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ABSTRACT

A Bayesian model averaging procedure is presented that makes use of a
�nite mixture of many model structures within the class of vector autoregres-
sive (VAR) processes. It is applied to two empirical issues. First, stability
of the �Great Ratios� in U.S. macro-economic time series is investigated,
together with the e¤ect of permanent shocks on business cycles. Second, the
linear VAR model is extended to include a smooth transition function in a
(monetary) equation and stochastic volatility in the disturbances. The risk
of a liquidity trap in the USA and Japan is evaluated. Although this risk
found to be reasonably high, we �nd only mild evidence that the monetary
policy transmission mechanism is di¤erent and that central banks consider
the expected cost of a liquidity trap in policy setting. Posterior probabilities
of di¤erent models are evaluated using Markov chain Monte Carlo techniques.

KeyWords: Posterior probability; Grassman manifold; Orthogonal group;
Cointegration; Model averaging; Stochastic trend; Impulse response;
Vector autoregressive model; Great Ratios; Liquidity trap.

JEL Codes: C11, C32, C52
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1 Introduction.

In this paper we take account of model uncertainty and introduce a method
of using Bayesian model averaging in the class of vector autoregressive (VAR)
processes. We demonstrate the operational implications of our approach by
investigating two empirical issues. First, the stability of the �Great Ratios�
in U.S. consumption, investment and income is investigated, together with
the presence and e¤ects of permanent shocks for the duration of the business
cycle. Second, the VAR model is extended to include a smooth transition
function in a (monetary) equation and stochastic volatility in the distur-
bances. The risk of a liquidity trap in the USA and Japan is evaluated as is
the evidence that central banks incorporate the expected cost of a liquidity
trap in setting policy. We take evidence that the transmission mechanism is
di¤erent when there is a high probability of hitting a liquidity trap in the
near future as evidence that the monetary authority has incorporated the
risk of the liquidity trap in its reaction function.
The idea underlying Bayesian model averaging is relatively straightfor-

ward. Model speci�c estimates are weighted by the corresponding poste-
rior model probability and then averaged over the set of models considered.
Although many statistical arguments have been made in the literature to
support model averaging (e.g., Leamer, 1978, Hodges, 1987, Draper, 1995,
Min and Zellner, 1993 and Raftery, Madigan and Hoeting, 1997), only a few
recent applications suggest its relevance for macroeconometrics (Fernández,
Ley and Steel, 2001 and Sala-i-Martin, Doppelho¤er and Miller, 2004). Here
we mention three reasons for this relevance.
The �rst reason is relevance for forecasting and policy analysis. An im-

portant function of empirical economic analysis is to provide accurate infor-
mation for decision making. For example, there is evidence that permanent -
possibly productivity - shocks account for most �uctuations in consumption
(King, Plosser, Stock and Watson, 1991, and Lettau and Ludvigson, 2004)
and information may be required on the form of the response in consumption
to such a permanent shock. Centoni and Cubadda (2003), however, focus
upon business cycle �uctuations and �nd permanent shocks are not very im-
portant. While the decision maker is not directly interested in the underlying
model used to estimate the response, it is, however, the econometrician�s re-
sponsibility to detail the model upon which these estimates rely. If there
is any uncertainty about the veracity of the model, the expected loss (from
choosing a policy action) from that single model cannot equal the expected
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loss that accurately accounts for model uncertainty.
A second reason for considering model averaging is methodological. There

are well known issues relating to the complexity of the model set and the
sequences used to select a model. The standard approach to providing in-
ference is to select a single model and present empirical results based upon
this model. The usual strategy of model selection using sequential testing
procedures, however, introduces problems of model uncertainty. In the con-
text of sequential hypothesis testing, the pre-test problem is well understood
(see, for example, Poirier, 1995, pp. 519-523) and has received considerable
attention in the statistical and econometric literature. We do not intend (nor
are able) to survey the literature here, but mention that just within the unit
root and cointegration testing there have been several studies such as Elliott
and Stock (1994), Elliott (1998), Phillips (1996), Chang and Phillips (1995)
and Chang (2000) (see for useful discussion, Maddala and Kim, 1998, pp.
139-140 and 229-231).
The problem is self evident. Whether we accept or do not accept an

hypothesis, the veracity of the adopted hypothesis is uncertain. Subsequent
tests condition upon that uncertain outcome and have their own uncertain
outcomes. This process can lead to signi�cant size distortions and inappro-
priate reported standard errors. Generally, the resulting standard errors will
not fully re�ect the uncertainty associated with the estimates. The longer
the sequence of tests the more the problem compounds, and the sequence
can become very long if, for example, we consider: lag length; the type of
deterministic processes present; the number of cointegrating relations; overi-
dentifying restrictions on the cointegrating space; and even whether certain
variables are in some sense (weakly or strongly) exogenous for the inference
in question. Despite the extensive concern shown in the literature for the
pretest problem, however, a generally applicable strategy for dealing with
this issue does not appear to be available. It would seem the usual (implicit)
approach is to �. . . entirely ignore the problems caused by pretesting, not
because they are unimportant, but because, in practice, they are generally
intractable�(Davidson and MacKinnon, 1993, pp. 97-98).
An additional, related, problem due to the complexity of the model, is

the con�icting inferences that may arise depending upon which sequence of
tests is employed. For example, using the Johansen trace test and data on
consumption, investment and income from Paap and van Dijk (2003), we
�nd that the chosen cointegrating rank depends upon the chosen determin-
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istic term1 and the rank may be zero or one. This suggests it is important
to determine the correct deterministic process before investigating the coin-
tegrating rank. However, the range of deterministic process that can occur
di¤ers if cointegration occurs or not. To take this example further, let us
assume a rank of one for these variables and we are now interested in 1)
whether the error correction term, zt; has a trend and 2) if the Great Ratios
of consumption to income and investment to income enter zt.2 Depending
upon whether we test stability of the Great Ratios �rst or test the presence
of various deterministic terms �rst, we �nd either we have no trend in zt and
that the Great Ratios do not enter zt; or that the Great Ratios do enter zt
and zt has a linear trend.
A third reason for considering Bayesian model averaging is a pragmatic

one. The support in the data is in many cases not clear or dogmatically for
or against a restriction, and researchers often do not have strong prior belief
in particular restrictions. The strategy of testing hypotheses on restrictions
and conditioning upon the outcome, e¤ectively assigns a weight of one to the
model implied by the restriction and zero to all other plausible models. Even
if the support is strongly for or against a particular restriction, with only
slight support for the alternative unrestricted model, imposing the restric-
tion ignores information from that less likely model which, if appropriately
weighted, could improve inference.
Summarizing, there is a con�ict between the analyst�s need to obtain

the best model and the decision-maker�s need for the least restrictive inter-
pretation of the information provided by the analyst. As an alternative to
conditioning on structural features, it is possible to improve forecasting and
policy analysis by presenting unconditional or averaged information. Gains
in forecasting accuracy by simple averaging have been pioneered by Bates
and Granger (1969) and discussed recently by Diebold and Lopez (1996),
Newbold and Harvey (2001), Terui and van Dijk (2002) and more recently
by Francesco, Van Dijk and Verbeek (2007). Some explanation for this phe-
nomenon in particular cases was provided by Hendry and Clements (2002).
The averaging weights can be determined to re�ect the support for the model
from which each estimate derives. This requires accurate re�ection of the un-
certainty associated with the structural features de�ning the model.

1As the deterministic processes enter the error correction term, testing for the pres-
ence of a trend in a VAR in levels, when cointegration is present, does not identify the
deterministic process.

2This implies a particular overidentifying restriction on the cointegrating space holds.
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We focus in this paper on three contributions. First, a general operational
procedure is presented for specifying di¤use prior information on structural
features of interest which implies well-de�ned posteriors whose moments ex-
ist. Given the prior, the information in the likelihood function is supposed to
dominate. As a result one can evaluate the relative weights or probabilities
of such structural features as the number of stable equilibrium relationships
among economic variables, the forms of those equilibrium relationships, the
dynamic responses to disequilibria, and the type of deterministic processes
that may be present and the lag structure. In order to obtain these results we
make use of the prior developed in Strachan and Inder (2003). This prior uses
manifolds and orthogonal groups and their measures. With these techniques
we can elicit uniform prior measures on relevant subspaces of the parameter
space. From these measures we develop prior distributions for elements of
these subspaces as the parameter of interest.
Second, using this methodology for prior elicitation and an e¢ cient Markov

chain Monte Carlo technique for simulating from the posterior, we show in
this paper how to obtain posterior inference and forecasts from model av-
erages in which the economically and econometrically important structural
features may have weights other than zero or one. In other words, our fore-
casts are based on a �nite mixture of model structures.
Third, we demonstrate the proposed methodology with an empirical in-

vestigation of two economic issues. First, the stability of the �Great Ratios�
� as discussed in King, Plosser, Stock and Watson (1991) (hereafter KPSW)
�; the relative weights of permanent and transitory components in US con-
sumption, investment and income, the importance of permanent shocks for
the presence of business cycles, and, �nally, the credibility of alternative paths
of responses to a possible productivity shock are investigated. Second, the
linear structural VAR model is extended to include a smooth transition func-
tion in a (monetary) equation and stochastic volatility in the disturbances.
Within this extended VAR model, the risk of a liquidity trap in the USA and
Japan is estimated and we investigate the evidence that the expected cost of
a liquidity trap in�uences monetary authorities�policy setting decisions.
There exist several Bayesian analyses of VAR processes in the literature.

A complete survey is outside the scope of our paper, although we mention
the following approaches. Using so-called �Minnesota�priors, which are of a
random walk nature, Doan, Litterman and Sims (1984) investigate Bayesian
forecasting and impulse response analysis using unrestricted VARs. Sims
and Zha (1999) investigate con�dence bands of impulse responses using un-
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restricted VARs. Other papers using unrestricted VARs include Koop (1991
and 1994) and Canova and Matteo (2004). Structural features in VAR mod-
els, like cointegration, are investigated by Kleibergen and Van Dijk (1994),
Strachan (2003), Strachan and van Dijk (2003), Strachan and Inder (2004),
Villani (2005), Koop, Potter and Strachan (2008), Koop, Léon-Gonzalez and
Strachan (2008a and 2008b) using di¤use type of priors. Cogley and Sargent
(2005), Primiceri (2005) and Sims and Zha (2006) specify a VAR with sto-
chastic volatility. We extend the analysis of these di¤erent lines of research
by considering priors on structural features and by investigating the implied
forecasts and impulse responses using Bayesian model averaging.
The structure of the paper is as follows. In the Section 2 we introduce

the basic models of interest in this paper - the vector autoregressive models,
the general structural features of interest, and the restrictions they imply.
These models are used in the �rst empirical application but we extend them
in the second to account for a wider range of behaviours. In Section 3 we
present the priors, the likelihood and useful expressions for the posterior.
The tools for inference in this paper, posterior probabilities, are introduced
and general expressions are derived for highest posterior density intervals for
features of interest like impulse responses. We demonstrate the approach in
Sections 4 and 5 with an investigation of the two empirical economic issues
mentioned before. The �rst application employs the models from Sections 2
and 3 directly. The second application builds upon these models to permit
stochastic volatility and a smooth transition in central bank reaction func-
tions. In Section 6 we summarize conclusions and discuss possibilities for
further research.

2 A Set of Vector AutoregressiveModel Struc-
tures.

Since the in�uential work by Sims (1980), the class of vector autoregres-
sive (VAR) models has enjoyed much success in macroeconometrics: it can
incorporate a wide range of short and long run dynamic, structural and de-
terministic behaviour.
The statistical theory of cointegration (Granger, 1983, and Engle and

Granger, 1987), in which a set of nonstationary variables combine linearly
to form stationary relationships, and the attendant Granger�s representa-
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tion theorem provide a useful speci�cation to incorporate this feature into
the VAR model and allows the separation of long run and short run behav-
iour. For details on a likelihood analysis of VAR models with cointegration
restrictions we refer to Johansen (1995).
When a VAR process cointegrates, the model may be written in the vector

error correction model (VECM) form. The VECM of the 1� n vector time
series process yt; t = 1; : : : ; T; conditioning on l initial observations is

�yt =
�
d1;t�1 + yt�1�

+
�
�+ d2;t�2 +�yt�1�1 + : : :+�yt�l�l + "t (1)

= z1;t�� + z2;t� + "t (2)

where �yt = yt � yt�1; z1;t = (d1;t; yt�1) ; z2;t = (d2;t;�yt�1; : : : ;�yt�l) ;

� = (�02;�
0
1; : : : ;�

0
l)
0 and � =

�
�01; �

+0�0. The matrices �j j = 1; : : : ; l are
n�n and �+ and �0 are n� r and assumed to have rank r; and if r = n then
�+ = In: The 1 � n vector of errors "t are assumed to be iidN (0;
).3 We
de�ne the deterministic terms di;t�i; i = 1; 2; formally below.
To further simplify the expressions we introduce the following notation.

For the model in (2), de�ne the T �n matrix E = ("01; "02; : : : ; "0T )
0, the T �n

matrix Z0 = (�y01; : : : ;�y
0
T )
0 and the T � (r + ki) matrix Z = (Z1� Z2)

where Z1 =
�
z01;1; : : : ; z

0
1;T

�0
and Z2 =

�
z02;1; : : : ; z

0
2;T

�0
: Finally, let A be the

(r + ki) � n matrix A = [�0 �0]0. We may now write the model, given in
equation (1) and (2) as

Z0 = Z1�� + Z2� + E = ZA+ E: (3)

Vectorising this expression we have

z0 = za+ e (4)

where z0 = vec (Z0) ; z = (In 
 Z) ; a = vec (A) and e = vec (E) :
Next, we specify the restrictions of interest, combinations of which de�ne

(in our notation) di¤erent model structures of interest which we may compare
or weight using posterior probabilities. The restrictions refer to the number
of equilibrium relations, to the structural (over)identi�cation restrictions of
these relations, to particular types of deterministic processes and to the lag
length.

3Throughout the paper, we denote the Normal distribution with meanm and covariance
matrix c by N (m; c) :
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We denote the number of stable equilibrium relationships or, more pre-
cisely, the cointegrating rank by r, where r = 0; 1; : : : ; n: For cointegration
analysis of (1), the parameters of interest are the coe¢ cient matrices �+ and
� which are of rank r � n. Of particular interest then, is r which implies
there are (n� r) common stochastic trends in yt, and r is the number of I (0)
combinations of the element of yt extant. In the case r < n and assuming
for simplicity �1 = 0; �

+ is the matrix of cointegration coe¢ cients, yt�
+ = 0

are the stationary relations towards which the elements of yt are attracted,
and � is the matrix of factor loading coe¢ cients or adjustment coe¢ cients
determining the rate of adjustment of yt towards yt�

+ = 0:
A second feature of interest are the particular identifying restrictions

placed upon �: These will be denoted by o; where o = 0; 1; : : : ; J and o = 0
will be understood to refer to the just identi�ed model. A range of restrictions
commonly investigated are presented in Johansen (1995, Chapter 5). We
restrict ourselves to two cases: no restriction on � (o = 0); and � = H 
(o = 1) where H is an n � s matrix and  is an s � r matrix such that the
cointegrating space is either completely determined (if r = s) or is restricted
to be within the space spanned by H. For example, KPSW study stability
of the �Great Ratios�of consumption to income and investment to income as
cointegrating relations. If we have logs of consumption (ct), investment (it)
and income (inct), and there are two cointegrating relations, then the 3� 2
(with s = r = 2 in this case) matrix

H =

24 1 0
0 1
�1 �1

35 ;
de�nes the two cointegrating relations among y = (ct; it; inct) by

ytH = (ct; it; inct)

24 1 0
0 1
�1 �1

35 = (ct � inct; it � inct) :

We investigate this example further in Section 4.
The deterministic processes in the level, yt, and the equilibrium relations,

yt�
+, are given respectively by the terms d1;t�1 and d2;t�2 in (1). The contents

and dimensions of the di;t and the �i depend upon the particular deterministic
process that occur in yt�

+ and �yt (and therefore yt): In the discussion that
follows, �1 and �1 are 1� r vectors, while �2 and �2 are 1�n vectors. These
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processes can be linear trends, non-zero means or zero mean for yt�
+, and no

drift, linear drift and quadratic drift in yt: For example, if �2 = (�02 �02)
0 then

d2;t = (1; t) and this implies yt will have a quadratic drift. If �2 = �2 then
d2;t = (1) and this implies yt will have a linear drift. We consider the �ve
commonly used combinations in the table below (see, for example, Johansen,
1995):

d d1;t�1 d1;t yt�
+ d2;t�2 d2;t yt

1 �1 + �1t (1; t) linear trend �2 + �2t (1; t) quadratic drift
2 �1 + �1t (1; t) linear trend �2 (1) linear drift
3 �1 (1) non-zero mean �2 (1) linear drift
4 �1 (1) non-zero mean 0 fg no drift
5 0 fg zero mean 0 fg no drift

We set the range of l by setting a minimum, Lmin; and a maximum number
of lags, L: For example, we may have l = 0; 1; :::; L so Lmin = 0 for a total of
NL = L� Lmin + 1 lags considered:
Each model will be identi�ed by M� where � = (r; o; d; l) and � 2 �;

the set of all � considered. For example, the least restricted model will be
M(n;0;1;L); while the most restricted model will beM(0;1;5;0): As an example of
models we consider, KPSW begin their investigation with results using two
VAR models with six lags: the �rst having only a constant,M(n;0;3;6), and the
second having a constant and a trend,M(n;0;1;6). From these models they �nd
evidence that suggests support for two equilibrium relations of known form
and a linear drift which within our model set isM(2;1;3;6): Thus, with n = 3 in
our application, we deal with a case of 4�2�5�NL = 40NL models.4 ;5While
we do allow for a range of lags of di¤erences, as these have little economic
importance for the studies we look at, and for space considerations, we later
denote some models by the shorter notation (r; o; d) and by this we mean
that the reported results will have been averaged over all lag lengths.

4This reduces to 26(NL � 1) models when we account for impossible models and ob-
servationally equivalent models. See Subsection 3.1 below for further discussion on this
point.

5Generally, if we consider L di¤erent lag lengths the number of observationally distinct
models is L (1 + 5 (n+ s)) :
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3 Priors, Posteriors and Model Averaging.

In this section the priors and resultant posterior are presented beginning
with discussion of the distribution of the prior probabilities over the model
space which contains some models that are impossible and others that are
observationally equivalent. Next we consider the priors for the parameters

 and a: Conditional upon � the model in (1)-(4) is linear in the equation
parameters a. This fact makes it relatively straightforward to elicit priors
on 
 and a, however we adopt a transformation that improves the sampling
scheme and so give the full prior after we have given careful consideration to
the prior for �; before then presenting the method of posterior analysis.

3.1 The Prior.

In this paper we wish to treat all models as a priori equally likely, however
this is not a straightforward issue.6 The priors for the individual elements
of � = (r; o; d) are not independent, as certain combinations are either im-
possible, meaningless (such as, for example, r = 0; that is we have no stable
relations, with o = 2) or observationally equivalent to another combination
(such as the models with r = n and d = 1 or 2). The natural prior proba-
bility to assign to impossible models is zero7. However, the researcher must
carefully consider how she wishes to treat observationally equivalent models.
It seems sensible to regard this set of observationally equivalent models as

just one model and then assign equal prior probabilities to all these models.
For example, at r = 0 the models with d = 2 and d = 3 are observationally
equivalent. If we were to treat these two models as one model, they each
would receive half the prior probability of other models with rank 0 < r <
n. Systematic employment of this principle, however, would bias the prior
weight in favour of models with 0 < r < n: This could shift the posterior
weight of evidence in favour of some economic theories for which we wish to
determine the support.8

6The authors are grateful to Geert Dhaene, John Geweke and an anonymous referee
for useful comments on this issue.

7Although the actual prior probability we assign to impossible models - provided it is
less than one - is irrelevant as the marginal likelihood for these models will be zero, such
that the posterior probability will be zero by design.

8This issue could be viewed as a con�ict between the desire to be uninformative across
statistical models and the desire to be uninformative across economic models.
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Alternatively we could specify all possible combinations of the indices in
� be equally likely to avoid biasing the evidence in favour of other classes of
models. However, any bias towards some models can be viewed as simply
a result of Bayes Theorem. This is the view we take and we implement
the �rst approach (treating observationally equivalent models as one model)
in the following way. We �rst assign probabilities to various values of the
model features such as di¤erent cointegrating ranks, p (r) ; or deterministic
processes, p (d). We then set the prior weighting for each model as k (M�) =
p (r) p (o) p (d) p (l) : Next, set k (M�) = 0 for impossible combinations and for
each set of combinations of � that imply observationally equivalent models,
we set k (M�) = 0 for all but one of the combinations. Finally we compute
the prior model probabilities as p (M�) = k (M�) =��k (M�) where in the
denominator we have summed k (M�) over all �.
To demonstrate the assignment of prior probabilities we use the �rst

application in this paper. As we have n = 3, r 2 [0; 1; 2; 3] so we use p (r) =
(n+ 1)�1 = 0:25, with d 2 [1; 2; 3; 4; 5] we set p (d) = 0:2; and with l 2
[0; 1; : : : ; L] we set p (l) = 1

L+1
: In our application we consider two states of

overidenti�cation of �: In the �rst state � is unrestricted (o = 0) and in the
second we have � = H (o = 1) and so we set p (o) = 0:5 for o 2 [0; 1] :
For each model implied by a particular value of �; we need to specify a

prior for the parameters in the model. We use a proper inverted Wishart with
scale matrix S = In10 and degrees of freedom � = 10 as the prior for 
 and
this is rather uninformative. As a changes dimensions across the di¤erent
versions of � implied by di¤erent models and each element of the vector a
has the real line as its support, the Bayes factors for di¤erent models will not
be well de�ned if an improper prior on a; such as p (aj�;M�) _ 1 were used.9
For this reason a weakly informative proper prior for a must be used. We
defer giving an expression for the full prior to the end of the next subsection,
but the prior for a conditional upon (
; �;M�) has zero mean and covariance
matrix V = 

��1In(ki+r).10 We choose the value of � = 10 as this provides
a mild degree of shrinkage towards zero which has been shown to improve
estimation (See Ni and Sun, 2003). Further evidence on the in�uence of this
choice can be found in Strachan and Inder (2004).
As � and � appear as a product in (2), r2 restrictions need to be imposed

9For the original discussion on this point see Bartlett (1957) and more recently O�Hagan
(1995), Strachan and van Dijk (2003) and Strachan and van Dijk (2005).
10If an informative prior is used on for the cointegrating space then we recommend the

prior for B in Koop, León-González and Strachan (2005).
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on the elements of � and � to just identify these elements. Much of the
work to date in Bayesian cointegration analysis has used linear identifying
restrictions. That is, by assuming c� is invertible for known (r � n) matrix
c and the restricted � to be estimated is � = � (c�)�1 : The free elements
are collected in �2 = c?� where c?c0 = 0: For example, if c = [Ir 0] then

� =
h
Ir �

0
2

i0
and a prior is then speci�ed for �2.

11

We also note that a requirement to employ linear restrictions is that
we know enough about the cointegrating space to be able to choose c such
that c� is nonsingular so that �2 = c?� (c�)

�1 exists. Making use of this
assumption to impose these linear restrictions, however, has the unexpected
and undesirable result that it makes this assumption a priori impossible (see
the Appendix, Theorem 4).
Assuming that c is known, Kleibergen and van Dijk (1994 & 1998) (com-

pare also Bauwens and Lubrano, 1996) demonstrate how a �at prior on �2 can
result in, at best, nonexistence of moments of �2; and, at worst, an improper
posterior distribution thus precluding inference. They also outline how local
nonidenti�cation precludes the use of Markov Chain Monte Carlo (MCMC)
methods due to reducibility of the Markov chain. As a solution they propose
using the Je¤reys prior as the behaviour of this prior in problem areas of
the support o¤sets the problematic behaviour of the likelihood: a related
solution is proposed in Kleibergen and Paap (2002) and Paap and Van Dijk
(2003). Using these approaches avoids the issue of local nonidenti�cation,
results in proper posteriors and allows use of MCMC, although the posterior
again has no �rst or higher-order moments of �2:
As is indicated before, a �at prior on �2 cannot be employed to obtain

posterior probabilities for M� since the dimensions of �2 depend upon �:We
do not, however, need to be informative to obtain inference. Denoting the
space spanned by � by p = sp (�), we can say it is p, and not �, that is
the primary object of interest and this space is in fact all we are able to
uniquely estimate. The parameter p is an r-dimensional hyperplane in Rn

containing the origin and as such is an element of the Grassman manifold12

11There exist practical problems with incorrectly selecting c: The implications for clas-
sical analysis of this issue are discussed in Boswijk (1996) and Luukkonen, Ripatti and
Saikkonen (1999) and in Bayesian analysis by Strachan (2003). In each of these papers
examples are provided which demonstrate the importance of correctly determining c:
12The authors would like to thank Soren Johansen for making this point to one of the

author�s. Villani (2005) also makes use of a prior on p:
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Gr;n�r (James, 1954), p 2 Gr;n�r.
We save the technical discussion for the Appendix, but to implement this

approach, we specify � to be semi-orthogonal, i.e., �0� = Ir; and specify
a Uniform distribution for � (for some background information, see Stra-
chan (2003), Strachan and Inder (2004) and Strachan and van Dijk (2003)).
The support of all n � r dimensional semiorthogonal matrices is the Steifel
manifold which we denote by Vr;n.
A Uniform prior for p over Gr;n�r is implied by a Uniform prior for � over

Vr;n. This prior has the form p (�jM�) = c
�1
� where13 c� =

R
Gr;n�r

d� and � is
the r-frame with �xed orientation in p. The measure on Gr;n�r used in the
above expression is derived from its relationship with the spaces Vr;n and the
group of r� r orthogonal matrices, see the Appendix and the reference given
there.14

For the cases in which we impose identifying restrictions discussed in
Section 2 of the form � = H (o = 1), we impose  2 Vr;s and impose
the Uniform prior on Vr;s: This implies that we are uninformative about the
orientation of the vectors � in sp (�) : For computational and mathematical
simplicity we also convert H to be semiorthogonal by the transformation
H ! H (H 0H)�1=2 : This transformation is innocuous since the space of H;
which is the important parameter, is unchanged by this transformation.
As � is semiorthogonal, the posterior distribution will be nonstandard

regardless of the form we choose for the prior. Therefore, to obtain an ex-
pression for the posterior useful for obtaining draws of �; we make use of
the fact that the matrices � and � always occur in a product form as ��
such that we can introduce any full rank square r � r matrix U such that
�� = �UU�1� = ����. Note that the matrices �� and � have the same
support, however, � is semiorthogonal with the Stiefel manifold as its sup-
port while �� has as its support the nr dimensional real space. We give ��

13We acknowledge that this notation is not technically correct. If we were to denote the
measure for the Grassman manifold as dgnr ; then we should really write c� =

R
Gr;n�r

dgnr :

However, for notational clarity we use the notation d�:
14More recently, the topic of invariance to rescaling of the data has been raised in

conversations with colleagues. Our prior is not invariant and no uniform, invariant prior
exists. Such invariance gives us the virtue of being able to say that the probability of
being in this region is the same after rescaling, no matter what the region. No prior in
the literature has this virtue except Strachan (2003). However, while Strachan (2003) can
be used for BMA only if the data dependence is ignored. While it might be worth further
investigation, we do not consider invariance further here except to note that we are yet to
see a Bayesian cointegration study in which it is an important issue.

14



a Normal prior with zero mean and covariance matrix n�1Inr. We can easily
transform back to the parameters of interest via � = ��U�1 and � = ��U:
The prior for �� resembles that of Geweke (1996) except that our prior im-
plicitly speci�es, in addition to a proper prior for U , that the marginal prior
for � = ��U�1 is Uniform. The e¢ ciency of this approach is discussed in
Koop, León-González and Strachan (2008a).
We let a� denote the vector a with the elements of � replaced by the

corresponding elements of �� and let b� = vec (��) : The prior for a� is
N
�
0;

 ��1I(ki+r)

�
. The full prior distribution for the parameters in a

given model is then

p (
; a�; b�jM�) _ exp
n
��
2
a�0
�

�1 
 I(ki+r)

�
a� � n

2
b�0b�

o
� j
j�(n(ki+2r+1)+�+1)=2 exp

�
�1
2
tr
�1S

�
:

3.2 Posterior Analysis.

An expression for the posterior distribution of the parameters for any model
given the data is obtained by combining the prior, p (
; a�; b�jM�) ; with the
likelihood for the data L (yj
; a�; b�;M�) where y represents all data. That
is,

p (
; a�; b�jM�; y) _ p (
; a�; b�jM�)L (yj
; a�; b�;M�) = k (
; a�; b�;M�jy) :
(5)

As we will be using a Gibbs sampling scheme we need to present the con-
ditional posterior for each parameter. To simplify the presentation of the
posteriors, we use the transformation �� = �UU�1� = ���� and the fact
that, conditional upon b�; the model in (3) and (4) is linear.
As the model is linear conditional upon b�; standard results show that

the posterior for a� will be

a� � N
�
a; V

�
(6)

where a =
�
In 


�
Z 0Z + �I(ki+r)

��1
Z 0
�
z0 and V =

�
V �1 + V �1��1 = 
 
�

Z 0Z + �I(ki+r)
��1

:
Next, in the equation (3) we vectorise Z1�

��� to obtain vec (Z1�
���) =

z1b
� where z1 = (��0 
 Z1) : Thus we can rewrite the expression in (4) as
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ez0 = z1b
� + e where ez0 = vec (Z0 � Z2�) ; and use standard results again to

show the posterior for b� will be

b� � N
�
b
�
; V b�

�
(7)

where b
�
= V b� (�

�
�1 
 Z 01) ez0 and V b� = [(�
�
�1��0 
 Z 01Z1) + nInr]

�1
:

We use the following scheme at each step i to obtain draws of (a�;
; ��) :

1. Initialize (a�;
; b�) =
�
a�(0);
(0); b�(0)

�
.

2. Draw 
ja�; b� from IW (S + �A0A+ E 0E; T + n (ki + 2r + 1) + �)

3. Draw a�j
; b� from N
�
a; V

�
4. Draw b�j
; a� from N

�
b�� ; V ��

�
.

5. Repeat steps 2 to 4 for a suitable number of replications.

An important component of Bayesian inference is the posterior probability
of each model, p (M�jy). These can be derived from the marginal likelihoods
m� for each model via the expression

p (Mijy) =
mip (Mi)X

�2�

m�p (M�)
=

mi=m0p (Mi)X
�2�

m�=m0p (M�)
(8)

where the summation in the denominator is over all elements of � and the
marginal likelihood m0 is for some model M0: The marginal likelihood for a
model is given by

m� =

Z
R(ki+r)n

Z

>0

Z
Gr;n�r

k (
; a�; ��;M�jy) (db�) (d
) (da�) ; (9)

where a� 2 R(ki+r)n, 
 is positive de�nite (denoted 
 > 0). The expression
in (8) suggests two ways to compute the model probabilities. We could either
compute the m� directly and use the �rst expression, or we could compute
the ratio m�=m0 for each model and use the second expression.
IfM0 nests within all of the models in the model set (M0 need not actually

be in the model set considered) then we can use the Savage-Dickey density
ratio (SDDR) to estimate m0=mi (Verdinelli and Wasserman (1995) and see
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Koop, León-González and Strachan (2005) for an example of an application
of this approach). To demonstrate brie�y, the model M0 = M(0;1;5) nests
within all models at the point a� = 0; and the SDDR can be computed as
the ratio of the marginal posterior to the marginal prior at the point a� = 0.
Thus

m0

mi

=
p (a� = 0jM�; y)

p (a� = 0jM�)
:

Given our earlier choices for the prior, the expression p (a� = 0jM�) =
�
2�
n

��nr=2
:

Given sequences of draws
�

(i); b�(i)

�
; i = 1; : : : ; K from the posterior and�


(j); b�(j)
�
; j = 1; : : : ; K from the prior15, the marginal posterior density for

a� can be approximated by

bp (a� = 0jM�; y) = K�1
KX
i=1

p
�
a� = 0j
(i); b�(i);M�; y

�
:

Alternatively we could directly estimate mi using, for example, the ap-
proach of Gelfand and Dey (1994). This approach is attractive if the dimen-
sion of the integral to be approximated is not large. In our case we can reduce
the dimension as the posteriors of a� and 
 have standard conditional forms
and so we can readily integrate these out of the full joint posterior to obtain
an expression for p (b�;M�jy) _ g�k (b�jM�; y) (db

�) : We can write m� = g�c�
where g� is known and given in the Appendix and c� =

R
k (b�jM�; y) db

� is
the only unknown term to be estimated.
To estimate the marginal likelihood, we must estimate the term c�. We

approximate this integral using the method proposed by Gelfand and Dey
(1994) which uses the relation

1

c�
=

Z
q

k

k

c�
(db�) :

in which q = q (b�) is a proper known density and k = k (b�jM�; y). As
we have we have a sequence of draws b�(i); i = 1; :::; J; from the posterior
distribution for b�, we can estimate c� by

bc� = J

�
�Ji=1

q(i)

k(i)

��1
:

15It is relatively straightforward to show that the conditional priors are all proper and
of standard Normal and inverted Wishart forms.
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As our choice for q, we use a truncated Normal with mean zero and
covariance matrix Inr 1n : The truncation is such that the density is zero for
b�0b� > ��nr where Pr (�nr > ��nr) = 0:01 and �nr is a Chi-squared random
variable with nr degrees of freedom. Except for the truncation, this the
same density as the prior and implies a Uniform density for �:16 With a non-
diagonal covariance matrix this density for �� would imply a Matrix Angular
Central Gaussian distribution (Chikuse, 1990) for �. Our choice of q implies
the ratio k=q has the form of a kernel for a 1-1 poly-t density but over a
compact support. This density will have fat tails and so q=k will tend to be
stable, however the truncation further ensures the stability.
Alternative approaches exist for estimating c�. For the computation of

the posterior probabilities, we need only draws of �� to approximate c�. If
the model set becomes large then computation times for the above strategy
may become rather large. A sensible strategy then would be to include the
model in the sampling scheme. This could be achieved using a method such
as the reversible jump methodology of Green (1995). Kleibergen and van
Dijk (1998) and Kleibergen and Paap (2002) develop MCMC schemes in
the simultaneous equations model and the VECM. Strachan (2003) employs
this approach when � has been identi�ed using restrictions related to those
of the ML estimator of Johansen (1992). Alternatively one may use the
Adaptive Radial based method of Bauwens, Bos, van Dijk and van Oest
(2004) or the neural network mixture method of Hoogerheide, Kaashoek and
van Dijk (2006). Bauwens and Lubrano (1996) and Strachan and Inder (2004)
demonstrate other approaches.

3.3 Bayesian Model Averaging with MCMC.

In this section we outline how we implement Bayesian model averaging to
provide unconditional inference. One of the advantages of our approach
over previous approaches is that for all model speci�cations we consider, as
shown in the Appendix, the posterior will be proper and all �nite moments of
b� = vec (��) (or �) exist. The importance of this statement becomes evident
when we consider that economic objects of interest to decision-makers are
often linear or convex functions of the cointegrating vectors. As we wish to
report expectations of these objects, we require the existence of moments of

16The symmetric truncation for the symmetric density has no implications for the dis-
tribution on the cointegrating space or �.
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b�.
Suppose we have an economic object of interest � which is a function of the

parameters for a given model (a�;
; b�jM�), � = � (a�;
; b�jM�). Examples
include estimates of impulse responses, forecasts, or loss functions. We wish
to report the unconditional (upon any particular model) expectation of this
object. That is, we wish to report an estimate of

E (�jy) =
X
�2�

E (�jy;M�) p (M�jy)

where E (�jy;M�) is the expectation of � from model �: To obtain this
estimate, denote the ith draw of the parameters from the posterior dis-
tribution for model M� as

�
a�(i);
(i); b�(i)

�
and so the ith draw of � as

�(i) = �
�
a�(i);
(i); b�(i)jM�

�
. Next suppose we have i = 1; : : : ; J draws of

the parameters from the posterior distribution for each model. To approxi-
mate E (�jy), we �rst obtain estimates of E (�jy;M�) from each model by

bE (�jy;M�) =
1

M
�Mi=1�

(i) for each �:

These estimates are then averaged as

bE (�jy) = JX
j=1

bE (�jy;M�) bp (M�jy)

in which bp (M�jy) is an estimate of p (M�jy) :

4 The Great Ratios.

In this subsection we provide empirical evidence on the role of permanent
shocks in logarithms of U.S. consumption (ct), investment (it) and income
(inct) as studied by KPSW. The KPSW study proposes these variables are
subject to a single common permanent productivity shock and that the con-
sumption/income and investment/income ratios are stable. They also report
evidence that the bulk of the �uctuations in these variables is due to the
permanent shock. Using an extended data set from quarter one 1947 up
to and including the fourth quarter of 200717, we report evidence upon the
17The data are seasonally adjusted, quarterly observations covering the period from the

�rst quarter 1947 to the last quarter of 2007, on Personal Consumption Expenditures,
Gross Private Domestic Investment, and GDP (Source: Bureau of Economic Analysis).
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number of common permanent shocks, the support for the stability of the
consumption/income and investment/income ratios as implied by the KPSW
model, and the proportion of variability in the three variables in the system
yt = (ct; it; inct) over the business cycle that is due to permanent shocks.
Finally, we report full densities of impulse responses to permanent shocks to
demonstrate the importance of model uncertainty.
Evidence on Permanent Shocks and the �Great Ratios�.
KPSW translate the above features of the system of variables into re-

strictions upon a VECM and investigate the support for these restrictions.
These model restrictions are that there is one common stochastic trend and
ct � inct and it � inct will both be stationary I (0) processes. We therefore
allow the rank, r; to vary over all possible values, r 2 [0; 1; : : : ; n] and for the
log di¤erences ct� inct and it� inct to either form the cointegrating relations
(if r = 2) or the variables will enter the cointegrating relations via these
relations (if r = 1). Finally we also allow for the range of �ve combinations
of deterministic processes suggested in Section 2. An additional feature of
the model of KPSW is that if ct� inct and it� inct are stationary, we would
not expect them to contain trends. Thus we would expect the evidence to
suggest d < 2: The set of 130 models18 may be summarized as r 2 [0; 1; 2; 3],
o 2 [0; 1], d 2 [1; 2; 3; 4; 5] and l 2 [0; 1; : : : ; 5].19
Beginning with the support for the alternative models in the model set,

the modal model with posterior probability of 18%, has eight lags of di¤er-
ences (l = 4), two stochastic trends (r = 1), the great ratios do form the
cointegrating relations (o = 1) and neither the equilibrium relations nor the
levels contain deterministic trends (d = 5). The posterior probabilities of the
models (averaged over lags and computed using the method of Gelfand and
Dey (1994)) are given in Table 1. These results show that both with and with-
out the overidentifying restrictions, the weight of support is upon there being
two common stochastic trends in yt (p (r = 1jy) = 66%), with some support
for only one stochastic trend (p (r = 2jy) = 34%). This gives a log odds ratio
of 0.66 which as evidence for two rather than one stochastic trend is, ac-
cording to Kass and Raftery (1995), is not worth more than a bare mention.
This result gives some support to the �rst feature suggested by the model

18Simply multiplying up the cardinality of each set of (r; o; d; l) would produce 240 mod-
els. However, several models are impossible and so excluded, or observationally equivalent
to another and so we count these as one model. See Section 3.1 for discussion on this
point.
19All models with lags below 3 had zero posterior probability.
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proposed in KPSW, that these variables share a single permanent shock.
The second feature, that ct� inct and it� inct are cointegrating relations has
slightly stronger support with a posterior probability of 45%; although again
this is not strong evidence. These two conclusions do not disagree with the
�ndings of Centoni and Cubadda (2003) (hereafter CC) who use a data set
to April 2001. Finally, we �nd strong evidence that the equilibrium relations
are I (0) with no linear deterministic trends as p (d = 4jy) = 55%:
Table 2 lists the probabilities and cumulative probabilities of the �ve

most likely models. Although these models account for two thirds of all the
posterior probability over this model set (and the top 20 models account for
99% of the posterior probability mass) there is not strong support for any
one of these models. The results in Table 2 do suggest support for particular
structural features: there are four lags of di¤erences; no deterministic trends;
there is cointegration; and the great ratios are as likely as not to be stable.

Table 1: Posterior probabilities of structural features for real business cycle
model. Note that the cells for observationally equivalent models have been
merged.

Just Identi�ed Models (o = 0)
r d = 1 d = 2 d = 3 d = 4 d = 5
0 0:000 0:000 0:000
1 0:000 0:001 0:000 0:109 0:164
2 0:000 0:001 0:000 0:074 0:021
3 0:000 0:000 0:000

Over Identi�ed Models (o = 1)
1 0:000 0:001 0:000 0:087 0:294
2 0:000 0:000 0:000 0:246 0:000

Table 2: Posterior probabilities, P (M�jy), of the top �ve models.

Cumulative
d l r o P (M�jy) probabilities
5 4 1 1 0:1797 0:1797
4 4 1 0 0:1422 0:3219
4 4 2 1 0:1275 0:4494
5 4 1 0 0:1139 0:5633
4 4 2 0 0:1064 0:6697
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E¤ects of Permanent Shocks: Next we consider the importance of the
permanent shocks in the business cycle. Decomposing the variance into the
components due to transitory and permanent shocks, we gain an impression
of the relative importance of these e¤ects for the variability of the consump-
tion, investment and income. KPSW derive an identi�cation scheme for this
decomposition based upon a particular economic theory. In our data there
is uncertainty associated with this theory.
KPSW estimate the proportion of variance due to permanent shocks in

the time domain for the model M(2;1;3) with 8 lags of di¤erences. For it and
inct they report proportions varying from 0.88 (ct), 0.12 (it) and 0.45 (inct) at
one quarter after the shock to 0.89 (ct), 0.47 (it) and 0.81 (inct) respectively
at 24 quarters after the shock. Our interest is in the proportion of business
cycle �uctuations due to permanent shocks and so follow CC who consider
the variance decomposition within the frequency domain.
With their slightly shorter sample, CC found proportions of variability

over an 8-32 quarter period of 0.57 for ct, 0.14 for it and 0.18 for inct. Table
3 reports the proportions of �uctuations over 8 to 32 quarters that are due
to permanent shocks for the three variables using our updated data set and
extended model set. We see from these results that the KPSWmodel assigns
a larger proportion of the variability in consumption and income to the per-
manent (productivity) shock than the other models. The remaining models
generally agree with each other, at least in the relative sizes if not the exact
values. Thus, using our Bayesian model averaging approach we �nd support
for the conclusion of CC that, while important, the single permanent shock
is not the main determinant of business cycle �uctuations.

Table 3: Estimated variance decompositions into permanent components in
the frequency domain.

Estimation method ct it inct
Averaged over all models 0:346 0:341 0:348
CC model M(2;0;3) 0:344 0:345 0:346
KPSW model M(2;1;3) 0:461 0:390 0:454
Best model M(2;0;2) 0:341 0:339 0:354

We conclude by reporting for each variable the impulse response path
from a permanent shock. We assume there is only one permanent shock
(and so condition upon r = 2), but average over the other model features.
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The impulses for ct; it and inct are shown in Figures 1, 2 and 3 respectively.
The upper panel in each �gure shows the full density over all 60 periods.
The bands represent the boundaries of 20%, 40%, 60% and 80% highest
posterior density regions (HPDs). These are contours of the density that
de�ne the smallest possible regions containing the stated mass. To aid with
the interpretation of these �gures we have included in the lower panels the
pro�les of the density of the impulses at three points in time after the shock.
These are at h = 10; h = 30 and h = 60 periods after the shock.
In each case there is a slightly positive long run response to a permanent

shock in each series. More interestingly, we see that the form of the densities
are generally symmetric but leptokurtic. The leptokurtosis occurs at both
short and longer horizons and so is not a result of a few divergent paths
which would show up only at longer horizons. The leptokurtosis results
from mixing over normals and demonstrates well the e¤ect of accounting for
both model and parameter uncertainty. That is, the form of the density at
each horizon re�ects the e¤ect that low probability events have on the tail
behaviour. From the upper panels, we see that the bulk of the mass does not
continue to increase as rapidly at longer horizons and, in fact, settles down
to a consistent shape. This is most evident for consumption which seems to
have stopped increasing its spread after around 30 periods.
The form of these densities are important for giving a full account of

the uncertainty associated with the responses. In each case the fat tails in
the densities derive from models with low posterior probabilities. Neglecting
these models and using only the best model (e¤ectively assuming model cer-
tainty) would produce very di¤erent estimates of the distributions of impulse
responses, forecasts and the resulting expected loss from a particular action.

5 The Risk of a Liquidity Trap in the USA
and Japan and Evidence of its Importance
for Monetary Policy.

5.1 Introduction.

In recent decades some industrialized nations, in particular Japan, seem to
have reached a state of the economy where in�ation, interest rates and eco-
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nomic growth are all low. Some illustrative data (interest rates20, rt; prices21,
pt; and real per capita GDP, gt) are given in Figure 5 for the USA and Japan.
With low or negative in�ation and already low interest rates, monetary policy
to activate the economy by lowering interest rates even further may not be
e¤ective or possible anymore. Earlier authors have characterized this state
of the economy as the liquidity trap and - clearly - Central Bank authorities
would wish to avoid such a state.
The literature on the liquidity trap is extensive. Discussions of this issue

date from Keynes (1936) and Hicks (1937)22 who focussed upon the form of
the IS-LM model and a positive lower bound on long interest rates. More
recent work, however, tends to focus upon the importance of the zero lower
bound (ZLB) on short maturity interest rates. Eggertsson and Woodford
(2003a,b and 2004) demonstrate how the ZLB on interest rates complicates
the conduct of monetary policy in a low in�ation environment and the role of
�scal policy in such a situation. Summers (1991) identi�ed a trade-o¤, due
to the ZLB, between the aims of achieving a zero-in�ation target and stable
output. Fuhrer and Madigan (1997) use simulation to provide evidence on
the importance of a ZLB on US interest rates in a low in�ation environment
in contrast to a high in�ation environment, and conclude that the optimal
rate of in�ation should be positive rather than zero. Other interesting studies
include Reifschneider and Williams (2000), Orphanides and Wieland (1998),
and Wolman (1998).
Our investigation has two stages. In the �rst, we generalize the VAR

model to allow for both cointegration and multivariate stochastic volatility
(VECM-SV). With this model we aim to provide estimates of the probabil-
ity of encountering the LT for the US and Japan between 1975 and quarter
three of 2006 using a mixture of forecast distributions generated by aver-
aging over a range of models. In the second stage, we introduce a smooth
transition function in a monetary equation (VECM-SV-ST) to allow infer-
ence on changes in the transmission mechanism as the forecast distribution
of interest rates puts more mass near zero. We use this model to address

20The interest rate is the overnight Federal Funds Rate for the US and the Money
Market (call money) rate for Japan.
21For each country, pt is taken to be the log of the CPI for the US and Japan.
22Boianovsky (2003) outlines early discussion by Hicks (1937) who attributed the con-

cept of the LT to Keynes and focussed on a lower bound on long (bond) rates. More
recent discussions tend to focus upon the ZLB for short rates. Boianovsky (2003) gives an
interesting overview of the development of the term and concept of the �liquidity trap�.
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two aims: 1) to again provide estimates of the probability of encountering
the LT; and 2) to obtain inference on the whether there is a change in the
monetary policy transmission mechanism when the risk of encountering the
liquidity trap becomes signi�cant.
We de�ne the LT as occurring if interest rates fall below some low level,

r, for two or more consecutive quarters in the next twelve months. That
is, if we denote the interest rate by rt; then the event LT is de�ned as
LT = frt+l; rt+l+1 : (rt+l < r) \ (rt+l+1 < r) ; l 2 1; 2; 3g :23 The probability
of this event at time t is pLT;t = Pr (LT ). The reasoning behind this de�nition
of the LT is that we assume r is a boundary for what the central bank believes
is an absorbing state under current strategies. Once interest rates fall below
this level, the bank or the government must adopt di¤erent strategies, such
as appropriate �scal stimulus, to escape the LT .
In the �rst stage of the analysis we use the VECM-SV and assume the

boundary r is known to be either 0.25% or 0.5%. In the second stage we
generalize the model to the VECM-SV-ST and estimate r as an unknown
parameter in the model. In that the computation of pLT;t relies on the entire
forecast distribution, not just the mean forecast, our approach resembles the
approach of Orphanides and Wieland (1998). We impose the ZLB in our
model by working with the log of the interest rates and so this approach
implies a nonlinear reaction function similar to that used in, for example,
Fuhrer and Madigan (1997). We compute the probability, pt;i, at each time
t that the interest rate i periods in the future will be below r for each
i = 1; 2; 3; 4. We can then compute pLT;t from these values of pt;i.
In the �rst stage of the work the VECM-SV does not permit any change

in the monetary policy transmission mechanism and we compute pLT;t with
known r: The evidence suggests the pLT;t signi�cantly increased in the US
and particularly in Japan around the turn of the century but has fallen more
recently.

23It might seem more accurate to simultaneously account for the projected paths of
output and in�ation. However, the liquidity trap is clearly de�ned within the IS-LM
model as the when the rate of interest hits its �oor on the left part of the LM curve.
Further, concern for the liquidity trap derives from the inability of the rate of interest
to act as a stabilizer for the economic system when it hits its lower bound (Boianovsky,
2003). Interest rates can always be increased. However, if the interest rate is at its lower
bound �regardless of where is the distribution of income and price growth �they can be
lowered no further and this imposes a constraint on policy options. Finally, the location
of the distribution of income and price growth is very closely related to the location of the
interest rate and early work found the di¤erences in the approaches were not signi�cant.
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While pLT;t may be low, we might expect the cost of LT, lLT ; is high,
thus the expected cost (pLT;tlPT ) would be large enough to prompt banks to
react. An example of a strategy that might produce such a response is the
forward-looking adjustment to the Taylor Rule discussed in Reifschneider and
Williams (2000). This change in behaviour, which we model in the second
stage of the study, will show up in the equation for rt. In the second stage,
the results from the VECM-SV-ST show that allowing the bank to react to
the possibility of the LT results in signi�cantly lower probability estimates
over the full period for each country and estimated values of r of 0:28% for
the US and 0:38% for Japan.

5.2 Cointegrating VAR with stochastic volatility and
smooth transition.

As evidenced from the literature (Cogley and Sargent 2005, Primiceri 2005
and Sims and Zha 2006), it is important to appropriately model heteroscedas-
ticity for these variables. Therefore values of pt;f are estimated from a reduced
form vector error correction model as in (1), but with multivariate stochastic
volatility given by

�yt = z1;t�� + z2;t� + ut�tA
�1
t (10)

where ut is a vector of independent standard Normal variables. The speci-
�cation for the covariance matrix is similar to that of Primiceri (2005). We
denote the covariance of "t = ut�tA

�1
t at time t as 
t and decompose 
t as

A0t
tAt = �
0
t�t where �t = diag f�1;t; �2;t; �3;tg and At is given as

�ytAt = (�gt; �t;�lrt)

24 1 %1;t %2;t
0 1 %3;t
0 0 1

35 =
0@ �gt

�t + %1;t�gt
�lrt + %2;t�gt + %3;t�t

1A :

We do not give economic interpretations to these expressions beyond assum-
ing that the central bank reaction function is embedded in the mean equation
for the interest rates (see for example, Garratt et al. 2003).
De�ne the log structural variances hi;t = ln (�i;t) for i = 1; 2; 3 and collect

the parameters into 3�1 vectors ht = (h1;t; h2;t; h3;t)0 and %t =
�
%1;t; %2;t; %3;t

�0
.

We assume these parameter vectors evolve according to the state equations

ht = ht�1 + �t and %t = %t�1 + �t: (11)
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The vectors �t and �t are assumed independent of each other and Normally
distributed with zero mean. �t has 3 � 3 covariance matrix 	 and the �rst
element of �t has variance s1 and is independent of the remaining elements
which have 2� 2 covariance matrix S2.
Recent evidence suggests it is less important to allow time variation in

the reduced form coe¢ cients if heteroscedasticity is appropriately modelled.
While providing evidence themselves, Sims and Zha (2006) point to the re-
sults for the US by Primiceri (2005) and the contrast between the results of
Cogley and Sargent (2001) and Cogley and Sargent (2005) in support of this
claim for the US. We therefore assume constant reduced form mean equation
coe¢ cients.
In the second stage of the study we again use a VAR model, but we

augment the equation for the log interest rates with parameters that will be
di¤erent from zero if the central does react to the possibility of the LT, and
the same variables multiplied by the probabilities of the liquidity trap.
This augmentation in the reduced form equation comes from an aug-

mented reaction function. The modeling strategy assumes the central bank
obtains forecasts of interest rate distributions while ignoring the possibility
of the LT. If the forecast distributions imply a high enough value for pLT;t
such that the expected costs of the LT is signi�cant, the bank will then in-
corporate this into its interest rate setting strategy via a shift in the reaction
function. For example, assume that ignoring the possibility of the LT, the
interest rate rule produces ln rNoLT;t: Estimates of pLT;t are then obtained
from the forecast densities of rNoLT;t.
Next, assuming pLT;t = 1, the interest rate rule produces ln rLT;t. Com-

bining the two rules we therefore have the rule for setting the interest rate,
rt; as

ln rt = (1� pLT;t) ln rNoLT;t + pLT;t ln rLT;t

= ln rNoLT;t + pLT;t (ln rLT;t � ln rNoLT;t) :

As pLT;t is a continuous bounded variable, this speci�cation implies a
smooth transition function for the reaction function where the transition
function is pLT;t which itself is a function of forecast densities of rNoLT;t. The
resulting mean equation for the log interest rates in the reduced form VAR
will be functions of the reaction functions that produce ln rLT;t and ln rNoLT;t.
We augment the model (10) with this speci�cation of the monetary policy
equation. Denoting by a subscript 3 the coe¢ cients in the equation for ln rt,
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the resulting equation in the VECM-SV-ST for the interest rates will be

ln rt = z1;t��3 + z2;t�3 + pLT;t

h
z1;t��

#
3 + z2;t�

#
3

i
+ ut�tA

�1
t :

From the form above, we have simple testable hypotheses to establish
the evidence for or against the hypothesis that monetary policy responds to
the likelihood and extent of the event LT. If the monetary authority does
not behave di¤erently when faced with the liquidity trap then Et (ln rLT;t) =
Et (ln rNoLT;t), which implies �

#
3 = 0 and �

#
3 = 0.

An important determinant of the role of expectations formation is whether
shocks are permanent or transitory. We wish to remain uninformative on the
exact speci�cation of the model and so, to allow for the proportion of vari-
ability in the variables that is due to permanent shocks to cover the full
range from zero (implied by no stochastic trends) to one (implied by three
stochastic trends in the system), we consider models with r = 0; 1; 2; and
3: Deterministic processes and the lag structure a¤ect the forecasting per-
formance of the model which is important in this application. We therefore
allow d = 3; 4; and 5 and l = 0; 1; 2; and 3:
The full (general) model now has the form

�yt = z1;t��+ z2;t� + pLT;t
�
z1;t��

# + z2;t�
#
�
+ ut�tA

�1
t

= ezt eA+ ut�tA
�1
t (12)

where �z = (0; 0; �z03 )
0 and�z = (0; 0;�z03 )

0 ; ezt = (z1;t�; z2;t; pLT;tz1;t�; pLT;tz2;t) ;eA = [�0;�0; �z0;�z0]0 : This augmentation of the monetary policy equation im-
plies the model has the form of a Seemingly Unrelated Regression model, we
will refer to it as the SUR model. We collect all the mean coe¢ cients into ea =
(a00; a

0
1; a

z0; )0 where a1 =
�
vec (�)0 ; vec (�)0

�0
; az =

�
vec (�z3)

0 ; vec (�z3)
0�0 ;

and a0 is the vector of zero elements in �z and �z: Collecting the nonzero
elements into a = (a01; a

z)0 ; so that ea = (a00; a0)0 :
5.3 Priors and posteriors.

We describe the sampling scheme for r, %t; ht; and a. Given r, %t; ht; and a;
the probabilities in the vector pLT = (pLT;1; : : : ; pLT;T )

0 can then be computed
directly and used to update the posteriors for r, %t; ht; and a.
We use the same priors for the variances of the state equations, 	; s1

and S2; as Primiceri (2005), and our priors for the initial values %0 and h0
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are Normal with the mean equal to the OLS estimate from the �rst 20%
of the sample and covariances 0:004I3 and I3. A good description of the
method of drawing %t and ht using the Kalman �lter is given in Primiceri
(2005) and so we refer readers to that paper for a full explanation. Brie�y,
for %t; measurement equations are constructed for %1;t and

�
%2;t; %3;t

�
from�

�yt � ezt eA�At = ut�t and for ht the measurement equation is obtained by
squaring and taking logs of the elements of the above equation. That is, if
the ith element of �yt � ezt eA is byi;t = exp fhi;tgui;t; then the measurement
equation for hi;t is given by24 ln

�by2i;t� = 2hi;t+ ln �u2i;t� : As the error ln �u2i;t�
is not Normal, the mixture of Normals approximation of Kim et al. (1998)
is used to implement the Kalman Filter.
For the vector a we again use a conditional Normal prior with zero mean

but with covariance V = In 
 ��1I(r+ki): This prior is consistent with the
one in Section 3 in that it imposes shrinkage towards random walks and
conditions upon the covariance of the error, in this case E (u0tut) = In: In
deriving the posterior for a; we begin by postmultiplying (12) by At��1t and

vectorising to obtain ez0;t = eztea + eet where eet = u0t; ea = vec
� eA� ; ez0;t =

��1t A0t�y
0
t and ezt = �

��1t A0t 
 ezt� : Stacking the vectors ez0;t; ezt and eet asez0 = �ez00;1; : : : ; ez00;T �0 ; ez = (ez01; : : : ; ez0T )0 and ee = (ee01; : : : ; ee0T )0 we obtain a formez0 = ezea + ee which is similar to (4). Combining this form with the Normal
prior for ea given above, we obtain the conditional Normal posterior with
mean a = V ez0ez0 and covariance matrix V = ��In(r+ki) + ez0ez��1 : Recall some
elements of ea are known to be zero and are collected into the vector a0. We
draw the remaining non-zero elements of ea conditional upon a0(= 0) using
well known results for the conditional Normal distribution. That is, with the
partition ea = (a00; a0)0 and the conformable partitions of a = (a00; a0:)0 and

V =

�
V 00 V 0:

V :0 V ::

�
;

then the posterior for a (conditional upon a0; r; %t; ht) is Normal with mean
a: � V :0V 00a0 and covariance matrix V :: � V :0V

�1
00 V 0:.

For the threshold parameter r we specify a Uniform distribution over the
range from (0%; 1%].25 Using a random walk Metropolis Hastings (MH) al-

24In fact we use the o¤set adjustment such that the dependent variable is ln
�by2i;t + 0:001�

in place of ln
�by2i;t� :

25Proper priors are required for r and b as there is a point of local nonidenti�cation at
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gorithm to obtain draws of ln (r) results in low acceptance rates. To improve
the acceptance rates we use a Metropolis Hastings scheme in which draws
are obtained from a candidate density that approximates the posterior. This
candidate is a Rao-Blackwellized estimate from a preliminary run using the
random walk MH scheme.
To obtain model probabilities and the probability of the restriction az = 0,

we use the Savage-Dickey density ratio to compute the Bayes factors. Details
and examples of these techniques in a VECM are provided in Koop, Leon-
Gonzales and Strachan (2005).

5.4 The Results.

The estimated probabilities for the range of stochastic and deterministic
processes (r and d) presented in Table 4 suggest there exists model uncer-
tainty. The modal model probabilities are Pr (d = 5; l = 3; r = 3jy) = 0:18
for the US and Pr (d = 3; l = 1; r = 3jy) = 0:21 for Japan. The estimated
probability of the restriction az = 0 is almost one in each case suggesting
that either central banks do not concern themselves with the risks associated
with LT, or the evidence is weak due to there being too few observations
where pLT;t would be large enough to be informative about az.
Conditioning upon the model with az = 0; the estimated probabilities of
pLT;t are plotted in Figure 5 for r = 0:25%; r = 0:5% with the interest
rate rt: This �gure also plots the estimated pLT;t from the model without
the restriction az = 0 and the value of r estimated from the model in (12).
The situation in the US and Japan is interesting. The results for Japan
indicate, not surprisingly, that the country met our de�nition of the LT from
the beginning of 1999 and there appears to be a chance of escaping this
situation emerging in 2006Q3. The probability of the LT in the US increases
signi�cantly after 2001Q1 to be between 10% and 20%, and begins to fall
again after the middle of 2005.
Table 4: Posterior probabilities of structural features for real business cycle
model. Note that the cells for observationally equivalent models have been
merged.

the points r = 0 and b = 0.
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The US Japan
r d = 3 d = 4 d = 5 d = 3 d = 4 d = 5
0 0.08 0.10 0.04 0.06
1 0.03 0.13 0.13 0.04 0.26 0.04
2 0.04 0.03 0.08 0.04 0.12 0.06
3 0.15 0.24 0.29 0.05

Table 5 reports the average estimates of pLT;t over various periods and
with di¤erent assumptions about r. The �rst column identi�es the period
over which values are averaged. The second column gives the average interest
rate for that period. The third and forth columns give the estimates of
pLT;t for r = 0:25% and r = 0:50% respectively. The �nal column gives
estimated pLT;t when the model allows the central bank to react di¤erently
to the potential LT and r is estimated. The actual estimates in each case
and for all t, are shown in Figure (6). The results in Table 5 and Figure
(6) clearly indicate that for the US and Japan, the probability of LT has
increased since 1994. This change has coincided with a fall in the level of
interest and in�ation rates (see Figure (5)). However, when we permit the
central bank to react to the risk of the LT, we see that the probabilities are
noticeably lower and slightly pre-empt the rise in the risk of the LT, pLT;t.
The fall in pLT;t when we allow banks to react to the risk of LT suggests that
the banks did alter their behaviour, however slightly, to mitigate the risk of
a LT.
Table 5: Average estimated pLT;t for r = 0:25%, r = 0:5% and r es-

timated. Values are averaged over the periods in the �rst column and the
second column gives the average interest rate, rt, for each period.

rt pLT;tjr = 0:25% pLT;tjr = 0:5% pLT;tjr
The US (estimated r = 0:35%)

1975-1994 7.99% 0.84% 1.17% 0.86%
1995-2001 5.29% 0.93% 1.37% 1.46%
2002-2004 1.38% 3.98% 7.33% 7.75%
2005-2006Q3 3.92% 2.89% 4.20% 2.58%

Japan (estimated r = 0:24%)
1975-1994 6.01% 0.95% 1.35% 1.14%
1995-2001 0.39% 46.90% 82.33% 60.42%
2002-2004 0.00% 97.80% 98.17% 92.32%
2005-2006Q3 0.03% 96.40% 97.78% 92.89%
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In our models we have allowed for heteroscedasticity via a multivariate
stochastic volatility speci�cation. As this is a signi�cant departure from
the standard VAR/VEC models usually considered one might question the
importance of this extension for our results. We therefore estimated pLT;t
again with the restriction that the errors are homoscedastic. The results are
presented in Figure (7) for Japan for r = 0:25% (solid line) and r = 0:5%
(dashed line).
The �rst instance where the Japanese interest rate falls below 0.5% for two

consecutive periods (i.e., we �rst observe LT for r = 0:5%) is 1995Q4/Q5 and
�rst fell below 0.25% for two periods in 1998Q4/Q5. We take pLT;t > p = 50%
as an indication that LT will occur over the next year. The homoscedastic
models do not indicate LT will occur for r = 0:5% until 1998Q4 and for r =
0:25% until 2000Q1. The heteroscedastic models �rst estimate a probability
of LT greater than 50% 1995Q3 for r = 0:5% and 1998Q4 for r = 0:25%.
That is, the homoscedastic models do not indicate LT will occur until at least
a year after it has occurred, while the heteroscedastic models clearly indicate
that LT will occur correctly or one quarter early. The results change as we
change p, but the poor relative performance of the homoscedastic models
remains. These results suggest that modelling the volatility is important for
estimating events that occur in the tails of the distributions, such as LT.
Due to the rare nature of the event LT, any evidence that it matters

for central banks will be very weak. Recent work on IS-LM models based
upon optimizing behaviour such as Krugman (1998) and McCallum (2000),
focuses on the lower bound on short rates and suggests this bound could
be zero. Our work does not aim to provide direct evidence for or against
this result. Rather we provide evidence (albeit weak) that central banks in
the US and Japan react di¤erently when setting rates and faced with an
increase in the possibility that rates will go �too low�. The formal evidence
suggests the central banks do not respond to the increased risk of the LT
(as the probability az = 0 is one in all cases). However, allowing banks to
respond (by letting az 6= 0) noticeably a¤ected the risk for the US and Japan.
Allowing when az 6= 0 the probability of a LT for Japan reduces, although
not signi�cantly and not always.
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6 Conclusion.

In this paper we have presented a Bayesian approach to obtaining uncon-
ditional inference on structural features of the vector autoregressive model
by means of evaluating posterior probabilities of alternative model speci�ca-
tions using a di¤use prior on the features of interest. The output produced
this way allows forecasts and policy recommendations to be made that are
not conditional on a particular model structure. Thus this model averaging
approach provides an alternative to the more commonly used model selec-
tion approach. Speci�cally we provide techniques for estimating marginal
likelihoods for models de�ned by structural features such as cointegration,
deterministic processes, short-run dynamics and overidentifying restrictions
upon the cointegrating space. We apply the techniques to investigating the
importance and e¤ect of permanent shocks in US macroeconomic variables,
with a focus upon the support for the behaviour implied by the model KPSW
and to the evidence and relevance of the liquidity trap for central bank be-
haviour for the US and Japan.
The method presented in this paper has already found applications in

several other areas. Koop, Potter and Strachan (2005) investigate the sup-
port for the hypothesis that variability in US wealth is largely due to tran-
sitory shocks. They demonstrate the sensitivity of this conclusion to model
uncertainty. Koop, León-González and Strachan (2006) develop methods
of Bayesian inference in a �exible form of cointegrating VECM panel data
model. These methods are applied to a monetary model of the exchange rate
commonly employed in international �nance. Other current work includes
investigating the impact of oil prices on the probability of encountering the
liquidity trap in the UK and stability of the money demand relation for
Australia.
More recent work is looking to develop methods of inference in very large

model sets (as occurs in, say, models with the additional dimension of an
unknown number of regime shifts) using the reversible jump methodology
proposed by Green (1995).
We end with mentioning two topics for further research. First, there ex-

ists the issue of the robustness of the results with respect to prior and model
speci�cation. Very natural extensions of our approach are to include prior
inequality conditions in the parameter space of structural VARs and con-
sider forms of nonlinearity and time variation in the model itself as Primiceri
(2005) does for the VAR. For instance, in using a SVAR for business cycle
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analysis one may use prior information on the length and amplitude of the
period of oscillation (see Harvey, Trimbur and van Dijk (2007)). An example
of a possible nonlinear time varying structure that may prove useful is pre-
sented in Paap and van Dijk (2003). Systematic use of inequality conditions
and nonlinearity implies a more intense use of MCMC algorithms. Second,
one may use the results of our approach in explicit decision problems in in-
ternational and �nancial markets like hedging currency risk or evaluation of
option prices.
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8 Appendix

In this appendix we provide the theorems used in the paper. For background
and proofs we refer to the unpublished report Strachan and van Dijk (2006).
We also sketch the line of reasoning leading to some theorems.
To integrate (9) with respect to (
; a�; b�) we �rst analytically integrate

(5) with respect to (a�;
) as these parameters have conditional posteriors of
standard form. This integration gives us the following.

Theorem 1 The marginal posterior for (b�;M�) is

p (b�;M�jy) _ g�k (b
�jM�; y) (db

�) ; (13)

k (b�jM�; y) = jIr� + ��0D0�
�j�T=2 jIr� + ��0D1�

�j(T�n)=2 exp
n
�n
2
tr��0��

o
:
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The expressions for g�, D0 and D1 are

g� = (2�)�r=2 �n(k�+r)=2n�nr=2 jS + S00j�T=2 jI� + Z 02Z2j
�n=2

D1 = Z 01M22Z1; M22 = IT � Z2 (Z
0
2Z2 + �Iki)

�1
Z 02 and

D0 = D1 � S01S
�1
11 S10

where
S10 = Z 01M22Z0 and S00 = Z 00M22Z0.

Proof . See, for example, Zellner (1971) or Bauwens and van Dijk (1990)26.�

Theorem 2 The Jacobian for the transformation from p 2 Gr;n�r to vec
�
�2
�
2

R(n�r)r is de�ned by

dgnr = ��(n�r)r�rj=1
� [(n+ 1� j) =2]

� [(r + 1� j) =2]

���Ir + �
0
2�2

����n=2 �d�2� (14)

where � (q) =
R1
0
uq�1e�udu for q > 0:

Next we provide a theorem that linear identifying restrictions with a �at
prior give zero weight to the chosen linear restrictions. The Jacobian de�ned
by (14) implies that a �at prior on p is informative with respect to �2 and
vice versa. This leads us to consider the implications of a �at prior on �2 for
the prior on p.

Theorem 3 The Jacobian for the transformation from �2 2 R(n�r)r to p 2
Gr;n�r is de�ned by�
d�2

�
= �(n�r)r�rj=1

� [(r + 1� j) =2]

� [(n+ 1� j) =2]

��Ir + (c�)0�1 �0c0?c?� (c�)�1��n=2 (dgnr )
= J dgnr : (15)

Proof . Invert (14) and replace �2 by c?� (c�)
�1.�

The following proof demonstrates the claim in Section 3.2 that assuming
we know which rows of � are linearly independent so as to impose linear
identifying restrictions makes this assumption a priori impossible.

26Remark: From the expression (13) that we see that not only is d� invariant to � ! �C
for C 2 O (r), but so is the kernel of the marginal density for � given M!; k (�jM!; y) ;
and thus the complete posterior for � given M!.

42



Theorem 4 Given r; use of the normalisation �2 = c?� (c�)
�1 results in

a transformation of measures for the transformation �2 2 R(n�r)r ! p 2
Gr;n�r that places in�nite mass in the region of null space of c relative to the
complement of this region.

Proof . Let �c? be the plane de�ned by the null space of c. De�ne
a ball, B, of �xed diameter, d, around �c? and let N0 = B \ Gr;n�r and
N = Gr;n�r �N0. Since for d > 0,

R
N
Jdgnr is �nite whereas

R
N0
Jdgnr = 1,

we have R
N0
JdgnrR

N
Jdgnr

=1:

�
Discussion: Essentially, the Jacobian for �2 ! p places in�nitely more

weight in the direction where c� is singular. Thus, normalisation of � by
choice of c with a �at prior on �2 implies in�nite prior odds against this
normalisation.
To support the use of model averaging in this application, we provide here

proofs that the posterior will be proper and all �nite moments of �� exist.
From the expression for k (b�jM�; y) above, we can see the marginal posterior
for b� is a polynomial times the kernel for a Normal. The expectation with
respect to the divergent Lebesgue measure of the polynomial is �nite as it
is the kernel of a 1-1 poly-t (Drèze, 1977). The measure with respect to a
convergent measure will then be �nite. As all moments of a Normal exist,
the expectation of this polynomial with respect to kernel of the Normal -
a convergent measure - will be �nite. Taking the density as the expecta-
tion of a polynomial with respect to a Normal distribution also tells us that
jb�jc k (b�jM�; y) for any c � 0 will be �nite and so all moments will exist. �
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Figure 1: Logarithms of U.S. consumption (ct), investment (it) and income
(inct). The data are seasonally adjusted, quarterly observations covering the
period from the �rst quarter 1951 to the second quarter of 2005, on Personal
Consumption Expenditures, Gross Private Domestic Investment, and GDP
(Source: Bureau of Economic Analysis).
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Figure 2: This �gure shows the densities over 60 periods of the impulse re-
sponses of consumption to a permanent shock. The upper panel shows the
20% (0-0.2), 40% (0.2-0.4), 60% (0.4-0.6) and 80% (0.6-0.8) highest posterior
density intervals. The lower panel shows the density pro�les for the impulse
response at h = 10; 30 and 60 periods into the future.
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Investment

Figure 3: This �gure shows the densities over 60 periods of the impulse
responses of investment to a permanent shock. The upper panel shows the
20% (0-0.2), 40% (0.2-0.4), 60% (0.4-0.6) and 80% (0.6-0.8) highest posterior
density intervals. The lower panel shows the density pro�les for the impulse
response at h = 10; 30 and 60 periods into the future.
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Output

Figure 4: This �gure shows the densities over 60 periods of the impulse
responses of income to a permanent shock. The upper panel shows the
20% (0-0.2), 40% (0.2-0.4), 60% (0.4-0.6) and 80% (0.6-0.8) highest posterior
density intervals. The lower panel shows the density pro�les for the impulse
response at h = 10; 30 and 60 periods into the future.
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Figure 5: Plot of annual in�ation (DCPI or DRPI), annual growth in real
per capita GDP (DGDP) and interest rates (Rt) for the US and Japan.
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Figure 6: In each panel is plotted: the estimated probability of LT (Left
hand scale) when r is estimated, LT(r-hat); the estimated probabilities of LT
when r = 0:25% and 0:5%, LT(0.25%) and LT(0.50%); and the interest rate,
rt (Right hand scale). Note that the scale is di¤erent on the left for the US
to that for Japan.
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Figure 7: This �gure plots the estimated probability of LT (Left hand scale)
for Japan for r = 0:25% and 0:5% without stochastic volatility The estimates
without SV are the dashed lines LTH(0.25%) and LTH(0.50%). The interest
rate is rt (Right hand scale).
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