 = 0, σ0 = σ1 = σ2 = σ3 = 1: (a) immediately after

the Hopf bifurcation (quasi-)periodic dynamics on a stable invariant circle occurs; (b-c)

after a Hopf bifurcation (quasi-)periodic dynamics on a stable invariant torus occurs; (d-f)

breaking up of the invariant torus into a strange attractor.

1.4 EMPIRICAL VALIDATION

In this section we discuss the empirical validity of the asset pricing model with
heterogeneous beliefs. There is already a large literature on heterogeneous agent
models (HAMs) replicating many of the important stylized facts of financial time
series on short time scales (say daily or higher frequency), such as fat tails and
long memory in the returns distribution and clustered volatility. Examples of het-
erogeneous agent models able to replicate stylized facts of financial markets in-
clude e.g. Brock and LeBaron (1996), Arthur et al. (1997), Brock and Hommes
(1997b), Youssefmir and Huberman (1997), LeBaron et al. (1999), Lux and March-
esi (1999,2000), Farmer and Joshi (2002), Kirman and Teyssière (2002), Hommes
(2002), Iori (2002), Cont and Bouchaud (2000) and Gaunersdorfer and Hommes
(2007). The recent survey by Lux (2009, this Handbook) contains an extensive
survey of behavioral interacting agent models mimicking the stylized facts of as-
set returns. We have already seen examples of simple heterogeneous agent models
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mimicking temporary bubbles and crashes. In this section we discuss how these
qualitative features match with observed bubbles and crashes in real markets.

Empirical validation and estimation of HAMs on economic or financial data is
still in its infancy. An early attempt has already been made by Shiller (1984), who
presents a HAM with smart money traders, having rational expectations, versus
ordinary investors (whose behavior is in fact not modeled at all). Shiller estimates
the fraction of smart money investors over the period 1900-1983, and finds consid-
erable fluctuations of the fraction over a range between 0 and 50%. Baak (1999)
and Chavas (2000) estimate HAMs on hog and beef market data, and found evi-
dence for the heterogeneity of expectations. Winker and Gilli (2001) and Gilli and
Winker (2003) estimate the model of Kirman (1991,1993) with fundamentalists
and chartists, using the daily DM-US$ exchange rates 1991-2000. Their estimated
parameter values correspond to a bimodal distribution of agents. Westerhoff and
Reitz (2003) also estimate an HAM with fundamentalists and chartists to exchange
rates and find considerable fluctuations of the market impact of fundamentalists.
Alfarano et al. (2005) estimate an agent-based herding model where agents switch
between fundamentalist and chartist strategies. Branch (2004) estimates a model
with heterogeneous beliefs and time varying fractions, using survey data on infla-
tion expectations. In this section, we discuss the estimation of a simple two type
asset pricing model with heterogeneous beliefs, as discussed in section 1.1, on yearly
S&P 500 data, 1871-2003, as done in Boswijk et al. (2007). As we will see, this
simple 2-type model can e.g. explain the dot com bubble in the late 1990s and the
subsequent crash early 200019.

1.4.1 The model in price-to-cash flows

In the previous section, the dividend process of the risky asset has been assumed
to be stationary. To estimate the model using yearly data of more than a century,
the dividend process has to be taken growing over time and thus non-stationary. In
order to estimate a simple 2-type model, Boswijk et al. (2007) therefore reformu-
lated the model in terms of price-to-cash flows. Recall from (1.1.5) that, under the
assumption of zero net supply of the risky asset, the equilibrium pricing equation
is

pt =
1

1 + r

H∑
h=1

nh,tEh,t(pt+1 + yt+1), (1.4.1)

19Van Norden and Schaller (1999) estimate a nonlinear time series switching model with two
regimes, an explosive and a collapsing bubble regime, with the probability of being in the explosive
regime depends negatively on the relative absolute deviation of the bubble from the fundamental.
Brooks and Katsaris (2005) extend this model to three regimes, adding a third dormant bubble
regime where the bubble grows at the required rate of return without explosive expectations.
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or equivalently

r =
H∑
h=1

nh,t
Eh,t[pt+1 + yt+1 − pt]

pt
. (1.4.2)

In equilibrium the average required rate of return for investors to hold the risky
asset equals the discount rate r. In the estimation of the model the discount rate
r has been set equal to the sum of the (risk free) interest rate and the required
risk premium on stocks. A simple, non-stationary process that fits cash flow data
(dividends or earnings) well is a stochastic process with a constant growth rate.
More precisely, assume that log yt is a Gaussian random walk with drift, that is,

log yt+1 = µ+ log yt + υt+1, υt+1 ∼ i.i.d. N(0, σ2
υ), (1.4.3)

which implies

yt+1

yt
= eµ+υt+1 = eµ+ 1

2σ
2
υeυt+1− 1

2σ
2
υ = (1 + g)εt+1, (1.4.4)

where g = eµ+ 1
2σ

2
υ − 1 and εt+1 = eυt+1+

1
2σ

2
υ , so that Et(εt+1) = 1. As before, we

assume that all types have correct beliefs on the cash flow, that is,

Eh,t[yt+1] = Et[yt+1] = (1 + g)ytEt[εt+1] = (1 + g)yt. (1.4.5)

Since the cash flow is an exogenously given stochastic process it seems natural to
assume that agents have learned the correct beliefs on next period’s cash flow yt+1.
In particular, boundedly rational agents can learn about the constant growth rate
e.g. by running a simple regression of log(yt/yt−1) on a constant. In contrast,
prices are determined endogenously and are affected by expectations about next
period’s price. In a heterogeneous world, agreement about future prices therefore
seems more unlikely than agreement about future cash flows. Therefore we assume
homogeneous beliefs about future cash flow, but heterogeneous beliefs about future
prices.20 The pricing equation (1.4.1) can be reformulated in terms of price-to-
cash-flow (P/Y) ratio, δt = pt/yt, as21

δt =
1
R∗

{
1 +

H∑
h=1

nh,tEh,t[δt+1]

}
, R∗ =

1 + r

1 + g
. (1.4.6)

In the special case when all agents have rational expectations the equilibrium pric-
ing equation (1.4.1) simplifies to pt = (1/(1 + r))Et(pt+1 + yt+1). It is well known

20Barberis et al. (1998) consider a model where agents are affected by psychological biases in
forming expectations about future cash flows. In particular, agents may overreact to good news
about economic fundamentals because they believe that cash flows have moved into another regime
with higher growth. Their model is able to explain continuation and reversal of stock returns.

21In what follows we will use either price-to-dividend (P/D) or price-to-earnings (P/E) ratio’s,
and use the general notation P/Y for price-to-cash-flows.



32

that, in the case of a constant discount rate r and a constant growth rate g for div-
idends, according to the static Gordon growth model (Gordon, 1962), the rational
expectations fundamental price, p∗t , of the risky asset is given by

p∗t =
1 + g

r − g
yt, r > g. (1.4.7)

Equivalently, in terms of price-to-cash flow ratios the fundamental is

δ∗t =
p∗t
yt

=
1 + g

r − g
≡ m. (1.4.8)

We will refer to p∗t as the fundamental price and to δ∗t as the fundamental P/Y-ratio.
When all agents are rational the pricing equation (1.4.6) in terms of the P/Y-ratio,
δt = pt/yt, becomes

δt =
1
R∗
{1 + Et[δt+1]} . (1.4.9)

In terms of the deviation from the fundamental ratio, xt = δt − δ∗t = δt −m, this
simplifies to

xt =
1
R∗

Et[xt+1]. (1.4.10)

Under heterogeneity in expectations, the pricing equation (1.4.6) is expressed in
terms of xt as

xt =
1
R∗

H∑
h=1

nh,tEh,t[xt+1]. (1.4.11)

Heterogeneous beliefs
The expectation of belief type h about next period P/Y-ratio is expressed as

Eh,t[δt+1] = Et[δ∗t+1] + fh(xt−1, ..., xt−L) = m+ fh(xt−1, ..., xt−L), (1.4.12)

where δ∗t represents the fundamental price-to-cash-flow ratio P/Y, Et(δ∗t+1) = m is
the rational expectation of the P/Y-ratio available to all agents, xt is the deviation
of the P/Y-ratio from its fundamental value and fh(·) represents the expected
transitory deviation of the P/Y-ratio from the fundamental value, depending on L
past deviations. The information available to investors at time t includes present
and past cash flows and past prices. In terms of deviations from the fundamental
P/Y-ratio, xt, we get

Eh,t[xt+1] = fh(xt−1, ..., xt−L). (1.4.13)

Note again that the rational expectations, fundamental benchmark is nested in the
heterogeneous agent model as a special case when fh ≡ 0 for all types h. We can
express Equation (1.4.11) as

R∗xt =
H∑
h=1

nh,tfh(xt−1, ..., xt−L). (1.4.14)
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From this equilibrium equation it is clear that the adjustment towards the funda-
mental P/Y-ratio will be slow if a majority of investors has persistent beliefs about
it.

Evolutionary selection of expectations
In addition to the empirical evidence of persistent deviations from fundamentals
there is also significant evidence of time variation in the sentiment of investors.
This has been documented, for example, by Shiller (1987,2000) using survey data.
In the model considered here, agents are boundedly rational and switch between
different forecasting strategies according to recently realized profits. We denote by
πh,t−1 the realized profits of type h at the end of period t− 1, given by (cf. 1.1.14)

πh,t−1 = Rt−1zh,t−2 = Rt−1
Eh,t−2[Rt−1]
aVt−2[Rt−1]

, (1.4.15)

where Rt−1 = pt−1 + yt−1 − (1 + r)pt−2 is the realized excess return at time t− 1
and zh,t−2 is the demand of the risky asset by belief type h, as given in (1.1.3),
formed in period t− 2. As before, we assume that the beliefs about the conditional
variance of excess returns are the same for all types and equal to fundamentalists
beliefs about conditional variance, i.e.

Vh,t−2[Rt−1] = Vt−2[P ∗t−1 + yt−1 − (1 + r)P ∗t−2] = y2
t−2η

2, (1.4.16)

where η2 = (1 +m)2(1 +g)2Vt−2[εt−1], with εt IID noise driving the cash flow. The
fitness measure can be rewritten in terms of the deviation xt = δt −m of the P/Y
ratio from its fundamental value, with m = (1 + g)/(r − g) as

πh,t−1 =
(1 + g)2

aη2
(xt−1 −R∗xt−2) (Eh,t−2[xt−1]−R∗xt−2) . (1.4.17)

This fitness measure has a simple, intuitive explanation in terms of forecasting
performance for next period’s deviation from the fundamental. A positive demand
zh,t−2 may be seen as a bet that xt−1 would go up more than what was expected on
average from R∗xt−2 (note that R∗ is the growth rate of rational bubble solutions).
The realized fitness πh,t−1 of strategy h is the realized profit from that bet and it
will be positive if both the realized deviation xt−1 > R∗xt−2 and the forecast of
the deviation Eh,t−2[xt−1] > R∗xt−2. More generally, if both the realized absolute
deviation |xt−1| and the absolute predicted deviation |Eh,t−2[xt−1]| to the funda-
mental value are larger than R∗ times the absolute deviation |xt−2|, then strategy
h generates positive realized fitness. In contrast, a strategy that wrongly predicts
whether the asset price mean reverts back towards the fundamental value or moves
away from the fundamental generates a negative realized fitness.

At the beginning of period t investors compare the realized relative performances
of the different strategies and withdraw capital from those that performed poorly
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and move it to better strategies. The fractions nh,t evolve according to a discrete
choice model with multi-nomial logit probabilities, that is (cf. (1.1.13)),

nh,t =
exp[βπh,t−1]∑H
k=1 exp[βπk,t−1]

=
1

1 +
∑
k 6=h exp[−β∆πh,kt−1]

, (1.4.18)

where β > 0 is the intensity of choice as before, and ∆πh,kt−1 = πh,t−1 − πk,t−1

denotes the difference in realized profits of belief type h compared to type k.

1.4.2 Estimation of a simple two-type example

Consider the case of two types, both predicting next period’s deviation by extrap-
olating past realizations in a linear fashion, that is22

Eh,t[xt+1] = fh(xt−1) = ϕhxt−1. (1.4.19)

The dynamic asset pricing model with two types can then be written as

R∗xt = ntϕ1xt−1 + (1− nt)ϕ2xt−1 + εt, (1.4.20)

where ϕ1 and ϕ2 denote the coefficients of the two belief types, nt represents the
fraction of investors that belong to the first type of traders and εt represents a
disturbance term. The value of the parameter ϕh can be interpreted as follows. If
it is positive and smaller than 1, investors expect the stock price to mean revert
towards the fundamental value. This type of agents represent fundamentalists,
because they expect the asset price to move back towards its fundamental value in
the long run. The closer ϕh is to 1 the more persistent are the expected deviations.
If the beliefs parameter ϕh is larger than 1, it implies that investors believe the
deviation of the stock prices to grow over time at a constant speed. We will refer
to this type of agents as trend followers. Note in particular that when one group
of investors believes in a strong trend, i.e. ϕh > R∗, this may cause asset prices to
deviate further from their fundamental value. In the case with 2 types with linear
beliefs (1.4.19), the fraction of type 1 investors is

nt =
1

1 + exp {−β∗ [(ϕ1 − ϕ2)xt−3(xt−1 −R∗xt−2)]}
(1.4.21)

where β∗ = β(1 + g)2/(aη2).
The two-type model (1.4.20) and (1.4.21) has been estimated, using an updated

version of the data set described in Shiller (1989), consisting of annual observations
of the S&P500 index from 1871 to 2003. Here we present the estimation results

22In the estimation of the model higher order lags turned out to be insignificant, so we focus on
the simplest case with only one lag in the function fh(·), with ϕh the parameter characterizing
the strategy of type h.
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with earnings as cash flows, but using dividends as cash flows gives similar results.
The valuation ratios are then the Price-to-Earnings (PE) ratios.23

Recall that according to the static Gordon growth model the fundamental price
is given by

p∗t = myt, m =
1 + g

r − g
. (1.4.22)

The fundamental value of the asset is a multiple m of its cash flow where m depends
on the discount rate r and the cash flow growth rate g. The multiple m can also
be interpreted as the price-to-dividend (P/D) or the price-to-earnings (P/E) ratios
implied by the present value model. Figure 1.9 shows the (log) of yearly S&P 500
data together with the fundamental benchmark as well as their P/E-ratio’s. The
figure shows a clear long-term co-movement of the stock price and the fundamental
value. However, the P/E-ratio takes persistent swings away from the constant value
predicted by the present value model. This suggests that the fundamental value
does not account completely for the dynamics of stock prices, as was suggested in
the early debate on mean reversion by Summers (1986). A survey of the on-going
debate is given in Campbell and Shiller (2005). Here we use the simple constant
growth Gordon model for the fundamental price and estimate the two type model
on deviations from this benchmark.24

Recall that R∗ = (1 + r)/(1 + g), where g is the constant growth rate of the
cash flow and r is the discount rate r equal to the risk free interest rate plus a
risk premium. We use an estimate of the risk premium –the difference between the
expected return on the market portfolio of common stocks and the risk-free interest
rate– to obtain R∗, as in Fama and French (2002). The risk premium safisfies

RP = g + y/p− i, (1.4.23)

where g is the growth rate of dividends, y/p denotes the average dividend yield
yt/pt−1 and i is the risk free interest rate. For annual data from 1871 to 2003 of
the S&P500 the estimates are i = 2.57% and RP = 6.56%, so that r = 9.13%
and R∗ = 1.074.25 The corresponding average price-to-earnings ratio is 13.4, as
illustrated in Figure 1.9.

Using yearly data of the S&P 500 index from 1871 to 2003, the parameters
(ϕ′1, ϕ

′
2, β
∗) in the 2-type model (1.4.20) and (1.4.21) can be estimated by nonlinear

least squares. The estimation results are as follows:
23Since earnings data are noisy, to determine the fundamental valuation we follow the practice

of Campbell and Shiller (2005) to smooth earnings by a 10 years moving average.
24The same approach can be used for more general, time varying fundamental processes. Manzan

(2003) shows that a dynamic Gordon model for the fundamental price, where the discount rate
r and/or the growth rate g are time varying does not explain the large fluctuations in price-to-
cash-flow ratios, and in fact yields a fundamental price pattern close to that for the static Gordon
model. Boswijk et al. (2007) also estimate a version of the model allowing for time variation in
the growth rate of the cash flow, and obtain similar results.

25These estimates are slightly different from Fama and French (2002), because as in Shiller
(1989), we use the CPI index to deflate nominal values.
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Figure 1.9. Yearly S&P 500, 1871-2003 and benchmark fundamental p∗t = myt, with

m = (1 + g)/(1 + r). The left panel shows logs of S&P 500 and the log of the funda-

mental p∗t , while the right panel shows the P/E-ratio of the S&P 500 around the constant

fundamental benchmark p∗t /yt = m.

R∗xt = nt{0.80 xt−1}+ (1− nt){1.097 xt−1}+ ε̂t
(0.074) (0.052)

(1.4.24)

nt = {1 + exp[−7.54 (−0.29xt−3)(xt−1 −R∗xt−2)]}−1

(4.93)

R2=0.77, AIC=2.23, AICAR(1)=2.29, ϕAR(1)=0.983, QLB(4)=0.94, F boot(p-value)=10.15 (0.011)

The belief coefficients are strongly significant and different from each other. On
the other hand, the intensity of choice β∗ is not significantly different from zero.
This is a common result in nonlinear switching-type regression models, where the
parameter β∗ in the transition function is difficult to estimate and has a large
standard deviation, because relatively large changes in β∗ cause only small variation
of the fraction nt. Teräsvirta (1994) argues that this should not be worrying as
long as there is significant heterogeneity in the estimated regimes. The nonlinear
switching model achieves a lower value for the AIC selection criterion compared to
a linear AR(1) model. This suggests that the model is capturing nonlinearity in the
data. This is also confirmed by the bootstrap F-test for linearity, which strongly
rejects the null hypothesis of linearity in favor of the heterogeneous agent model.
The residuals of the regression do not show significant evidence of autocorrelation
at the 5% significance level.

The estimated coefficient of the first regime is 0.80, corresponding to an half-
life of about three years. The first regime can be characterized as fundamentalist
beliefs, expecting the asset price to move back towards its fundamental value. In
contrast, the second regime has an estimated coefficient close to 1.1, implying that
in this regime agents are trend followers, believing the deviation of the stock price
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Figure 1.10. Estimated fraction nt of fundamentalists (left) and average extrapolation factor

ϕt (right) in (1.4.25) in 2-type model.

to grow over time at a constant speed larger than R∗ ≈ 1.074. At times when the
fraction of investors using this belief is equal or close to 1 we have explosive behavior
in the P/E ratio. The sentiment of investors switches between a stable fundamen-
talists regime and a trend following regime. In normal periods agents consider the
deviation as a temporary phenomenon and expect it to revert back to fundamentals
quickly. In other periods, a rapid increase of stock prices not paralleled by improve-
ments in the fundamentals causes losses for fundamentalists and profits for trend
followers. Evolutionary pressure will then cause more fundamentalists to become
trend followers, thus reenforcing the trend in prices.

Figure 1.10 shows the time series of the fraction of fundamentalists and the
average market sentiment, defined as

ϕt =
ntϕ1 + (1− nt)ϕ2

R∗
. (1.4.25)

It is clear that the fraction of fundamentalists varies considerably over time with
periods in which it is close to 0.5 and other periods in which it is close to either
of the extremes 0 or 1. The series of the average market sentiment shows that
there is significant time variation between periods of strong mean reversion when
the market is dominated by fundamentalist and other periods in which ϕt is close
to or exceeds 1 and the market is dominated by trend followers. These plots also
offer an explanation of the events of the late 1990s: for six consecutive years the
trend following strategy outperformed the fundamentalists strategy and a majority
of agents switched to the trend following strategy, driving the average market senti-
ment beyond 1 thus reenforcing the strong price trend. However, at the turn of the
market in 2000 the fraction of fundamentalists increased again, approaching 1 thus
contributing to the reversal toward the fundamental value in subsequent years.

The estimation results show that there are two different belief strategies: one
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in which agents expect continuation of returns and the other in which they expect
reversal. We also find that there are some years in which one type of expectations
dominates the market. It is clear that the expectation of continuation of positive
returns dominated the market in the late 1990s, with the average market sentiment
coefficient ϕt in (1.4.25)) larger than 1 in the late 1990s. Despite the awareness of
the mispricing, in this period investors were aggressively extrapolating the contin-
uation of the extraordinary performances realized in the past years. Our approach
endogenizes the switching of agents among beliefs. The evolutionary mechanism
that relates predictor choice to their past performance is supported by the data. It
confirms also previous evidence that pointed in this direction. Based on answers to
a survey, Shiller (2000) constructed indices of “Bubble Expectations” and of “In-
vestor Confidence”. In both cases, he finds that the time variation in the indices
is well explained by the lagged change in stock prices. Based on a different survey,
Fisher and Statman (2002) find that in the late 1990s individual investors had ex-
pectations of continuation of recent stock returns while institutional investors were
expecting reversals. This is an interesting approach to identify heterogeneity of
beliefs based on the type of investors rather than the type of beliefs. In the view
of our model, the bubble in the 1990s was triggered by good news about economic
fundamentals (a new internet technology), and strongly reinforced by trend extrap-
olating behaviour. The bubble reversed by bad news about economic fundamentals
(excessive growth can not last forever and is not supported by earnings), and the
crash was accelerated by switching of beliefs back to fundamentals.

1.4.3 Empirical implications

In this subsection we discuss some empirical implications of the estimation of our
nonlinear evolutionary switching model with heterogeneous beliefs. First, we inves-
tigate the response to a positive shock to fundamentals when the asset is overvalued.
Secondly, we address the question concerning the probability that a bubble may
resume by considering the evolution of the valuation ratios conditional on data
until the end of 2003. These simulation experiments both show the importance of
considering nonlinear effects in the dynamics of stock prices.

Response to a Fundamental Shock
We use the estimated parameters to investigate the response of the market valua-
tion to good news. Assume that at the beginning of period t the cash flow increases
due to a permanent increase in its growth rate. This implies that the asset has
a higher fundamental valuation ratio, but what is the effect on the market valua-
tion? We address this question both for the nonlinear switching model and a linear
benchmark. The linear model may be interpreted as a model with a representative
agent believing in an average mean reversion towards the fundamental26. Assume

26The linear benchmark is e.g. obtained for β = 0 or equivalently, when both fractions nt =
1−nt = 0.5 in (1.4.20). Hence, in the linear model there is no strategy switching between different
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Figure 1.11. Average response (over 2000 simulations) to a shock to the fundamental for

the linear representative agent model (dashed line) and the nonlinear 2-type switching model

(dotted line with circles). At period 0 there is a permanent shock to the fundamental price

from 15 to 17. The simulation uses the estimated parameter values for the P/D-ratio, with a

representative agent average belief parameter ϕ = 0.968 and heterogeneous agent parameters

ϕ1 = 0.762 and ϕ2 = 1.135 for the 2 types. The nonlinear heterogeneous agent model exhibits

short-run continuation of positive returns and long-term reversal.

that at t− 1 the fundamental valuation ratio was 15 and the good news at time t
drives it to 17. Assume also that the equilibrium price at t− 1 was 16. Figure 1.11
shows the valuation ratio dynamics in response to the good news for both the linear
and the nonlinear switching models.

The Figure shows the average price path over 2000 simulations of the estimated
model. There is a clear difference between the linear and the nonlinear model. In
the linear case, the positive shock to the fundamental value leads to an immediate
increase of the price followed by mean-reversion thereafter. In contrast, for the
nonlinear heterogeneous agent model, the pattern that emerges is consistent with
the evidence of short-run continuation of positive returns and long-term reversal.
After good news, the agents incorporate the news into their expectations and they
expect that part of the previous period overvaluation will persist. One group –the
trend followers– overreacts and expects a further increase of the price, while the
other group –the fundamentalists– expects the price to diminish over time. The
equilibrium price at time t overshoots and almost reaches 18. In the following two
periods trend followers continue to buy the stock and drive its price and its valuation
ratio even higher. Finally, the reversal starts and drives the ratio back to its long
run fundamental value. Initially, the aggressive investors interpret the positive news
as a confirmation that the stock overvaluation was justified by forthcoming news.

types, but rather a representative agent with a linear forecasting rule.
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Figure 1.12. Prediction of P/E-ratios 5 years ahead, based on linear representative agent

model (right) and nonlinear 2-type switching model (left). The estimated belief parameters

are: ϕ = 0.983 for the representative agent and ϕ1 = 0.80 and ϕ2 = 1.097 for the 2-type

switching model. The quantiles corresponding to 10, 30, 50, 70 and 90% probability over 2000

replications are shown. The realized P/E-ratios 2004-2006 are also indicated, and show that

the realized P/E-ratio for 2006 falls outside the 10% quantile of the linear model.

However, the lack of further good news convinces most investors to switch back
to the mean reverting expectations and the stock price is driven back towards the
fundamental.

Will the bubble resume?

As a model forecasting exercise, we simulate the evolution of the valuation ratios
using the estimated heterogeneous agent model. We will then obtain the predicted
evolution of the valuation ratio conditional on the value realized at the end of
2003. Innovations are obtained by reshuffling the estimated residuals. Instead
of focusing our attention only on the mean or the median of the distribution we
consider the quantiles corresponding to 10, 30, 50, 70 and 90% probability over
2000 replications of the estimated model in (1.4.24) for the P/E ratio. In addition
to the quantiles predicted by our nonlinear model we also plot those predicted by
the linear representative agent model. Figure 1.12 shows the 1 to 5 periods ahead
quantiles of the predictive distribution for the estimated model.

The linear model (right plot) predicts that the valuation ratio reverts back
toward the mean at all quantiles considered. In contrast, the nonlinear switching
model predicts that there is a significant probability that the ratio may increase
again as a result of the activation of the trend following regime. The 70% and
90% quantiles clearly show that the PD-ratio may increase again to levels close to
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35. Stated differently, our heterogeneous agent model predicts that with probability
over 30% the PD-ratio may increase to more than 30. Note however that the median
predicts that the ratio should decrease as implied by the linear mean reverting
model. Another implication of our model is that if the first (mean reverting) regime
dominates the beliefs of investors, it will enforce a much faster adjustment than
predicted by the linear model. This is clear from the bottom quantiles of the
distributions. These simulations show that predictions from a linear, representative
agent model versus a nonlinear, heterogeneous agent model are quite different. In
particular, extreme events with large deviations from the benchmark fundamental
valuation are much more likely in a nonlinear world.

1.5 LABORATORY EXPERIMENTS

Asset pricing models with heterogeneous beliefs exhibit interesting dynamics char-
acterized by temporary bubbles and crashes, triggered by news about fundamentals
and reinforced by self-fulfilling expectations and trend following investment strate-
gies. While the previous section focussed on the empirical relevance of such models,
this section confronts the model with data from laboratory experiments with hu-
man subjects. Laboratory experiments are well suited to discipline the class of
behavioral modes (or heuristics) boundedly rational subjects may use in economic
decision making. Here, we discuss a number of “learning to forecast experiments”,
where subjects must forecast the price of an asset whose realized market price is
an aggregation of individual expectations.

In real markets, it is hard to obtain detailed information about investors’ in-
dividual expectations. One approach is to collect survey data on individual ex-
pectations, as done for example by Turnovsky (1970) on expectations about the
Consumers’ Price Index and the unemployment rate during the post-Korean war
period. Frankel and Froot (1987ab, 1990ab), Allen and Taylor (1990), Ito (1990)
and Taylor and Allen (1992) use a survey on exchange rate expectations, and con-
clude that financial practitioners use different forecasting and trading strategies. A
consistent finding from survey data is that at short horizons investors tend to use
extrapolative chartists’ trading rules, whereas at longer horizons investors tend to
use mean reverting fundamentalists’ trading rules. Shiller (1987,1990,2000) ana-
lyzes surveys on expectations about stock market prices and real estate prices and
finds evidence for time variation in investors’ sentiment; see also Vissing-Jorgensen
(2003).

Laboratory experiments with human subjects provide an alternative, comple-
mentary approach to study the interaction of individual expectations and the re-
sulting aggregate outcomes. An important advantage of the experimental approach
is that the experimenter has full control over the underlying economic fundamen-
tals. Surprisingly little experimental work focussing on expectation formation in
markets has been done. Williams (1987) considers expectation formation in an ex-
perimental double auction market which varies from period to period by small shifts
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in the market clearing price. Participants predict the mean contract price for 4 or
5 consecutive periods. The participant with the lowest forecast error earns $1.00.
In Smith, Suchanek and Williams (1988) expectations and the occurrence of spec-
ulative bubbles are studied in an experimental asset market. In a series of papers,
Marimon, Spear and Sunder (1993) and Marimon and Sunder (1993, 1994, 1995)
studied expectation formation in inflationary overlapping generations economies.
Marimon, Spear and Sunder (1993) find experimental evidence for expectationally
driven cycles and coordination of beliefs on a sunspot 2-cycle equilibrium, but only
after agents have been exposed to exogenous shocks of a similar kind. Marimon
and Sunder (1995) present experimental evidence that a “simple” rule, such as a
constant growth of the money supply, can help coordinate agents’ beliefs and help
stabilize the economy. Duffy (2006, 2007) gives stimulating surveys of laboratory
experiments in various macro settings and how individual and aggregate behavior
could be explained by agent-based models.

Most of these papers however can not be viewed as pure experimental testing of
the expectations hypothesis, everything else being constant, because in the exper-
iments dynamic market equilibrium is affected not only by expectations feedback
but also by other types of human decisions, such as trading behavior. A num-
ber of laboratory experiments have focussed on expectation formation exclusively.
Schmalensee (1976) presented subjects with historical data on wheat prices and
asked them to predict the mean wheat price for the next 5 periods. In Dwyer et
al. (1993) and Hey (1994) subjects had to predict a time series generated by a
stochastic process such as a random walk or a simple linear first order autoregres-
sive process; in the last two papers no economic context was given. Kelley and
Friedman (2002) consider learning in an Orange Juice Futures price forecasting ex-
periment, where prices are driven by a linear stochastic process with two exogenous
variables (weather and competing supply). A drawback common to these papers is
that the historical or stochastic price series are exogenous and there is no feedback
from subjects’ forecasting behavior.

1.5.1 Learning to forecast experiments

In the remaining part of this section we mainly focus on the learning to forecast
experiments in Hommes et al. (2005). In these experiments, subjects forecast the
price of a risky asset which is determined by market clearing with feedback from
individual expectations. Similar experiments have been performed by van de Velden
(2001), Gerber et al. (2002), Sutan and Willinger (2005), Adam (2007), Hommes
et al. (2007) and Heemeijer (2007); see also the recent survey in Duffy (2007). We
are particularly interested in the following questions:

1. How do boundedly rational agents form individual expectations and how do
they learn in a heterogeneous world?

2. How do individual forecasting rules interact and what is the aggregate out-
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come of these interactions?
3. Will coordination occur, even when there is limited market information?
4. Does learning enforce convergence to rational expectations equilibrium?

In real financial markets traders are involved in two related activities: predic-
tion and trade. Traders make a prediction concerning the future price of an asset,
and given this prediction, they make a trading decision. In the experiments dis-
cussed here subjects’ only task is to forecast prices; asset trading is computerized
and derived from optimal demand (from mean-variance maximization), given the
individual forecast. The experiments can therefore be seen as learning to fore-
cast experiments (Marimon and Sunder 1994, p.134), in contrast to learning to
solve intertemporal optimization problems or, more concisely, learning to optimize
experiments (Duffy 2006, p.4), where participants are asked to submit their de-
cisions (e.g. trading or consumption quantities), while their private beliefs about
future developments remain implicit. Learning to forecast experiments provide us
with ‘clean’ data on expectations, which can be used to test various expectations
hypotheses.

In the experiments each participant is told that he is an advisor to a pension
fund, with the only task to predict next period’s price of a risky asset. Earnings
are given by a (truncated) quadratic scoring rule

eht = max
{

1300− 1300
49

(pt − peht)
2
, 0
}
, (1.5.1)

where 1300 points is equivalent to 0.5 Euro, and earnings are zero in period t when
|pt − peht| ≥ 7. Subjects are informed that their pension fund needs to decide how
much to invest in a risk free asset paying a risk free gross rate of return R = 1 + r,
where r is the real interest rate, and how much to invest in shares of an infinitely
lived risky asset. The risky asset pays uncertain IID dividends yt with mean y. The
mean dividend y and the interest rate r are common knowledge, so that the subjects
could compute the (constant) fundamental p∗ = y/r = 3/0.05 = 60. Subjects know
that the price of the asset is determined by market clearing. Although they do
not know the exact underlying market clearing equation, they have qualitative
information about the market and are informed that the higher their forecast, the
larger will be the fraction of money of their pension fund invested in the risky
asset and the larger will be the demand for stocks. They do not know the exact
investment strategy of their pension fund and the investment strategies of the other
pension funds. They also do not know the number of pension funds (which is 6) or
the identity of the other members of the group.

The experiment lasts for 51 periods. In every period t the participants have
to predict the price pt+1 of the risky asset in period t + 1, given the available
information consisting of past prices pt−1, pt−2, . . . , p1 and the participants’ own
past individual predictions peht, p

e
h,t−1, . . . , p

e
h1. Notice that the participants have to

make a two period ahead forecast for pt+1, since pt−1 is the latest price observation
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available. Subjects are told that their price forecast has to be between 0 and 100
for every period. In periods 1 and 2 no information about past prices is available.
At the end of period t, when all predictions for period t+ 1 have been submitted,
the participants are informed about the price in period t and earnings for that
period are revealed. On their computer screen the subjects are informed about
their earnings in the previous period, total earnings, a table of the last twenty
prices and their corresponding predictions and time series of the prices and their
predictions. Subjects have no information about earnings and predictions of others.

1.5.2 The price generating mechanism

The asset market is populated by 6 pension funds and a small fraction of fundamen-
talist robot traders. Each pension fund h is matched with a participant and makes
an investment decision at time t based upon this participant’s prediction peh,t+1 of
the asset price. The fundamentalist trader always predicts the fundamental price
pf and trades based upon this prediction.

The realized asset price in the experiment is determined by market clearing, with
the pension fund’s asset demand derived from mean-variance maximization given
their advisor’s forecast, as in the standard asset pricing model with heterogeneous
beliefs (e.g. Campbell, Lo and MacKinlay (1997), Brock and Hommes (1998), see
Subsection 1.1). The market clearing price is given by (cf. 1.1.5):

pt =
1

1 + r
[(1− nt) pt] , (1.5.2)

where pet+1 = 1
6

∑6
h=1 p

e
h,t+1 is the average forecast for period t+ 1 of the 6 partici-

pants, nt is the time varying weight of the fundamentalist traders and εt is a noise
term, representing (small) stochastic demand and supply shocks. Note that the
realized asset price pt at time t is determined by the individual price predictions
ph,t+1 for time t + 1. Therefore, when traders have to make a prediction for the
price in period t+ 1 they do not know the price in period t yet, and they can only
use information on prices up till time t− 1.

The weight nt of the fundamental traders in the market is endogenous and
depends positively upon the absolute distance between the asset price and the
fundamental value according to

nt = 1− exp
(
− 1

200

∣∣pt−1 − pf
∣∣) . (1.5.3)

The greater this distance the more the fundamental trader will buy or short the
asset. The fundamentalist trader therefore acts as a ‘stabilizing force’ pushing prices
in the direction of the fundamental price. Their presence excludes the possibility
of ever lasting speculative bubbles in asset prices27. Also note that nt = 0, if
pt−1 = pf .

27DeGrauwe et al. (1993) discuss a similar stabilizing force in an exchange rate model with
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Figure 1.13. Realized prices under some benchmark expectation rules. Top panel: under

rational expectations prices remain very close to the fundamental price 60; Bottom left: under

naive expectations prices converge monotonically, but slowly, towards the fundamental price;

Bottom right: under a simple linear AR-2 rule pet+1 = (pt−1 + 60)/2 + (pt−1 − pt−2), which

may be interpreted as an anchor and adjustment rule, prices exhibit persistent oscillations.

An important feature of the asset pricing model is its self-confirming nature or
positive feedback: if all traders make a high (low) prediction the realized price will
also be high (low). This feature is characteristic for speculative asset markets: if
traders expect a high price, the demand for the risky asset will be high, and as
a consequence the realized market price will be high, assuming that the supply is
fixed.

1.5.3 Benchmark expectations rules

Figure 1.13 shows the price dynamics under three benchmark expectation rules:
rational expectations, naive expectations and a trend extrapolation rule. In the
rational expectations benchmarks all agents forecast the price to be equal to its

fundamentalists and chartists. In the same spirit Kyle and Xiong (2001) introduce a long-term
investor that holds a risky asset in an amount proportional to the spread between the asset price
and its fundamental value. Since in the experiments the fundamental value is pf = 60, the weight
of the fundamentalist traders is bounded above by n = 1− exp

`
− 3

10

´
≈ 0.26. The weight of the

other traders is the same for each trader and equal to (1− nt) /6 ≤ 0.17.
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fundamental value pf = 60.28 Realized prices are then given by

pt = pf +
1

1 + r
εt. (1.5.4)

Hence, under rational expectations prices exhibit small random fluctuations around
the fundamental price pf = 60. This outcome of the experiment should probably
not be expected right from the start, but perhaps subjects can learn to coordinate
on the rational, fundamental forecast.

Under naive expectations all participants use the last observed price as their
forecast, that is, peh,t+1 = pt−1. The asset price then converges monotonically
towards the fundamental price, as illustrated in Figure 1.13. Finally, Figure 1.13
also illustrates what happens when all subjects use the simple trend extrapolation
rule

peh,t+1 =
(60 + pt−1)

2
+ pt−1 − pt−2. (1.5.5)

If all subjects use the forecasting rule (1.5.5), realized market prices will fluctuate for
50 periods. This simple rule may be viewed as an anchor and adjustment heuristic,
following the terminology of Tversky and Kahnemann (1974), since it uses an anchor
(the average of the fundamental price and the last observed price) and extrapolates
the last price change from there. One may wonder how subjects would arrive at
this anchor, if they do not know the fundamental, but quite surprisingly a number
of subjects used a rule very similar to (1.5.5).

1.5.4 Aggregate behavior

Figure 1.14 shows time series of the realized asset prices and individual predictions
in the experiments for five different groups. The first three groups illustrate the
three typical qualitatively different outcomes in the treatment with robot traders:

i) monotonic convergence: the price converges monotonically to the fundamen-
tal price from below;

ii) persistent oscillations: the price oscillates with more or less constant ampli-
tude; there is no convergence of the price to its fundamental value.

iii) dampened oscillations: the price oscillates around the fundamental price,
with large amplitude initially but the amplitude decreases over time indicat-
ing (slow) convergence to the fundamental price.

The last two groups in Figure 1.14 illustrate what happens in a different treat-
ment of the experiments without fundamental robot traders. When there are no
fundamental robot traders present in the market, persistent price oscillations with
large amplitude typically occur. The difference between these last two groups lies in

28Recall that participants know the values of y and r, and therefore have enough information
to compute the fundamental value and predict it for any period.
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Figure 1.14. Realized prices (left) and individual predictions (right) in five typical asset pricing

experiments. The fundamental price pf = 60 is indicated by a horizontal line. The first three

examples illustrate three different outcomes in the experiments with robot traders: monotonic

convergence, persistent oscillations and dampened oscillations. The last two examples show

experiments without robot traders for upper bounds of 100 and 1000 respectively.
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the upper bound for price predictions, set to 100 (as in the case with robot traders)
and 1000 respectively. Hommes et al. (2008) ran experiments without robot traders
and a high upper bound of 1000 (maintaining the same fundamental price pf = 60)
and in 6 out of their 7 markets long lasting price bubbles (almost) reaching the up-
per bound were observed, with price levels up to 15 times the fundamental value.

Comparing the experimental results in Figure 1.14 with the simulated bench-
marks in Figure 1.13 one observes that realized prices under naive expectations
resemble realized prices in the case with monotonic convergence remarkably well.
On the other hand, the case of persistent oscillatory behavior in the experiment
is qualitatively similar to the asset price behavior when participants use a simple
AR (2) prediction strategy. Clearly, naive and AR (2) prediction strategies give a
qualitatively much better description of aggregate asset price fluctuations in the
experiment than does the benchmark case of rational expectations. Recall from
Subsection 1.5.3 that an AR (2) rule has a simple behavioral interpretation as an
anchor and adjustment trend following forecasting strategy.

1.5.5 Individual prediction strategies

In this subsection we discuss some characteristics and estimation of individual pre-
diction strategies. Some participants try to extrapolate observed trends and by
doing so overreact and predict too high or too low. Other participants are more
cautious when submitting predictions, using adaptive expectations, that is, an av-
erage of their last forecast and the last observed price. An individual degree of
overreaction can be quantified as the average absolute (one-period) change in pre-
dictions of participant h:

4eh =
1
41

51∑
t=11

∣∣peht − peh,t−1

∣∣ . (1.5.6)

The average absolute change in the price is given by 4 = 1
41

∑51
t=11 |pt − pt−1|.

We will say that individual h overreacts if eh > 4 and we will say that individual h
is cautious if 4eh ≤ 4. Figure 1.15 illustrates the individual degree of overreaction
for the different groups. In the case of monotonic convergence (groups 2 and 5),
there is no overreaction; in the case of permanent oscillations (groups 1, 6, 8, 9)
a majority of subjects shows some overreaction, but it is relatively small. In the
case of dampened oscillations (groups 4, 7 and 10), with large temporary bubbles in
the initial phases of the experiment, a majority of participants strongly overreacts.
Oscillatory behavior and temporary bubbles are thus caused by overreaction of a
majority of agents.

Individual prediction strategies have been estimated using a simple linear model

peh,t+1 = αh +
4∑
i=1

βhipt−i +
3∑
j=0

γhjp
e
ht−j + νt, (1.5.7)
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Figure 1.15. Individual degrees of overreactions for 10 different groups, all with a robot trader,

the first 7 with a fundamental pf = 60 and the last 3 with a fundamental pf = 40. The line

segments represent the average absolute price change, while the dots represent the average

absolute changes in individual forecasts. Dots above the line segments correspond to individual

overreaction.

where νt is an IID noise term. This general setup includes several important special
cases: i) naive expectations (βh1 = 1, all other coefficients equal to 0); ii) adaptive
expectations (βh1 + γh0 = 1, all other coefficients equal to 0) and iii) AR (L)
processes (all coefficients equal to 0, except αh, βh1, . . . , βhL). The estimation
results for 60 participants (using observations t = 11 to t = 51) may be summarized
as follows:

1. For more than 90% of the individuals the simple linear rule (1.5.7) describes
forecasting behavior well;

2. In the monotonically converging markets, a majority of subjects uses a naive,
an adaptive or an AR(1) forecasting rule;

3. In the dampened and persistently oscillating markets a majority of subjects
uses simple AR(2) or AR(3) forecasting rules; in particular a number of
subjects use a simple trend following rule of the form

peh,t+1 = pt−1 + δh (pt−1 − pt−2) , δh > 0. (1.5.8)

This forecasting rule corresponds to positive feedback or momentum traders.

Within each group, participants learn to coordinate on a simple forecasting rule,
which becomes self-fulfilling. If participants coordinate on an adaptive or AR(1)
forecasting rule, the asset price monotonically converges to the fundamental price.
In contrast, if the participants coordinate on a trend following rule, transitory
or even permanent price oscillations may arise, with persistent deviations from
fundamental price. Anufriev and Hommes (2007) extended the adaptive belief
systems (ABS) in Section 1.1 and developed an evolutionary heuristics switching
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model matching all three different observed patterns in the learning to forecasting
experiments remarkably well.

1.5.6 Profitability

In the learning to forecasting experiments subjects have been rewarded by their
forecasting performance. As discussed in Hommes (2001), the fitness measure of
(minus) squared forecasting errors is equivalent to risk adjusted profits and therefore
it may be a relevant measure in real markets (cf. footnote 6). But it is interesting to
investigate the corresponding realized profits of the pension funds. In this section
we therefore briefly discuss the profitability, that is the (non-risk adjusted) realized
profits, of the investment strategies. Realized profits of a mean-variance investment
strategy based on a price forecast peh,t+1 are given by

πht = (pt+1 + yt+1 −Rpt)(peh,t+1 + ȳ −Rpt). (1.5.9)

As a typical example, Figure 1.16 shows the realized profits and the realized accu-
mulated profits in group 4, that is, a group with robot trader and upperbound 100
exhibiting dampened price oscillations (the third panel in Figure 1.14). Figure 1.16
shows the realized profits corresponding to the six individual forecasts, the real-
ized profits of the fundamental robot trader, the realized profits of a hypothetical
switching strategy, together with the realized price series (scaled by a factor 3).

Clearly there are large fluctuations in the realized profits and all strategies oc-
casionally suffer from large losses. The fundamental strategy starts with positive
profits in periods 1− 6, as the asset price rises from below the fundamental. When
the asset price rises above its fundamental value and the bubble starts, the funda-
mental strategy makes large losses in periods 7−13. At the peak of the first bubble,
at period 13, the fundamental strategy has performed one but last on average, with
the one but lowest accumulated realized profits. During the crash however, the
fundamentalists make huge profits because they have built a large short position
in the risky asset. At the same time, most other (trend following) strategies suffer
large losses, because they hold long positions. As the crash continues and the asset
price falls below its fundamental value, the fundamental strategy starts making
losses again. At the bottom of the market in period 19, fundamentalists make a
large loss. Over the full sample of 50 periods however, on average the fundamental
strategy performs very well and accumulates more profits than the other 6 forecast-
ing strategies. Figure 1.16 also shows that the fundamental strategy is beaten by
a switching strategy, always selecting the best (according to last period’s realized
profit) out of the 7 other strategies. Stated differently, the switching strategy al-
ways uses the forecast of the advisor whose pension fund generated highest realized
profit in the previous period. Such a switching strategy beats the fundamental
robot strategy.
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Figure 1.16. Realized (non-risk adjusted) profits (top panel) and accumulated profits (bottom

panel) for group 4 (see Fig. 1.14), with a robot trader and price upper bound 100. The left

panels show periods 1-50, while right panels zoom into periods 1-25; the realized price series

(scaled by a factor 3) is also shown. The top panel shows graphs of the realized profits

corresponding to the six individual forecasting strategies, the fundamental robot trader, and a

hypothetical switching strategy using the best (according to last period’s realized profits) of

the other 7 strategies. The bottom panel shows the accumulated profits of these 8 strategies.

Realized profits exhibit large fluctuations over time and all strategies at times suffer from large

losses. On average and in terms of accumulated profits the fundamental strategy performs

very well, but is beaten by the switching strategy.
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1.6 CONCLUDING REMARKS

This chapter has reviewed some behavioral finance models with evolutionary selec-
tion of heterogeneous trading strategies and discussed their empirical and exper-
imental validity. When strategy selection is driven by short run realized profits,
trend following strategies may destabilize asset markets. Asset price fluctuations
are characterized by phases where fundamentalists dominate and prices are close
to fundamentals, suddenly interrupted by possibly long lasting phases of price bub-
bles when trend following strategies dominate the market and prices deviate persis-
tently from fundamentals. Even in simple heterogeneous beliefs models, asset prices
are difficult to predict and market timing based on the prediction of the start or
the collapse of a bubble is extremely difficult and highly sensitive to noise. Esti-
mation of simple versions of heterogeneous agent models on yearly S&P500 data
suggests that stock prices are characterized by behavioral heterogeneity. Simple
evolutionary models therefore could provide an explanation of, for example, the
“dot com” bubble, as being triggered by good news about economic fundamentals,
and subsequently strongly amplified by trend following trading strategies. Labora-
tory experiments with human subjects confirm that coordination on simple trend
following strategies may arise in asset markets and cause persistent deviations from
fundamentals.

In a heterogeneous beliefs asset pricing model, as long as prices fluctuate around
their fundamental value, fundamentalists strategies do quite well in terms of accu-
mulated profits. If there are no limits to arbitrage and fundamentalists can survive
possibly long lasting bubbles during which they suffer large losses, their strategy
performs very well in the long run and may help stabilize markets. However, fun-
damentalists can be beaten by a switching strategy based on recent realized profits,
thus providing an incentive for investors to keep switching strategies. It should
be noted that the models discussed here are very stylized with a well defined fun-
damental price. In real markets, there may be a lot of disagreement about the
“correct” fundamental price and it may then be not so clear what the fundamen-
tal strategy would be. Limits to arbitrage may also prevent fundamentalists from
holding long lasting positions opposite to the trend, as more and more traders go
with the trend based on their recent success.

Most behavioral asset pricing models focus on a single risky asset. Only few
extensions to a multi-asset setting have been made until now. Westerhoff (2004)
and Chiarella et al. (2007) considered multi-asset markets, where chartists can
switch their investments between different markets for risky assets. The interaction
between the different markets causes complex asset price dynamics, with different
markets exhibiting co-movements as well as clustered volatility and fat tails of
asset returns. Böhm and Wenzelburger (2005) apply random dynamical systems
to investigate the performance of efficient portfolios in a multi-asset market with
heterogeneous investors.

Work on complex evolutionary systems in finance is rapidly growing, but little
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work has been done on policy implications so far. The most important difference
with a representative rational agent framework is probably that in a heterogeneous
boundedly rational world, asset price fluctuations exhibit excess volatility. If this is
indeed the case, it has important policy implications e.g. concerning the debates on
whether a Tobin tax on financial transactions is desirable or whether financial regu-
lation is desirable. Westerhoff and Dieci (2006) use a complex evolutionary system
to investigate the effectiveness of a Tobin tax. Investors can invest in two different
speculative asset markets. If a Tobin tax is imposed on one market, it is stabi-
lized while the other market is destabilized; if a tax is imposed on both markets,
price fluctuations in both markets decrease. Brock, Hommes and Wagener (2008)
study the effects of financial innovation upon price volatility and welfare. They
extend the asset pricing model with heterogeneous beliefs in Section 1.1 by intro-
ducing hedging instruments in the form of Arrow securities, that is, state contingent
claims to uncertain future events. They show that more hedging instruments may
destabilize markets and decrease welfare when agents are boundedly rational and
choose investment strategies based on reinforcement learning. The intuition of this
result is simple: optimistic and/or pessimistic traders take larger positions when
they can hedge more risk, and those who happen to be on the right side of the
market will be reinforced more. In a world of bounded rationality and learning
by past success, more hedging instruments may thus lead to more persistent de-
viations from market fundamentals. Developing a theory of complex multi-asset
market models with heterogeneous interacting trading strategies and its empirical
and experimental testing will be an important area of research for years to come.
From a practitioners viewpoint this kind of research seems highly relevant to gain
more insight into the causes of financial crises, such as the recent credit crisis, in
order to hopefully avoid them in the future.



APPENDIX ON BIFURCATION THEORY

The purpose of this appendix is to show how stability loss of a stable steady state
is necessarily connected to one of a small number of standard bifurcations. For
this, we sketch in the first section how a system at stability loss can be reduced
to a one- or two-dimensional system. In the second section we present the most
common bifurcation scenarios, saddle-node, period-doubling, Hopf and pitchfork.
See Kuznetsov (1995) for a detailed mathematical treatment of bifurcation theory.

A.1 BASIC CONCEPTS FROM DYNAMICAL SYSTEMS.

Instead of directly dealing with evolution equations of the form

xt = ϕ(xt−1, · · · , xt−n), (A.1.1)

dynamical system theory usually considers first order vector dynamics

yt = Φ(yt−1), (A.1.2)

where yt = (xt, · · · , xt−(n−1)) and where the system map Φ : Rn → Rn is given as

Φ(yt) =


ϕ(xt−1, · · · , xt−n)

xt−1

...
xt−(n−1)

 . (A.1.3)

Given an initial state y0, the orbit of Φ through y0 is the sequence {yt}∞t=0 satisfy-
ing A.1.2 for every t. For instance a steady state x̄ of the evolution equation, which
satisfies x̄ = ϕ(x̄, · · · , x̄), corresponds to the constant orbit yt = (x̄, · · · , x̄) for all t
of Φ. Such an orbit is called a fixed point of the dynamical system Φ.

In this appendix we discuss only stability changes of fixed points (but stability
changes of periodic points can be handled similarly). By definition, a fixed point ȳ
is asymptotically stable if for all y0 sufficiently close to ȳ the orbit of Φ through y0
tends to ȳ as t→∞. A fixed point ȳ is unstable, if arbitrarily close to it there are
initial points y0 whose orbits do not tend to ȳ as t→∞.

Let us assume, for simplicity, that y = 0 is a fixed point of Φ. The linearisation
of the dynamics A.1.2 at y = 0 is given as

yt = Lyt−1, (A.1.4)

where L = DΦ(0) is the n× n Jacobi matrix of Φ at ȳ = 0. We have

Theorem A.1.1 If all eigenvalues λj, j = 1, · · · , n, of L satisfy |λj | < 1, then
the fixed point y = 0 is asymptotically stable. If there is at least one eigenvalue
such that |λj | > 1, then y = 0 is unstable.
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In general, a fixed point ȳ is called hyperbolic if no eigenvalue λ of L is on the
complex unit circle, that is, |λ| 6= 1. Note that the stability of a hyperbolic fixed
point can be determined just by looking at the eigenvalues.

A bifurcation of a system is a qualitative change in the orbit structure as a
system parameter is changed. In this appendix, we shall focus on the simplest kind
of bifurcations, the possibilities of a fixed point to lose stability as a one-dimensional
parameter is varied.

That is, we consider the case that the system map Φµ : Rn → Rn depends on
a parameter µ ∈ [µ1, µ2]. Let us assume that ȳ1 is an attracting hyperbolic fixed
point of the map Φµ1 . Note that the fixed point equation

Φµ(y)− y = 0 (A.1.5)

can be solved for y as a function of µ whenever det(DΦµ(y) − I) 6= 0, that is,
whenever λ = 1 is not an eigenvalue of DΦµ(y). Consequently, we can find a
parametrised family of fixed points ȳµ such that ȳµ1 = ȳ1, and we can investigate
the stability of ȳµ as µ varies.

The eigenvalues λ1, · · · , λn of Lµ = DΦµ(ȳµ) are continuous functions of µ; by
assumption |λj(µ1)| < 1 for all j. Theorem A.1.1 implies that stability changes can
only occur if for some µ0 ∈ (µ1, µ2) the fixed point fails to be hyperbolic; that is,
if one of the eigenvalues, say λ1(µ0), has absolute value one.

There are three main mechanisms how a fixed point can fail to be hyperbolic: the
saddle-node bifurcation λ1(µ0) = 1; the period-doubling bifurcation λ1(µ0) = −1;
and the Hopf bifurcation λ1(µ0) = eiα with 0 < α < π. In the last case, there are
two eigenvalues of absolute value equal to one, as the complex conjugate e−iα is
necessarily an eigenvalue as well. Of course, it could happen that several eigenvalues
have absolute value equal to one simultaneously in configurations other than those
listed above, but it can be shown that these cases are atypical for one-parameter
systems.29

We shall analyse these three bifurcations one by one below. The first step in each
analysis is to simplify the system by restricting it to an invariant centre manifold.
Recall that a set W is invariant under Φ if Φ(W ) = W .

Theorem A.1.2 (Centre manifold theorem). Let yµ be a fixed point of Φµ that
is nonhyperbolic if µ = µ0. For µ sufficiently close to µ0, there is a family of
invariant manifolds W c

µ, depending differentiably on µ, such that W c
µ0

is tangent to
the eigenspace associated to the nonhyperbolic eigenvalues at µ = µ0.

The complete complexity of a bifurcation is retained if the map Φµ is resticted
to the centre manifold W c

µ.

29These configurations are non-persistent: they can be removed by making an arbitrarily small
change to the system Φµ.
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A.2 BIFURCATION SCENARIOS

The saddle-node bifurcation

At this bifurcation, two fixed points are created or disappear, depending on the
direction of the parameter change.

A saddle node bifurcation occurs in the case that λ1(µ0) = 1 and a one-
dimensional associated eigenspace. After introducing suitable new variables, the
restriction of Φµ to the associated one-dimensional centre manifold takes the form

Φµ(x) = x+ µ− x2 + x3g(x, µ), (A.2.1)

where g is some differentiable function. In fact, it is sufficient to consider the normal
form

ΦNF
µ (x) = x+ µ− x2; (A.2.2)

this has to be justified afterwards by arguing that the full family Φµ has qualitatively
the same dynamics. This latter step is not hard but rather technical and will
therefore be omitted.

Let us analyse the normal form. Note that for µ = 0, the system has a single
fixed point x = 0 and L = DΦNF

0 (0) = 1, so we are indeed in the saddle-node case.
For general µ, fixed points are the solutions of the equation x = ΦNF

µ (x); for µ ≥ 0
they are given as

x̄1 =
√
µ, x̄2 = −√µ, (A.2.3)

whereas for µ < 0 no fixed points exist.
The linearisations Lj = DΦNF(x̄j) = 1− 2x̄j read as

L1 = 1 + 2
√
µ, L2 = 1− 2

√
µ. (A.2.4)

We conclude that x̄1 is repelling and that x̄2 is attracting.
All this information can be summarised in a bifurcation diagram; see figure A.17.

In the diagram, the location of the fixed points is plotted as a function of the
parameter µ; the branch of stable fixed points is indicated by the solid curve,
whereas the dashed curve indicates the location of unstable fixed points. At µ = 0,
the two branches meet and there is exactly one fixed point; for µ < 0, there are no
fixed points.

The period doubling bifurcation

In this bifurcation, an attracting fixed point loses stability, and a period-two orbit
is generated.

A period doubling bifurcation occurs if λ1(µ0) = −1. The eigenspace and the
corresponding centre manifold are again one-dimensional. The normal form reads
in this case as

ΦNF
µ (x) = −x− µx+ ax3, (A.2.5)
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x

(b) Period-doubling/pitchfork

Figure A.17. Saddle-node and period-doubling/pitchfork bifurcation diagrams

with a = ±1. We only consider the supercritical case a = 1, which occurs if the
fixed point is globally attracting under Φµ for µ < 0. Note that x̄ = 0 is now a
fixed point for all values of µ; moreover,

L = DΦNF
µ (0) = −1− µ. (A.2.6)

We conclude that x̄ is attracting for −2 < µ < 0 and repelling for µ > 0 or µ < −2,
implying in particular that the fixed point loses its stability at µ = 0. Moreover,
note that

|ΦNF(|x|)| = (1 + µ− |x|2)|x| = |x| (A.2.7)

if |x| = √µ. This implies that the set P = {√µ,−√µ} is invariant. As the points
in this sets are not fixed points, necessarily one is mapped to the other by the
map ΦNF.

The set P is a so-called periodic orbit, and its elements are period-2 points. In
general, a period-m point is a point which is mapped to itself after m iterations of
the system map. It can be verified that nearby orbits are attracted to the period 2
orbit P as t→∞; the period 2 orbit P is asymptotically stable.

The Hopf bifurcation

In a Hopf (or Neimark-Sacker) bifurcation, a fixed point loses stability and an
invariant circle is generated. The bifurcation occurs if λ1(µ0) = eiα and λ2(µ0) =
e−iα, α ∈ (0, π)\{π3 ,

π
2 ,

2π
3 }; the associated centre manifold is two-dimensional.

Again restricting to the supercritical case, the normal form can be expressed as

ΦNF(x1, x2) = (1 + µ− x2
1 − x2

2)
(

cosϑ(x) − sinϑ(x)
sinϑ(x) cosϑ(x)

)(
x1

x2

)
, (A.2.8)

where ϑ(x) = α + β(x2
1 + x2

2). By introducing polar coordinates x1 = r cosψ,
x2 = r sinψ, the map takes the form

ΦNF(r, ψ) =
(

(1 + µ)r − r3
ψ + α+ βr2

)
(A.2.9)
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As in the case of the period-doubling bifurcation, the origin r = 0 is stable if −2 <
µ < 0 and unstable if µ > 0 (or µ < −2). Moreover, for µ > 0 there is a stable
invariant circle

C = {(r, ψ) : r =
√
µ}. (A.2.10)

That is, as the stable fixed point r = 0 loses stability, a stable invariant circle
branches off. The dynamics on the circle are given as

ψ 7→ ψ + α+ βµ mod 2π (A.2.11)

In the case of the Hopf bifurcation, investigating which properties of the normal
form carry over to the full normal form is a nontrivial problem.

x1

x2

Μ

Figure A.18. Hopf bifurcation diagram

The pitchfork bifurcation

Above we have listed the three simplest typical bifurcations of general systems.
Sometimes a system has a special symmetry, like a reflection symmetry: Φ(−x) =
−Φ(x). In the space of such systems, bifurcations that are nontypical for general
systems may become typical. An example is the pitchfork bifurcation, which is
typical for systems with reflection symmetry.

The normal form for a (supercritical) pitchfork bifurcation reads as

Φ(x) = (1 + µ)x− x3. (A.2.12)

Note that Φ(−x) = −Φ(x), and that as a consequence the point x = 0 is a fixed
point for all µ, stable if −2 < µ < 0, unstable otherwise. Moreover, for µ > 0, the
points x = ±√µ are stable fixed points, branching off the fixed point x = 0 as that
point loses stability.

Note that the bifurcation diagram of the pitchfork bifurcation is identical to
that of the period doubling bifurcation, but that the interpretation of the branches
is different. In a (supercritical) pitchfork bifurcation one steady state changes
stability, while two new (stable) steady states are created.
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