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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can be

described by a cooperative game with transferable utility, or simply a TU-game. A solution

for TU-games assigns a set of payoff distributions to every TU-game.

In the literature various models of games with restricted cooperation can be found. So,

instead of allowing all subsets of the player set N to form, it is assumed that the set of

feasible coalitions is a subset of the power set of N . In this paper we consider such sets

of feasible coalitions that are closed under union, i.e. for any two feasible coalitions also

their union is feasible. Properties of solutions (the core, the nucleolus, the prekernel and

the Shapley value) are given for games on union closed systems.

Keywords: TU-game, restricted cooperation, union closed system, core, prekernel, nucle-

olus.

AMS subject classification: 91A12, 5C20

JEL code: C71



1 Introduction

A cooperative game with transferable utility, or simply a TU-game, is a finite set of players

and for any subset (coalition) of players a worth representing the total payoff that the

coalition can obtain by cooperating. A (single-valued) solution is a function that assigns

to every game a payoff vector which components are the individual payoffs of the players.

In its classical interpretation, a TU-game describes a situation in which the players

in every coalition S of N can cooperate to form a feasible coalition and earn its worth. In

the literature various restrictions on coalition formation are developed.1 For example, in the

(communication) graph games of Myerson (1977) a coalition is feasible if it is connected

in a given (communication) graph. Games in which the collection of feasible coalitions

forms an antimatroid2 are considered in Algaba, Bilbao, van den Brink and Jiménez-

Losada (2003, 2004). A well-known example of an antimatroid is the collection of feasible

coalitions induced by a acyclic permission structure, i.e. players need permission from

(some of) their superiors in a hierarchical structure when they want cooperate with others.

Games with a permission structure are considered in e.g. Gilles, Owen and van den Brink

(1992), van den Brink and Gilles (1996), Gilles and Owen (1994) and van den Brink (1997).

A model that generalizes both the communication graph games as well as the games on

antimatroids are the games on augmenting systems, see Bilbao (2003), Bilbao and Ordóñez

(2009) and Algaba, Bilbao and Slikker (2010).

In this paper we consider games with restricted cooperation given by a collection of

feasible coalitions that is closed under union, meaning that for any pair of feasible coalitions

also their union is feasible. Since such collections are more general than antimatroids, the

class of games on union closed systems contains the class of games on antimatroids. In

van den Brink, Katsev and van der Laan (2010) two single-valued solutions for games on

union closed systems that generalize the Shapley value are defined and characterized. The

first solution is based on games with a permission structure, the other directly applies the

Shapley value to some restricted game. Both solutions generalize the Shapley value in the

sense that they are equal to the Shapley value when the union closed system is the power

set of player set N .

The restricted game considered in van den Brink et al. (2010) is defined by assigning

to each coalition the worth of its maximal feasible subset in the union closed system. In

this paper we apply several well-known solution concepts as the core, nucleolus, prekernel

and Shapley value to this restricted game. We show some interesting properties of these

1For a survey on we refer to Bilbao (2000).
2A collection of feasible coalitions A ⊆ 2N is an antimatroid if it (i) contains the ∅, (ii) is union closed

(when S,T ∈ A, then also S ∪ T ∈ A), and (iii) satisfies accessibility (for every S ∈ A there is i ∈ S such

that S \ {i} ∈ A), see Dilworth (1940) and Edelman and Jamison (1985).
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solutions on the class of games on union closed systems, in particular for monotone games.

We also give a sufficient condition to guarantee that the nucleolus is the unique point in

the intersection of the prekernel and the core.

This paper is organized as follows. Section 2 is a preliminary section on cooperative

TU-games. In Section 3 we introduce games on union closed systems. Section 4 discusses

properties of some solutions for monotone games on union closed systems. Finally, Section

5 gives special attention to the prekernel.

2 TU-games and solutions

A situation in which a finite set of players can obtain certain payoffs by cooperating can be

described by a cooperative game with transferable utility, or simply a TU-game, being a pair

(N, v), where N ⊂ IN is a finite set of n players and v : 2N → R is a characteristic function

on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S, i.e.,

the members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate.

For ease of notation we write v(i) = v({i}) for i ∈ N . A player i ∈ N is called a veto

player if v(S) = 0 if i �∈ S and a game v is veto-rich if it contains at least one veto

player. Since we take the player set N to be fixed, we denote the game (N, v) just by its

characteristic function v. For each nonempty T ⊆ N , the unanimity game uT is given by

uT (S) = 1 if T ⊆ S, and uT (S) = 0 otherwise. It is well-known that the unanimity games

form a basis for GN . For every v ∈ GN it holds that v =
∑

T⊆N, T �=∅ ∆T (v)uT , where

∆T (v) =
∑

S⊆T (−1)
|T |−|S|v(S) are the Harsanyi dividends, see Harsanyi (1959).

We denote the collection of all characteristic functions on N by GN and n = |N |

denotes the cardinality of N . A game v ∈ GN is monotone if v(S) ≤ v(T ) for all S ⊆ T ⊆ N .

We denote by GNm the class of all monotone TU-games on N .

A payoff vector is a vector x ∈ IRn assigning a payoff xi to every i ∈ N . In the

sequel, for S ⊆ N we denote x(S) =
∑

i∈S xi. The set of efficient payoff vectors of a game

v ∈ GN is given by

X(v) = {x ∈ IRn | x(N) = v(N)}

and the imputation set is the set of efficient and individually rational payoff vectors given

by

I(v) = {x ∈ X(v) | xi ≥ v(i) for every i ∈ N}.

A (set-valued) solution is a mapping F : GN → IRn that assigns a (possibly empty) set

F (v) ⊂ IRn of payoff vectors to every v ∈ GN . A solution F is said to be single-valued if it

assigns to every v ∈ GN a single payoff vector F (v) ∈ IRn. Notice that F = X and F = I
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are set-valued solutions assigning to every v the set of efficient payoff vectors, respectively

the imputation set. The most well-known set-valued solution is the core C, assigning to

every v ∈ GN the set

C(v) = {x ∈ X(v) | x(S) ≥ v(S) for every S ⊂ N}.

Since I(v) ⊆ C(v), the core is the set of stable imputations in the sense that no coalition

S can improve by separating from the grand coalition N .

A collection B of subsets B of N is said to be a balanced collection when the system

of equations
∑

B∈B

λBe
B = eN

has a positive solution, where for any B ⊆ N the vector eB ∈ IRn is defined by eBj = 1

when j ∈ B and eBj = 0 otherwise. A game v ∈ GN is balanced if

m∑

j=1

λBj v(Sj) ≤ v(N)

for every balanced collection B = {S1, . . . , Sm} ∈ B. A well-known result states that the

core of a game is non-empty if and only if the game is balanced, see Bondareva (1962)

or Shapley (1967). Notice that every veto-rich monotone game has a non-empty core

(any payoff vector that assigns worth v(N) to the veto players is in the core) and thus is

balanced.

Two other well-known solutions are the (pre)nucleolus and the (pre)kernel. To

define the (pre)nucleolus of a game v ∈ GN , let x ∈ IRn be a payoff vector. Then the excess

e(S, x) of coalition S ⊆ N is defined by

e(S, x) = v(S)− x(S).

Further, let E(x) be the (2n− 2)-component vector that is composed of the excesses of all

coalitions S ⊂ N, S �= ∅, in a non-increasing order, so E1(x) ≥ E2(x) ≥ . . . ≥ E2n−2(x).

Then the prenucleolus PN(v) of a game v ∈ GN is the unique efficient payoff vector which

lexicographically minimizes the vector-valued function E(·) over the set of efficient payoff

vectors. Formally,

PN(v) = x such that x ∈ X(v) and E(x) �L E(y) for all y ∈ X(v),

where �L denotes the lexicographic order of vectors. The nucleolus Nuc(v) of a game

v ∈ GN is the unique imputation which lexicographically minimizes the vector-valued

function E(·) over the imputation set, so

Nuc(v) = x such that x ∈ I(v) and E(x) �L E(y) for all y ∈ I(v).
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Both the prenucleolus and the nucleolus are single-valued solutions.

To define the prekernel and the kernel of a game v ∈ GN we first introduce the

notion of complaint . For a payoff vector x ∈ IRn, the complaint of player i ∈ N against

another player j ∈ N is given by

sij(x) = max
{S⊆N |i∈S, j �∈S}

(v(S)− x(S)).

The prekernel PK assigns to every v ∈ GN the set of efficient payoff vectors

PK(v) = {x ∈ X(v)|sij(x) = sji(x) for all i, j ∈ N}

and the kernel K assigns to every v ∈ GN the set of imputations

K(v) = {x ∈ I(v)| [sij(x) = sji(x)] or [sij(x) > sji(x) and xj = v(j)] for all i, j ∈ N}.

Finally we define the least core LC(v) of a game v ∈ GN . For an efficient payoff

vector x ∈ X(v), the excess ev(x) of x is defined by

ev(x) = max
{S∈2N |S �=∅,N}

e(S, x) = max
{S∈2N |S �=∅,N}

(v(S)− x(S)) ,

i.e. for any coalition S �= ∅, N , its payoff x(S) is at least equal to its own worth v(S) minus

the excess ev(x) with equality for at least one of these coalitions. Further the gain e(v) of

v is defined as the largest negative excess, thus

e(v) = max
x∈X(N,v)

− ev(x).

Notice that ev(x) ≤ 0 when x ∈ C(v) and e(v) ≥ 0 if and only if C(v) �= ∅. Then the least

core, introduced by Maschler, Peleg and Shapley (1979), see e.g. also Einy, Holzman and

Monderer (1999), is defined as the solution LC that assigns to game v the set of efficient

payoff vectors

LC(v) = {x ∈ X(v)|x(S) ≥ v(S) + e(v) for every S �= ∅, N}.

Observe that LC(v) ⊆ C(v) if C(v) �= ∅, with LC(v) = C(v) when e(v) = 0. We also have

that Nuc(v) ∈ LC(v) and that LC(v) ⊆ I(v) when v ∈ GNm .

3 Games on union closed systems

We now consider tuples (v,Ω), where v is a TU-game on player set N and Ω ⊆ 2N is a

collection of subsets of N . We call such a tuple a game with restricted cooperation. In such

a game the collection of subsets Ω restricts the cooperation possibilities of the players in

N . We say that a coalition S ∈ 2N is feasible if and only if S ∈ Ω. In this paper we only

consider sets of feasible coalitions that are closed under union.
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Definition 3.1 A collection Ω ⊆ 2N is a union closed system of coalitions if

1. ∅, N ∈ Ω,

2. If S, T ∈ Ω, then S ∪ T ∈ Ω.

In the sequel we denote the collection of all union closed systems in 2N by CN .

Example 3.2

1. Both Ω = {∅, N} and Ω = 2N are union closed systems, the first one is the smallest

union closed system and the second one is the largest union closed system of subsets of N ,

i.e. {∅,N} ⊆ Ω ⊆ 2N for every union closed system Ω of subsets of N .

2. For some k ∈ {1, . . . |N |}, the collection of coalitions Ω = {S ⊆ N | |S| ≥ k} ∪ {∅}

is closed under union. More generally, let the collection P = {P 1, . . . , Pm} of nonempty

subsets of N be a partition of N , and for every P k, k ∈ {1, . . . ,m}, let qk ∈ {1, . . . , |P
k|}

be a quotum meaning that a nonempty coaliton S ⊆ N can form S contains at least qk

players from P k for every k = 1, . . . ,m. The collection of feasible coalitions

Ω = {S ⊆ N | |S ∩ Pk| ≥ qk for all k ∈ {1, . . . ,m}} ∪ {∅}

is closed under union.

3. Let D be an acyclic directed graph on player set N (representing for instance some

hierarchical structure), and let Ω be the collection of subsets of N such that S ∈ Ω when-

ever for every i ∈ S also all predecessors of i in the digraph D belong to S. Then Ω is union

closed. Also the collection Ω of subsets of N such that S ∈ Ω whenever for every i ∈ N

having a predecesssor in D at least one of the predecessors is in S is union closed. For

given D these collections are called the collection of conjunctive, respectively disjunctive,

feasible coalitions and are an antimatroid, see Algaba et al. (2003). Every antimatroid is

a union closed system by definition3. �

For notational convenience we require in Definition 3.1 that the grand coalition N

is feasible. The results in this paper can be modified to hold without this requirement if

in the axioms we distinguish between players that belong to at least one feasible coalition

and those that do not belong to any feasible coalition. Note that union closedness implies

that the grand coalition is feasible if every player belongs to at least one feasible coalition.

So, instead of assuming that N ∈ Ω we could do with the weaker normality assumption

3In fact, an augmenting system is an antimatroid if and only if it is closed under union, see Bilbao

(2003) and Algaba, Bilbao and Slikker (2010). Note that examples 1 and 2 above are union closed systems

that are not antimatroids.
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stating that every player belongs to at least one feasible coalition. We give some definitions

and properties for union closed systems.

Definition 3.3 For two players i, j ∈ N , i �= j, player i is a superior of player j in

Ω ∈ CN , if i ∈ S for every S ∈ Ω such that j ∈ S. In that case player j is a subordinate

of i.

Corollary 3.4 If i is a superior of j in Ω and k is a superior of i in Ω then k is a superior

of j in Ω.

Further, for i ∈ N and Ω ∈ CN define

SΩi = {j ∈ N | j = i or i is a superior of j},

i.e. SΩi ⊆ N denotes the set containing player i and all subordinates of i in Ω. Then the

next proposition says that when Ω is a union closed system, for every i ∈ N the complement

of i and all its subordinates is in Ω.

Proposition 3.5 When Ω ∈ CN , then N \ SΩi ∈ Ω for every i ∈ N .

Proof. Let U be the union of all feasible sets not containing i. Since Ω ∈ CN , it follows

that U ∈ Ω. Further, by definition of U we have that i �∈ U . Consider a player j �∈ U with

j �= i. It holds that any feasible set without i does not contain j. So i is a superior of j

and thus j ∈ SΩi . Hence N \ U ⊆ SΩi . On the other hand, consider some player j ∈ SΩi .

If j = i then j �∈ U by definition of U . If j �= i, then any feasible set containing j also

contains i. Hence j �∈ U , which shows that SΩi ⊆ N \ U . Hence N \ SΩi = U ∈ Ω. �

A set S ⊆ N of players can attain its value v(S) if S ∈ Ω. When S �∈ Ω then

coalition S can not be formed and so the set S of players can not realize its worth v(S).

For a tuple (v,Ω), let σΩ : 2
N → Ω be given by σΩ(S) = ∪{E∈Ω|E⊆S} E, i.e. σΩ(S) is the

largest feasible subset of S in the system Ω. By union closedness this largest feasible subset

is unique. We then define the restricted game rv,Ω ∈ GN of (v,Ω) by

rv,Ω(S) = v(σΩ(S)),

i.e. the restricted game is a standard TU-game that assigns to each coalition S ⊆ N the

worth of its largest feasible subset. Notice that when Ω = {∅, N}, then σΩ(N) = N and

σΩ(S) = ∅ for all S �= N and thus rv,Ω(N) = v(N) and rv,Ω(S) = v(∅) = 0 for every S �= N .

Thus the restricted game rv,Ω is a multiple of the unanimity game of N , being a game in

which every player is a veto-player. When Ω = 2N then σΩ(S) = S and rv,Ω(S) = v(S) for

every S ⊆ N . In this case the restricted game rv,Ω coincides with v.

Next we generalize some inheritance properties of the restricted game which gener-

alizes known results for games with a permission tructure and games on antimatroids.

6



Proposition 3.6 Let Ω ∈ CN and let v ∈ GN be a monotone game. Then

1. the restricted game rv,Ω is monotone;

2. if v is superadditive then rv,Ω is superadditive;

3. if v is balanced then rv,Ω is balanced;

4. if v is convex and Ω is closed under intersection (i.e. S, T ∈ Ω implies that S ∩ T ∈

Ω), then rv,Ω is convex.

Proof. Let Ω ∈ CN and let v ∈ GN be a monotone game.

1. By definition of σΩ it is obvious that S ⊆ T implies that σΩ(S) ⊆ σΩ(T ), and thus

by monotonicity of v, S ⊆ T implies that rv,Ω(S) = v(σΩ(S)) ≤ v(σΩ(T )) = rv,Ω(T ),

showing monotonicity of rv,Ω.

2. By union closedness, σΩ(S)∪σΩ(T ) ∈ Ω for all S, T ∈ Ω. Since σΩ(S)∪σΩ(T ) ⊆ S∪T ,

we then have σΩ(S)∪σΩ(T ) ⊆ σΩ(S ∪T ). If S ∩T = ∅ then σΩ(S)∩σΩ(T ) = ∅, and

thus rv,Ω(S)+ rv,Ω(T ) = v(σΩ(S))+ v(σΩ(T )) ≤ v(σΩ(S)∪ σΩ(T )) ≤ v(σΩ(S ∪ T )) =

rv,Ω(S ∪ T ), where the first inequality follows from superadditivity of v. This shows

superadditivity of rv,Ω.

3. This follows from Proposition 4.1 and the obvious fact that C(v) ⊆ C∗(v,Ω).

4. In 2 we already showed that by union closedness σΩ(S)∪σΩ(T ) ⊆ σΩ(S∪T ). Similar,

by intersection closedness σΩ(S)∩σΩ(T ) ∈ Ω for all S, T ∈ Ω. Since σΩ(S)∩σΩ(T ) ⊆

S∩T , we have σΩ(S)∩σΩ(T ) ⊆ σΩ(S∩T ). But then rv,Ω(S)+ rv,Ω(T ) = v(σΩ(S))+

v(σΩ(T )) ≤ v(σΩ(S) ∪ σΩ(T )) + v(σΩ(S) ∩ σΩ(T )) ≤ v(σΩ(S ∪ T )) + v(σΩ(S ∩ T )) =

rv,Ω(S ∪T )+ rv,Ω(S ∩T ), where the first inequality follows from convexity of v. This

shows convexity of rv,Ω.

�

A solution for games on union closed systems is a mapping F that assigns a set of

payoff vectors F (v,Ω) ⊂ IRn to every v ∈ GN and Ω ∈ CN . In this paper we only consider

solutions for games on union closed systems that assign to each tuple (v,Ω) ∈ GN × CN

the set of payoff vectors F (rv,Ω) of a solution F : GN → IRn, i.e. a solution for games on

a union closed system assigns the set of payoff vectors that is assigned by a solution F on

GN to the restricted game rv,Ω. For ease of notation we denote F (v,Ω) = F (rv,Ω).
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4 Properties of solutions for the class of monotone

games on union closed systems

In this section we apply the solutions for TU games given in Section 2 and consider their

properties for games on union closed systems, in particular we consider the relation between

the payoffs of some player j and its superior i for monotone games on union closed systems.

Notice that when v is monotone, it holds that for every Ω ∈ CN also the restricted game rv,Ω

is monotone (by Proposition 3.6). Further it should be noticed that rv,Ω({j}) = v(∅) = 0

when j has a superior, because {j} is not feasible when j has a superior.

First we consider the core and the least core of the restricted game. When we take

as solution F the core of a game, then we obtain

C(v,Ω) = C(rv,Ω) = {x ∈ X(rv,Ω) | x(S) ≥ v(σΩ(S)), S ⊂ N}.

For a tuple (v,Ω), let C∗(v,Ω) be given by

C∗(v,Ω) = {x ∈ X(v)|x(S) ≥ v(S) for any S ∈ Ω and xj ≥ 0 for any j ∈ N}.

i.e. C∗(v,Ω) is the set of nonnegative efficient payoff vectors satisfying the core inequalities

corresponding to the feasible coalitions in Ω. It turns out that this set is equal to the core

on the class of monotone games on union closed systems.

Proposition 4.1 For every v ∈ GNm and Ω ∈ CN we have C(v,Ω) = C∗(v,Ω).

Proof. Since N ∈ Ω we have that σΩ(N) = N and thus v(σΩ(N)) = v(N) and X(rv,Ω) =

X(v). Let x ∈ C(v,Ω). When the singleton player set {j} ∈ Ω, then σΩ({j}) = {j}

and thus v(σΩ({j})) = v({j}) ≥ 0, since v ∈ GNm . Otherwise σΩ({j}) = ∅ and thus

v(σΩ({j})) = v(∅) = 0. Hence for every x ∈ C(v,Ω) we have that xj ≥ v(σΩ({j})) ≥ 0

for every j ∈ N . Further, since σΩ(S) = S if S ∈ Ω, the inequalities x(S) ≥ v(σΩ(S)) for

every S ⊂ N , imply that x(S) ≥ v(S) for every S ∈ Ω. Thus, x ∈ C∗(v,Ω).

Next, let x ∈ C∗(v,Ω). Obviously, x(S) ≥ v(σΩ(S)) for every S ∈ Ω. Since

σΩ(S) ⊆ S and xj ≥ 0 for all j ∈ N , we have for any S ⊂ N and v ∈ GNm that x(S) ≥

x(σΩ(S)) ≥ v(σΩ(S)) for every S ⊂ N . Thus, x ∈ C(v,Ω).

�

Next recall that the least core of a monotone game is contained in the imputation

set of the game. Since the restricted game of a monotone game is also monotone, it follows

for v ∈ GNm that x ∈ I(rv,Ω) for every x ∈ LC(rv,Ω). Since, for every j ∈ N , either {j} is

feasible in Ω and thus xj ≥ v({j}) ≥ 0, or j is not feasible and xj ≥ rv,Ω({j}) = v(∅) = 0,

we have the following proposition.
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Proposition 4.2 Let v ∈ GNm be monotone, and Ω ∈ CN . Then xj ≥ 0 for every x ∈

LC(rv,Ω) and j ∈ N .

For a monotone game v it is straightforward that for two union closed systems Ω1

and Ω2 such that Ω1 ⊆ Ω2, we have rv,Ω1(S) ≤ rv,Ω2(S) for every S ∈ 2N . Therefore the

next proposition follows immediately without proof.

Proposition 4.3 Let v be monotone and Ω1, Ω2 be two union closed systems such that

Ω1 ⊆ Ω2. Then C(v,Ω2) ⊆ C(v,Ω1).

Since rv,Ω = v, and thus C(v,Ω) = C(v) when Ω = 2N , Proposition 4.3 yields that

C(v,Ω) �= ∅ for any Ω ∈ CN and v ∈ GNm with non-empty core.

In the following, let i and j be two fixed players such that i is a superior of j in

Ω (and thus rv,Ω(j) = 0). For a vector x with xj > 0 and some number 0 ≤ a ≤ xj, we

denote for fixed i and j the vector xa by4






xai = xi + a,

xaj = xj − a,

xak = xk when k �= i, j.

(4.1)

Clearly, since xaj = xj−a ≥ 0 = rv,Ω({j}) we have that xa ∈ I(N, rv,Ω) when x ∈ I(N, rv,Ω).

Moreover, for S ⊂ N






xa(S) = x(S) + a > x(S) i ∈ S, j �∈ S,

xa(S) = x(S)− a < x(S) j ∈ S, i �∈ S,

xa(S) = x(S) otherwise.

So, for every S ∈ Ω it is true that xa(S) ≥ x(S) because i is a superior of j and thus there

does not exist S ∈ Ω with j ∈ S and i �∈ S. We now have the following proposition.

Proposition 4.4 Let (v,Ω) be a monotone game on a union closed system and, for a

vector x and two players i and j such that i is a superior of j, let xa be as defined in

equation (4.1). Then

(i) if x ∈ C(v,Ω), then xa ∈ C(v,Ω) for all a ∈ (0, xj].

(ii) if x ∈ LC(v,Ω) and xi < xj, then xa ∈ LC(v,Ω) for all a ∈ (0, 1
2
(xj − xi)].

Proof. To prove (i), recall from Proposition 4.1 that

C(v,Ω) = {x ∈ X(v) x(S) ≥ v(S) for any S ∈ Ω and xj ≥ 0 for any j ∈ N}.

4There is some abuse of notation, actually xa also depends on i and j.
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Clearly, for every S ∈ Ω we have that xa(S) ≥ x(S) ≥ v(S). Further, we have for every

k �= j that xak ≥ xk ≥ 0 and that xaj = xj − a ≥ 0. Since i is a superior of j and thus

{j} �∈ Ω, it follows that xa ∈ C(v,Ω).

To prove (ii), notice that xai ≤ xaj for all a ∈ (0, 1
2
(xj − xi)]. Suppose that xa is not

in LC(v,Ω). Then there exists a coalition S ⊂ N such that

xa(S)− rv,Ω(S) < e(rv,Ω). (4.2)

Since x ∈ LC(v,Ω) we have that

x(S)− rv,Ω(S) ≥ e(rv,Ω).

Hence x(S) > xa(S), implying that S contains j but not i. Let T = S\{j} and S ′ = T∪{i}.

Then

xa(S)− rv,Ω(S) = xa(S)− v(σΩ(T ))

because i �∈ S and thus j �∈ σΩ(S). Hence

xa(S)− rv,Ω(S) = xa(S)− v(σΩ(T )) ≥ xa(T ) + xaj − v(σΩ(T ∪ {i})) ≥

xa(T ) + xai − v(σΩ(T ∪ {i})) = xa(S ′)− rv,Ω(S
′),

where the second inequality follows because xai ≤ xaj . So, with equation (4.2) it follows

that

xa(S ′)− rv,Ω(S
′) ≤ xa(S)− rv,Ω(S) < e(rv,Ω),

which contradicts that x(S ′) − rv,Ω(S
′) ≥ e(rv,Ω). The latter inequality must hold for

x ∈ LC(v,Ω), since xa(S ′) > x(S ′) because i ∈ S ′ and j �∈ S ′. �

From Part (i) of Proposition 4.4 we obtain the following corollary, saying that when the

core of the resticted game is not empty, there exist core stable payoff vectors that give zero

payoff to every player j that has a superior in Ω.

Corollary 4.5 If C(rv,Ω) �= ∅, then there exists x ∈ C(rv,Ω) such that xj = 0 for every j

that has a superior.

The final proposition in this section states that for monotone games on a union closed

system, a player gets at most the same payoff as its superior when applying the nucleolus

to the restricted game. It should be noticed that when v is monotone, Nucj(v,Ω) ≥ 0 for

all j, because Nuc(v,Ω) is in the least core of rv,Ω and thus also in I(N, rv,Ω).
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Proposition 4.6 Let (v,Ω) be a monotone game on a union closed system. Then for every

two players i and j such that i is a superior of j it holds that Nuci(v,Ω) ≥ Nucj(v,Ω).

Proof. Let w ∈ GN be a game such that for every S ⊆ N \{i, j} it holds that w(S∪{i}) ≥

w(S∪{j}). Then we know from Peleg and Südholter (2003, Theorem 5.3.5) that xi ≥ xj for

every x in the prekernel of w. Since the nucleolus of a game is in the prekernel of a game, it

is sufficient to show that for every S ⊆ N \{i, j} it holds that rv,Ω(S∪{i}) ≥ rv,Ω(S∪{j})

when i a superior of j. Indeed, in that case we have that

rv,Ω(S ∪ {i}) = v(σΩ(S ∪ {i})) ≥ v(σΩ(S)) = v(σΩ(S ∪ {j})) = rv,Ω(S ∪ {j}),

where the second equality follows from the fact that i �∈ S and there does not exist a

feasible set containing j but not i. �

In van den Brink et al. (2010) it is shown that also the Shapley value of the restricted

game satisfies this property.5

5 The prekernel of monotone games on union closed

systems

In this section we focus on the prekernel for games on union closed systems. Arin and

Feltkamp (1997) proved that the kernel of a game v ∈ GN consists of only one point (and

coincides with the nucleolus), when the game is veto-rich and I(v) is non-empty. When in

the tuple (v,Ω) there exists a player i ∈ N such that i ∈ S for every S ∈ Ω, then i is a

veto-player in the restricted game rv,Ω. When v ∈ GNm we have that I(rv,Ω) �= ∅ and thus

it follows from Arin and Feltkamp (1997) that the kernel of rv,Ω has the nucleolus of rv,Ω

as its unique element. It is also well-known that for every game (N, v) with |N | ≤ 3, the

intersection of the prekernel and the core consists of at most one point. In this section we

generalize these results and give a sufficient condition to guarantee that the prekernel and

the core of a monotone game on a union closed system have at most one point in common.

Of course, when such a point exists, then it is the nucleolus of the restricted game. We

first introduce some new notions.

Definition 5.1 For two players i, j ∈ N , i �= j, player i is a strong superior of player j

in Ω ∈ CN if i is a superior of j and j is not a superior of i.

Definition 5.2 A player i ∈ N is a free player in Ω ∈ CN if i has no superiors; player

i ∈ N is a weakly free player in Ω ∈ CN if i has no strong superiors.

5In this paper the Shapley value for games on union closed systems is introduced and characterized as

the so-called union rule.
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Notice that a free player is also a weakly free player and that a weakly free player i

is a superior of j when j is a superior of i. For Ω ∈ CN , we denote the set of weakly free

players by

WΩ = {i ∈ N | i is a weakly free player in Ω}.

The next proposition gives three properties of the set WΩ.

Proposition 5.3

1. For every player j �∈WΩ, there is a player i ∈WΩ, such that i is a strong superior of j.

2. When j is a superior of a player i ∈WΩ, then i is a superior of j.

3. When j is a superior of a player i ∈WΩ, then j ∈WΩ.

Proof.

1. Consider some player i0 ∈ N . If i0 is not in WΩ, then i0 has a strong superior, say

i1. Then, either i1 ∈ WΩ and thus i0 has a strong superior in WΩ, or not. In the latter

case i1 has a strong superior, say i2. When i2 is not in WΩ, it also has a strong superior.

Continuing this we get a sequence of players i0, i1, i2, . . . , im such that for h = 1, . . . ,m−1,

player ih+1 is a strong superior of ih and thus ih �∈ WΩ and either im ∈ WΩ or m ≥ 2 and

im = ik for some k = 0, . . . ,m− 2. In the latter case, by Corollary 3.4 every pair ij , iℓ with

j, ℓ ∈ {k, k + 1, . . . ,m − 1} are superiors of each other, contradicting that ih+1 is strong

superior of ih, h = k, . . . ,m− 1. Hence every next player in the sequence is different from

all preceding players. Since the number of players is finite, this case can not happen and

thus within a finite number of steps some player im ∈ WΩ is generated. By Corollary 3.4

im is a superior of i0. When i0 is a superior of im, then again by Corollary 3.4 we have

that i0 is a superior of i1, contradicting that i1 is a strong superior of i0. Hence im ∈ WΩ

and is a strong superior of i0.

2. By definition, i is a superior of j, since otherwise j is a strong superior of i, which

contradicts that i ∈WΩ.

3. Suppose j �∈ WΩ. Then by the first property, j has a strong superior k in WΩ. By

Corollary 3.4 player k is also a superior of i, and thus by property 2 we have that player

i is also a superior of k. However this implies that also j is a superior of k, contradicting

that k is a strong superior of j. �

The first property of Proposition 5.3 yields the following corollary.

Corollary 5.4 For every Ω ∈ CN , WΩ �= ∅.

Next, for i ∈ WΩ, define TΩ(i) = {j ∈ N | j = i or j is a superior of i} and let TΩ be the

collection of sets defined by

TΩ = {TΩ(i) | i ∈WΩ}.
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Notice that for every j ∈ TΩ(i) \ {i}, also i is a superior of j, because i ∈ WΩ, and thus

TΩ(i) ⊆ SΩi = {j ∈ N |j = i or i is a superior of j}. The next proposition describes the set

WΩ.

Proposition 5.5 The collection TΩ is a partition of the set WΩ.

Proof. First, by Property 3 of Proposition 5.3 we have that j ∈ WΩ when j ∈ TΩ(i) for

some i ∈WΩ and thus TΩ(i) ⊆WΩ. Next, let R ⊆WΩ×WΩ be the binary relation on WΩ

defined by (j, i) ∈ R if and only if j ∈ TΩ(i). It is sufficient to show that this relation is an

equivalence relation on WΩ, i.e. the relation is reflexive, symmetric and transitive. First,

by definition (i, i) ∈ R for all i ∈WΩ, so R is reflexive. Second, for j �= i, when (j, i) ∈ R,

then j is a superior of i. By Property 2 of Proposition 5.3 then also i is a superior of j and

thus (i, j) ∈ R, showing that R is symmetric. Third, when (k, j) ∈ R and (j, i) ∈ R, then

k is a superior of j and j of i and thus, by Corollary 3.4, also k is a superior of i. Hence,

(k, i) ∈ R and thus R is transitive. Since R is an equivalence relation, it follows that the

sets TΩ(i), i ∈WΩ, are equivalence classes of WΩ and thus the collection TΩ partitions WΩ.

�

Proposition 5.5 implies that j ∈ TΩ(i) if and only if i ∈ TΩ(j). When, for two

different agents i, j ∈ WΩ, i is not a superior of j, then TΩ(i) and TΩ(j) are two different

equivalence classes.

Proposition 5.6 Let Ω be a union closed system. When j ∈ WΩ is a superior of i ∈ N

then every k ∈ TΩ(j) is a superior of i.

Proof. For i ∈ WΩ the proposition follows from Proposition 5.5, because TΩ(i) = TΩ(j)

when j is a superior of i. Let i �∈WΩ and j ∈WΩ be a superior of i. Then every k �= j in

TΩ(j) is a superior of j and thus a superior of i by Corollary 3.4. �

Proposition 5.7 Let (v,Ω) be a game on a union closed system. When TΩ consists of

only one set, then every player in WΩ is a veto-player in the restricted game rv,Ω.

Proof. First, when TΩ consists of only one set, say T , then, by Proposition 5.5, T = WΩ.

So, TΩ(i) = WΩ for every i ∈ WΩ and thus by definition of TΩ(i) and Proposition 5.6

every player k ∈ WΩ is a superior to every other i in WΩ. Moreover, by Property 1 of

Proposition 5.3 every player not in WΩ has a player i in WΩ as its superior, and thus, again

by Proposition 5.6, every player in WΩ is a superior of every player not in WΩ. So, every

player in WΩ is a superior of every other player in N , so that every S ∈ Ω contains all

players in WΩ. �
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Notice that TΩ(i) = {i} when i is a free player. So, every free player i gives a single

element equivalence class TΩ(i) = {i} in the partition TΩ of WΩ. When there is a free

player i and TΩ consists of only one set, then WΩ = {i}. In the sequel we call the number

of sets in TΩ the weakly free player cardinality of Ω. Since by Corollary 5.4 the set of weakly

free players is not-empty, this cardinality is at least one. It follows from Proposition 5.7

that rv,Ω is a veto-rich game when this cardinality is equal to one. Then the next corollary

follows from Arin and Feltkamp (1997).

Corollary 5.8 Let (v,Ω) be a game on a union closed system. Then the kernel K(rv,Ω)

contains the nucleolus Nuc(rv,Ω) as its unique element when the weakly free player cardi-

nality is one.

To generalize this, we use the famous theorem of Kohlberg (1971) giving a sufficient

and necessary condition for a payoff vector to be in the prenucleolus of a game. For game

v ∈ GN , a payoff vector x ∈ IRn and real number α, let B(α, x) be the collection of coalitions

given by B(α, x) = {S ∈ N | e(S, x) ≥ α}.

Theorem 5.9 (Kohlberg, 1971) For game v ∈ GN , a payoff vector x is in PN(v) if

and only if for any real number α the collection of coalitions B(α, x) is either balanced or

empty.

In Katsev and Yanovskaya (2010) an analogue of this theorem for the prekernel is

proved in terms of 2-balancedness. We first give the notion of k-balancedness for 2 ≤ k ≤ n.

Definition 5.10 A collection S of coalitions S ∈ 2N is k-balanced if for every coalition

K ⊆ N with |K| = k the collection SK = {S ′ ⊂ K |S ′ = S ∩K,S ∈ S} is balanced on K.

Theorem 5.11 (Katsev and Yanovskaya, 2010) For v ∈ GN , a payoff vector x is in

PK(v) if and only if for any real number α the collection of coalitions B(α, x) is either

2-balanced or empty.

Recall from the standard definition of balancedness that when a collection SK is

balanced on K, then there exist strictly positive weights λT , T ∈ SK, such that for every

i ∈ K the total weight of the sets T ∈ SK that contain i is equal to one. From this the

following corollary follows immediately.

Corollary 5.12 Let K = {i, j} ⊆ N be a two-player coalition and S be a collection of

coalitions S ∈ 2N such that SK is balanced on K. When S contains a set T such that i ∈ T

and j �∈ T , then S contains a coalition T ′ such that j ∈ T ′ and i �∈ T ′.
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Also notice that a k-balanced collection S is balanced when k = n. Moreover it

should be noticed that when |N | = 3, any 2-balanced collection is also balanced. The next

lemma generalizes this fact and will be used to prove the main result of this section.

Lemma 5.13 For a union closed system Ω with weakly free player cardinality of at most

three, let B ⊂ 2N be a 2-balanced collection that only contains feasible sets in Ω and

singletons. Then B is balanced.

Proof. Let c ∈ {1, 2, 3} be the weakly free player cardinality of Ω. Without loss of

generality, let the players be numbered in such way that WΩ ⊃ {1, . . . , c} and that TΩ(k),

k = 1, . . . , c, are the equivalence classes of TΩ. By property 2 of Proposition 5.3, every

player j �= k in TΩ(k) has player k as its superior. Also, by property 1 of Proposition 5.3

and by Proposition 5.6, every player j ∈ N \WΩ has at least one of the players k, k ∈ WΩ

as one of its superiors. For k ∈WΩ, suppose that there exists j in the set

SΩk \ {k} = {i ∈ N |k is a superior of i}

such that there is some T in B containing k, but not j. Take K = {k, j}. By the 2-

balancedness of B the collection {S ∩K | S ∈ B} is balanced on K. So, by Corollary 5.12

there exists a set T ′ ∈ B such that j ∈ T ′ and k �∈ T ′. Since B only contains feasible sets

and singletons, and k is a superior of j, it follows that T ′ = {j}. Let

Sk = ∩{S∈B|k∈S} S, k ∈WΩ.

From above it follows that {j} ∈ B for every j �∈ ∪k∈WΩ
Sk. Now, let

B′ = {U ∈ B | U ∩WΩ �= ∅}

and consider the collection of subsets of WΩ given by

B′′ = {WΩ ∩ U | U ∈ B′}.

This is a balanced collection on WΩ. This is trivial when c = 1 and follows by the 2-

balancedness of B when c = 2. When c = 3 this follows from the fact that every 2-balanced

collection on a three player set is balanced. So, for the sets U ∈ B′ there are weights, say

λBU , such that
∑

{U∈B′|k∈U}

λBU = 1, k ∈WΩ.

Since every feasible set has a nonempty intersection with WΩ, this yields weight λBU > 0

for every feasible set U ∈ B. Moreover,
∑

{U∈B′|j∈U}

λBU = 1, for every j ∈ ∪k=1,...,c Sk,

15



since if j ∈ Sk for some k = 1, . . . , c, then the collection of sets from B′ containing j

coincides with the collection of sets from B’ containing k. Finally, consider some j ∈

N \ (∪k=1,...,c Sk). Recall that such a player j has at least one of the players from the set

WΩ as one of its superiors, say player k. So, when j is contained in some set U ∈ B′, then

also k ∈ U . Moreover, there exists at least one U ∈ B′ containing k and not j, otherwise

j ∈ Sk. Therefore,

∑

{U∈B′|j∈U}

λBU < 1 for every j ∈ N \ (∪k=1,...,c Sk),

i.e., the total weight of the feasible sets containing such a player j is less than one. However,

for every such j we also have that the singleton {j} ∈ B. This yields weight λB{j} =

1 −
∑

{U∈B′|j∈U}

λBU for every singleton set {j} ∈ B, j ∈ N \ (∪k=1,...,c Sk). Since for every

j ∈ ∪k=1,...,c Sk, every set in B containing j also contains one of the players from {1, . . . , c},

there are no other singletons in B. So, we have determined weights for all sets in B satisfying

that

∑

{S∈B|j∈S}

λBS = 1, for every j ∈ N,

and thus B is balanced. �

We are now ready to formulate the main result of this section.

Theorem 5.14 Let (v,Ω) be a monotone game on a union closed system. Then the in-

tersection of PK(v,Ω) and C(v,Ω) consists of at most one point if the weakly free player

cardinality of Ω is at most equal to three.

Proof. Clearly, the statement of the theorem is true when C(v,Ω) = ∅. So, we only

consider the case that C(v,Ω) �= ∅. Then PN(v,Ω) = Nuc(v,Ω) and lies in the core.

Suppose there is a payoff vector y ∈ PK(v,Ω) ∩ C(v,Ω) with y �= x = Nuc(v,Ω). Since

y �= PN(v,Ω), according to Kohlberg’s theorem there is some α for which B(α, y) is

not balanced. Since x = PN(v,Ω), also according to Kohlberg’s theorem we have that

B(α, x) is balanced and thus B(α, x) �= B(α, y). Since for α big enough we have that

B(α, x) = B(α, y) = ∅, there exists some value α with the properties that

(i) B(α, x) �= B(α, y) and

(ii) for every β > α it is true that either B(β, x) = B(β, y) or both B(α, x) = B(β, x)

and B(α, y) = B(β, y).

For a coalition S and payoff vector x, let e(S, x) = rv,Ω(S) − x(S) = v(σΩ(S)) − x(S) be

the excess of coalition S at x in the restricted game rv,Ω and let α∗ be a value satisfying

the two properties (i) and (ii). Now, suppose that there exists S ∈ B(α∗, x) such that
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e(S, x) < e(S, y). Then, for β = e(S, y) > e(S, x) ≥ α∗, we have that S ∈ B(β, y) and

S �∈ B(β, x). So, B(β, x) �= B(β, y) and B(α∗, x) �= B(β, x), which contradicts that property

(ii) holds for α∗. Hence

e(S, x) ≥ e(S, y) for every S ∈ B(α∗, x). (5.3)

Further, for S ∈ B(α∗, x), let λS be the weight of S in the balanced system of collection

B(α∗, x). Since both x and y are efficient, it follows that

∑

{S|S∈B(α∗,x)}

λSe(S, x) =
∑

{S|S∈B(α∗,x)}

λS(rv,Ω(S)− x(S)).

Since x is efficient and by balancedness we have that
∑

{S∈B(α∗,x)|i∈S} λS = 1 for every

i ∈ N , it follows that

∑

S∈B(α∗,x)

λSx(S) =
∑

S∈B(α∗,x)

λS
∑

i∈S

xi =
∑

i∈N

xi
∑

{S∈B(α∗,x)|i∈S}

λS =
∑

i∈N

xi = rv,Ω(N),

and thus

∑

{S|S∈B(α∗,x)}

λSe(S, x) =
∑

{S|S∈B(α∗,x)}

λS(rv,Ω(S)− x(S)).

=
∑

{S|S∈B(α∗,x)}

λSrv,Ω(S)− rv,Ω(N).

Analogously

∑

{S|S∈B(α∗,x)}

λSe(S, y) =
∑

{S|S∈B(α∗,x)}

λSrv,Ω(S)− rv,Ω(N).

So,

∑

{S|S∈B(α∗,x)}

λSe(S, x) =
∑

{S|S∈B(α∗,x)}

λSe(S, y).

With inequalities (5.3) this implies e(S, y) = e(S, x) for every S ∈ B(α∗, x) and thus

B(α∗, x) ⊆ B(α∗, y).

Now, suppose that also the collection B(α∗, y) is balanced. Then by the same

reasoning as above we obtain that e(S, x) = e(S, y) for every S ∈ B(α∗, y) and thus also

B(α∗, y) ⊆ B(α∗, x), which contradicts that B(α∗, x) �= B(α∗, y). Hence B(α∗, y) is not

balanced.

On the other hand, by Theorem 5.11 we have that B(α∗, y) is 2-balanced, since

y ∈ PK(v,Ω). So, B(α∗, y) is 2-balanced, but not balanced. Then, according to Lemma

5.13, B(α∗, y) contains a non-feasible coalition S with |S| > 1. By definition of σΩ(S) and
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Ω being union closed, we have that rv,Ω(T ) = 0 for every T ⊆ S \ σΩ(S). Then for every

i ∈ S \ σΩ(S) it follows that

e(S, y) = rv,Ω(S)− y(S) = rv,Ω(σΩ(S))−
∑

j∈σΩ(S)

yj −
∑

h∈S\σΩ(S)

yh ≤

e(σΩ(S), y)− yi = e(σΩ(S), y) + e({i}, y),

because y ∈ C(rv,Ω) and thus yh ≥ rv,Ω({h}) = 0 for all h ∈ S \ σΩ(S). Since both

e(σΩ(S), y) ≤ 0 and e({i}, y) ≤ 0 (again because y ∈ C(rv,Ω)), it follows that

e(S, y) ≤ e(σΩ(S), y) and e(S, y) ≤ e({i}), y).

Hence both σ(S) ∈ B(α∗, y) and {i} ∈ B(α∗, y) for every i ∈ S \ σΩ(S). However,

then also the collection B(α∗, y) \ {S} is 2-balanced and not balanced. Let NF = {T ∈

B(α∗, y) | T is non-feasible and |T | > 1}. Repeating the reasoning above for every T ∈ NF

it follows that B′ = B(α∗, y) \ NF is 2-balanced and not balanced. However, since B′

only consists of feasible sets and singletons, this contradicts Lemma 5.13. So, there is no

y ∈ PK(v,Ω) ∩ C(v,Ω) with y �= x = Nuc(v,Ω). �
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