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Selective Competition

Andrei Dubovik Alexei Parakhonyak

August 11, 2009

Abstract

We consider a dynamic (differential) game with three players com-
peting against each other. Each period each player can allocate his
resources so as to direct his competition towards particular rivals —
we call such competition selective. The setting can be applied to a
wide variety of cases: competition between firms, competition between
political parties, warfare. We show that if the players are myopic, the
weaker players eventually loose the game to their strongest rival. Vice
versa, if the players value their future payoffs high enough, each player
concentrates more on fighting his strongest opponent. Consequently,
the weaker players grow stronger, the strongest player grows weaker
and eventually all the players converge and remain in the game.

Key Words: selective competition, dynamic oligopolies, differential
games.

JEL Classification: C73, D43.

1 Introduction

Competition lies at the heart of economics and so has been extensively stud-
ied. However, there is a class of competition mechanisms that is abound in
practice but has not yet been addressed in the literature — those are mech-
anisms providing a competitor with an ability to target his rivals on indi-
vidual basis. We group such mechanisms under a common title of selective
competition. The examples to follow will illustrate the definition.
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In the classical models of competition (Cournot, Bertrand) a firm cannot
target a specific rival. For example, by lowering its price the firm under-
mines all of its rivals in the market, not a specific one. Recent investigations,
however, have brought up the importance of product variety, competition
in product characteristics, spatial competition, multiproduct firms (see, for
example, surveys by Lancaster, 1990; Gabszewicz and Thisse, 1992; Bailey
and Friedlaender, 1982). All these factors provide the possibility to target
a particular rival. The examples are: a company developing a product that
is closer in a characteristic space or in a location space to that of a par-
ticular competitor or a multinational corporation investing relatively more
in a market shared with a particular competitor. Unethical practices pro-
vide more examples, like launching a fabricated lawsuit against a particular
competitor.

Selective competition can be found in other areas of economics as well,
the examples include: competition between political parties and their sup-
port for specific programs, or international trade and specific trade barriers.
Finally, a warfare stays as an ultimate example of selective competition.

This paper shows there are new economics insights to be found in study-
ing the area of selective competition. In case of selective competition there is
a strategic consideration that does not arise in case of nonselective competi-
tion: a player (a firm, a political party, an army) can influence the balance of
powers among his rivals by choosing whom he competes against; in turn, that
determines how much this player wins or looses competing with those rivals
in the periods to come. In particular, one may intuitively expect the weaker
players to direct more resources towards fighting the strongest player rather
than fighting each other. Indeed, otherwise the strongest player stands a
good chance of forcing the weaker ones out of the game (as time goes by).

As we have said, to the best of our knowledge we are unaware on any
research specifically dedicated to the issue of selective competition. For
example, any model of selective competition should have three players or
more — otherwise the competition cannot be selective, and it should be
dynamic — the aforementioned strategic consideration can be studied only
in a dynamic setting. The closest matching strand of the literature then
is that of dynamic oligopoly models. Though many dynamic competition
mechanism are studied: inventories (Kirman and Sobel, 1974), number of
adopters and cost learning (Dockner and Jgrgensen, 1988), varying levels
of exploration of profit opportunities (Ericson and Pakes, 1995), etc., the
selective competition mechanisms are not emphasised.

With this paper we set out to raise the question of selective competition
and to formally check the intuition that weaker players have incentives to



coordinate against their strongest rival.

We develop a model of selective competition that does not focus on case-
specific aspects of competition but rather focuses on the general ability to
compete selectively. Each player in the model is characterised by his relative
power — the amount of resources this player has. The power of a player can
be distributed to fight each of the player’s rivals. We consider marginal
returns of competing against a particular rival to be diminishing, therefore
each player chooses to fight both of his opponents. We show that myopic
players prefer to fight more with their weakest opponent. Consequently, the
strongest player grows in his power and eventually outcompetes the weaker
players. Vice versa, we show that if the discount rate is sufficiently small
(the future payoffs are valued sufficiently high) and if no player is too strong
to start with, then the weaker players concentrate more on fighting their
strongest opponent. Consequently, the strongest player becomes weaker
over time and all the players converge in their powers and stay in the game.

This latter result may look as a tacit collusion between the weaker players
against the strongest one. It is, however, conceptually different. Whereas
collusive behaviour in repeated games is sustained by a credible threat that
other players are to punish the deviating player, in our game we look for a
Markov perfect equilibrium, hence the strategies do not depend upon past
actions and so there can be no strategies with punishment. In our case it is
the dynamical structure of the game that “punishes” the weaker players: if
they are to prefer fighting each other for the sake of immediate gains rather
than fighting the strongest player, then the strongest player will grow in his
power and will, eventually, outcompete his rivals. If this threat of loosing
the game is large enough, then the weaker players will fight more against the
strongest player and their behaviour will be alike to that of tacit collusion.

There are two related games that have been studied in the literature:
colonel Blotto games (see, e.g., Roberson, 2006) and truel games (Kilgour,
1971).

A colonel Blotto game is a game between two players that share several
battlefields. Each player divides his army between the battlefields, a bat-
tlefield is won by the larger force, a player who wins more battlefields wins
the game. The game of selective competition that we study can be viewed
as a game of three players and three battlefields, where each pair of players
share a battlefield and where there is no battlefield that is shared by all
the players. Then the similarity of our game to colonel Blotto games is the
ability of the players to choose how to split their powers against their oppo-
nents. The main differences are: 1) there are three players in our game, 2)
our game is dynamic — the winner is not realised at once, rather the winner



of this round becomes stronger and the game continues.

A truel game is an extension of a duel game. There are three players,
each with a gun. Each round each player chooses whom to shoot and kills
his opponent with a certain chance that depends upon his skill; if two or
more players are still alive the game continues. Like in our game, there is
a choice of the opponent, there are dynamics and there is a consideration
that killing a certain player influences your chance of survival in the rounds
to come. The main differences are: 1) in our game the payoff of the game
is a discounted sum of the payoffs in each round, so each round is valuable,
whereas in a truel game the payoff is 1 if the player survives and 0 otherwise;
2) in our game if the player is “shot”, he does not die at once but rather
becomes relatively weaker; 3) in a truel game a player chooses to fight either
one opponent or the other, whereas in our game a player chooses how much
to fight one opponent and how much to fight the other (a continuous choice).

So, our game has structural similarities to those of colonel Blotto and
truel games, but we think the named differences make our model more ap-
propriate for the aforementioned examples of selective competition.

The rest of the paper is organised as follows. First, keeping in mind
the examples of selective competition between firms, we set up the model.
Second, we consider a simple case of myopic players and show that only
the strongest survive as time goes by. Third, we show that if the discount
factor is sufficiently small and if no player is too strong, then there is an
equilibrium where all the players converge in power and remain in the game.
We conclude briefly.

2 Setup

There are three players, 1, 2, and 3 — firms, political parties, armies, etc.
The players are involved in a dynamic competitive game. Each player i at
time ¢ € [0, 00) is characterised by a state variable x;(t) being the amount
of resources he can use in competition with his rivals at time ¢. We call
this variable the “power” of player i. It can be the market share of a firm,
the amount of personnel the firm has, how large and how good its credit
resources are or how well the managers are connected; it can be the electoral
base or the number of seats in parliament; it can be the number of military
units.

For convenience, let x = (x1,x9,x3). The initial state is normalised so
that >, 2;(0) = 1 (later on we will see that ), x;(t) = 1 for any ¢) and also



no player is too strong to start with. Formally, zg € X, where

2.
Zi:xizl, xi<5Vz}

Each player can fight selectively against his rivals. 1;; denotes the
amount of power player ¢ uses to fight against player j. We consider Markov
strategies, i.e. the actions of the players are conditioned upon the state of
the game, so y;; are functions of x.

For convenience, let y1 = (y12,¥13), Y2 = (Y21,Y23), Y3 = (Y31,Y32) and

y = (y1,92,93)-
Each player uses all his power to fight his opponents! and what amount

he uses can not be negative, therefore

X:{x€R3

y; € Yi(x)
1
Z/ijZU,ijz’j:xi} W)

Every “battle” between players ¢ and j has two consequences: 1) the
players receive instantaneous payoffs from the battle, 2) their powers change.
The instantaneous payoffs can be, for example: profits in case of firms, or
the salary and the bonus payments of a top manager; political contributions
in case of political parties; access to natural resources in case of warfare for
economic reasons.

The instantaneous payoffs for player ¢« when he is fighting player j are
given by ¢(yij,yji), where 1) ¢(0,y;5) = 0, i.e. if a player doesn’t fight, his
instantaneous payoffs are always zero; 2) ¢(v;;,y;) is strictly increasing in
yi; and for y;; > 0 it is strictly decreasing in yji; 3) ¢(yij,yji) is strictly
concave in y;; (decreasing marginal returns).

To have an analytical solution to our model we take a quadratic speci-
fication for . A general quadratic specification that would also satisfy our
assumptions on the relevant domain (0 <y;; <1,0<y; <1)is

Yi(a) = {u

©(Yij, yji) = (a — biyi; — bay;i)yij

where by > 0, b > 0 and a > 2b; + by. To simplify matters we take
bl = bg = b, SO
e(Yij» yji) = (@ = b(yij + yji))vij

'In our model there are no alternative costs associated with fighting, therefore it is
always optimal to use for fighting all the power.



where b > 0 and a > 3b.
Let m;(y) denote the sum of all the instantaneous payoffs that player 4
receives from fighting his opponents with ;(y). We have

mi(y) = > o (Yijs ysi)
i

Per se, the power does not enter the instantaneous payoff function. How-
ever, becoming more powerful will yield higher payoffs as more power can
be used competing with the rivals thus improving the outcomes of that com-
petition.

If x(t) reaches the boundary of X, the game ends. T' denotes the ending
time. Formally,

T=inf{t >0|z(t) ¢ X}

If the game never ends, then T' = oco.
If the game ends, each player i receives a terminal payoffs .S;, the strongest
player wins, the weaker players loose:

Sz(x):{leIL‘z>:L‘]V]75Z

0 otherwise

where M > 0. If the game ends and two of the players are equally strong,
they both loose (this assumption is not important for the results).

The rationale for ending the game if the boundary of X is approached is
as follows. If one of the players becomes sufficiently strong, it is reasonable
to expect him to eventually outcompete his rivals. To simplify the game we
stop it at this time and assign a strictly positive payoff of M to the strongest
player and a zero payoff to the weaker players.? As we will see later on, the
results do not depend upon the size of M as long as M is positive, still it is
helpful to think of it as of a payoff that is higher than what the strongest
player could have got if he was to continue the competition. Loosing, on the
other hand, means that a player quits the game (a firm looses its markets,
etc) and the stream of the instantaneous payoffs ends — so loosing yields
zero payoff.

2From z € X it follows that z; > é, so a player i dies if x;(t) reaches é An alternative
specification is to say that a player i dies, e.g. a firm goes bankrupt, a political party
dissolves, if z;(t) reaches 0 at some ¢. Such a specification seems to yield similar results,
but requires a numerical solution (see the discussion at the end of section 4.2), so we have

chosen against this latter specification.



The payoff for the whole game is the discounted stream of the instanta-
neous payoffs plus the discounted terminal payoff, so the payoff for player i
is

T
Ui= [ e y(a®))dt + TS (a(T) )
0

where 0 is a discount factor.

If player ¢ fights player j more than player j fights player ¢ (vi; > vji),
then player ¢ becomes more powerful, while player j becomes less powerful.
We call such dynamics a power shift. For example, if a company invests more
in a market than its rival does, its customer base shall increase relatively
to that of the rival; if a political party supports a certain program more
than its rival does, its electoral base shall increase relatively to that of the
rivalling party, etc. We assume these dynamics to be linear in y:

zi(t) = fi(y(x(t)))

Fily) = (Wi —ys) b (3)
JF
where k > 0 stands for the power shift intensity.

We note here that from ), x;(0) = 1 and from (3) it follows that
> xi(t) =1 for all ¢.

So, our setup is a differential game with simultaneous play (see Dockner
et al., 2000) and we restrict our attention to Markov strategies. The strate-
gies are functions y(x) satisfying (1), the state variables = evolve according
to (3) and the objective functions are given by (2).

3 Example: Cournot Competition

In the previous section we did not consider specific cases of selective com-
petition, rather we argued for a setup that can suit cases ranging from
spatial competition among firms to warfare. In this section we show, with
a particular example, that our setup can also stem from selective Cournot
competition with binding capacity constraints.

Suppose there are three universities and three areas (e.g. economics,
management and sociology). Suppose that each university is active in two
areas only — has two respective departments — and in each area there are only
two active universities. Each university ¢ is characterised by the number
of professors, x;, which the university can split between its departments,
> .;xi = 1. Let y;; denote the number of professors of university i that are
in the same area as professors of university j, > i Yij = Ti-

7



The amount of education a university department provides is propor-
tional to the number of professors employed, we take the proportionality
coefficient to be one.?> For example, university 1 employs 32 professors in
economics and 13 professors in sociology, so the supply of education by this
university is y12 and y13 respectively. As for the demand, suppose it is the
same in all the areas and is given by Y = }(a— P), where P is the admission
price and Y is the total amount of education demanded.

Suppose the universities compete a la Cournot and let us neglect the
costs for simplicity. Then the profits of university 7 from an area shared
with university j are given by

©Wij> vji) = Pyij + yji) - i = (@ — b(Yij + Yji) ) Yij

We additionally suppose that the demand for education is high compared
to the number of professors to the extend that a > 3b (in general terms, the
capacity constraints are binding).

Finally suppose that as time goes by, the professors of different universi-
ties interact with each other within the same areas and tend to change their
appointments toward the larger departments (for reasons of richer environ-
ment, better specialisation, etc). If we take these dynamics to be linear,

then we get
B = (yij —ysi) k
J#i

So, we have presented an example of selective Cournot competition that
yields the same game structure, same instantaneous payoffs and same dy-
namics as in our model. If we further restrict the dynamics to X (a university
has to close down if it becomes too small), then this example yields precisely
our model.

Real life situations of selective Cournot competition would be more com-
plex, of course, but a simple example of three players is sufficient to study
the implications of an ability to compete selectively.

4 Analysis

We consider two cases: a case with myopic players and a general case. In
both cases we solve our game for a Markov perfect equilibrium (MPE) and
analyse the resulting equilibrium dynamics.

3We are free to measure education in any units.



In what follows we denote the best response strategies with ¢ and the
equilibrium strategies with .

4.1 Myopic Players

The players are myopic if they focus on the current gains only. For a myopic
player ¢ the payoff of the game at time ¢ is

Ui(t) = mi(y(x(1)))

The dynamics of the myopic case are summarised by the following propo-
sition (we limit our attention to a general initial state, when one of the
players is strictly stronger than the rest).

Proposition 1. Suppose, without a loss of generality, that x1(0) > x2(0),
21(0) > x3(0). Then there exists a unique MPE. Moreover, the equilibrium
dynamics are such that the game ends and the strongest player wins, i.e.
T < oo and x1(T) > x2(T), x1(T) > x3(T)

Proof. Maximising U;(t) in (vij, yir) W.r.t. yij +yir = 2; gives a unique best
response
B zi yei(@) — yii(@)
i) = 2 o L2 2 0l)
(a boundary solution is also possible but it is straightforward to check that
it is never attained for z € X).
Given the above best response functions we can solve for a unique equi-

librium point. We get
~ ZT; T — Ty
() = = 4
9ij (x) 2 T 10 (4)
As we are considering Markov strategies, (4) constitutes a unique Markov
perfect equilibrium.

Plugging (4) into (3) and using 1 + x2 + 23 = 1 gives

(0) =% (w0~ 3)

As x € X, 21(0) > 22(0) and z1(0) > x3(0), we have that z1(0) > 1/3
and x93 < 1/3. Consequently, z1(t) grows over time and




while z9(t) and x3(t) decline. Since 41 (t) is bounded from below, z(t) even-
tually reaches the boundary of X, the game ends and z1(T) > z;(T) for
i £ 1. O

This case illustrates the intuition that if the players are myopic and
pursue only their instantaneous payoffs then they may have no incentives to
fight more against the stronger player. As a consequence, the weaker players
loose.

4.2 Forward-looking Players

If the players are myopic, then the weaker players loose in the equilibrium.
The question is, if the players are sufficiently non myopic, i.e. if ¢ is suffi-
ciently small so that the players value their future profits high enough, will
it be the case the dynamics are reversed? We give a positive answer to this
question.

Proposition 2. If § < %, then there exists an MPE such that for all i
x;i(t) — % as t — oo.

Proof. We prove the proposition by construction: we state an equilibrium
candidate possesing the property that x;(t) — % and then check that it is
an equilibrium indeed. Let

Gij(x) = W (5)

= (30 (2 -m) (2 ) ©

From ), ;(t) =1, from (3) and from (5) it follows that

ii(t) = ?’k((jl) <mi(t) - ;) (7)

If o < %, then from (6) it follows that ¢ < —1. Consequently, from (7) it
follows that @;(t) — % as t — oo.

Let us now prove that (5) constitute an MPE. To do so we need to show
that §J; is a best response to ; and . All the possible strategies of player
i can be divided into two classes: those strategies that eventually end the
game (T < oo) — let it be class B, and those that do not (T' = c0) — class A.
We proceed as follows. First, we restrict the strategies of player ¢ to class A

10



and show that in this class the strategy ;, as given by (5), is indeed a best
response strategy. Second, we extend this result to AU B.

So, let the strategies of player ¢ be restricted to class A. Let us compute
the value function V of player ¢ if every player follows strategy ¢ and if the
game starts at x(0) = x. Solving (7) gives

1y = (o LY k(erryy2e L
xi(t) = (:L‘Z 3) e + 3

Therefore (also using 1 + z2 + 23 = 1) we have?

Vile) = /ooo e oy (§(x(1)))dt =

1\? 1
c1 <$z — 3> + co (azz — 3> +c3+ C4($k — CL‘]‘)Z (8)
where
( o b(3c—1)
T4 = 3k(c+ 1))
12a + b(3c — 5)

27 6(26 — 3k(c + 1)) o)
_3a—b
ST o
be(3c — 1)

4T 7406 —3k(c+ 1))
Consider now the Hamilton-Jacobi-Bellman equations:

i) € arg mae { miioa(o) + 30 FED @) | (10)
J
ov,(a)

Wile) = m(3() + 3 5 i(0() (1)

J
If these equations are satisfied for all x € X, then ¢; is a best response to
y—; (when the strategies of player ¢ are limited to class A, so that x(¢) never
leaves X) — see Dockner et al. (2000, chapters 3 and 4).
Equation (11) is automatically satisfied by the way V' is constructed. We
now check equation (10). Let

9(i, ) = 7 (Yi, §—i()) + Z o
J

o 1. -4()

4See the appendix for the details of the derivation.

11



Using (5), (8) and the definitions for 7;, f; to expand g(y;, z) and maximising
the result w.r.t. y;; + yir = ; gives

iglo) = A= (12)
d_l—c ck(3c—1)
T4 26 =3k(c+1))

(13)

Strategy g; is a best response strategy if (5) coincides with (12), i.e. if ¢ = d.
We check it now. Using (13) to expand ¢ = d and simplifying gives

1) )
2 _ e o _

It is straightforward to check that ¢ as defined in (6) is a solution to the
above equation. Hence ¢ = d and g; is a best response.

In principle, it is possible that a corner solution is obtained when max-
imising ¢(y;, z), however it is never a case for z € X.

Consider now an arbitrary strategy ¢;(x) € B. With a class B strategy
the game ends at some T (that is determined by y;(x)). Let

n @Z(l’) if ¢ < T-— €n
Yi (l‘,t) = ~ .
gi(x) it t>T—e,

where €, is a sequence, €, > 0 and lim, . €, = 0. This strategy y}'(z,?)

belongs to A, therefore it gives the same or a lower payoff than the best
response strategy g;(x), i.e.

/ et (g (0)))dt > / " ety (1)) )t =
0 0
T—en e’
/ et (e (t)))dt + / oSt (t)))dt
0 T—en

Taking the limit as n — oo gives

[e%s) T
| etmtataondr = [ e im et + Vi)
0 0

On the other hand, the payoff from employing strategy ¢;(z) is
’ 1)
| e mtataten)i+ sia(r)

12



Therefore, if S;(z(T)) < Vi(x(T)), then ¢; is the optimal strategy in class
AU B as well.

As z(0) € X, then from the definition of X it follows that z;(0) < 2.
Whatever the strategy y(x) is, from (3), from (5) and from z; +z2+23 =1

it follows that - ) )
(0 < Y (5 - )

Consequently, z(T') < % At the same time, x(7T") belongs to the boundary
of X. So, if it was true that z;(T) > z;(T) for all j # 4, then it should
have been that z;(T) = 2. As it is not, we have that x;(T) < z;(T) for at
least some j # i. Therefore S;(z(T)) = 0. But from ¢(3;;(z), ji(x)) > 0 it
follows that V;(z(T)) > 0.

So, S;(x(T)) < Vi(z(T)) and g;(x) is a best response strategy when all
possible strategies are considered (class AU B).

In words, a weaker player can choose a strategy to reach the boundary
of X, but doing so is not optimal. As for the strongest player, he may prefer
to reach the boundary if he is still the strongest player when he does so, but
he cannot achieve such dynamics if his rivals are playing the equilibrium
strategies. ]

So, for a sufficiently small § there is an equilibrium such that the strongest
player declines in his power while the weaker players improve in their pow-
ers. Consequently, all the players converge. A notable property of this
equilibrium is that each player fights his strongest opponent more.

5 Concluding Remarks

If there are ways to compete selectively, then for a sufficiently small ¢ ev-
eryone competes more against the stronger rival, consequently the players
converge in their power, and oligopolistic competition is sustainable — it does
not boil out to a monopoly.

We have analysed but a basic setup of selective competition and two
possible extensions are worth mentioning — stochastic dynamics and multiple
players. Arguably, both extensions would bring the model closer to judging
real life situations as outcomes of competition are scarcely deterministic and
many examples we talked about (e.g., multiproduct firms) often involve more
than three players. The main question here will stay the same: is it more
difficult or more easy for the weaker rivals to tacitly coordinate against the
strongest one given stochastic dynamics or given multiple (more than three)

13



players in the game? Answers to this question can help explain and predict
the degree of convergence and the number of players in relevant situations.
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Appendix

Here we give a detailed derivation of (8), (9).
Let z; = #; — 5. As o1 + a2 + 23 = 1, 50 21 + 22 + 23 = 0. Next we derive
mi(9(2))-
First,
N zi+elzy —xj) zitelzm—z) 1
(o) = DA ) mrcos)

Then (using ), z; = 0 where appropriate)

mi(9(2)) = (@ = b(Gij + Uj:))0i5 + (@ — b(Gix + Gri))Jirx =
(a—b (zi + c(zx — 25) LG + ez — 2i) N 1)) .

2 2 3
(2= ).

i+ oz — 1
(Z +C(’;J Zk) " 6> _

e (.
. (zi—i—c(;j—zk) +é>> _

b(3c—1) 5 12a+b(3¢c—5) 3a—b bc(3c—1)
1 ar 12 aty 1

Let m = 3k(c+ 1)/2, then z;(t) = z;e™. So,

/0 oot (b(3c4— 1) (Ziemt)2 N 12a + li(23c —-5) ety
3a; b bc(SZf 1) (zkemt B Zjemt)z) i
b(3c—1) 1 9 12a4+b(3c—-5) 1
1 s—2m’” 12 s—m

3a—b1 be(3ce—1) 1
9 5 4 d-2m

2+

(2 — 2)?

Plugging in z; = 2; — 5 and m = 3k(c + 1)/2 gives precisely (8) and (9).
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