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Macro, frailty, and contagion effects in defaults:
lessons from the 2008 credit crisis

Abstract

In the aftermath of the financial crisis, banks in the U.S. and Europe have been sub-

jected to a sequence of stress tests to measure system stability. Such tests are for-

mulated in terms of adverse economic scenarios rather than in terms of systematic

default rate increases. This suggests that macroeconomic conditions fully capture de-

fault stress. However, two additional explanations can be found in the literature for

the occurrence of default clusters: autonomous default rate dynamics, also known as

frailty, and industry-specific effects including contagion. We develop a new method-

ological framework to disentangle, quantify, and test these three competing explana-

tions. Using U.S. default data we find that observed macro and financial market factors

account for only 30–60% of systematic default risk. Consequently, stress-testing frame-

works that only control for observed macro conditions leave out a substantial share of

systematic risk. The components not related to business-cycle dynamics (frailty) are

particularly relevant before and during times of financial market turbulence. For exam-

ple, we find clear systemic risk build-up over the period preceding the 2008 credit crisis.

Keywords: financial crisis; default risk; credit portfolio models; frailty-correlated

defaults; state space methods; doubly stochastic default times.

JEL classification: G21



1 Introduction

During and following the 2008 financial crisis, banks in the U.S. and Europe have been

subjected to a range of stress tests in an effort to assess the safety and solidity of the banking

system. Such tests typically involve extreme scenarios for the main risk drivers of banks, such

as economic growth figures, default rates, interest and exchange rates, and liquidity levels.

When focusing on the banking book, the dominant risk factor is the systematic variation

in the default rate. Systematic increases in default rates may lead to clusters of defaults.

For example, aggregate U.S. default rates during the 1991, 2001, and 2008 recession periods

are up to five times higher than in intermediate expansion years. Typically, however, stress

tests are not formulated directly in terms of higher default rates, but rather in terms of

economic scenarios. For example, the stress scenario in the 2010 European stress testing

exercise involved a double-dip recession, with GDP growth dropping around 1% and 2%

below the baseline prediction in 2010 and 2011, respectively. Additional stress in terms of

rising unemployment rates, rising sovereign yields, and falling house prices was added to

this. Based on these stressed economic conditions, banks were left to translate the economic

scenarios into default rate scenarios, credit losses, and finally capital implications.

It is well known that default rates depend on the prevailing macroeconomic conditions,

see for example Pesaran, Schuermann, Treutler, and Weiner (2006), Duffie, Saita, and Wang

(2007), Figlewski, Frydman, and Liang (2008), and Koopman, Kräussl, Lucas, and Monteiro

(2009). The common dependence of corporate credit quality on macro economic conditions,

however, is not the only explanation provided in the literature for default clustering. Recent

research indicates that conditioning on readily available macroeconomic and firm-specific

information, though important, is not sufficient to fully explain the observed degree of de-

fault rate variation. Das, Duffie, Kapadia, and Saita (2007) reject the joint hypothesis of

(i) well-specified default intensities in terms of observed macroeconomic and firm-specific

information, and (ii) the doubly stochastic independence assumption which underlies many

credit risk models that are used in practice.

Empirically understanding the origins of systematic default rate variation is thus of prime

importance. If in addition to macroeconomic conditions there are additional factors that im-

pact default clustering, current stress testing methodologies might be misguided and provide

a misleading picture of the safety of the banking system. A different framework should then

be designed that also accounts for the additional factors of default rate volatility. To assess

the severity of this problem, we need a qualification and a quantification of the relative

magnitude of the additional factors compared to standard macroeconomic risk drivers. A

proper methodology for this, however, is currently lacking.
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In this paper, we fill this gap by empirically disentangling the relative contribution of

three different explanations for default rate clustering using U.S. corporate default data of

Moody’s. We develop a new methodological framework to study simultaneous factor struc-

tures for macroeconomic and financial data as well as discrete default counts. The framework

by itself also has applications beyond the current context. Using the new framework, we

quantify for the first time the relative contribution of the different origins of systematic de-

fault rate variation. We do so by constructing simple R2-type measures based on our factor

models and by measuring the increases in R2 between the different empirical models.

The two additional explanations for default rate clustering that we consider in this paper

besides the exposure to shared macroeconomic risk factors, are known as frailty-correlated

defaults and contagion, respectively. In a frailty model, the additional variation in default

intensities is captured by an unobserved dynamic (frailty) component, see Das et al. (2007),

McNeil and Wendin (2007), Koopman, Lucas, and Monteiro (2008), Koopman and Lucas

(2008), and Duffie, Eckner, Horel, and Saita (2009). The frailty factor captures default

clustering above and beyond what can be explained by macroeconomic variables and firm-

specific information. The unobserved component can pick up the effects of omitted variables

in the model as well as other effects that are difficult to quantify, see Duffie et al. (2009).

Contagion models, by contrast, focus on the phenomenon that a defaulting firm weakens

other firms with which it has business links, see Giesecke (2004) and Giesecke and Azizpour

(2008). Contagion effects may dominate potentially off-setting competitive effects at the

intra-industry level, see e.g. Lang and Stulz (1992) and Jorion and Zhang (2007). Lando and

Nielsen (2008) screen hundreds of default histories for evidence of direct default contagion.

The examples suggest that contagion is mainly an intra-industry effect. As a result, contagion

may explain default dependence at the industry level beyond that induced by macro and

frailty factors.

Lando and Nielsen (2008) discuss whether default clustering can be compared with

asthma or the flu. In the case of asthma, occurrences are not contagious but depend on

exogenous background processes such as air pollution. On the other hand, the flu is di-

rectly contagious. Frailty models are, in a sense, more related to models for asthma, while

contagion models based on self-exciting processes are similar to models for flu. Whether

one effect dominates the other empirically is therefore highly relevant to the appropriate

modeling framework for portfolio credit risk.

Our research indicates that defaults are more related to asthma than to flu: the common

factors to all firms (macro and frailty) account for approximately 75% of the default cluster-

ing. It leaves industry (and thus possibly contagion) effects as a substantial secondary source

2



of credit portfolio risk. We find that on average across industries and time, 66% of total

default risk is idiosyncratic and therefore diversifiable. The remainder 34% is systematic.

For subinvestment grade firms, 30% of systematic default risk can be attributed to common

variation with the business cycle and with financial markets data. For investment grade

firms, this percentage is as high as 60%. The remaining share of systematic credit risk is

driven by a frailty factor and industry-specific factors (in roughly equal proportions). The

frailty component cannot be diversified in the cross-section, whereas the industry effects can

only be diversified to some extent.

Our reported risk shares vary considerably over industry sectors, rating groups and time.

For example, we find that the frailty component tends to explain a higher share of default

rate volatility before and during times of crisis. In particular, we find systematic credit risk

building up in the years 2002-2008, leading up to the financial crisis. The framework may

thus also provide a tool to detect systemic risk build-up in the economy. Tools to assess the

evolution and composition of latent financial risks are urgently needed at macro-prudential

policy institutions, such as the Financial Services Oversight Council (FSOC) in the United

States, and the European Systemic Risk Board (ESRB) in the European Union.

The remainder of this paper is organized as follows. Section 2 introduces our general

methodological framework. Section 3 presents our core empirical results, in particular a

decomposition of total systematic default risk into its latent constituents. We comment on

implications for portfolio credit risk management in Section 4. Section 5 concludes.

2 A joint model for default, macro, and industry risk

The key challenge in decomposing systematic credit risk is to define a factor model structure

that can simultaneously handle normally distributed (macro variables) and non-normally

distributed (default counts) data, as well as linear and non-linear factor dependence. The

factor model we introduce for this purpose is a Mixed Measurement Dynamic Factor Model,

or in short, MiMe DFM. In the development of our new model, we focus on the decomposition

of systematic default risk. However, the model may also find relevant applications in other

areas of finance. The model is applicable to any setting where different distributions have

to be mixed in a factor structure.

In our analysis we consider the vector of observations given by

yt = (y1t, . . . , yJt, yJ+1,t, . . . , yJ+N,t)
′, (1)

for t = 1, . . . , T , where the first J elements of yt are default counts. We count defaults for
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different ratings and industries. As a consequence, the first J elements of yt are discrete-

valued. The remaining N elements of yt contain macro and financial variables which take

continuous values. We assume that both the default counts and the macro and financial time

series data are driven by a set of dynamic factors. Some of these factors may be common to

all variables in yt. Other factors may only affect a subset of the elements in yt.

In our study, we distinguish macro, frailty, and industry (or contagion) factors. The

common factors are denoted as fm
t , fd

t , and f i
t , respectively. The factors fm

t capture shared

business cycle dynamics in macroeconomic data and default counts. Therefore, factors fm
t

are common to all data. Frailty factors fd
t are default-specific, i.e., common to default data

(y1t, . . . , yJt) and independent of observed macroeconomic and financial data by construction.

By not allowing the frailty factors to impact the macro series yjt for j = J + 1, . . . , J +

N , we effectively restrict fd
t to pick up any default clustering above and beyond that is

implied by macroeconomic and financial factors fm
t . The third set of factors f i

t considered

in this paper affects firms in the same industry. Such factors may arise as a result of

default contagion through up- and downstream business links. Alternatively, they may

be interpreted as industry-specific frailty factors. Disentangling these two interpretations

is empirically impossible unless detailed information at the firm-level is available on firm

interlinkages at the trade and institutional level. Such data are not available for our current

analysis.

We gather all factors into the vector f ′t = (fm′
t , fd′

t , f i′
t ). Note that we only observe

the default counts and macro variables yt. The factors ft themselves are latent and thus

unobserved. We assume the following simple autoregressive dynamics for the latent factors,

ft = Φft−1 + ηt, t = 1, 2, . . . , (2)

with the coefficient matrix Φ diagonal and with ηt ∼ N(0, Ση). More complex dynamics than

(2) can be considered as well. The autoregressive structure allows the components of ft to

be sticky. For example, it allows the macroeconomic factors fm
t to evolve slowly over time

and capture the business cycle component in both macro and default data. Similarly, the

credit climate and industry default conditions can be captured by persistent processes for

fd
t and f i

t , such that they can capture the clustering of high-default years. To complete the

specification of the factor process, we specify the initial condition f1 ∼ N(0, Σ0). We assume

stationarity of the factor dynamics by insisting that all m eigenvalues of Φ lie inside the unit

circle. The m× 1 disturbance vectors ηt are serially uncorrelated.

To combine the normally and non-normally distributed elements in yt, we adopt our

mixed measurement approach. The MiMe DFM is based on the standard factor model
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assumption: conditional on the factors ft, the measurements in yt are independent. In our

specific case, we assume that conditional on ft, the first J elements of yt have a binomial

distribution with parameters kjt and πjt, for j = 1, . . . , J . Here, kjt denotes the number of

firms in a specific rating and industry bucket j at time t and πjt denotes the probability

of default conditional on ft. For more details on the conditionally binomial model see

e.g. McNeil, Frey, and Embrechts (2005, Chapter 9). Frey and McNeil (2002) show that

all available industry credit risk models, i.e. Creditmetrics, KMV, CreditRisk+, can be

presented as conditional binomial models. The remaining N elements of yt follow conditional

on ft a normal distribution with mean µjt and variance σ2
jt for j = J + 1, . . . , J + N .

2.1 The mixed measurement dynamic factor model

Both the binomial and the normal distribution are members of the exponential family of

distributions. In this paper, we formulate the MiMe DFM for random variables from the

exponential family. The model can easily be extended to handle distributions outside this

class. The estimation methodology presented in this paper applies to the general case as

well.

The link between the factors ft and the observations yt relies on time-varying location

parameters, such as the default probability πjt for default data and the mean µjt for Gaussian

data. In general, let each variable yjt follow the distribution

yjt|Ft ∼ pj(yjt|Ft; ψ), (3)

where Ft = {ft, ft−1, . . .} and ψ is a vector of fixed and unknown parameters that include,

for example, the elements of Φ and Ση in (2). The index j of the density pj(·) indicates that

the type of measurement yjt (discrete versus continuous) may vary across j. We assume that

the information from past factors Ft impacts the distribution of yjt through an unobserved

signal θjt. For example, for the normal distribution, θjt equals the mean, while for the

binomial case θjt is the log-odds ratio, log(πjt/(1 − πjt)). For exponential family data, θjt

is the so-called canonical parameter, see Appendix A1. We assume that the signal θjt is a

linear function of unobserved factors, ft, such that

θjt = αj + λ′jft, (4)

with αj an unknown constant, and λj an m × 1 loading vector with unknown coefficients.

It is conceptually straightforward to let θjt also depend on past values of the factors ft. We

emphasize that yt may depend linearly as well as non-linearly on the common factors ft.
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As the key question in this paper concerns the relative contributions of macro, frailty,

and contagion (or industry) risk to general default risk, we introduce further restrictions on

the general form of (4). In particular, we specify the signals by

θjt = λ0j + β′jf
m
t + γ′jf

d
t + δ′jf

i
t , for j = 1, . . . , J, (5)

θjt = λ0j + β′jf
m
t , for j = J + 1, . . . , J + N. (6)

The signal specification in (6) implies that the means of the macro variables depend linearly

on the macro factors fm
t . The components of fm

t capture general developments in business

cycle activity, lending conditions, financial markets, etc. The log-odds ratios in (5) partly

depend on macro factors, but also depend on frailty risk fd
t and industry f i

t factors. The

specification of the signals in (5) and (6) is key to our empirical analysis where we focus on

studying whether macro dynamics explain all systematic default rate variation, or whether

and to which extend frailty and industry factors are also important.

For model identification, we impose the restriction Σ = I − ΦΦ′. This implies that the

factor processes in (2) have an autoregressive structure with unconditional unit variance.

It also implies that factor loadings in βj, γj, and δj can be interpreted as factor standard

deviations (volatilities) for firms of type j = 1, . . . , J .

As mentioned, all model parameters that need to be estimated are collected in a param-

eter vector ψ. This includes the factor loadings βj, γj, δj, but also the coefficients in the

autoregressive matrix Φ in (2). We aim to estimate ψ by maximum likelihood. For this

purpose, we numerically maximize the likelihood function as given by

p(y; ψ) =

∫
p(y, f ; ψ)df =

∫
p(y|f ; ψ)p(f ; ψ)df, (7)

where p(y, f ; ψ) is the joint density of the observation vector y′ = (y′1, . . . , y
′
T ) and the

factors f ′ = (f ′1, . . . , f
′
T ). The integral in (7) is not known analytically, and we therefore rely

on numerical methods. The likelihood function (7) can be evaluated efficiently via Monte

Carlo integration and using the method of importance sampling, see Durbin and Koopman

(2001). Maximizing the Monte Carlo estimate of the likelihood function is feasible using

standard computers. Once maximum likelihood estimates of ψ are obtained, (smoothed)

estimates of the unobserved macro, frailty, and industry factors ft and their standard errors

can be obtained using the same Monte Carlo methods. This methodology has a number of

interesting features in the current setting, but we defer all details on the estimation procedure

to the Appendix.
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2.2 Decomposition of non-Gaussian variation

Once the model parameters and risk factors are estimated, we need to assess which share of

variation in default data is captured by the different latent factors. Obviously, this cannot

be achieved by a standard R2 measure. We therefore adopt a pseudo-R2 measure which is

similar to those discussed in Cameron and Windmeijer (1997). The pseudo-R2 measure is

based on a distance measure between two distributions. For the normal linear regression

model, the pseudo-R2 reduces to the familiar R2 from regression.

Our distance measure for the pseudo-R2 is the Kullback-Leibler (KL) divergence, which

is defined as

KL(θ1, θ2) = 2

∫
[log pθ1(y)− log pθ2(y)] pθ1(y)dy. (8)

The KL divergence measures the average distance between the two log-densities log pθ1 and

log pθ2 , which are completely specified by parameter vectors θ1 and θ2, respectively. We are

particularly interested in the pseudo-R2 of the default equations of the model to measure the

size and composition of systematic default risk. Therefore, in our current setting pθ(y) is the

binomial distribution for each rating-industry combination, while θ denotes the time series

of corresponding (estimated) log-odds for that combination. The differences in log-odds are

due to the use of different models.

Figure 1 illustrates the idea of assessing the contribution of common factors to default

risk in more detail. We distinguish several alternative model specifications indicated by Mna,

Mm, Mmd, and Mmdi. These models contain an increasing collection of latent factors. Model

Mna does not contain any factors, while models Mm, Mmd, and Mmdi cumulatively add

the macro, frailty, and industry factors, respectively. Model Mmax provides the maximum

possible fit by considering a model with a separate dummy variable for each observation.

Thus, the model contains as many parameters as observations. While useless for practical

purposes, the unrestricted model provides a natural benchmark for what is the maximum

possible fit to the data.

The constructed log-odds can be substituted in (8) to decompose systematic credit risk.

We consider the improvements in fit when moving from Mna to Mm, Mmd, Mmdi, and

ultimately to Mmax. The pseudo-R2 is now defined as

R2(θ) = 1− KL(θmax, θ)

KL(θmax, θna)
. (9)

Note that (9) scales the KL improvements by the total distance between models Mmax and

Mna, that is KL(θmax, θna). This allows us to interpret (9) as the proportional reduction

in variation due to the inclusion of latent factors, see Cameron and Windmeijer (1997).
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Figure 1: Models and reductions in the Kullback-Leibler divergence
The graph shows how reductions in the estimated KL divergence are used to decompose the total variation
in non-Gaussian default counts into risk shares corresponding to increasing sets of latent factors.
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As mentioned earlier, for the standard linear regression model (9) reduces to the standard

R2. For the binary choice model, the McFadden pseudo-R2 is obtained. Similar to the

standard R2, all values lie between zero and one. The relative contribution from each of our

systematic credit risk factors can now be quantified by looking at the increase in pseudo-

R2 when moving from Mm via Mmd to Mmdi. The remainder from Mmdi to Mmax can be

qualified as idiosyncratic risk.

3 Empirical findings for U.S. default and macro data

We study the quarterly default and exposure counts obtained from the Moody’s corporate

default research database for the period 1971Q1 to 2009Q1. Whenever possible, we relate

our findings to questions from the finance and credit risk literature that we perceive to be

open issues. We distinguish seven industry groups (financials and insurance; transportation;

media, hotels, and leisure; utilities and energy; industrials; technology; and retail and con-

sumer products) and four rating groups (investment grade Aaa− Baa, and the speculative

grade groups Ba, B, Caa − C). We have pooled the investment grade firms because de-

faults are rare for this segment. It is assumed that current issuer ratings summarize the

available information about a firm’s financial strength. This may be true only to a first

approximation. However, rating agencies take into account a vast number of accounting and

management information, and provide an assessment of firm-specific information which is

comparable across industry sectors. In addition, ratings may be less noisy compared to raw

balance sheet or equity market based data.

Figure 2 presents aggregate default fractions and disaggregated default data. We observe

a considerable time variation in aggregate default fractions. The disaggregated data reveals

that defaults cluster around recession periods for both investment grade and speculative

grade rated firms.

Macroeconomic and financial data are obtained from the St. Louis Fed online database

FRED, see Table 1 for a listing of macroeconomic and financial data. This data enters the

analysis in the form of annual growth rates, see Figure 3 for time series plots.
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Figure 2: Clustering in default data
The top graph plots (i) the total number of defaults in the Moody’s database

∑
j yjt, (ii) the total number

of exposures
∑

j kjt, and (iii) the aggregate default rate for all Moody’s rated U.S. firms,
∑

j yjt/
∑

j kjt.
The bottom graph plots time series of default fractions yjt/kjt over time. We distinguish four broad rating
groups, i.e., Aaa − Baa, Ba, B, and Caa − C, where each plot contains 12 time series of industry-specific
default fractions.
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Table 1: Macroeconomic Time Series Data
The table gives a full listing of included macroeconomic time series data xt and binary indicators bt. All
time series are obtained from the St. Louis Fed online database, http://research.stlouisfed.org/fred2/.

Category Summary of time series in category Total no

(a) Macro indicators, and

business cycle conditions

Industrial production index

Disposable personal income

ISM Manufacturing index

Uni Michigan consumer sentiment

New housing permits

5

(b) Labour market

conditions

Civilian unemployment rate

Median duration of unemployment

Average weekly hours index

Total non-farm payrolls

4

(c) Monetary policy

and financing conditions

Federal funds rate

Moody’s seasoned Baa corporate bond yield

Mortgage rates, 30 year

10 year treasury rate, constant maturity

Credit spread corporates over treasuries

Government bond term structure spread

6

(d) Bank lending Total Consumer Credit Outstanding

Total Real Estate Loans, all banks 2

(e) Cost of resources PPI Fuels and related Energy

PPI Finished Goods

Trade-weighted U.S. dollar exchange rate
3

(f) Stock market returns S&P 500 yearly returns

S&P 500 return volatility 2

22
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3.1 Major empirical results

Parameter estimates associated with the default counts are presented in Table 2. Estimated

coefficients refer to a model specification with macroeconomic, frailty, and industry-specific

factors. Parameter estimates in the first column combine to fixed effects for each cross-

section j, according to λ0,j = λ0 + λ1,rj
+ λ2,sj

, where the common intercept λ0 is adjusted

by specific coefficients indicating industry sector (sj) and rating group (rj), respectively,

for j = 1, . . . , J with J as the total number of unique groups. The second column reports

the factor loadings β associated with four common macro factors fm
t . Loading coefficients

differ across rating groups. The loadings tend to be larger for investment grade firms; in

particular, their loadings associated with macro factors 1, 3, and 4 are relatively large. This

finding confirms that financially healthy firms are more sensitive to business cycle risk, see

e.g. Basel Committee on Banking Supervision (2004).

Factor loadings γ and δ are given in the last two columns of Table 2. The loadings in γ

are associated with a single common frailty factor fd
t while the loadings in δ are for the six

orthogonal industry (or contagion) factors f i
t . The frailty risk factor fd

t is, by construction,

common to all firms, but unrelated to the macroeconomic data. Frailty risk is relatively

large for all firms, but particularly pronounced for speculative grade firms. Industry sector

loadings are highest for the financial, transportation, and energy and utilities sector.

Figure 4 presents four estimated risk factors fm
t as defined in (5) and (6). We graph the

estimated conditional mean of the factors, along with approximate standard error bands at

a 95% confidence level. For estimation details, we refer to the Appendix A2. The factors are

ordered row-wise from top-left to bottom-right according to their share of explained variation

for the macro and financial data listed in Table 1.

Figure 5 presents the shares of variation in each macroeconomic time series that can be

attributed to the common macroeconomic factors. The first two macroeconomic factors load

mostly on labor market, production, and interest rate data. The last two factors displayed

in the bottom panels of Figure 5 load mostly on survey sentiment data and changes in

price level indicators. The macroeconomic factors capture 24.7%, 22.4%, 11.0%, and 8.0%

of the total variation in the macro data panel, respectively (66.1% in total). The range of

explained variation ranges from about 30% (S&P 500 index returns, fuel prices) to more

than 90% (unemployment rate, average weekly hours index, total non-farm payrolls). All

four common factors fm
t tend to load more on default probabilities of firms rated investment

grade rather than speculative grade, see Table 2.

Figure 6 presents smoothed estimates of the frailty and industry-specific factors. The

frailty factor is high before and during the recession years 1991 and 2001. As a result, the
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Table 2: Parameter estimates, binomial part
We report parameter estimates associated with the binomial data. The coefficients in the first column
combine to fixed effects according to λ0,j = λ0 + λ1,rj

+ λ2,sj
, i.e., the common intercept λ0 is adjusted to

take into account a fixed effect for the rating group and industry sector. The middle column reports loading
coefficients βj on four common macro factors fm

t . The last column reports the loading coefficients γj on the
frailty factor fd

t and loadings δj on industry-specific risk factors f i
t . The estimation sample is 1971Q1 to

2009Q1.

Intercepts λj Loadings fm
t Loadings fd

t

par val t-val
λ0 -2.51 7.61

λfin -0.23 1.03
λtra -0.06 0.24
λlei -0.21 0.86
λutl -0.68 2.13
λtec -0.09 0.62
λret -0.36 1.73

λIG -7.10 15.70
λBB -3.89 12.11
λB -2.12 9.59

par val t-val
β1,IG 0.36 0.57
β1,Ba 0.23 0.56
β1,B 0.25 0.64
β1,C 0.15 0.66

β2,IG 0.22 0.36
β2,Ba 0.24 0.60
β2,B 0.06 0.16
β2,C 0.26 1.32

β3,IG 0.74 1.62
β3,Ba 0.44 1.54
β3,B 0.24 1.05
β3,C 0.20 1.74

β4,IG 0.67 0.93
β4,Ba 0.10 0.23
β4,B -0.34 -0.73
β4,C -0.10 -0.44

par val t-val
γIG 0.23 0.81
γBa 0.46 2.48
γB 0.65 3.93
γC 0.40 5.35

Loadings f i
t

δfin 0.68 0.97
δtra 0.64 0.78
δlei 0.40 1.61
δutl 0.99 2.01
δtec 0.40 1.62
δret 0.40 1.67
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Figure 4: Smoothed Macroeconomic Risk Factors
This figure presents four estimated risk factors fm

t as defined in (5) and (6). We plot the estimated conditional
mean of the factors, along with approximate standard error bands at a 95% confidence level.
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Figure 5: Shares of explained variation in macro and financial time series data
The figure indicates which share of variation in each time series listed in Table 1 can be attributed to each
factor fm. Factors fm are common to the (continuous) macro and financial as well as the (discrete) default
count data.
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Figure 6: Smoothed Frailty Risk Factor and Industry-group dynamics
The top graph shows the estimated frailty risk factor, which is assumed common to all default counts. The
second graph plots six industry-specific risk factors along with asymptotic standard error bands at a 0.05
significance level. High risk factor values imply higher expected default rates.
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frailty factor implies additional default clustering in these times of stress. On the other

hand, the large negative values before the 2007-2009 credit crisis imply defaults that are

systematically ‘too low’ compared to what is implied by macroeconomic and financial data.

Both Das et al. (2007) and Duffie, Eckner, Horel, and Saita (2009) ask what effects are

captured by the frailty factor. Our estimate in Figure 6 suggests that the frailty factor

captures different omitted effects at different times. The frailty factor may capture the

positive effects from a high level of asset securitization activity during 2005-2007. In 2001

and 2002, it may capture the negative effects due to the disappearance of trust in accounting

information, in response to the Enron and Worldcom scandals. These effects are likely to be

important for defaults, but difficult to measure. The frailty factor reverts to its mean level

during the 2007-09 credit crisis. Apparently, the extreme realizations in macroeconomic and

financial variables during 2008-09 are sufficient to account for the levels of observed defaults.

Industry factors f i
t capture deviations of industry-specific dynamics from common vari-

ation. For example, we observe industry-specific default stress for financial firms during

the U.S. savings and loan crises from 1986-1990, and during the current crisis of 2007-09.

Similarly, we observe considerably higher default stress for the technology sector following

the 2000/01 asset bubble burst, or for the transportation industry following the 9/11 at-

tack. Lando and Nielsen (2008) observe that it is very difficult to observe evidence for direct

default contagion in the Moody’s database, based on reading many individual default his-

tories. We confirm this finding to some extent. Our industry factors look more like the

industry-specific propagation of economy-wide shocks. For example, the 9/11 shock to the

airline industry is visible as a brief spike in the transportation sector at that time. It is

difficult to interpret these industry dynamics as contagion. Airlines do not in general lend

money to each other, and would gladly take over the remaining market share of a bankrupt

competitor. Similarly, the default stress for technology firms in 2001 is clearly visible in

the estimated industry-specific risk factor, but is most likely not due to contagion through

business links, or indirect contagion through firm’s balance sheet data.

Figure 7 presents the model-implied economy-wide default rate against the aggregate

observed rates. We distinguish four specifications with (a) no factors, (b) fm
t only, (c) fm

t , fd
t ,

and (d) all factors fm
t , fd

t , f i
t . Based on these specifications, we can assess the goodness of fit

achieved at the aggregate level when adding latent factors. The static model fails to capture

the observed default clustering around recession periods. The changes in the default rate

for the static model are due to changes in the composition and quality of the rated universe.

Such changes are captured by the rating and industry specific intercepts in the model. The

upper-right panel indicates that the inclusion of macro variables helps to explain default
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Figure 7: Model fit to observed aggregate default rate
Each panel plots the observed quarterly default rate for all rated firms against the default rate implied by
different model specifications. The models feature either (a) no factors, (b) only macro factors fm, (c) macro
factors and a frailty component fm, fd, and (d) all factors fm, fd, f i, respectively.
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rate variation. The latent frailty dynamics given by fd
t , however, are clearly required for a

good model fit. This holds both in low default periods such as 2002-2007, as well as in high

default periods such as 1991. The bottom graphs of Figure 7 indicate that industry-specific

developments cancel out in the cross-section to some extent and can thus be diversified. As

a result, they may matter less from a (fully diversified) portfolio perspective.

3.2 Total default risk: a decomposition

We use the pseudo-R2 measure as explained in Section 2.2 to assess which share of default

rate volatility is captured by an increasing set of systematic risk factors. The earlier literature

on default modeling in the presence of explanatory variables has not addressed this issue in

detail.

Table 3 reports the estimated risk shares. By pooling over rating and industry groups, and

by taking into account default and macroeconomic data for more than 35 years, we find that

approximately 66% of a firm’s total default risk is idiosyncratic. The idiosyncratic risk can

be eliminated in a large credit portfolio through diversification. The remaining share of risk,

approximately 34%, does not average out in the cross section and is referred to as systematic

risk. We find that for financially healthy firms (high ratings) the largest share of systematic

default risk is due to the common exposure to macroeconomic and financial time series data.

This common exposure can be regarded as the business cycle component. It constitutes

approximately 58% of systematic risk for firms rated investment grade, and 30–37% for

firms rated speculative grade. The business cycle variation is not sufficient to account for all

default rate variability in the data. Specifically, our results indicate that approximately 14%

of total default risk, which is 41% of systematic risk, is due to an unobserved frailty factor.

Frailty risk is low for investment grade firms (6%), but substantially larger for financially

weaker firms (for 26% for Caa to 53% for B rated firms). Finally, approximately 9% of total

default risk, or 25% of systematic risk, can be attributed to industry-specific developments,

which may be partly due to default contagion.

Table 3 indicates how the estimated risk shares vary across rating and industry groups.

The question whether firms rated investment grade have higher systematic risk than firms

rated speculative grade is raised for instance by the Basel committee, see Basel Committee

on Banking Supervision (2004). The Basel II framework imposes lower asset correlations

for financially weaker firms, indicating lower systematic risk. Empirical studies employing a

single latent factor tend to confirm this finding, see McNeil and Wendin (2007), and Koopman

and Lucas (2008). In contrast to earlier studies, the last column of Table 3 indicates that

speculative grade firms do not have less systematic risk than investment grade firms. This
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Table 3: A decomposition of total default risk
The table decomposes total, i.e. systematic and idiosyncratic, default risk into four unobserved constituents.
We distinguish (i) common variation in defaults with observed macroeconomic and financial data, (ii) latent
default-specific (frailty) risk, (iii) latent industry-sector dynamics, and (iv) non-systematic, and therefore
diversifiable risk. The decomposition is based on data from 1971Q1 to 2009Q1.

Data Business cycle Frailty risk Industry-level Idiosyncratic
f c

t fd
t f i

t distr.

Pooled 11.4% 13.9% 8.6% 66.1%
(33.6%) (40.9%) (25.4%)

Rating groups:
Aaa-Baa 10.4% 1.1% 6.4% 82.1%

(58.0%) (6.3%) (35.7%)
Ba 7.1% 7.5% 6.2% 79.2%

(34.0%) (36.0%) (30.0%)
B 12.5% 22.3% 7.0% 58.2%

(30.0%) (53.2%) (16.8%)
Caa-C 12.3% 8.9% 12.3% 66.5%

(36.7%) (26.5%) (36.8%)

Industry sectors:
Bank 5.4% 11.9% 18.8% 63.8%
Financial non-Bank 5.0% 5.3% 9.2% 80.5%
Transportation 7.4% 13.7% 18.8% 60.1%
Media 10.6% 19.9% 8.8% 60.8%
Leisure 15.7% 11.1% 2.6% 70.7%
Utilities 1.1% 4.9% 10.7% 83.3%
Energy 24.0% 8.7% 18.0% 49.3%
Industrial 16.3% 23.1% - 60.7%
High Tech 17.2% 11.0% 12.5% 59.3%
Retail 6.7% 9.6% 10.4% 73.2%
Consumer Goods 4.6% 18.4% 1.3% 75.7%
Misc 4.5% 13.2% 1.4% 80.9%
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Figure 8: Time variation in risk shares
We plot risk shares estimated over a rolling window of eight quarters from 1971Q1 to 2009Q1. Shaded areas
correspond to recession periods as dated by the NBER.
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finding can be traced back to two sources. First, the frailty factor loads more heavily on

speculative grade firms than investment grade firms. Second, some macro risk factors load

on low rating groups also, see Table 2.

Figure 8 presents time series of estimated risk shares over a rolling window of eight

quarters. These estimated risk shares vary considerably over time. While common variation

with the business cycle explains approximately 11% of total variation on average, this share

may be as high as 40%, for example in the years leading up to 2007. Similarly, the frailty

factor captures a higher share of systematic default risk before and during times of crisis such

as 1990-1991 and 2006-2007. In the former case, positive values of the frailty factor imply

higher default rates that go beyond those implied by macroeconomic data. In the latter case,

the significantly negative values of the frailty factor during 2006-2007 imply lower default

rates than expected from macroeconomic data only. High absolute values of the frailty

factor imply times when systematic default risk diverges from business cycle developments

as represented by the common factors. Industry specific effects have been important mostly
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during the late 1980s and 2001-02. These are periods when banking specific risk and the

burst of the technology bubble are captured through industry-specific factors, respectively.

The bottom right graph of Figure 8 presents the share of idiosyncratic risk over time. We

observe a gradual decrease in idiosyncratic risk building up to the 2007-2009 crisis. Defaults

become more systematic between 2001 and 2007 due to both macro and frailty effects.

Negative values of the frailty risk factor during these years indicate that default rates were

‘systematically lower’ than what would be expected from macroeconomic developments. The

rapid correction of this phenomenon over the financial crisis is striking. The eight-quarter

rolling R2 for the macro factors decreases by a factor 2 from 40% to 20% over 2007Q1-

2009Q1. Given the rolling window approach, the instantaneous effect may be even higher.

The effect is offset by an increased share of explanation due to industry effects (from 2%

to 6%) and idiosyncratic risk (from roughly 40% to 50%). Both of these are diversifiable

to a lesser or greater extent. The share of explanation due to the frailty factor remains

high over the entire crisis period and only decreases towards the end of our sample. Again,

this underlines the need for default risk models that include other risk factors above and

beyond standard observed macroeconomic and financial time series. Such factors pick up

rapid changes in the credit climate that might not be captured sufficiently well by observed

risk factors. We address the economic impact of frailty and industry factors in the next

section.

4 Implications for risk management

Many default risk models that are employed in day-to-day risk management rely on the

assumption of conditionally independent defaults, or doubly stochastic default times, see Das

et al. (2007). At the same time, most models do not allow for unobserved risk factors and

intra-industry dynamics to capture excess default clustering. We have reported in Section 3.2

that frailty and industry factors often account for more than half of systematic default risk.

In this section we explore the consequences for portfolio credit risk when frailty and industry

factors are not accounted for in explaining default variation. This is of key importance for

internal risk assessment as well as external (macro-prudential) supervision.

4.1 The frailty factor

The frailty factor captures a substantial share of the common variation in disaggregated

default rates at the industry and rating level, see Table 3. The presence of a frailty factor

may increase default rate volatility compared to a model without latent risk dynamics. As
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a result it may shift probability mass of the portfolio credit loss distribution towards more

extreme values. This would increase the capital buffers prescribed by the model. To explore

this issue we conduct the following stylized credit risk experiment.

We consider a portfolio of short-term (rolling) loans to all Moody’s rated U.S. firms.

Loans are extended at the beginning of each quarter during 1981Q1 and 2008Q4 at no

interest. A non-defaulting loan is re-extended after three months. The loan exposure to

each firm at time t is given by the inverse of the total number of firms at that time, that is

(
∑

j kjt)
−1. This implies that the total credit portfolio value is 1$ at all times.

In case of a default only a certain percentage of the principal is recovered. Rather than

using an average recovery rate of around 60%, we assume a stressed recovery rate of 20%.

This substantially lower recovery rate accounts for the possible empirical correlation between

the probability of default and the recovery rate, see for example Altman, Brady, Resti, and

Sironi (2003). Since we are interested in the tail of the loss distribution, the clustering of

defaults during periods of low recovery rates is important.

The financial institution uses the reduced form model of Section 3 to determine the

appropriate capital buffers. Typically, it picks a high percentile of the predictive loss distri-

bution. Simulating these percentiles is straightforward. First, one uses the filtering methods

introduced in Appendix A2 to simulate the current position of the latent systematic risk

factors. Next, one can use (2) directly to simulate future risk factor realizations. Finally,

conditional on the risk factor path, the defaults can be simulated by combining (3) and (5).

Our example portfolio is stylized in many regards. Nevertheless, it allows us to investi-

gate the importance of macroeconomic, frailty, and industry-specific dynamics for the risk

measurement of a diversified loan or bond portfolio.

The top panel in Figure 9 contains the credit portfolio loss distribution implied by actual

historical default data. This distribution can be compared with the (unconditional) loss

distribution implied by three different specifications of our econometric model of Section 2.

Portfolio loss densities for actual loan portfolios are known to be skewed to the right and

leptokurtic, see e.g. McNeil, Frey, and Embrechts (2005, Chapter 8). Flat segments or bi-

modality may arise due to the discontinuity in recovered principals in case of default. These

qualitative features are confirmed in the top panel of Figure 9.

By comparing the unconditional loss distributions in the top panel of Figure 9, we find

that the common variation obtained from macroeconomic data is in general not sufficient to

reproduce the thick right-hand tail implied by actual default data. In particular the shape

of the upper tail of the empirical distribution is not well reproduced if only macro factors are

used. The additional frailty and industry factors shift some of the probability mass into the
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Figure 9: Real vs. model-implied credit portfolio loss distribution
All distribution plots refer to a credit portfolio with uniform loan exposures to Moody’s rated firms. The
top panel graphs the (unconditional) portfolio loss distribution as implied by historical quarterly defaults
and firm counts in the database. The horizontal axis measures quarterly loan losses as a fraction of portfolio
value. The remaining plots in the top panel are the unconditional loss densities as implied by models with
macro factors fm

t , macro factors and a frailty component fm
t , fd

t , and all factors fm
t , fd

t , f i
t , respectively.

The bottom panel plots three simulated predictive portfolio loss densities for the year 2009, conditional on
macro and default data until end of 2008, for different risk factor specifications. Here, the horizontal axis
measures annual losses as fractions of portfolio value.
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right tail. The loss distributions implied by these models are closer to the actual distribution.

The full model is able to reproduce the distributional characteristics of default rates, such

as the positive skewness, excess kurtosis, and an irregular shape in the upper tail.

The bottom panel of Figure 9 graphs the simulated predictive credit portfolio loss den-

sities for the years 2009, conditional on data until the end of 2008, as implied by different

model specifications. Similarly to the unconditional case, the frailty factor shifts probability

mass from the center of the distribution into the upper tail. Simulated risk measures are

higher as a result. For the plotted densities, the simulated 99th percentile shifts out from

about 6.24% to 8.34% of total portfolio value. Predicted annual mean losses are roughly

comparable at 2.96% and 2.71%, respectively.

4.2 Industry specific risk dynamics

Section 3.2 shows that industry-specific variation accounts for about 17–37% of default rate

volatility at the rating and industry level. Industry-specific factors capture the differential

impact of each crisis on a given sector. For example, default stress for the banking industry

has been high before and during the 1991 and 2008 recessions, but negligible during the

2001 recession. Similarly, while the 2007-2009 crisis is particularly stressful for firms from

the financial, manufacturing, and media, hotels, and leisure sector, it is relatively benign on

the technology, energy, and transportation sectors.

A specific case illustrates how macro, frailty, and industry-specific dynamics combine to

capture industry-level variation in default rates. Figure 10 presents the observed quarterly

default fractions rate for the financial sector subsample of the entire Moody’s data base. The

rates are computed as the percentage of financial sector defaults over the number of firms

rated in the financial industry. We compare the observed fractions to the corresponding

model-implied rates. We distinguish three model specifications for the common variation,

with macroeconomic factors only, with macro and frailty factors, and with macro, frailty,

and industry-specific factors.

Common variation of defaults based on macroeconomic and financial market covariates

captures substantial and overall time-variation in financial sector default rates, see Figure

10. Also, we learn that the frailty factor is of key importance. It captures the overall

excessive default activity that is higher before and during the 1991 and 2001 recessions,

and substantially lower in the years 2005-2007. The industry-specific factors adjust these

common default dynamics to the developments at the sectoral level. The industry-specific

factor for financials, as plotted in the second panel of Figure 6, captures the additional

sector-specific stress during the banking crisis periods of 1986-1990 and 2007-09. It also
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Figure 10: Quarterly time-varying default intensities for financial firms
We plot smoothed estimates of quarterly time-varying default rate for the financial sector. We distinguish a
model with (i) common variation with macro data only, (ii) macro factors and a frailty component, and (iii)
macro factors, frailty component, and industry-specific factors, respectively. The model-implied quarterly
rates are graphed against the observed default fractions for financial firms.
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adjusts the default rate (downwards) to the observed lower rates during the 2001 recession.

We conclude that industry factors are important to capture default rates at the industry

level. The bottom graphs of Figure 9 indicate that industry-specific developments may cancel

to some extent, at least in a large loan portfolio that is also diversified across industries.

If a portfolio is less well diversified, however, and exhibits clear industry concentrations,

industry-specific effects may form a dominant cause for default clustering.

5 Conclusion

We have presented a decomposition of systematic default risk based on a new modeling

framework. Observed default counts are modeled jointly with macroeconomic and financial

indicators. The resulting panel of continuous and discrete variables is analyzed to investigate

the drivers of systematic default risk. By means of a dynamic factor analysis, we can measure

the contribution of macro, frailty, and industry-specific risk factors to overall default rate

volatility. In our study of defaults for U.S. firms, we found that approximately one third of

default rate volatility at the industry and rating level is systematic. The systematic default

rate volatility can be further decomposed into its three different origins as proposed in the

literature. The part due to dependence on common macroeconomic and financial activity

ranges from about 30% for subinvestment up to 60% for investment grade companies. The

remaining share of systematic credit risk is captured by frailty and industry factors in roughly

equal proportions. These findings suggest that credit risk management at the portfolio level

should account for all three sources of risk simultaneously. In particular, typical industry

models that account for macroeconomic dependence only do not account for substantial parts

of systematic risk. In particular this holds for commonly adopted stress-testing frameworks,

including the 2009 stress-testing exercise for 19 U.S. banks under the Supervisory Capital

Assessment Program (SCAP), and the 2010 stress testing exercise for European banks.

Omitting frailty and industry factors could be detrimental to a correct assessment of financial

system stability.

We have given further empirical evidence that the composition of systematic risk varies

over time. In particular, we observe a gradual build-up of systematic risk over the period

2002-2007. Such patterns can be used as early warning signals for financial institutions and

supervising agencies. If the degree of systematic comovement between credits exposures

increases through time, the fragility of the financial system may increase and prompt for an

adequate (re)action.

Our results have a clear bearing for risk management at financial institutions. When
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conducting risk analysis at the portfolio level, the frailty and industry components cannot

be discarded. This is confirmed in a risk management experiment using a stylized loan

portfolio. The extreme tail clustering in defaults cannot be captured using macro variables

alone. Additional sources of default volatility such as frailty and contagion need to be

identified in order to capture the patterns in default data over time.

Appendix A1: exponential family model

We assume throughout that each density pj(·) is a member of the exponential family. The derivations below

can be extended for models outside this class. For the current paper, the exponential family suffices as it

contains the normal and binomial densities. We have

yjt ∼ pj(yjt|θjt;ψ), pj(yjt|θjt; ψ) = exp [yjtθjt − bjt(θjt) + cjt(yjt)] , (A.10)

and we assume that yjt given θjt is mutually and serially independent for j = 1, . . . , J and t = 1, . . . , T . In

other words, the dependence in the data set for our MiMe DFM is specified only via the signal θjt as given

by (4) and (2). It follows that pj(yjt|θjt; ψ) = pj(yjt|Ft; ψ) in (3).

The normal density pj(yjt|θjt;ψ) = N(µ∗jt, σ
2
jt) is obtained by having

θjt =
µ∗jt

σ2
, 2bjt(θjt) = θ2

jtσ
2
jt + ln(2πσ2

jt), cjt(yjt) =
−y2

jt

2σ2
jt

. (A.11)

The binomial density is obtained by having

θjt = ln
(

πjt

1− πjt

)
, bjt(θjt) = ln (1 + exp(θjt)) , cjt(yjt) = ln

(
kjt!

yjt!(kjt − yjt)!

)
. (A.12)

Appendix A2: estimation via importance sampling

An analytical expression for the the maximum likelihood (ML) estimate of parameter vector ψ for the MiMe

DFM is not available. A feasible approach to the ML estimation of ψ is the maximization of the likelihood

function (7) that is evaluated via Monte Carlo methods such as importance sampling. A short description

of this approach is given below. A full treatment is presented by Durbin and Koopman (2001, Part II).

The observation density function of y = (y′1, . . . , y
′
T )′ can be expressed by the joint density of y and

f = (f ′1, . . . , f
′
T )′ where f is integrated out, that is

p(y; ψ) =
∫

p(y, f ;ψ)df =
∫

p(y|f ; ψ)p(f ; ψ)df, (A.13)

where p(y|f ; ψ) is the density of y conditional on f and p(f ; ψ) is the density of f . A Monte Carlo estimator

of p(y; ψ) can be obtained by

p̂(y; ψ) = M−1
M∑

k=1

p(y|f (k); ψ), f (k) ∼ p(f ; ψ),
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for some large integer M . The estimator p̂(y; ψ) is however numerically inefficient since most draws f (k) will

not contribute substantially to p(y|f ; ψ) for any ψ and k = 1, . . . , K. Importance sampling improves the

Monte Carlo estimation of p(y; ψ) by sampling f from the Gaussian importance density g(f |y;ψ). We can

express the observation density function p(y;ψ) by

p(y;ψ) =
∫

p(y, f ;ψ)
g(f |y;ψ)

g(f |y; ψ)df = g(y; ψ)
∫

p(y|f ; ψ)
g(y|f ; ψ)

g(f |y;ψ)df. (A.14)

Since f is from a Gaussian density, we have g(f ;ψ) = p(f ; ψ) and g(y; ψ) = g(y, f ; ψ) / g(f |y; ψ). In case

g(f |y;ψ) is close to p(f |y; ψ) and in case simulation from g(f |y; ψ) is feasible, the Monte Carlo estimator

p̃(y; ψ) = g(y; ψ)M−1
M∑

k=1

p(y|f (k); ψ)
g(y|f (k); ψ)

, f (k) ∼ g(f |y;ψ), (A.15)

is numerically much more efficient, see Kloek and van Dijk (1978), Geweke (1989) and Durbin and Koopman

(2001).

For a practical implementation, the importance density g(f |y; ψ) can be based on the linear Gaussian

approximating model

yjt = µjt + θjt + εjt, εjt ∼ N(0, σ2
jt), (A.16)

where mean correction µjt and variance σ2
jt are determined in such a way that g(f |y; ψ) is sufficiently close

to p(f |y; ψ). It is argued by Shephard and Pitt (1997) and Durbin and Koopman (1997) that µjt and σjt

can be uniquely chosen such that the modes of p(f |y;ψ) and g(f |y;ψ) with respect to f are equal, for a

given value of ψ.

To simulate values from the importance density g(f |y; ψ), the simulation smoothing method of Durbin

and Koopman (2002) can be applied to the approximating model (A.16). For a set of M draws of g(f |y;ψ),

the evaluation of (A.15) relies on the computation of p(y|f ;ψ), g(y|f ; ψ) and g(y; ψ). Density p(y|f ; ψ) is

based on (3), density g(y|f ;ψ) is based on the Gaussian density for yjt − µjt − θjt ∼ N(0, σ2
jt) (A.16) and

g(y; ψ) can be computed by the Kalman filter applied to (A.16), see Durbin and Koopman (2001).

The likelihood function can be evaluated for any value of ψ. For a given set of random numbers from

which factors are simulated from g(f |y; ψ), we maximize the likelihood (A.15) with respect to ψ.

Furthermore, we can estimate the latent factors ft via importance sampling. It can be shown that

E(f |y; ψ) =
∫

f · p(f |y; ψ)df =
∫

f · w(y, f ; ψ)g(f |y; ψ)df∫
w(y, f ; ψ)g(f |y; ψ)df

,

where w(y, f ;ψ) = p(y|f ; ψ)/g(y|f ; ψ). The estimation of E(f |y; ψ) via importance sampling can be achieved

by

f̃ =
M∑

k=1

wk · f (k)

/
M∑

k=1

wk,

with wk = p(y|f (k);ψ)/g(y|f (k);ψ), and f (k) ∼ g(f |y;ψ). Similarly, the standard errors st of f̃t can be

estimated by

s2
t =

(
M∑

k=1

wk · (f (k)
t )2

/
M∑

k=1

wk

)
− f̃2

t ,
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with f̃t the tth elements of f̃ . Conditional mode estimates of the factors are given by

f̄ = argmax p(f |y; ψ), (A.17)

and indicate the most probable value of the factors given the observations. They are obtained as a by-product

when matching the modes of densities p(f |y;ψ) and g(f |y;ψ).
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