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Abstract

This paper describes a forecasting exercise of close-to-open returns on major global stock

indices, based on price patterns from foreign markets that have become available overnight.

As the close-to-open gap is a scalar response variable to a functional variable, it is natural to

focus on functional data analysis. Both parametric and non-parametric modeling strategies

are considered, and compared with a simple linear benchmark model. The overall best per-

forming model is nonparametric, suggesting the presence of nonlinear relations between the

overnight price patterns and the opening gaps. This effect is mainly due to the European and

Asian markets. The North-American and Australian markets appear to be informationally

more efficient in that linear models using only the last available information perform well.
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1 Introduction

Empirical research in finance has traditionally focused on the analysis of daily stock returns,

usually measured as changes in closing prices. However, since trading can be thought of as a

continuous-time process, it is also natural to consider returns over other than daily intervals.

Recently, some interest has been developed into dividing daily returns into overnight (close-

to-open) returns and daytime returns. There is considerable empirical evidence that return

dynamics are different over non-trading periods than during trading periods (French and Roll,

1986; Lockwood and Linn, 1990; Hasbrouck, 1991, 1993; and Madhavan et al., 1997; George and

Wang, 2001; Cliff et al., 2008). Accordingly, a number of models have been proposed to quantify

this phenomenon, often using stocks traded on a particular stock market; see, e.g., Oldfield and

Rogalski (1980) and Hong and Wang (2000).

The information revealed in consecutive overnight and day-time returns can also be employed

for prediction. In this vein, Zhong (2007) considered predicting daytime volatility of stock prices

based on the preceding overnight returns. As far as we know, there have been no attempts to

explore the price evolution in a set of foreign stock markets as a result of the information

content revealed during non-trading periods of a home market. With this in mind, one of

the aims of this study is to predict the overnight return on an individual stock index of a home

market, based on the information content revealed in a set of foreign markets during non-trading

hours of the home market. Additionally, we investigate if global markets are informationally

efficient in the sense that adding information from clusters of stock indices traded further in

the past into the information set does not improve predictive ability. To this end we employ

linear regression, as well as parametric and nonparametric Functional Data Analysis (P-FDA

and NP-FDA) techniques. FDA is a natural alternative to linear regression in this setting,

because overnight foreign price patterns can be viewed as continuous functions of time. Within

empirical finance, where the object of interest often depends on some continuous parameter (e.g.

continuous time), functional data often arise. For instance, Benko (2006) applies parametric

FDA techniques to the analysis of implied volatility functions and yield curve dynamics.

The paper is organized as follows. Section 2 formalizes the prediction problem. Section 3

describes the various FDA methods considered in this paper, as well as their corresponding

predictive intervals (PIs). The measures used for evaluating the out-of-sample predictions are

described in Section 4. Section 6 describes the results obtained, and Section 7 briefly discusses

the results and concludes. To avoid confusion we like to stress that the adjective ‘functional’
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refers to the form of the data and ‘parametric/nonparametric’ to the form of the constraints

imposed on the model.

2 The Prediction Problem

To formalize the prediction problem some notation and definitions are introduced. Let χi,s

denote the price pattern (observed curves) of stock index i ∈ {1, . . . ,M} across trading session

(day) s ∈ {1, . . . , S}, with M the number of international stock indices under study, and S the

number of trading sessions under consideration. The value of stock index i at within-trading

session time t ∈ R (measured in five-minute units) is χi,s(t), t ∈ (0, Ti) where Ti × 5min. is

the duration of each trading session in market i. In practice only discretized versions of χi,s(t)

can be used. Here discretized data (at regular five-minute intervals) are considered, denoted by

xi,s(t), t ∈ 1, . . . , Ti.

To specify the information set on which predictions of close-to-open gaps are to be based, it

is convenient to introduce a universal ‘background’ time variable that measures time globally, as

opposed to the within-trading session time variable. Time is measured in five-minute units again,

and in addition we assume that the universal clock does not run in weekends, between Central

European Time (CET) Sat 00:00 and CET Mon 00:00; a period during which all markets are

closed simultaneously. Since a 24 hour day contains 288 five-minute intervals, each observation

can be represented as xi,s(t) = x̃i(288 × s + ci + t), where 288 × s + ci + t is the universal

time corresponding to a quote in session s of market i at trading-session time t. The shift

ci ∈ 0, . . . , 287 represents the opening time of market i, again in five-minute units. Note that

x̃i(·) is only defined for universal times t at which market i is open, and is not available otherwise.

The prediction variable of interest is the close-to-open return in market i for trading session s,

given by yi,s = (xi,s(1)−xi,s−1(Ti))/xi,s−1(Ti), where s−1 denotes the last session prior to session

s during which market i was open. In universal time, yi,s materializes at time t
open
i,s = 288×s+ci.

Below, several different specifications are considered, which use various amounts of the infor-

mation available. Based on trading hours, three global clusters of markets can be distinguished;

in order, the Asian-Pacific markets, the European markets, and the American markets. Since

we think of price developments as an information discovery process, and hence of more recent

available prices being more relevant, we focus on forecasting the opening gap of markets be-

longing to a specific cluster based on the most recent price patterns in the preceding cluster.

For comparison we also consider predictions based on price patterns from the two most recent
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preceding clusters. For instance, we consider prediction of the opening gap for the US based on

the price patterns in the European markets, and also based on the price patterns in the Asian-

Pacific and European markets jointly. In cases of missing data as a result of a holiday in either

one of the explanatory variables or the home market of interest, the corresponding explanatory

data and opening gap are excluded from the analysis.

The original sample for each market is split into two sub-samples: a learning sample contain-

ing the units {(xi,s, yi,s)s=1,...,ki}, and a testing sample containing the units {(xi,s, yi,s)s=ki+1,...,S}

where ki (i ∈ 1, . . . ,M) denotes the number of observations in the learning sample. The learning

sample allows us to build a functional kernel estimator with optimal smoothing parameter(s);

both the xi,s’s and the corresponding yi,s’s are used at this stage. The testing sample is used

for making actual predictions and evaluating predictive performance.

3 Functional Data Analysis

In our description of functional data analysis we consider predicting the opening gap for a specific

market i. For notational convenience, the subscript i is dropped from the respective random

variables. Let (χs, Ys)s=1,...,k be k = ki pairs of random variables, identically distributed as

(χi, Yi) but not necessarily independent, and taking values in E×R, where (E , d) is a semi-metric

space with semi-metric d. In addition, it is assumed that {χs, Ys} is strictly stationary. The aim

is to predict the unobserved scalar response variable Ys from the curve(s) χs (covariates). The

idea behind FDA is to find close (with respect to a certain norm) covariates among the available

past observed covariates. This problem can be viewed as follows. Suppose that there exists a

function r(·) modeling the relationship between Y and χ and that r(·) is defined through the

conditional distribution. Given a convex loss function c(·) with a unique minimum, define r(·)

such that it minimizes the mean E(c(Y − a)|χ = χ) with respect to a.

3.1 Nonparametric FDA

A nonparametric estimator of r(·) provides a nonparametric predictor Ŷ in terms of χ. Using

this principle, we consider three nonparametric predictors, based on different loss functions. As-

suming (χs, Ys) is α-mixing, Ferraty and Vieu (2005, 2006) proved almost complete convergence

of the three nonparametric functional predictors considered here. Also these authors established

the rates of convergence of the predictors.
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Conditional mean

It is well-known that taking c(u) = u2 leads to the conditional mean function r(χ) = E(Y |χ =

χ). Recall that the model is to be based on the observed k pairs (xs, ys)s=1,...,k of identically

distributed random variables, where xs is a discretized version of the pattern χs. Let x be an

observed curve (overnight foreign price pattern) at which the regression is estimated. Then,

using the Nadaraya-Watson kernel density estimator, the one-step-ahead prediction (measured

in five-minute units) is defined as ŷmean =
Pk

s=1 ysW (xs,x). Here W (·), the so-called kernel

weight, is defined as W (xs,x) = K(d(xs,x)/h)
.Pk

r=1K(d(xr,x)/h), where h denotes the

bandwidth, K(·) the kernel function, and d(xs,x) is any semi-metric between xs and x.

Conditional median

In this case the loss function is given by c(u) = |u|. Then the conditional median func-

tion is given by r(χ) = inf{y : F (y|χ = χ) ≥ 1/2}, where F (·|·) is the conditional distri-

bution function of Y given χ = χ. Consequently, the one-step-ahead nonparametric func-

tional predictor of the conditional median is defined as ŷmed = inf
n
y : F̂ (y|χ) ≥ 1/2

o
, where

F̂ (y|χ) =
Pk

s=1W (xs,x)1{ys≤y}, with 1{A} denoting the indicator function of set {A}, is the

estimated conditional cumulative distribution function (CDF) of Y given χ = χ.

Conditional mode

In this case we have a non-convex loss function with a unique minimum c(u) = 0 when u = 0,

and c(u) = 1 otherwise. The loss function becomes r(χ) = argmaxy∈R f(y|χ = χ), where

f(·|·) denotes the conditional density function of Y given χ = χ. Hence, given the observed

data, the nonparametric functional predictor of the conditional mode is given by ŷmode =

argmaxy∈R
Pk

s=1K(|y − ys|/h)W (xs,x), where, for ease of notation, we assume that the same

kernel function K(·) and bandwidth h apply in the y direction.

3.2 Functional Parametric Regression

A functional linear regression establishes a relationship between a functional covariate χs(t) and

the response variable Ys as follows

Ys = β0 +

Z T

0
χs(t)β(t)dt+ ε, (1)

where {ε} is a sequence of i.i.d. random variables such that E(ε|χs(t)) = 0 and E(ε2|χs(t)) =

σ2 <∞.
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A popular approach to reduce the number of degrees of freedom in (1) is to use a truncated

functional basis expansion, similar to the truncation applied in the NP-FDA case. There are

three prominent examples of functional bases: Fourier, Polynomial and B-spline. Here, follow-

ing Ramsay and Silverman (2005, Chapter 15), we adopt a set of Fourier (orthonormal) basis

function θk(t), i.e.

β(t) =

KβX
k=1

bkθk(t) = b
0θ(t), (2)

whereKβ denotes the length of the set, and where θ(t) = (θ1(t), . . . , θKβ
(t))0 and b = (b1, . . . , bKβ

)0.

Similarly, χs(t) can be expanded in another set of Fourier basis function ψk,s(t) of length Kz as

follows

χs(t) =
KzX
k=1

cs,kψk(t) = c
0
sψ(t), (3)

where ψ(t) = (ψ1(t), . . . , ψKz
(t))0 and cs = (cs,1, . . . , cs,Kz)

0. Inserting (2) and (3) into (1), and

using the data in the learning sample, yields

Ys = β0 +CsJb+ εs, (s ∈ 1, . . . , k),

where J is a Kz × Kβ matrix defined by J =
R
ψ(t)θ0(t)dt, and where the k × Kz matrix is

given by C = {cs,k : s = 1, . . . , k, k = 1, . . . ,Kz}. The notation can be further simplified by

defining a (Kβ + 1)-vector ξ = (β0 b
0)0 and a k × (Kβ + 1) matrix Z = [1 CJ ]. Thus, the

resulting functional regression model has the same structure as the classical linear regression

model. Consequently, the augmented parameter vector ξ can be estimated by least squares, i.e.

ξ̂ = (Z 0Z)−1Zy. Clearly, the above setup can be easily modified into a specification with more

than one functional covariate. The choice of the numbers of basis functions, Kz and Kβ, is a

trade-off between information loss and computational costs. In the present study Kz and Kβ

were set equal to 15. For the specific data used in the present study we verified that there was

no gain in performance by increasing the number of basis functions beyond this number.

Given ξ̂ and the set of basis functions θ(t), estimates β̂(t) of βi(t) can be obtained. Then,

using (1), the predictor for Ys may be constructed as

ŷ0s = β̂0 +

Z T

0
χs(t)β̂(t)dt,

where s runs over the collection of available out-of-sample sessions, denoted as S. The number

of evaluation sample points available (size) will be denoted by |S|. One feature of above setup is

that the conditioning takes place on the same information set as used in predicting a response

variable via NP-FDA.
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3.3 Linear regression model

To have a benchmark model to compare the FDA results with, we consider a linear regression

model which uses as the explanatory variables a constant plus the total overnight returns of

the foreign stock indices. The use of overnight returns rather than the complete set of 5-

minute observations ensures that the model is parsimonious. Although there are other ways

to construct a parsimonious linear model, we have chosen to focus on overnight returns, since

within an informationally efficient market these returns should contain all relevant information

regarding the development of fundamentals underlying the indices of interest.

3.4 Predictive intervals

Following De Gooijer and Gannoun (2000) we consider two types of PIs: the conditional per-

centile interval (CPI) and the shortest conditional modal interval (SCMI). The CPI with nominal

coverage probability γ is given by
³
ξ 1−γ

2
(χ), ξ 1+γ

2
(χ)
´
, where ξα(χ) denotes the α-th quantile of

the conditional distribution of Y given χ = χ i.e. the solution of F (ξα(y|x)) = α with respect

to y. A natural estimator for the CPI is
³
ξ̂ 1−γ

2
(x), ξ̂ 1+γ

2
(x)
´
, where the estimated quantiles

satisfy F̂ (ξ̂α(x)|x) = α.

The SCMI with nominal coverage probability γ is (a, b) = argmin(c,d) {d− c | F (d|x)− F (c|x) ≥

γ}, and a natural estimator for the SCMI is (â, b̂) = argmin(c,d)
n
d− c | F̂ (d|x)− F̂ (c|x) ≥ γ

o
,

where, as before, the estimated conditional CDF is given by F̂ (y|χ) =
Pk

s=1W (xs,x)1{ys≤y}.

The SCMI is particularly suitable when the predictive density is asymmetric. For symmetric

and unimodal distributions SCMI reduces to CPI.

3.5 Practical issues

For general NP-FDA prediction R/S+-routines are available at the website: http://www.lsp.ups-

tlse.fr/staph/npfda; see also Ferraty and Vieu (2006, Chapter 7) for some details. We modified

these routines for our purpose. The resulting R-codes, the datasets, and a brief description can

be obtained from the authors. Two relatively “simple” practical aspects, concern the choice

of the kernel function and the associated bandwidth. Throughout the analysis we employed

the quadratic kernel: K(u) = 112(1− u2)[0,1](u). The bandwidth choice follows the data-driven

procedure as described in Ferraty et al. (2005, Section 4.4), i.e. h is chosen in order to minimizePk
s=1

¯̄̄
ŷ
(.)
s − y

(.)
s

¯̄̄
, where ŷ(.)s denotes the value of a predictor based on one of the FDA methods

discussed above.
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FPCA builds upon ideas from classical PCA. In fact, assuming E(
R
χ2(t)dt) <∞, it can be

shown that the functional random variable χ can be written as χ =
P∞

k=1(
R
χs(t)ek(t)dt)ek,

where ek are orthonormal eigenfunctions of the covariance operator Γχ(t, t0) = E(χ(t)χ(t0))

associated with the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ 0. A truncated version of this expansion forms

the basis of the FPCA semi-metric. In particular, the empirical version of this semi-metric is

defined, in the case x is an observed pattern of a single variable consisting of T consecutive

observations, as

dq(xs,x) =

vuut qX
k=1

³ TX
j=1

(xs(j)− x(j))[êk]j
´2
, (4)

where, q denotes the number of retained principal components in the FPCA expansion, with

q much smaller than T . It is straightforward to generalize (4) into a semi-metric suitable for

multiple covariates. In that case, the parameter q need to be chosen. Comparing the prediction

performance using the evaluation measures introduced in the next section, we noticed that values

of q ≥ 6 did not alter the results. Hence, we fixed q at 5 for each market.

Another practical issue is that price levels may differ considerably across trading days. To

obtain price patterns that are comparable across trading days all price patterns in x are expressed

relative to the opening price of that day.

4 Prediction Evaluation Measures

Four prediction evaluation criteria will be adopted. The first two criteria are measures for

evaluating point predictions, while the latter two are concerned with evaluation of the PIs. The

first measure is the mean-squared prediction error, given by MSE = |S|−1
P

s∈S(ŷ
(.)
s − ys)

2,

where ŷ(.)s denotes the value of a predictor based on the respective NP-FDA, P-FDA approaches

discussed above, or based on predictions obtained from the benchmark linear (multivariate)

regression model.

From a practical point of view there often is some interest in predicting the sign of a return on

the index rather than its precise value. For instance, many trading strategies are based on sign

predictions. The following measure evaluates the point predictions by comparing the predicted

and realized signs of the close-to-open gaps: dsgn = |S|−1
P

s∈S 1{sgn(ŷ(.)s )6=sgn(ys)}
. This measures

the fraction of cases where the sign of the predicted close-to-open return and the actual return

differ. Up to a constant factor, this is a generalization of the mean-squared prediction error

applied to the signs of ŷ(.)i,s and yi,s rather than the actual values.
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The remaining two criteria are used to evaluate the PIs. We compute the average width

of PIs, as well as the empirical coverage probability. Let ĉi and ûi denote the estimated lower

and upper interval limits, respectively, obtained with one of the specific methods described in

section 3.4 (CPI or SCMI). The (root-mean-squared) average width of the corresponding PIs

is calculated as v =
q
|S|−1

P
s∈S(û− ĉ)2. The empirical coverage probability is computed as

pc = |S|−1
P

s∈S 1{ys∈(ĉ,û)}. Ideally, a PI has coverage probability equal to the nominal coverage

probability, while having the smallest possible average width. As an overall measure of the

capability of the intervals to ‘capture much probability’ while having a small width, we also

calculate the average PI length divided by the average coverage probability, q = v̄/p̄c.

5 Data

The data consist of intra-day quotations of the following nine (M = 9) major stock market

indices: the All Ordinary Composite Stock Index (AU), the Nikkei 225 Stock Index (JP), the

Hang Seng Stock Index (HK), the FTSE 100 Share Index (UK), the Frankfurt DAX 30 Composite

Stock Index (DE), the CAC 40 Composite Stock Index (FR), the Zurich Swiss Market Composite

Index (CH), the Dow Jones Industrial Average (US), and the Toronto 300 Composite Stock Index

(CA). All indices are retrieved from the Bloomberg databank. The period covered is from 24th

September 2007 to 8th May 2008. Bloomberg offers one, five, and 15-minute quotations. In the

case of one-minute quotations the market microstructure noise is more pronounced. Hence, we

decided to use five-minute quotes.

For each of the y-variables, i.e. a close-to-open gap of one of the 9 stock indices, we consider

various specifications, differing in terms of the information included in x. To limit the number of

possible specifications, information is added to the x-variable cluster-wise, where the three global

clusters are the Asian cluster (JP, AU, HK), the European cluster (DE, FR, CH, UK), and the

North-American cluster (US, CA). The first specification only contains the stock index patterns

from the ‘previous’ cluster, for instance using the Asian cluster to predict the opening gap of

the CAC 40. This specification is referred to as ‘Cluster(-1)’. The second specification only

uses information from the before-last cluster. For instance, using the North-American cluster to

predict the opening gap of the CAC 40. This is denoted by ‘Cluster(-2)’. Finally, specification

‘Cluster(-1)—Cluster(-2)’ contains the patterns from the last two clusters in the x-variable.

For specifications with one explanatory functional variable the dataset is organized in the

form of a matrix. The predictions are based on the explanatory functional variable (xi,s(t)/xi,s(1))×

8



100 which resulted in MSEs that were at least twice as small as for three alternative transfor-

mations.

Table A.1, provided in Appendix A, provides an overview of the respective trading times

(expressed in CET). In addition, Table A.1 shows information on the total number Ti of five-

minute quotes per trading session when predictions are based on one explanatory functional

variable. In the case of two- or more explanatory functional variables, the total number of

five-minute quotes varies with specifications and trading times. To safe space, we have not

included this information in the paper. Further, note that Table A.1 contains the total number

ki of five-minute quotes (in parentheses) in the learning sample. The testing sample for each

specification contains 35 days (curves). The complete dataset was prepared with great care,

taking into account national holidays in all markets by considering overnight returns.

6 Results

6.1 MSE and sign

Table 1 shows the out-of-sample MSEs observed for each of these specifications, as well as their

standard errors. For each Y -variable, the specifications that performed best in terms of the

MSE criterion is indicated by an underlined entry. To facilitate interpretation of the results,

the Table also provides aggregate MSE values, consisting of averages for similar specifications

across the various y-variables. Global aggregate MSE values are provided, as well as individual

aggregates for the three ‘clusters’ Asia, Europe and North-America. The standard errors of the

aggregates are calculated from the standard errors of the individual MSEs, where these were

assumed to be uncorrelated. The idea behind presenting aggregate MSEs across certain groups

of (x,y)-pairs is that they provide a measure of a method’s average accuracy across (x,y)-pairs

randomly selected from that group.

To interpret the results, it is convenient to start at the aggregate level and then look for par-

ticular differences between clusters and individual stock indices. At the overall aggregate level,

the best specification in terms of MSE turned out to be the mean-based NP-FDA method using

information from both other clusters (i.e. all information that has become available overnight).

Notably, the average MSE (0.47) observed for that specification is considerably smaller than the

average MSE values observed for the linear model specifications, which suggests the presence of

a nonlinear relation between x and y. For the three NP-FDA methods one can observe that the

specification using only information from the oldest cluster performs worse than using that from
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the most recent cluster. The fact that this can be improved upon again by considering both

clusters suggests that the information revealed by the markets that were open most recently is

not reflecting all available information regarding the opening gap.

The observed pattern at the European aggregate level coincides with that just described at

the global aggregate level. Deviations become apparent when looking at the aggregate results

for North-America. Although the mean-based NP-FDA is again performing very well, the linear

model is performing just as well, but based on a different information set (information from

Europe only, rather than from Europe and Asia). A possible interpretation might be that

although there is extra information in the patterns of the European markets that could be

exploited for prediction, the linear model is more parsimonious and therefore able to achieve

equal out-of-sample performance for the small dataset considered here. The aggregate NP-FDA

and P-FDA results for Asia suggest that the opening gaps in the Asian markets are determined by

the North-American stock index patterns as well as the European. When a linear specification is

used, the best model seems to suggest that Asia is only affected by the patterns in the European

markets, which would be highly counterintuitive. The presence of nonlinear dependence of the

Asian opening gaps on the observed patterns may explain this. Indeed, the mean-based NP-FDA

and the P-FDA method achieve smaller out-of-sample MSEs based on trading patterns in both

European and North-American markets.

The results for the individual European markets show structure that roughly coincides with

that of the (global as well as European) aggregate. The best model is the mean-based NP-

FDA, except for Germany, for which P-FDA performs slightly, but insignificantly, better. The

best-performing NP-FDA specification is that using information from both clusters, while the

linear model performs best with a parsimonious specification, based on information from the

latest available cluster only. The best performing model for the US opening gap is the linear

regression model, based on the information revealed by the European markets overnight, in

line with what one would expect for informationally efficient markets. A similar result holds for

Canada, although in that case the mean-based NP-FDA performed slightly (very insignificantly)

better. The opening in Japan seems to be affected by the North-American markets only, both in

terms of the linear benchmark and the NP-FDA. The P-FDA results might indicate that Europe

also has some effect on Japan, but this is insignificant. The best performing model for Australia

is the linear model based on information from Europe. However, the observed MSEs for several

of the other specifications are almost as small, and well within the standard error. Likewise, for

Hong Kong one of the linear models, one of the NP-FDA and one of the P-FDA methods perform
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practically equally well. Note that for none of the y-variables the median-based NP-FDA or the

mode-based NP-FDA method performed best in terms of the MSE criterion.

Interestingly, this picture changes rather substantially if we consider the other performance

measure, dsgn, the results of which are given in Table 2. The globally aggregated results show

that the linear model based on information from the last cluster performs best on average, closely

(with an insignificant difference) followed by the mode-based NP-FDA using information of the

before-last cluster.

The close-to-open gap in the European stock indices is mainly determined by the patterns

in the North-American markets, and the mode-based NP-FDA method picks up this structure

best. Across the different prediction methods, the sign of the opening gap of the North-American

indices appears to be determined by the Asian as well as the European patterns, although the

prediction method that performed best (mode-based NP-FDA) did so using the Asian stock

index patterns only. The Asian aggregate results show that both the linear model and the

mean-based NP-FDA perform well, using patterns from the North-American indices only.

The results for the individual indices roughly follow the structure already reflected by the

aggregate results. An exception is the CAC 40, as it is the only European index for which

the sign of the opening gap is determined by the Asian patterns only. For the other European

indices the sign is determined by the North-American index patterns.

6.2 CPI and SCMI

Table 3 shows the results obtained for the CPI and the SCMI predictive intervals. For ease of

presentation only the aggregate results are provided, which closely coincide with the individual

results. It can be observed that all coverage probabilities are smaller than the nominal value

of 90%. In all cases the coverage probabilities of CPI are better in the sense that they are

closer to the nominal value. On the other hand, on average the SCMIs are shorter than the

CPIs. This indicates that the CPI is more sensitive to the position in the state-space from which

predictions are being made than the SCMI. The overall quality measure q corresponding with

the ratio of the average length and the average coverage probabilities are very similar for both

types of intervals.
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7 Summary and Conclusion

The aggregate results for the MSE show that the best FDA specification, mean-based NP-

FDA with Cluster(-1)-Cluster(-2), on average performs much better than any of the linear

models. This suggests that the NP-FDA method successfully exploits nonlinearities in the

relation between x and y. This result is in line with the huge empirical evidence for nonlinear

dependence in daily stock returns. In a recent systematic model-based prediction exercise,

Guidolin et al. (2009), found that stock and bond returns from the G7 countries, and in particular

UK and US, appear to require nonlinear modelling.

The three clusters seem to be governed by different types of dynamics. When considering

only the linear specification, The European and Asian markets appear to be informationally

efficient in that the specification Cluster(-1) gives the smallest MSE among the linear models.

For the US this is also the overall best performing specification, supporting the idea that the

US index is informationally efficient. However, for all European markets the MSE obtained

with the mean-based NP-FDA using the Cluster(-1)-Cluster(-2) specification was substantially

smaller than those obtained with the best linear model. This suggests that, although impossible

to see using linear models, the European markets are not informationally efficient after all; the

best predictor is nonparametric and rather than information from the latest cluster only, it uses

information from the last two clusters. The best specification for JP is, as might be expected,

based on Cluster(-1) only. However, also there a substantial improvement in the MSE is obtained

in going from the linear to the mean-based NP-FDA specification, suggesting the presence of a

nonlinear relation between the North-American price patterns and JP. Further, the results have

shown that in none of the cases P-FDA outperforms NP-FDA. This holds for the MSE as well

as for the dsgn measure. Among the NP-FDA methods considered, the best MSEs were obtained

with the mean-based NP-FDA, while the mode-based NP-FDA performed best in terms of dsgn

in many cases.

Finally, as far as we are aware, exploring full information in the intra-day stock price patterns

in foreign markets to predict the opening of an index in a home-market, using NP-FDA, has not

been a topic of earlier research. Clearly the present study recognizes the fact that traders in a

home market use any information revealed overnight in a foreign market due to fast transmission

of information worldwide. Hence, our approach is closer to the underlying process of information

flows than studies based on daily returns, volatility of returns, or closing prices.
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Table 1: MSEs with standard deviations in parentheses.

xs ys Mean Median Mode PFDA Lin. reg

HK-AU-JP FR 0.60 (0.18) 0.79 (0.19) 0.68 (0.22) 0.75 (0.12) 0.67 (0.25)

US-CA 0.71 (0.25) 0.97 (0.27) 0.71 (0.25) 0.85 (0.14) 0.73 (0.23)

HK-AU-JP-US-CA 0.44 (0.11) 0.65 (0.22) 0.64 (0.22) 0.61 (0.09) 0.75 (0.22)

HK-AU-JP UK 0.44 (0.11) 0.39 (0.08) 0.44 (0.11) 0.44 (0.10) 0.43 (0.12)

US-CA 0.50 (0.16) 0.93 (0.29) 0.59 (0.19) 0.57 (0.09) 0.49 (0.14)

HK-AU-JP-US-CA 0.33 (0.08) 0.47 (0.11) 0.44 (0.11) 0.31 (0.07) 0.51 (0.14)

HK-AU-JP CH 0.63 (0.21) 0.72 (0.27) 0.73 (0.27) 0.79 (0.11) 0.72 (0.30)

US-CA 0.68 (0.29) 0.67 (0.25) 0.75 (0.29) 0.74 (0.10) 0.73 (0.30)

HK-AU-JP-US-CA 0.45 (0.18) 0.84 (0.30) 0.57 (0.27) 0.58 (0.10) 0.71 (0.30)

HK-AU-JP DE 0.54 (0.19) 0.45 (0.12) 0.59 (0.18) 0.59 (0.12) 0.56 (0.17)

US-CA 0.49 (0.14) 0.51 (0.13) 0.57 (0.16) 0.58 (0.10) 0.56 (0.13)

HK-AU-JP-US-CA 0.33 (0.19) 0.46 (0.12) 0.47 (0.18) 0.26 (0.12) 0.56 (0.17)

DE-FR-CH-UK US 0.39 (0.07) 0.83 (0.20) 0.40 (0.08) 0.48 (0.07) 0.35 (0.09)

HK-AU-JP 0.56 (0.15) 1.05 (0.26) 0.53 (0.13) 0.57 (0.07) 0.51 (0.13)

HK-AU-JP-DE-FR-UK-CH 0.37 (0.09) 0.48 (0.10) 0.42 (0.09) 0.40 (0.08) 0.57 (0.16)

DE-FR-CH-UK CA 0.50 (0.15) 0.71 (0.19) 0.49 (0.19) 0.57 (0.08) 0.42 (0.14)

HK-AU-JP 0.55 (0.20) 1.18 (0.29) 0.53 (0.18) 0.49 (0.07) 0.47 (0.16)

HK-AU-JP-DE-FR-UK-CH 0.41 (0.17) 0.56 (0.14) 0.47 (0.17) 0.55 (0.11) 0.57 (0.18)

US-CA JP 0.35 (0.08) 0.63 (0.15) 0.44 (0.10) 0.45 (0.10) 0.50 (0.09)

DE-FR-CH-UK 0.67 (0.10) 1.07 (0.22) 0.70 (0.12) 0.57 (0.14) 0.56 (0.08)

DE-FR-CH-UK-US-CA 0.50 (0.08) 0.63 (0.12) 0.65 (0.13) 0.41 (0.14) 0.63 (0.12)

US-CA AU 0.32 (0.10) 0.42 (0.16) 0.41 (0.13) 0.33 (0.07) 0.28 (0.08)

DE-FR-CH-UK 0.37 (0.08) 0.52 (0.11) 0.39 (0.09) 0.39 (0.12) 0.26 (0.07)

DE-FR-CH-UK-US-CA 0.29 (0.08) 0.28 (0.07) 0.28 (0.07) 0.35 (0.07) 0.32 (0.08)

US-CA HK 1.34 (0.26) 2.28 (0.49) 1.70 (0.29) 2.17 (0.93) 1.83 (0.42)

DE-FR-CH-UK 1.76 (0.36) 3.20 (0.70) 2.25 (0.56) 1.31 (0.95) 1.20 (0.36)

DE-FR-CH-UK-US-CA 1.14 (0.26) 2.68 (0.52) 1.95 (0.41) 1.07 (1.03) 2.10 (0.45)

Overall aggregate

Cluster(-1) 0.57 (0.05) 0.80 (0.08) 0.65 (0.06) 0.73 (0.11) 0.64 (0.07)

Cluster(-2) 0.70 (0.07) 1.12 (0.11) 0.78 (0.09) 0.67 (0.11) 0.61 (0.07)

Cluster(-1)-cluster(-2) 0.47 (0.05) 0.78 (0.08) 0.65 (0.07) 0.50 (0.12) 0.75 (0.08)

Europe

Cluster(-1) 0.55 (0.09) 0.59 (0.09) 0.61 (0.10) 0.64 (0.06) 0.60 (0.11)

Cluster(-2) 0.60 (0.11) 0.77 (0.12) 0.66 (0.11) 0.69 (0.05) 0.63 (0.11)

Cluster(-1)-cluster(-2) 0.39 (0.07) 0.61 (0.10) 0.53 (0.10) 0.44 (0.05) 0.63 (0.11)

North-America

Cluster(-1) 0.45 (0.08) 0.77 (0.14) 0.45 (0.10) 0.53 (0.05) 0.39 (0.08)

Cluster(-2) 0.56 (0.13) 1.12 (0.19) 0.53 (0.11) 0.53 (0.05) 0.49 (0.10)

Cluster(-1)-cluster(-2) 0.39 (0.10) 0.52 (0.09) 0.45 (0.10) 0.48 (0.07) 0.57 (0.12)

Asia

Cluster(-1) 0.67 (0.10) 1.11 (0.18) 0.85 (0.11) 0.98 (0.31) 0.87 (0.15)

Cluster(-2) 0.93 (0.13) 1.60 (0.25) 1.11 (0.19) 0.76 (0.32) 0.67 (0.13)

Cluster(-1)-cluster(-2) 0.64 (0.09) 1.20 (0.18) 0.96 (0.15) 0.61 (0.35) 1.02 (0.16)
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Table 2: dsgn with standard deviations in parentheses.

xs ys Mean Median Mode PFDA Lin. reg

HK-AU-JP FR 0.17 (0.06) 0.29 (0.08) 0.54 (0.08) 0.34 (0.08) 0.17 (0.06)

US-CA 0.31 (0.08) 0.34 (0.08) 0.26 (0.07) 0.31 (0.08) 0.31 (0.08)

HK-AU-JP-US-CA 0.29 (0.08) 0.26 (0.07) 0.34 (0.08) 0.40 (0.08) 0.37 (0.08)

HK-AU-JP UK 0.23 (0.07) 0.23 (0.07) 0.49 (0.08) 0.29 (0.08) 0.20 (0.07)

US-CA 0.37 (0.08) 0.37 (0.08) 0.06 (0.04) 0.40 (0.08) 0.34 (0.08)

HK-AU-JP-US-CA 0.29 (0.08) 0.17 (0.06) 0.31 (0.08) 0.43 (0.08) 0.31 (0.08)

HK-AU-JP CH 0.23 (0.07) 0.31 (0.08) 0.57 (0.08) 0.34 (0.08) 0.20 (0.07)

US-CA 0.34 (0.08) 0.37 (0.08) 0.20 (0.07) 0.31 (0.08) 0.37 (0.08)

HK-AU-JP-US-CA 0.34 (0.08) 0.31 (0.08) 0.34 (0.08) 0.37 (0.08) 0.46 (0.08)

HK-AU-JP DE 0.23 (0.07) 0.17 (0.06) 0.54 (0.08) 0.29 (0.08) 0.20 (0.07)

US-CA 0.23 (0.07) 0.34 (0.08) 0.09 (0.05) 0.31 (0.08) 0.34 (0.08)

HK-AU-JP-US-CA 0.23 (0.07) 0.17 (0.06) 0.31 (0.08) 0.29 (0.08) 0.34 (0.08)

DE-FR-CH-UK US 0.51 (0.08) 0.43 (0.08) 0.51 (0.08) 0.51 (0.08) 0.49 (0.08)

HK-AU-JP 0.37 (0.08) 0.46 (0.08) 0.29 (0.08) 0.43 (0.08) 0.40 (0.08)

HK-AU-JP-DE-FR-UK-CH 0.29 (0.08) 0.34 (0.08) 0.54 (0.08) 0.34 (0.08) 0.46 (0.08)

DE-FR-CH-UK CA 0.34 (0.08) 0.34 (0.08) 0.31 (0.08) 0.37 (0.08) 0.29 (0.08)

HK-AU-JP 0.49 (0.08) 0.43 (0.08) 0.23 (0.07) 0.40 (0.08) 0.37 (0.08)

HK-AU-JP-DE-FR-UK-CH 0.29 (0.08) 0.40 (0.08) 0.11 (0.05) 0.34 (0.08) 0.46 (0.08)

US-CA JP 0.20 (0.07) 0.26 (0.07) 0.29 (0.08) 0.20 (0.07) 0.23 (0.07)

DE-FR-CH-UK 0.51 (0.08) 0.51 (0.08) 0.54 (0.08) 0.37 (0.08) 0.37 (0.08)

DE-FR-CH-UK-US-CA 0.43 (0.08) 0.37 (0.08) 0.57 (0.08) 0.29 (0.08) 0.31 (0.08)

US-CA AU 0.26 (0.07) 0.37 (0.08) 0.34 (0.08) 0.29 (0.08) 0.31 (0.08)

DE-FR-CH-UK 0.34 (0.08) 0.31 (0.08) 0.43 (0.08) 0.43 (0.08) 0.37 (0.08)

DE-FR-CH-UK-US-CA 0.29 (0.08) 0.34 (0.08) 0.43 (0.08) 0.43 (0.08) 0.40 (0.08)

US-CA HK 0.29 (0.08) 0.31 (0.08) 0.31 (0.08) 0.29 (0.08) 0.26 (0.07)

DE-FR-CH-UK 0.29 (0.08) 0.40 (0.08) 0.46 (0.08) 0.34 (0.08) 0.26 (0.07)

DE-FR-CH-UK-US-CA 0.31 (0.08) 0.37 (0.08) 0.40 (0.08) 0.31 (0.08) 0.34 (0.08)

Overall aggregate

Cluster(-1) 0.27 (0.02) 0.31 (0.03) 0.40 (0.03) 0.32 (0.03) 0.26 (0.02)

Cluster(-2) 0.36 (0.03) 0.39 (0.03) 0.28 (0.02) 0.37 (0.03) 0.35 (0.03)

Cluster(-1)-cluster(-2) 0.31 (0.03) 0.30 (0.03) 0.37 (0.03) 0.36 (0.03) 0.38 (0.03)

Europe

Cluster(-1) 0.22 (0.03) 0.25 (0.04) 0.54 (0.04) 0.32 (0.04) 0.19 (0.03)

Cluster(-2) 0.31 (0.04) 0.36 (0.04) 0.15 (0.03) 0.33 (0.04) 0.34 (0.04)

Cluster(-1)-cluster(-2) 0.29 (0.04) 0.23 (0.04) 0.33 (0.04) 0.37 (0.04) 0.37 (0.04)

North-America

Cluster(-1) 0.43 (0.06) 0.39 (0.06) 0.41 (0.06) 0.44 (0.06) 0.39 (0.06)

Cluster(-2) 0.43 (0.06) 0.45 (0.06) 0.26 (0.05) 0.42 (0.06) 0.39 (0.06)

Cluster(-1)-cluster(-2) 0.29 (0.05) 0.37 (0.06) 0.33 (0.05) 0.34 (0.06) 0.46 (0.06)

Asia

Cluster(-1) 0.25 (0.04) 0.31 (0.05) 0.31 (0.05) 0.26 (0.04) 0.27 (0.04)

Cluster(-2) 0.38 (0.05) 0.41 (0.05) 0.48 (0.05) 0.38 (0.05) 0.33 (0.05)

Cluster(-1)-cluster(-2) 0.34 (0.05) 0.36 (0.05) 0.47 (0.05) 0.34 (0.05) 0.35 (0.05)
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Table 3: Coverage probabilities, predictive interval widths, and overall predictive interval quality

measure q. Nominal coverage is 0.90.

Cov. prob. Width q

CPI SCMI CPI SCMI CPI SCMI

Overall aggregate

Cluster(-1) 0.76 0.72 2.02 1.87 2.65 2.58

Cluster(-2) 0.72 0.71 1.89 1.79 2.62 2.52

Cluster(-1)-cluster(-2) 0.67 0.63 1.57 1.47 2.35 2.35

Europe

Cluster(-1) 0.80 0.73 1.96 1.75 2.45 2.39

Cluster(-2) 0.67 0.69 1.50 1.43 2.25 2.07

Cluster(-1)-cluster(-2) 0.67 0.65 1.31 1.27 1.96 1.95

North-America

Cluster(-1) 0.74 0.76 1.96 1.83 2.66 2.43

Cluster(-2) 0.83 0.80 2.03 1.92 2.45 2.40

Cluster(-1)-cluster(-2) 0.83 0.77 1.68 1.56 2.02 2.03

Asia

Cluster(-1) 0.73 0.69 2.13 2.03 2.94 2.96

Cluster(-2) 0.73 0.68 2.33 2.18 3.21 3.23

Cluster(-1)-cluster(-2) 0.73 0.50 1.82 1.82 3.30 3.34
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A Appendix

Table A.1: Trading times expressed in CET. Total number Ti of 5-minute quotes per trading

session s, when predictions are based on a single explanatory variable, and (in parentheses) the

total number ki of 5-minute quotes in the learning sample.

yi,s

xi,s CET AU JP HK UK DE FR CH US CA

AU 00:00-06:05 74 (118) 74 (116) 74 (118) 74 (115) 74 (115) 74 (117)

JP 01:00-06:35 57 (110) 57 (109) 57 (109) 57 (110) 57 (108) 57 (110)

HK 03:00-09:00 50 (114) 50 (113) 50 (115) 50 (113) 51 (111) 51 (113)

UK 09:00-17:30 103 (86) 103 (84) 103 (82) 66 (117) 66 (119)

DE 09:00-17:35 104 (86) 104 (83) 104 (82) 66 (115) 66 (117)

FR 09:00-17:25 102 (86) 102 (84) 102 (82) 66 (117) 66 (119)

CH 09:00-17:30 101 (85) 101 (83) 101 (81) 66 (114) 66 (116)

US 14:30-21:00 79 (85) 79 (84) 79 (81) 79 (86) 79 (85) 79 (85) 79 (85)

CA 14:30-21:05 80 (86) 80 (84) 80 (82) 80 (87) 80 (86) 80 (86) 80 (87)
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