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Abstract

A situation in which a finite set of players can obtain certain payoffs by cooperation can

be described by a cooperative game with transferable utility, or simply a TU-game. A

(single-valued) solution for TU-games assigns a payoff distribution to every TU-game. A

well-known solution is the nucleolus. A cooperative game with a permission structure

describes a situation in which players in a cooperative TU-game are hierarchically ordered

in the sense that there are players that need permission from other players before they

are allowed to cooperate. The corresponding restricted game takes account of the limited

cooperation possibilities by assigning to every coalition the worth of its largest feasible

subset. In this paper we provide a polynomial time algorithm for computing the nucleolus

of the restricted games corresponding to a class of games with permission structure.

Keywords: TU-game, nucleolus, game with permission structure, peer group game, in-

formation market game, algorithm, complexity.

AMS subject classification: 91A12, 5C20

JEL code: C71



1 Introduction

A cooperative game with transferable utility, or simply a TU-game is a finite set of players

and for any subset (coalition) of players a worth representing the total payoff that the

coalition can obtain by cooperating. A payoff vector is a vector which gives a payoff to

each of the players, i.e., each component corresponds to precisely one of the players. A

payoff vector is efficient if the sum of the payoffs is equal to the worth of the grand coalition

of all players. A set-valued solution for TU-games assigns a set of payoff vectors (possibly

empty) to every TU-game. A single-valued solution assigns precisely one payoff vector

to every TU-game. A solution is said to be efficient if for every game any payoff vector

assigned by the solution is efficient. The most well-known efficient set-valued solution is

the Core (Gillies, 1953). The two most well-known efficient single-valued solutions are the

Shapley value (Shapley, 1953) and the nucleolus (Schmeidler, 1969).

In this paper we assume that the players in a TU-game are part of some hierarchical

structure that is represented by a directed graph such that some players need permission

from other players before they are allowed to cooperate within a coalition. In the literature

two approaches to these games with a permission structure can be found. In the conjunctive

approach, as considered in Gilles et al. (1992) and van den Brink and Gilles (1996), it is

assumed that each player needs permission from all its predecessors in the directed graph

before it is allowed to cooperate. Alternatively, in the disjunctive approach as developed in

Gilles and Owen (1994) and van den Brink (1997), a player needs permission to cooperate

of at least one of its direct predecessors (if it has any). So, according to the conjunctive

approach a coalition is feasible if and only if for any player in the coalition it holds that

all its predecessors are also in the coalition, whereas according to the disjunctive approach

a coalition is feasible if and only if for any player in the coalition at least one of its

predecessors (if it has any) is also in the coalition. Following an approach similar to that

of Myerson (1977) for games with limited communication (graph) structure, in both the

conjunctive and disjunctive approach to games with a permission structure a restricted

game is derived. In games with permission structure the restricted game assigns to every

coalition the worth of its largest feasible subset. Applying well-known solutions as the

Shapley value, Core or nucleolus to such restricted games yields solutions for games with

a permission structure.

A special subclass of games with a permission structure arises from peer group situ-

ations, as introduced in Brânzei et al. (2002). A peer group situation is a triple consisting

of a set of players, a hierarchical structure represented by a rooted directed tree, and for

each player a real number representing his potential individual (economic) contribution

to the society of all players. This yields an associated TU-game being the additive game

in which the worth of any coalition is equal to the sum of the individual potentials of its
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members. In a rooted directed tree there is one top node (not having a predecessor), while

any other node has precisely one predecessor. So, in case the hierarchical structure on the

player set is a rooted directed tree, the conjunctive approach and the disjunctive approach

as described above, coincide. The restricted game of the associated TU-game with respect

to such a permission structure is called a peer group game . These peer group games have

many interesting applications, see Brânzei et al. (2002). Clearly, in a peer group game the

worth of a coalition is the sum of the individual potentials of the members of the largest

feasible subset of the coalition. Since the top player is always in this set when he belongs to

the coalition, and the largest feasible set is the empty set for any coalition not containing

the unique top player, it follows that the top player is a veto player, i.e., any coalition not

containing the (veto) top player has zero worth in the restricted game.

In Arin and Feltkamp (1997) an exponential time algorithm has been given to com-

pute the nucleolus for veto-rich games. In Brânzei et al. (2005) a polynomial time algo-

rithm is given to compute the nucleolus of a peer group game. In this paper we modify

the Arin-Feltkamp algorithm to compute the nucleolus of the restricted game induced by

more general situations, including peer group situations and information market situations

(see Muto et al. (1989)) as special cases. The generalization concerns both the hierarchical

graph structure and the class of unrestricted TU-games by allowing for any digraph having

one top node and no directed cycles and any game satisfying a so-called weak digraph

monotonicity condition and a weak digraph concavity condition. The algorithm finds the

nucleolus in polynomial time.

The paper is organized as follows. Section 2 is a preliminary section containing

cooperative TU-games (with special attention for the nucleolus), directed graphs and games

with a permission structure. In section 3 we introduce the properties of weak digraph

monotonicity and weak digraph concavity and we present some examples satisfying these

conditions. In Section 4 we present some properties of essential and feasible coalitions.

These properties are crucial for the algorithm given in Section 5. In Section 6 we discuss

the complexity of the algorithm. Finally, Section 7 contains some concluding remarks.

2 Preliminaries

2.1 TU-games

A situation in which a finite set of players can obtain certain payoffs by cooperation can be

described by a cooperative game with transferable utility, or simply a TU-game, being a pair

(N, v), where N ⊂ IN is a finite set of n players and v: 2N → R is a characteristic function

on N such that v(∅) = 0. For any coalition S ⊆ N , v(S) is the worth of coalition S, i.e.,

the members of coalition S can obtain a total payoff of v(S) by agreeing to cooperate. For
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simplicity, for a single player i we denote its worth v({i}) by v(i). We denote the collection

of all characteristic functions on N by GN . A TU-game (N, v) is monotone if v(S) ≤ v(T )

for all S ⊆ T ⊆ N . It is convex (concave) if v(S) + v(T ) ≤ (≥)v(S ∩ T )+ v(S ∪ T ) for all

S, T ⊆ N .

A payoff vector is a vector x ∈ IRn assigning a payoff xi to every i ∈ N . In the

sequel, for S ⊆ N we denote x(S) =
∑

i∈S xi. A payoff vector is efficient if x(N) = v(N)

and it is individually rational if xi ≥ v(i) for every i ∈ N . The imputation set I(N, v) of

game v is given by

I(N, v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v(i) for every i ∈ N},

i.e., I(N, v) is the set of all efficient and individually rational payoff vectors. A (set-valued)

solution F on GN assigns a set F (N, v) ⊂ R
n of payoff vectors to every characteristic

function v ∈ GN . The most well-known set-valued solution is the Core assigning to every

v ∈ GN the set

C(N, v) = {x ∈ I(N, v)|x(S) ≥ v(S) for all S ⊂ N},

i.e., it is the set of all imputations that are stable in the sense that no coalition can do

better by separating from the grand coalition. The Core of (N, v) is non-empty if and

only if the game is balanced, see e.g. Bondareva (1962) or Shapley (1967). A collection

B = {S1, . . . , Sm} of subsets of N is said to be a balanced collection when the system of

equations

m∑

j=1

λje
Sj = eN (2.1)

has a unique positive solution, denoted by λBj , j = 1, . . . ,m, where, for S ⊆ N , the n-vector

eS is given by eSi = 1 when i ∈ S and eSi = 0 otherwise. A game (N, v) is balanced if

m∑

j=1

λBj v(Sj) ≤ v(N)

for any balanced collection B = {S1, . . . , Sm}.

Another (set-valued) solution is the Kernel assigning to every v ∈ GN the set

K(N, v) = {x ∈ I(N, v)| [sij(x) = sji(x)] or [sij(x) > sji(x) and xj = v(j)] for all i, j ∈ N},

i.e., the set of all imputations such that for each pair of players i and j the complaint

sij(x) = max{v(S)− x(S) | i ∈ S, j �∈ S} of i against j is at least equal to the complaint

of j against i, with equality whenever j gets more than its individual worth v(j).

A solution F is said to be single-valued if it assigns to any v ∈ GN a unique payoff

vector. The two most well-known single-valued solutions are the Shapley value (Shapley,
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1953) and the nucleolus (Schmeidler, 1969). Since the aim of this paper is to give an

algorithm for computing the nucleolus for a special class of characteristic functions, we

devote the next subsection to this solution.

2.2 Nucleolus

Consider a given a characteristic function v ∈ GN , and payoff vector x ∈ IRn. Then the

excess e(S, x) of a coalition S ⊆ N is defined by

e(S, x) = v(S)− x(S).

Further, let E(x) be the (2n − 2)-component vector that is composed of the excesses of

all coalitions S ⊂ N, S �= ∅, in a non-increasing order, so E1(x) ≥ E2(x) ≥ . . . ≥

E2n−2(x). Then the nucleolus Nuc(N, v) of the game (N, v) is the unique imputation

which lexicographically minimizes the vector-valued function E(·) over the imputation set.

Formally,

Nuc(N, v) = x ∈ I(N, v) such that E(x) �L E(y) for all y ∈ I(N, v),

where �L denotes the lexicographic order of vectors. It is well-known that Nuc(N, v) ∈

K(N, v) and that Nuc(N, v) ∈ C(N, v) when C(N, v) �= ∅. So, when the game has a

nonempty Core, then the nucleolus is in the intersection of the Kernel and the Core.

In a game (N, v), a coalition S is called inessential if it has a partition {S1, . . . , Sr}

with r ≥ 2, such that v(S) ≤
∑r

j=1 v(Sj). Coalitions which are not inessential are called

essential. Notice that single player coalitions are always essential. It is straightforward to

observe that for an inessential coalition S it holds that

e(S, x) ≤
r∑

j=1

e(Sj, x), for all x ∈ IRn.

Therefore the Core, and thus also the nucleolus, is independent of inessential coalitions, as

was noticed by Huberman (1980). In fact, in any n player game there are at most (2n− 2)

coalitions which actually determine the nucleolus, see Brune (1983) and Reijnierse and

Potters (1998). Although, as noticed by Brânzei et al. (2005), identifying these coalitions

is no less laborious as computing the nucleolus itself, in the following we state some facts

for games with non-empty Core which will appear to be useful later on. We denote

e∗(N, v) = min
{S⊂N |S �=∅}

− e(S, x) at x = Nuc(N, v),

i.e., e∗(N, v) the minimal negative excess at the nucleolus of game (N, v). Clearly, e∗(N, v) ≥

0 if and only if Core(N, v) �= ∅.
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Lemma 2.1 If e∗(N, v) > 0, then every coalition S ⊂ N with −e(S, x) = e∗(N, v) at

x = Nuc(N, v) is essential.

Proof. Suppose S ⊂ N with −e(S, x) = e∗(N, v) is inessential. Then there is a partition

{S1, . . . , Sm} such that e∗(N, v) = −e(S, x) ≥
∑m

j=1 − e(Sj, x). Since e∗(N, v) > 0 there

must be at least one j ∈ {1, . . . ,m} such that −e(Sj , x) < −e(S, x), which contradicts that

e∗(N, v) = min{S⊂N |S �=∅} − e(S, x). �

For the next lemma, let B = {S1, . . . , Sm} be a balanced collection of coalitions

and let B denote the set of all balanced collections, excluding the balanced collection {N}

having the grand coalition N as its single element.

Lemma 2.2 If e∗(N, v) ≥ 0 then

e∗(N, v) = min
B∈B

v(N)−
∑m

j=1 λ
B
j v(Sj)∑m

j=1 λ
B
j

,

with λBj , j = 1, . . . ,m, the solution of the system (2.1) for the balanced collection B =

{S1, . . . , Sm}.

Proof. Let B = {S1, . . . , Sm} be a balanced collection with λB1 , .., λ
B
m as the corresponding

solution of system (2.1). Observe that for every i ∈ N it holds that
∑

{j|i∈Sj}
λBj = 1 and

thus for every x ∈ IRn and S ⊂ N we have that x(S) =
∑

i∈S xi =
∑

i∈S

∑
{j|i∈Sj}

λBj xi.

Hence,

m∑

j=1

λBj x(Sj) =
m∑

j=1

∑

i∈Sj

λBj xi =
∑

i∈N

∑

{j|i∈Sj}

λBj xi = x(N)

and thus at x = Nuc(N, v) we have that the convex combination
∑m

j=1

λBj∑
h λB

h

· (−e(Sj , x))

of all negative excesses −e(Sj, x), j = 1, . . . ,m, is equal to

m∑

j=1

λBj∑
h λ

B
h

· (x(Sj)− v(Sj)) =
v(N)−

∑m

j=1 λ
B
j v(Sj)∑

h λBh
.

Since every −e(Sj, x) ≥ e∗(N, v), j = 1, . . . ,m, also its convex combination is at least

equal to e∗(N, v), which shows that

e∗(N, v) ≤
v(N)−

∑m

j=1 λ
B
j v(Sj)∑

h λBh
. (2.2)

Finally, from Kohlberg’s theorem (see Kohlberg 1971) we know that there exists a balanced

collection B = {S1, . . . , Sm} with e∗(N, v) = −e(Sj , x) for all j. For such a balanced

collection inequality (2.2) holds with equality, which proves the lemma. �

The next two corollaries follow immediately.
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Corollary 2.3 Let B = {S1, . . . , Sm} be a balanced collection with weights λBj , j =

1, . . . ,m, satisfying

e∗(N, v) =
v(N)−

∑m

j=1 λ
B
j v(Sj)∑m

j=1 λ
B
j

. (2.3)

Then at x = Nuc(N, v) we have that −e(Sj, x) = e∗(N, v), j = 1, . . . ,m.

Proof. As shown in the proof of Lemma 2.2, the right-hand side of equation (2.3) is a

convex combination of the numbers −e(Sj , x). Therefore, for each j, e∗(N, v) ≤ −e(Sj , x)

must hold with equality. �

Corollary 2.4 If e∗(N, v) > 0, then for any balanced collection B = {S1, . . . , Sm} satisfy-

ing e∗(N, v) =
v(N)−

∑m
j=1 λ

B
j v(Sj)∑m

j=1 λBj
, it holds that any set Sj is essential.

Proof. This follows immediately from Lemma 2.1 and Corollary 2.3. �

Arin and Feltkamp (1997) propose an algorithm to find the nucleolus of a veto-rich

game, i.e., a game (N, v) such that there exists (at least one) veto player being a player

i such that v(S) = 0 when i �∈ S. The algorithm makes use of the fact that for veto-rich

games the Kernel contains precisely one payoff vector, and thus the nucleolus is this unique

element of the Kernel. For an element x in the Kernel they first show that for any player

j it holds that xj = 0 if there exists S ⊆ N \ {j} such that v(S) ≥ v(N). The algorithm is

initiated by setting xj = 0 for all these players and setting A0 as the set of these players.

Observe that this set does not contain the set of veto players (unless it is the null-game and

all players get zero payoff). It is also shown that the nucleolus payoff xj > 0 for all other

players j ∈ N \A0 (thus including all veto players). After this initialisation the algorithm

iteratively determines the payoffs of the other players as follows. Let i be an arbitrarily

chosen veto player. Then, at each step t, let At−1 be the set of players for which the payoffs

have been determined already and let Bt be the collection of all sets S such that i ∈ S and

(N \ At−1) \ S �= ∅. Then

qt = min
S∈Bt

qt(S), (2.4)

where qt(S) = v(N)−v(S)−x(At−1\S)
|(N\At−1)\S|+1

is determined, and for any player j ∈ ∩{S ∈ Bt|qt(S) =

qt} the nucleolus is set equal to xj = qt.

At any step t the payoff of at least one player is determined, so in at most n−1 steps

all payoffs xj, j �= i are determined. As soon as all these payoffs are determined, the payoff

xi of the chosen veto player i is set equal to v(N) − x(N \ {i}). In the underlying paper

we modify this algorithm to find the nucleolus of restricted games arising from games with

a permission structure in which players in a cooperative TU-game belong to a hierarchical

structure that is represented by a directed graph.
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2.3 Directed graphs

A directed graph or digraph is a pair (N,D) where N ⊂ IN is a finite set of nodes (repre-

senting the players) and D ⊆ N ×N is a binary relation on N . Given (N,D) and S ⊆ N ,

the digraph (S,D(S)) is the subgraph on S given by D(S) = {(i, j) ∈ D|i, j ∈ S}. In the

sequel we simply refer to D for a digraph (N,D) and to D(S) for the subgraph (S,D(S)).

For i ∈ N the nodes in SD(i) := {j ∈ N | (i, j) ∈ D} are called the successors of i, and

the nodes in PD(i) := {j ∈ N | (j, i) ∈ D} are called the predecessors of i.

For given D on N , a path between i and j in N is a sequence of distinct nodes

(i1, . . . , im) such that i1 = i, im = j, and {(ik, ik+1), (ik+1, ik)}∩D �= ∅ for k = 1, . . . ,m−1.

A set of nodes T ⊆ N is connected in digraph D if there is a path between any two nodes

in T that only uses arcs between nodes in T , i.e., if for every i, j ∈ T there is a path

(i1, . . . , im) between i and j such that {i1, . . . , im} ⊆ T . A component in D is a maximally

connected set T of nodes, i.e. T is connected and T ∪ {i} is not connected for every

i ∈ N \ T . A path (i1, . . . , im) between i and j in D is a directed path if (ik, ik+1) ∈ D for

k = 1, . . . ,m − 1. A directed path (i1, . . . , im), m ≥ 1, in D is a cycle if (im, i1) ∈ D. We

call digraph D acyclic if it does not contain any cycle. Note that acyclicity of a digraph

D implies that D is irrefexive, i.e., (i, i) �∈ D for all i ∈ N .

A digraph is called quasi-strongly connected if there exists a node i0 ∈ N , such that

for every j �= i0 there is a directed path from i0 to j. Note that this implies that N is

connected. When D is acyclic then i0 is the unique node in N having no predecessors

and i0 is called the top-node of the digraph. The collection of all acyclic, quasi-strongly

connected digraphs on N is denoted by DN . A digraph D ∈ DN is a rooted directed tree

with root i0 if there is precisely one path from the top-node i0 to every other node. Node

j ∈ N is a complete subordinate of node i ∈ N in D ∈ DN if every directed path from the

top-node i0 to node j contains node i. We denote the set of complete subordinates of node

i by SD(i), i.e.,

SD(i) =

{
j ∈ N

∣∣∣∣∣
i ∈ {h1, . . . , ht−1} for every sequence of nodes h1, . . . , ht

such that h1 = i0, hk+1 ∈ SD(hk), k ∈ {1, . . . , t− 1}, and ht = j

}
.

2.4 Restricted games

In this paper we assume that the players in a TU-game are part of a hierarchical structure

that is represented by a directed graph, refered to as a permission structure, such that some

players need permission from other players before they are allowed to cooperate within a

coalition. A triple (N, v,D) with (N, v) a TU-game and (N,D) a digraph with the player

set N as the set of nodes is called a game with a permission structure. In the sequel we
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assume that D ∈ DN and (without loss of generality) that i0 = 1 is its unique top-node1.

Assumption 2.5 (N,D) is acyclic and quasi-strongly connected with PD(1) = ∅ (and thus

PD(i) �= ∅ for every i �= 1).

As noticed in the introduction we can distinguish between the conjunctive and

disjunctive approach. In this paper we consider the disjunctive approach as developed in

Gilles and Owen (1994) and van den Brink (1997), where a player i �= 1 needs permission

to cooperate of at least one of its direct predecessors. Therefore a coalition is feasible if

and only if it contains the top-player 1 and for every other player in the coalition at least

one of its predecessors is also in the coalition. So, for digraph (N,D), the set of disjunctive

feasible coalitions is given by

ΦD = {S ⊆ N |PD(i) ∩ S �= ∅ for all i ∈ S \ {1}} .

For any S ⊆ N , let σ(S) = ∪{T ∈ ΦD | T ⊆ S} be the largest disjunctive feasible subset

of S in D.2 By Assumption 2.5 we have that for every i �= 1, there is at least one directed

path from 1 to i. As a consequence it follows that for every S ⊆ N with σ(S) �= ∅, the

subgraph (σ(S),D(σ(S)) is acyclic and quasi-strongly connected with node 1 ∈ σ(S) as its

unique top-node.

Given the triple (N, v,D) with v ∈ GN and D ∈ DN , under the disjunctive permis-

sion structure the induced restricted game r: 2N → R is given by

r(S) = v(σ(S)) for all S ⊆ N. (2.5)

Since player 1 is the top-node it holds that r(S) = 0 when 1 �∈ S, i.e., the restricted game is

a veto-rich game with respect to the top-player 1. If D is a rooted directed tree (with node

1 as its root), then |PD(i)| = 1 for all i �= 1 and the conjunctive and disjunctive approach

coincide. In this case the triple (N, v,D) is a peer group situation when the game (N, v)

is a non-negative additive game (see Brânzei et. al. (2002)), i.e., there exist real numbers

ai, i ∈ N , such that v(S) =
∑

i∈S ai, S ⊆ N . Then the restricted game (N, r) as defined

in (2.5) is a so-called peer group game and is given by

r(S) = v(σ(S)) =
∑

{i∈S|P̂D(i)⊆S}

ai,

where j ∈ P̂D(i) if and only if if there exists a sequence of players (h1, . . . , ht) such that

h1 = j, hk+1 ∈ S(hk) for all 1 ≤ k ≤ t − 1, and ht = i. A peer group game (N, r) is a

1This implies that 1 ∈ N . Later we consider reduced games on proper subsets of N ′ ⊂ N , but the

top-player 1 always belongs to N ′.
2Every coalition having a unique largest feasible subset follows from ΦD being closed under union.
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monotone veto-rich game and has a non-empty Core. In particular (with 1 the veto player)

the payoff vector x ∈ IRn+ given by x1 = v(N) and xi = 0, i �= 1, belongs to the Core.

As noticed in Brânzei et al. (2002), this class of games with permission structure contains

several interesting applications.

3 Weak digraph monotonicity and concavity

The algorithm to be presented in Section 5 holds for games with a permission structure

(N, v,D) satisfying the next two conditions. First, we say that a game with permission

structure (N, v,D) satisfies weak digraph monotonicity if

[S ⊆ N and S ∈ ΦD]⇒ v(S) ≤ v(N). (3.6)

Observe that weak digraph monotonicity weakens monotonicity in two respects, namely (i)

the monotocity condition v(S) ≤ v(T ) if S ⊆ T only has to hold for T = N and (ii) for sets

S that are feasible given the disjunctive permission structure on the digraph D. Second,

we say that a game with permission structure (N, v,D) satisfies weak digraph concavity if

[S ∪ T = N and S, T ∈ ΦD]⇒ v(S) + v(T ) ≥ v(S ∩ T ) + v(N). (3.7)

Observe that also this property weakens the concavity of a game in two respects, namely

that the concavity condition only has to hold for sets that S and T satisfying (i) S∪T = N

and (ii) S and T are feasible given the disjunctive permission structure on D. So, for both

properties the adjunctive ‘weak’ means that the inequality conditions are only required for

T = N , respectively S ∪ T = N , and the adjunctive ‘digraph’ means that the inequality

conditions are only required for feasible sets with respect to the permission structure.

Monotonicity is a condition satisfied by most of the games that arise from economic or

social situations, so this is certainly the case for weak digraph monotonicity. Although

concavity is a strong condition for profit games3, weak digraph concavity is considerably

weaker and is also satisfied by several interesting classes of profit games with permission

structure. We give some examples.

Example 3.1 Generalised peer group situations

It is obvious that peer group situations (N, v,D) as mentioned at the end of Subsection 2.4

satisfy weak digraph monotonicity. Further, for any feasible S and T such that S ∪T = N

we have that S ∩ T is feasible (since D is a rooted tree) and

v(S) + v(T ) =
∑

i∈S

ai +
∑

i∈T

ai =
∑

i∈S∩T

ai +
∑

i∈N

ai = v(S ∩ T ) + v(N).

3Given our nucleolus concept in which the maximum excess v(S)−x(S) is minimized, in this paper we

deal with profit games.
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So, (N, v,D) also satisfies weak digraph concavity.

We say that (N, v,D) is a generalised peer group situation when D ∈ DN is an

acyclic and quasi-strongly connected digraph (and v is again a nonnegative additive game).

Clearly, any generalised peer group situation satisfies weak digraph monotonicity and weak

digraph concavity. It now might happen that S ∩ T is not feasible under the disjunctive

approach. Then the weak digraph concavity condition might hold with strict inequality. �

Example 3.2 Generalised information market situation

Let S = {S1, . . . , SK} be a collection of K (nonempty) subsets of N , and αk, k = 1, . . . , K,

be positive numbers. Then we consider the game (N, v) given by

v(S) =
∑

{k|Sk∩S �=∅}

αk, S ⊆ N. (3.8)

Further, let D ∈ DN be any digraph satisfying (1, j) ∈ D for all j ∈ {2, . . . , n}. So, j = 1

is the top-player and S ⊆ N is feasible if and only if 1 ∈ S. Now, the restricted game

(N, r) is given by r(S) = 0 if 1 �∈ S and

r(S) =
∑

{k|Sk∩S �=∅}

αk, if 1 ∈ S.

The game (N, r) is an information game as introduced in Muto et al. (1989). Obviously,

(N, v,D) satisfies weak digraph monotonicity. Further, for any feasible S and T such that

S ∪ T = N we have that S ∩ T is feasible and

v(S) + v(T ) =
∑

{k|Sk∩S �=∅}

αk +
∑

{k|Sk∩T �=∅}

αk =

∑

{k|Sk∩(S∩T ) �=∅}

αk +
∑

{k|Sk∩N �=∅}

αk = v(S ∩ T ) + v(N)

where the last but one equality follows since S ∪T = N . Thus (N, v,D) also satisfies weak

digraph concavity. In fact, this condition is satisfied for any D ∈ DN . In case S ∩ T is not

feasible the condition might hold with strict inequality.

Observe that also any game with permission structure (N, v,D) where v is the sum

of an additive game and a game as given above in equation (3.8), satisfies the conditions

of weak digraph monotonicity and weak digraph concavity. �

Example 3.3 Market situation

Let the set N consist of one seller, say player 1, having one item for sale, and n−1 buyers,
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and let aj be the nonnegative surplus of trade between the seller and buyer j, j = 2, . . . , n.

Then the market game is given by (N, v) with v(S) = 0 if 1 �∈ S and

v(S) = max
j∈S\{1}

aj , if 1 ∈ S.

Further, let D ∈ DN be any digraph satisfying (1, j) ∈ D for all j ∈ {2, . . . , n}. So, S ⊆ N

is feasible if and only if 1 ∈ S. Then for any feasible S and T such that S ∪ T = N we

have that

v(N) = max[v(S), v(T )]

and

v(S ∩ T ) ≤ min[v(S), v(T )].

Hence

v(S) + v(T ) = max[v(S), v(T )] + min[v(S), v(T )] ≥ v(N) + v(S ∩ T ).

Hence (N, v,D) also satisfies weak digraph concavity. Clearly, it also satisfies weak digraph

monotonicity. �

4 Essential and feasible coalitions

In this section we prove several results of essential and feasible coalitions for games with

permission structure (N, v,D) that will be used later on to prove that the algorithm of

Section 5 will indeed find the nucleolus of the restricted game. The first lemma does not

yet require the two conditions (3.6) and (3.7) and says that any essential coalition with at

least two elements is feasible.

Lemma 4.1 If S ⊆ N with |S| ≥ 2 is essential in the restricted game (N, r), then S is

feasible.

Proof. Suppose that S is not feasible. Then r(S) = r(σ(S)) with σ(S) ⊂ S. Since

r(j) = 0 for all j ∈ S \ σ(S), it holds that r(S) = r(σ(S)) +
∑

j∈S\σ(S) r(j), implying that

S is not essential. �

Assume that (N, v,D) satisfies condition (3.6). Then it follows that the restricted

game (N, r) is a weak monotone (r(S) ≤ r(N) for all S ⊆ N) veto-rich game (with veto

player 1) and therefore the Core contains the payoff vector (r(N), 0, . . . , 0)⊤ ∈ IRn and thus

is not empty. (Observe that r(N) = v(N).) Hence, Nuc(N, r) is in the Core of (N, r) and

independent of inessential coalitions. From now on we make the following assumption.
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Assumption 4.2 N is essential in the restricted game (N, r).

In fact, when (N, v,D) is weak digraph monotone, this assumption is without loss of

generality. If N is inessential then there exists a partition {S1, . . . , Sm} such that (i)

r(N) ≤
∑m

j=1 r(Sj), (ii) S1 is essential, and (iii) 1 ∈ S1. Because of (iii) we have that

S2, . . . , Sm are not feasible and thus r(Sj) = 0 for j = 2, . . . ,m. Together with weak

digraph monotonicity this implies that r(N) = r(S1). So, according to Arin and Feltkamp

(1997), the nucleolus assigns a zero payoff to every player not in S1, and we can restrict

ourselves to the subgame and subgraph on the essential coalition S1 containing player 1.

For N essential, also observe that according to Arin and Feltkamp (1997) the nucleolus

assigns positive payoff to any player in N . Since the assumption that N is essential in the

game (N, r) implies that r(N) > r(S) for every S ⊂ N , we have the following lemma.

Lemma 4.3 If game with permission structure (N, v,D) satisfies condition (3.6), then

e∗(N, r) > 0.

Proof. Since C(N, r) �= ∅ we have that e∗(N, r) ≥ 0. Hence, according to Lemma 2.2 it

holds that

e∗(N, r) = min
B∈B

r(N)−
∑m

j=1 λ
B
j r(Sj)∑m

j=1 λ
B
j

,

with λBj , j = 1, . . . ,m, the solution of the system (2.1) for the balanced collection B. Since

r(Sj) = 0 when 1 �∈ Sj, we obtain that

e∗(N, r) = min
B∈B

r(N)−
∑

{j|1∈Sj}
λBj r(Sj)∑m

j=1 λ
B
j

.

Since the collection {N} does not belong to B, any Sj in a balanced collection B is a real

subset of N and thus r(Sj) < r(N) for any Sj, because N is essential. Since
∑

{j|1∈Sj}
λBj =

1 by the definition of balancedness, it follows that r(N) −
∑

{j|1∈Sj}
λBj r(Sj) > 0 for any

B ∈ B, which proves the lemma. �

Similar as in Arin and Feltkamp (1997), in the sequel we denote for S ⊂ N and the

restricted game (N, r),

τ (S, r) =
r(N)− r(S)

|N \ S|+ 1
.

In the following, ΩD = ΦD \ {N} denotes the collection of all feasible coalitions not equal

to N . We now have the following lemmas.

Lemma 4.4 Let game with permission structure (N, v,D) satisfy condition (3.6). Then

e∗(N, r) = min
S∈ΩD

τ(S, r).
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Proof. According to Kohlberg’s theorem there exists a balanced collection {S1, . . . , Sm}

such that −e(Sk, x) = e∗(N, r) for all k = 1, . . . ,m. Since e∗(N, r) > 0 by Lemma 4.3,

according to Corollary 2.4 we have that any Sj is essential. Without loss of generality, let

1 ∈ S1. Then, we have that either S1 = {1} and thus feasible, or |S1| > 1 and thus feasible

according to Lemma 4.1. Denote U = S1. Now, consider j �∈ U . Since the collection

is balanced, there must be a coalition Sk �= S1 = U containing j, but not 1. Then Sk

is essential, but not feasible. Hence it follows with Lemma 4.1 that |Sk| = 1 and thus

Sk = {j}. Now, let λBU and λBj , j �∈ U , be the corresponding weights. Then λBU = λBj = 1,

j �∈ U . Further r(j) = 0 for all j �∈ U since {j} is not feasible. Substituting these values in

(2.3) gives e∗(N, r) =
r(N)−λB

U
r(U)

|N\U |+1 = τ (U, r), showing that there exists a coalition U ∈ ΩD

satisfying e∗(N, r) = τ(U, r). Next, consider any S ∈ ΩD. Then B = {S} ∪ {{j} | j �∈ S}

is a balanced collection with corresponding weights λBS = λBj = 1, j �∈ S. Since 1 ∈ S

(because S is feasible), it follows that r(j) = 0 for all j �∈ S. Hence with Lemma 2.2 we

obtain that that e∗(N, r) ≤
r(N)−λBS r(S)−

∑
j �∈S λBj r(j)

|N\S|+1 = r(N)−r(S)
|N\S|+1 = τ (S, r). �

Lemma 4.5 Let game with permission structure (N, v,D) satisfy condition (3.6), let U ∈

ΩD be such that τ (U, r) = e∗(N, r), and let y ∈ IRn be such that y(U) = r(U) + τ (U, r) and

yj = τ(U, r) for all j �∈ U . Then x = Nuc(N, r) satisfies x(U) = y(U) and xj = yj for all

j �∈ U .

Proof. First, observe that

y(N) = y(U) +
∑

j �∈U

yj = r(U) + (|N \ U |+ 1)τ(U, r) = r(N),

so y is efficient. Next, observe that U is feasible and thus 1 ∈ U . Hence for any j �∈ U ,

the singleton coalition {j} is not feasible and thus r(j) = 0. Therefore the excesses for the

coalitions U ∈ ΦD and the singletons {j}, j �∈ U , at y are equal to e(U, y) = −τ(U, r) =

e({j}, y), j �∈ U . Now, suppose that x = Nuc(N, r) does not satisfy x(U) = y(U) and

xj = yj. Then

min[−e(U, x), min
j �∈U

−e({j}, x)] < τ(U, r),

contradicting that τ(U, r) = e∗(N, r) = min{S⊂N,S �=∅} − e(S, x). �

The two lemmas above show that as soon as a coalition U ∈ ΩD has been found

with τ (U, r) = minS∈ΩD τ (S, r), the nucleolus values of all players j �∈ U have been found

and that these values are equal to τ (U, r). This gives us the basic idea for the algorithm
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in the next section. In the sequel, denote τ ∗(r) = minS∈ΩD τ(S, r). In the first step the

algorithm searches for a coalition U1 ∈ ΩD satisfying

τ (U1, r) = τ∗(r) and |U1| = max
{U∈ΩD|τ(U,r)=τ∗(r)}

|U |, (4.9)

i.e., any other feasible set U �= N satisfying τ(U, r) = τ∗(r) contains at most the same

number of players as U1. This gives nucleolus payoffs τ ∗(r) = τ(U1, r) to any player j �∈ U1

and in the next step the algorithm continues with a search on a reduced set of players U1.

The details of the algortihm will be given in the next section. In the remaining of this

section we give several results with respect to a set U1 satisfying condition (4.9). These

results will be used in Section 5 to prove that the algorithm indeed finds the nucleolus.

Observe that the results above only require weak digraph monotonicity. The next results

require both weak digraph monotonicity and weak digraph concavity.

Lemma 4.6 Let game with permission structure (N, v,D) satisfy conditions (3.6) and

(3.7) and, for a coalition U1 satisfying condition (4.9), let {T1, T2} be a partition of N \U1.

Then at least one of the two coalitions U1 ∪ T1, U1 ∪ T2 is not feasible.

Proof. Suppose that both sets U1 ∪ T1 and U1 ∪ T2 are feasible. Then we have that

|T2|+ 1

|T1|+ |T2|+ 2
τ (U1 ∪ T1, r) +

|T1|+ 1

|T1|+ |T2|+ 2
τ(U1 ∪ T2, r) =

=
r(N)− r(N \ T2)

|T1|+ |T2|+ 2
+
r(N)− r(N \ T1)

|T1|+ |T2|+ 2
=

=
2r(N)− r(N \ T1)− r(N \ T2)

|T1|+ |T2|+ 2
≤

r(N)− r(U1)

|T1|+ |T2|+ 2
,

where the last inequality follows from condition (3.7) for the sets N \ Tj, j = 1, 2, since

r(N) = v(N), r(U1) = v(U1) by the feasibility of U1, and for i ∈ {1, 2}, i �= j, we have

that r(N \Tj) = r(U1 ∪ Ti) = v(U1 ∪ Ti) because of the feasibility of U1 ∪ Ti. Further since

r(U1) = v(U1) ≤ v(N) = r(N) because of condition (3.6), we have that

r(N)− r(U1)

|T1|+ |T2|+ 2
≤

r(N)− r(U1)

|T1|+ |T2|+ 1
= τ(U1, r).

So, τ (U1, r) is at least equal to the given convex combination of τ(U1 ∪ T1, r) and τ(U1 ∪

T2, r), implying that for at least one i, i = 1, 2, it holds that

τ (U1 ∪ Ti, r) ≤ τ (U1, r).

This contradicts condition (4.9). �
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The next proposition says that for a set U1 satisfying condition (4.9) the complement

N\U1 is connected and that the collection of all successors of players in U1 contains precisely

one player not in U1. For T ⊆ N , let SD(T ) = ∪i∈T SD(i) denote the union of all successors

of at least one player of T in the digraph (N,D).

Proposition 4.7 Let game with permission structure (N, v,D) satisfy conditions (3.6)

and (3.7) and let U1 be a coalition satisfying condition (4.9). Then:

1. The set N \ U1 is connected,

2. |SD(U1) ∩ (N \ U1)| = 1.

Proof. 1. To prove 1, suppose N \ U1 consists of at least two components. Let T1 be one

of the components and denote T2 = N \ (U1 ∪ T1). We show that both U1 ∪ Ti, i = 1, 2 are

feasible.

To do so, let i be any player in T1. By quasi-strongly connectedness of (N,D),

there exists a directed path (i1, i2, . . . , im) from i1 = 1 to im = i. Let ik, 1 ≤ k < m,

be the last player in the path not in T1, thus ik ∈ U1 ∪ T2 and ik+1, . . . , im ∈ T1. Since

(ik, ik+1) ∈ D, ik ∈ T2 contradicts that T1 is a component of N \ U1. Hence ik ∈ U1. Since

U1 is feasible, 1 ∈ U1 and there is a path (j1, . . . , jℓ) from j1 = 1 to jℓ = ik with jr ∈ U1

for all r = 1, . . . , ℓ. Hence for any i ∈ T1 there is a path (j1, . . . , jℓ, ik+1, . . . , im) from 1 to

i only containing nodes in U1 ∪ T1. This shows that U1 ∪ T1 is feasible. Similarly it follows

that U1 ∪ T2 is feasible. This contradicts Lemma 4.6, which proves the first statement.

2. To prove 2, assume that there are two players i1, i2 ∈ SD(U1)∩ (N \U1), i1 �= i2.

For any player i ∈ N \ U1, let S̃D(i) be defined as the subset of N \ U1 such that node

j ∈ N \ U1 belongs to S̃D(i) if and only if j = i or there is a directed path from node i to

node j that only consists of nodes in N \ U1. Since (N,D) is acyclic by assumption, we

have that i1 �∈ S̃D(i2) or i2 �∈ S̃D(i1) (or both). Suppose i2 �∈ S̃D(i1). We now consider the

partition of N \U1 into two non-empty sets T1 = S̃D(i1) and T2 = (N \U1) \T1 and obtain

a contradiction by using Lemma 4.6. Since there is a directed path from node 1 to i1 ∈ T1

consisting of nodes in U1 ∪ {i1}, and from i1 ∈ T1 to any other node in T1 consisting of

nodes in T1, for each j ∈ U1 ∪ T1 there is a path in U1 ∪ T1 from 1 to j, and thus U1 ∪ T1

is feasible.

Next consider U1 ∪ T2. For a node j ∈ T2, let (i1, i2, . . . , im) be a path from

i1 = 1 to im = j and let ik, 1 ≤ k < m, be the last player in the path not in T2, thus

ik ∈ N \ T2 = U1 ∪ T1. Then ik ∈ U1, because ik ∈ T1 = S̃D(i1) contradicts that j �∈ T1.

Since U1 is feasible, there is a path (j1, . . . , jℓ) from j1 = 1 to jℓ = ik with jr ∈ U1 for all

r = 1, . . . , ℓ. Hence for any j ∈ T2 there is a path (j1, . . . , jℓ, ik+1, . . . , im) from 1 to j only

containing nodes in U1∪T2. This shows that U1∪T2 is feasible. Hence the existence of two
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players in SD(U1)∩(N \U1) contradicts Lemma 4.6, which proves the second statement. �

For U1 satisfying condition (4.9), let i1 be the unique node in SD(U1) ∩ (N \ U1)

i.e., i1 is the unique successor of U1 in N \ U1. Since 1 ∈ U1, this implies that any path

from node 1 to a player j ∈ N \ U1 has node i1 as the first player on the path not in U1.

Together with the connectedness of N \ U1 (see Proposition 4.7) this gives the following

corollary.

Corollary 4.8 Let game with permission structure (N, v,D) satisfy conditions (3.6) and

(3.7) and let U1 be a coalition satisfying condition (4.9). Then the subgraph (N \U1, D(N \

U1)) of (N,D) on N \U1 is also a quasi-strongly connected, acyclic directed graph with one

top-node (node i1).

5 An algorithm for computing the nucleolus

Since disjunctive restricted games are veto-rich games we can apply the exponential time

algorithm of Arin and Feltkamp (1997) to find the nucleolus of the restricted game (N, r)

of a game with permission structure (N, v,D) that satisfies conditions (3.6) and (3.7).

However, instead of directly applying the algorithm of Arin and Feltkamp to (N, r), in this

section we give a modified version of the algorithm which finds the nucleolus in polynomial

time by making use of the hierarchical structure given by the digraph (N,D). In particular

the hierarchical structure reduces at each step t the minimization problem to find qt (see

(2.4)), because it is sufficient to consider the feasible sets.

Let node 1 be the unique top node in (N,D), and thus 1 is a veto player in the

restricted game (N, r). We again assume that (N, v,D) satisfies the conditions (3.6) and

(3.7) and that N is essential in (N, r). Further for the reduced game with permission

structure (Uk, vk, Dk) defined in iteration k−1 at Step 3 of the algorithm given below, the set

ΩDk denotes the set of all feasible coalitions not equal to Uk in the digraph (Uk, Dk). Also,

for i ∈ Uk, we denote by SDk(i) and PDk(i) the set of successors, respectively predecessors

in (Uk,Dk). Then the algorithm proceeds as follows.

Algorithm

Step 1 Set k = 0, U0 = N , v0 = v, D0 = D and r0 = r. Goto Step 2.

Step 2 Find Uk+1 ⊂ Uk satisfying condition (4.9) with respect to game with permission

structure (Uk, vk, Dk), i.e.,

τ(Uk+1, rk) = τ∗(rk) and |Uk+1| = max
{U∈ΩDk |τ(U,rk)=τ∗(rk)}

|U |,
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where τ ∗(rk) = minU∈ΩDk τ (U, rk) with τ(U, rk) = rk(Uk)−rk(U)
|Uk\U |+1

. Assign yj = τ∗(rk) to

every player j ∈ Uk \ Uk+1. Goto Step 3.

Step 3 If Uk+1 = {1} then Goto Step 4. If Uk+1 �= {1}, let ik+1 be the unique top-player of

the subgraph (Uk\Uk+1, Dk(Uk \Uk+1) of the digraph (Uk, Dk) restricted to Uk\Uk+1.

Define game (Uk+1, vk+1) by setting for every U ⊆ Uk+1,

vk+1(U) =

{
vk(U) if PDk(ik+1) ∩ U = ∅

vk(U ∪ (Uk \ Uk+1))− τ (Uk+1, rk)|Uk \ Uk+1| else,
(5.10)

digraph (Uk+1,Dk+1) given by

(i, j) ∈ Dk+1 if

{
(i, j) ∈ Dk or

i ∈ PDk(ik+1) and j ∈ SDk(Uk \ Uk+1) ∩ Uk+1.
(5.11)

and let rk+1 be the restricted game of (Uk+1, vk+1,Dk+1). Set k = k + 1. Goto Step

2.

Step 4 Assign y1 = v(N)−
∑

j∈N\{1} xj . Stop.

In every step of the algorithm, for Uk+1 ⊂ Uk satisfying condition (4.9) with respect

to (Uk, vk,Dk), any player in Uk \ Uk+1 receives payoff τ (Uk+1, rk). Observe that at any

iteration the new found set Uk+1 is essential in (Uk+1, rk+1). If not, there exists an essential

subset S of Uk+1 with rk+1(S) = rk+1(Uk), yielding payoff yj = 0 for all j ∈ Uk+1 \S. This

contradicts that all players get positive payoff (because it is assumed that N is essential).

Since in any iteration the payoff of at least one player is determined, in at most k = n− 1

iterations the algorithm stops with Uk+1 = {1} and player 1 getting what is left from v(N)

after all other players received their payoffs as determined by the algorithm. (Note that

player 1 belongs to the player set of every game (Uk,Dk) that appears in the algorithm.)

In the remaining of this section we show that the algorithm indeed yields the nucleolus.

Let K be such that UK+1 = {1}. To show that the algorithm is well-defined, it is

needed that the results of Section 4 hold for every game (Uk, rk), k = 1, . . . , K. This is

shown in the next two lemmas. The first lemma states that for any k = 0, 1, . . . ,K − 1

the digraph (Uk+1,Dk+1) is acyclic and quasi-strongly connected with i = 1 as its unique

top-node.

Lemma 5.1 The digraph (Uk+1, Dk+1) satisfies Assumption 2.5 for any k = 0, 1, . . . ,K−1.

Proof. Since (N,D) satisfies Assumption 2.5, the statement is true for k = 0. We now

proceed by induction and suppose that the statement is true for j = 0, . . . , k, k < K − 1.

Then it remains to show that the statement is true for j = k + 1. By the induction
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hypothesis we have that (Uk, Dk) is acyclic and quasi-strongly connected and has i = 1 as

its unique top node. So, for any j �= 1 in Uk+1 there is a directed path i1, . . . , im in (Uk, Dk)

with i1 = 1 and im = j. If any node ik, k = 2, . . . ,m − 1 in this path is in Uk+1, then

this path also exists in (Uk+1,Dk+1). Otherwise, for any node ih on the path not in Uk+1,

there exist two (not necessarily different) nodes ir, is on the path with r ≤ h ≤ s such

that ir−1, is+1 ∈ Uk+1 and ir, is �∈ Uk+1. Then by (5.11) we have that (ir−1, is+1) ∈ Dk+1.

Hence there is a directed path from i = 1 to i = j in (Uk+1, Dk+1), showing (Uk+1, Dk+1) is

quasi-strongly connected with node 1 as top node. Because in (Uk+1, Dk+1) there can only

be a directed path from node i to node j if there is a directed path from i to j in (Uk, Dk),

the acyclicity of (Uk+1, Dk+1) follows immediately from the fact that (Uk, Dk) is acyclic.

�

The next lemma shows that any game (Uk, vk,Dk), k = 0, 1, . . . , K satisfies the

conditions of weak digraph monotonicity and weak digraph concavity. Again the proof is

by induction, where Proposition 4.7 is used to show the weak digraph monotonicity.

Lemma 5.2 Let game with permission structure (N, v,D) satisfy conditions (3.6) and

(3.7). Then the game with permission structure (Uk, vk, Dk) satisfies these conditions on

the player set Uk for every k = 0, . . . ,K.

Proof. We prove the proposition by induction on k. For k = 0 both conditions (3.6) and

(3.7) are satisfied by assumption. Proceeding by induction, assume that these conditions

are satisfied for j = 0, . . . , k, k < K − 1. By Lemma 5.1 the digraph (Uk, Dk) satisfies

Assumption 2.5. So, the game (Uk, vk, Dk) satisfies all conditions of Proposition 4.7.

To show that condition (3.6) holds for (Uk+1, vk+1, Dk+1), we have to show that [U ⊆

Uk+1 and U feasible in (Uk+1, Dk+1)]⇒ vk+1(U) ≤ vk+1(Uk+1). Since PDk(ik+1)∩Uk+1 �= ∅,

we have that

vk+1(Uk+1) = vk(Uk+1 ∪ (Uk \ Uk+1))− τ(Uk+1, rk)|Uk \ Uk+1| = vk(Uk)− τ(Uk+1, rk)|Uk \ Uk+1|.

Next, let U ⊆ Uk+1 be a feasible subset of Uk+1 in (Uk+1,Dk+1). We consider two cases,

either PDk(ik+1) ∩ U �= ∅ or PDk(ik+1) ∩ U = ∅. In the latter case we have that (i)

vk+1(U) = vk(U) and (ii) there is an arc between two nodes i and j of U in the digraph

(Uk+1, Dk+1) if and only if there is also an arc between i and j in (Uk, Dk). Hence U is also

feasible in (Uk, Dk) and thus vk+1(U) = vk(U) = rk(U). Moreover, τ(U, rk) = rk(Uk)−rk(U)
|Uk\U |+1

≥

τ(Uk+1, rk) and thus rk(Uk)− rk(U) ≥ (|Uk \ U |+ 1)τ(Uk+1, rk). Hence

vk+1(U) = rk(U) ≤ rk(Uk)− (|Uk \ U |+ 1)τ(Uk+1, rk)

< vk(Uk)− |Uk \ Uk+1|τ (Uk+1, rk) = vk+1(Uk+1).
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In case PDk(ik+1) ∩ U �= ∅, we obtain from applying Proposition 4.7 to (Uk, vk, Dk), that

U ∪ (Uk \ Uk+1) is feasible in (Uk, Dk). From this it follows that

vk+1(U) = vk(U ∪ (Uk \ Uk+1))− τ(Uk+1, rk)|Uk \ Uk+1|

≤ vk(Uk)− τ(Uk+1, rk)|Uk \ Uk+1| = vk+1(Uk+1)

because condition (3.6) holds for (Uk, vk,Dk).

Next we consider condition (3.7), i.e., we have to show that [S ∪T = Uk+1 and S, T

feasible in (Uk+1, Dk+1)]⇒ vk+1(S) + vk+1(T ) ≥ vk+1(S ∩ T ) + vk+1(Uk+1). Since S ∪ T =

Uk+1 we have that PDk(ik+1)∩S �= ∅ or PDk(ik+1)∩ T �= ∅ (or both). We first consider the

case that both intersections are nonempty and thus also PDk(ik+1) ∩ (S ∩ T ) �= ∅. Then

S ′ = S ∪ (Uk \ Uk+1), T ′ = T ∪ (Uk \ Uk+1) are feasible in (Uk, Dk) and S ′ ∪ T ′ = Uk, and

thus it follows from condition (3.7) for (Uk, vk, Dk) that

vk+1(S) + vk+1(T ) = vk(S
′) + vk(T

′)− 2τ (Uk+1, rk)|Uk \ Uk+1|

≥ vk(S
′ ∩ T ′) + vk(Uk)− 2τ(Uk+1, rk)|Uk \ Uk+1|

= vk((S ∩ T ) ∪ (Uk \ Uk+1)) + vk(Uk)− 2τ(Uk+1, rk)|Uk \ Uk+1|

= vk+1(S ∩ T ) + vk+1(Uk+1),

where the last equality follows from the fact that vk+1(S∩T ) = vk((S∩T )∪ (Uk \Uk+1))−

τ(Uk+1, rk)|Uk \Uk+1| and vk+1(Uk+1) = vk(Uk)− τ(Uk+1, rk)|Uk \Uk+1|. In case one of the

sets S and T has a nonempty intersection with PDk(ik+1) and thus PDk(ik+1)∩ (S∩T ) = ∅,

suppose without loss of generality that T ∩PDk(ik+1) = ∅. Then S ′ = S∪(Uk \Uk+1) and T

are feasible in (Uk, Dk), S
′∪T = N and thus it follows from condition (3.7) for (Uk, vk, Dk)

that

vk+1(S) + vk+1(T ) = vk(S
′) + vk(T )− τ (Uk+1, rk)|Uk \ Uk+1|

≥ vk((S
′ ∩ T )) + vk(Uk)− τ(Uk+1, rk)|Uk \ Uk+1|

= vk+1(S ∩ T ) + vk+1(Uk+1),

where the last equality follows from the fact that vk(S
′ ∩ T ) = vk(S ∩ T ) = vk+1(S ∩ T )

and vk(Uk)− τ (Uk+1, rk)|Uk \ Uk+1| = vk+1(Uk+1). �

In the remaining of this section we show that for k = 1, . . . , K, the game (Uk+1, rk+1)

is the Davis-Maschler reduced game of the game (Uk, rk) with respect to the nucleolus.

For a game (N, v), let T ⊂ N be a nonempty coalition and y ∈ IRn a payoff vector.

Then the Davis-Maschler reduced game on T at y is the game (T, vyT ) given by vyT (T ) =

v(N)−x(N \T ) and vyT (S) = maxQ⊆N\T (v(S ∪Q)− y(Q)), S ⊂ T , S �= N . Observe that

in the definition of the reduced game only the values yj of the players j ∈ N \T appear. In
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the following, let (Uk+1, r
′
k) denote the Davis-Maschler reduced game of the game (Uk, rk)

on the set Uk+1 at y with yj = τ∗(rk) = τ (Uk+1, rk) for j ∈ Uk \ Uk+1.

We first show the following lemma on the largest disjunctive feasible subset of a

coalition U in the digraph (Uk, Dk). In the sequel we denote this set by σk(U). Observe

that for U ⊆ N we have that σ0(U) = σ(U).

Lemma 5.3 For the game with permission structure (Uk, vk, Dk), let Uk+1 ⊂ Uk and ik+1 �∈

Uk+1 be the set and node as obtained in the iteration k of the algorithm. Then for each

U ⊆ Uk+1 we have that

1. σk+1(U) = σk(U) if SDk(σk(U)) ⊂ Uk+1;

2. σk+1(U) = σk(U ∪ (Uk \ Uk+1)) \ (Uk \ Uk+1) if ik+1 ∈ SDk(σk(U)).

Proof. 1. Consider U ⊆ Uk+1 with SDk(σk(U)) ⊂ Uk+1. Clearly, then σk(U) is feasible

in (Uk+1, Dk+1) and thus σk(U) ⊆ σk+1(U). Next, suppose that there exists some player

i ∈ σk+1(U) \ σk(U). Then there is path (a0, a1, . . . , al) such that (i) a0 = 1, (ii) al = i,

(iii) at ∈ U for all t = 1, . . . , l − 1, and (iv) (at, at+1) ∈ Dk+1 for all t = 0, . . . , l − 1. If

(at, at+1) ∈ Dk for all t = 0, . . . , l − 1, then i ∈ σk(U) and we get a contradiction with

our assumption that i ∈ σk+1(U) \ σk(U). So, there must exist a t ∈ {0, . . . , l − 1} such

that (at, at+1) �∈ Dk. By definition of digraph Dk+1 it holds that at ∈ PDk(ik+1), which

contradicts SDk(σk(U)) ⊂ Uk+1. Hence σk+1(U) = σk(U).

2. Consider U ⊆ Uk+1 with ik+1 ∈ SDk(σk(U)). If there is a player i ∈ σk+1(U) then there

is a path (a0, a1, . . . , al) such that (i) a0 = 1, (ii) al = i, (iii), at ∈ U for all t = 1, . . . , l− 1,

and (iv) (at, at+1) ∈ Dk+1 for all t = 0, . . . , l − 1. We show that these four conditions also

describe all elements of

σk(U ∪ (Uk \ Uk+1)) \ (Uk \ Uk+1)

If (at, at+1) ∈ Dk for all t = 0, . . . , l − 1, then i ∈ σk(U). Since U ⊆ Uk+1, it follows that

i ∈ σk(U ∪ (Uk \ Uk+1)) \ (Uk \ Uk+1). Otherwise, if (at, at+1) ∈ Dk+1 \Dk for some t, then

at ∈ PDk(ik+1) and at+1 ∈ SDk(Uk \Uk+1). So there is a path from at to at+1 which contains

only elements from Uk \Uk+1. In the path (a0, a1, . . . , al), replace the arc (at, at+1) by this

path from at to at+1.

Continuing in this way, we can change each arc in the path (a0, a1, . . . , al) that belongs to

Dk+1 \Dk by a path which consists only of elements from Uk \ Uk+1. So, we have a path

from 1 to i which consists only of elements from U ∪ (Uk \Uk+1), implying that i ∈ σk(U ∪

(Uk \ Uk+1)). Since i �∈ Uk \ Uk+1, we conclude that i ∈ σk(U ∪ (Uk \ Uk+1)) \ (Uk \ Uk+1).

So, in both cases we have that i ∈ σk(U ∪ (Uk \ Uk+1)) \ (Uk \ Uk+1) and therefore we get

σk+1(U) = σk(U ∪ (Uk \ Uk+1)) \ (Uk \ Uk+1).
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The next lemma shows that the game (Uk+1, rk+1) is the Davis-Maschler reduced game of

the game (Uk, rk) with respect to the nucleolus.

Lemma 5.4 Let game with permission structure (N, v,D) satisfy conditions (3.6) and

(3.7). Then, for k = 0, . . . , K, the game (Uk+1, rk+1) is equal to the Davis-Maschler reduced

game (Uk+1, r
′
k) of the game (Uk, rk) on Uk+1 at y with yj = τ ∗(rk) for j ∈ Uk \ Uk+1.

Proof. For coalition T ⊆ Uk+1, we consider two cases, namely whether or not SDk(σk(T )) ⊂

Uk+1. In case SDk(σk(T )) ⊂ Uk+1, Lemma 5.3.1 implies that σk+1(T ) = σk(T ).

Further, since PDk(ik+1)∩σk(T ) = ∅ we have by equation (5.10) in Step 3 of the algorithm

that vk+1(T ) = vk(T ) and thus rk+1(T ) = rk(T ) because σk+1(T ) = σk(T ). On the other

hand, for the Davis-Mashler reduced game (Uk+1, r
′
k) it holds for any T ⊂ Uk+1 that

r′k(T ) = max
Q⊆Uk\Uk+1

(rk(T ∪Q)− y(Q)) = rk(T ),

because for any Q ⊆ Uk \ Uk+1 we have that

rk(T ∪Q
′) = vk(σk(T ∪Q)) = vk(σk(T )) = rk(T ),

where the second equality follows since for any pair j ∈ (T \ σk(T ) ∪Q) and i ∈ σk(T ), it

holds that (i, j) �∈ Dk and thus σk(T ∪Q) = σk(T ). Hence r′k(T ) = rk(T ) = rk+1(T ).

In case SDk(σk(T )) is not a subset of Uk+1 we have that PDk(ik+1) ∩ σk(T ) �= ∅, because

ik+1 is the unique successor of Uk+1 in Uk \ Uk+1. So, by equation (5.10) in Step 3 of the

algorithm we have that

rk+1(T ) = vk+1(σk+1(T )) = vk(σk+1(T ) ∪ (Uk \ Uk+1))− τ(Uk+1, rk)|Uk \ Uk+1|.

From Lemma 5.3 we have that σk+1(T ) ∪ (Uk \ Uk+1) = σk(T ∪ (Uk \ Uk+1)) and so

rk+1(T ) = vk(σk(T ∪ (Uk \ Uk+1)))− τ(Uk+1, rk)|Uk \ Uk+1| =

rk(T ∪ (Uk \ Uk+1))− τ (Uk+1, rk)|Uk \ Uk+1|.

To show that rk+1(T ) = r′k(T ) it remains to prove that the right-hand term in the equation

r′k(T ) = max
Q⊆Uk\Uk+1

(rk(T ∪Q)− τ (Uk+1, rk)|Q|)

obtains its maximum for Uk \ Uk+1. To do so, denote Q = Uk \ Uk+1, V = T ∪Q and, for

Q ⊆ Q, denoteW = Uk+1∪Q. Then (because of Lemma 5.3) the sets σk(V ) = σk+1(T )∪Q

and σk(W ) = σk(Uk+1∪Q) ⊇ Uk+1 are feasible and satisfy σk(V )∪σk(W ) = Uk. By Lemma
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5.2 the game with permission structure (Uk, vk, Dk) satisfies weak digraph concavity and

thus

rk(V ) + r(W ) = vk(σk(V )) + vk(σk(W )) ≥ vk(Uk) + vk(σk(V ) ∩ σk(W )) =

vk(Uk) + vk(σk(V ∩W )) = rk(Uk) + rk(V ∩W ),

where the second equality follows from the fact that σk(V ∩W ) = σk(V )∩ σk(W ) because

of the graph structure. With V ∩W = (T ∪Q) ∩ (Uk+1 ∪Q) = T ∪Q this yields

rk(T ∪Q)− rk(T ∪Q) ≥ rk(Uk)− rk(Uk+1 ∪Q) >

rk(Uk)− r(Uk+1 ∪Q)

|Q| − |Q|+ 1
(|Q| − |Q|) =

τ (Uk+1 ∪Q)(|Q| − |Q|) ≥ τ (Uk+1, rk)(|Q| − |Q|)

by definition of Uk+1. Hence

rk(T ∪Q)− τ (Uk+1, rk)|Q| > rk(T ∪Q)− τ(Uk+1, rk)|Q|,

for all Q ⊆ Q, which shows that indeed

rk(T ∪Q)− τ (Uk+1, rk)|Q| = max
Q⊆Uk\Uk+1

(rk(T ∪Q)− τ(Uk+1, rk)|Q|) .

�

We now have the following proposition.

Proposition 5.5 Given game with permission structure (N, v,D) satisfying the conditions

(3.6) and (3.7), the algorithm described by the Steps 1-4 above yields the nucleolus of (N, r).

Proof. In iteration k = 0 the algorithm assigns in Step 2 the value τ∗(r0) = τ(U1, r0) =

τ(U1, r) to any player j ∈ U0\U1 = N \U1. According to Lemma 4.5, τ∗(r0) is the nucleolus

value of the players inN\U1. Applying Lemma 5.4 for k = 0, the game (U1, r1) is the Davis-

Maschler reduced game of the game (N, r) with respect to the nucleolus values yj = τ∗(r0)

of the players not in U1. Since the nucleolus satisfies the Davis-Maschler reduced game

consistency property, the nucleolus values of the reduced game (U1, r1) are equal to the

nucleolus values of the players of U1 in the game (N, r). In iteration k = 1 the algorithm

assigns in Step 2 the value τ∗(r1) to any player j ∈ U1 \ U2. According to Lemma 4.5,

τ∗(r1) is the nucleolus value of the players in U1 \ U2 in the game (U1, r1), and hence it is

also the nucleolus value of these players in the game (N, r). Continuing this reasoning we

have that in any iteration k, the algorithm assigns in Step 2 the value τ ∗(rk) to any player

j ∈ Uk \ Uk+1, which is the nucleolus value of the players in Uk \ Uk+1 in the game (N, r).

At the final iteration K we have that UK+1 = {1} and player 1 gets its nucleolus value in

Step 4 of the algorithm. �
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6 Complexity of the algorithm

For arbitrary veto-rich games the algorithm of Arin and Feltkamp (1997) to compute the

nucleolus is an exponential time algorithm of the order O(n.2n−1). Branzei et al. (2005)

argue that applying the algorithm to the specific case of a peer group game the complexity

reduces to a polynomial time algorithm of orderO(n3). They show that the algorithm given

in their paper to find the nucleolus of a peer group game is a polynomial time algorithm

of order O(n2). In this section we show that the algorithm given in the previous section to

find the nucleolus of the more general restricted game of a game with disjunctive permission

structure is a polynomial time algorithm of order O(n4). We first define the concept of a

good set in a digraph.

Definition 6.1 For a digraph (N,D) with D ∈ DN , a set T ⊂ N is a good set, when

(i) there is a unique top node in the subgraph (T,D(T )) of (N,D) and for any other node

i in T there is a path from this unique top node i that only contains nodes in T ,

(ii) the set N \ T is connected, and

(iii) only the top node in (T,D(T )) has predecessors in N \ T .

We now have the following lemma.

Lemma 6.2 In any iteration k of the algorithm, the set Uk \ Uk+1 is a good set.

Proof. Applying Corollary 4.8 to (Uk, Dk) we have that the subgraph of (Uk,Dk) restricted

to Uk\Uk+1 is a connected, acyclic directed graph with one top node, so condition (i) holds.

Next, denote Tk = Uk \Uk+1. Then Uk \Tk = Uk+1. Therefore condition (ii) holds, because

Uk+1 is feasible in (Uk,Dk) and thus connected in (Uk,Dk). Further, by applying the

second statement of Proposition 4.7 to (Uk, Dk) we have that Uk+1 has only one successor

in Tk = Uk \ Uk+1. Let this only successor be node j in Tk. Since the digraph (Uk, Dk) is

acyclic and quasi-strongly connected, there is a path from top node 1 in (Uk, Dk) to any

other node in Uk, so also to any node in Tk. Since j is the only successor of Uk+1 in Tk,

any path from 1 to some node h ∈ Tk must contain the node j. Moreover, the path from

j to h can not contain nodes not in Tk, otherwise Uk+1 has more than one successor in Tk.

Hence j is also a top node in Tk such that for any other node in Tk there is a path from j

to this node that only contains nodes in Tk. �

Lemma 6.2 implies that in Step 2 of the algorithm the set Uk+1 that we must find is such

that its complement Uk \ Uk+1 is a good set. Conversely, when Tk is the collection of all

good sets in (Uk, Dk), then the search for Uk+1 can be restricted to sets in the collection

Uk \Tk, Tk ∈ Tk. The next lemma says that in a game with permission structure (N, v,D)

there is precisely one good set for any player j ∈ N . Applying this to (Uk, Dk) this means
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that at iteration k of the algorithm the number of good sets is equal to |Uk|. Observe that

j itself is a singleton good set if j has no successors.

Lemma 6.3 Let (N,D) be a digraph with D ∈ DN . Then for any node j ∈ N there is

exactly one good set T such that j is the unique top node in T .

Proof. Recall from Section 2.3 that the set SD(j) of all complete subordinates of j is the

set of nodes i such that any path from top node 1 in (N,D) to node i contains node j. It

is straightforward to verify that SD(j) is a good set having node j as its unique top node.

Next, suppose that there are two good sets with j as their unique top node, say T1 and

T2 and, w.l.o.g., suppose that T1 \ T2 is non-empty. Consider some node h ∈ T1 \ T2. By

definition of a good set we know that any path from top player 1 to the player h contains

the node j. However, N \ T2 does not contain j and so there is no path from top node 1

to h in N \ T2, contradicting condition (ii) of Definition 6.1. �

We are now ready to consider the complexity of the algorithm.

Proposition 6.4 The complexity of the algorithm is of order O(n4).

Proof. First, in iteration k we have to find all good sets in Uk. To find the good set with

some player j in Uk as its unique top node, delete player j from Uk. Then the good set

consists of player j and all nodes in Uk that are no longer connected to player 1 when player

j is deleted. Since Uk contains at most n − 1 nodes not equal to 1, this requires at most

O(n2) actions to find the good set of node j. So, it requires at most O(n3) actions to find

all n− 1 good sets of all players j �= 1. Next, at each iteration k we need to calculate the

number τ (Uk\T, rk) for any good set T . For this we need at most O(n−1)mk actions, where

mk is the number of actions to find all values vk(U), U ⊆ Uk in Step 3 of iteration k − 1.

Clearly m0 = 1. Further, from equation (5.10) in Step 3 of the algorithm it follows that we

need mk−1 actions to find vk(U) if PDk(ik+1) ∩ U = ∅. Otherwise mk−1 actions are needed

to calculate vk(U) = vk−1(U ∪ (Uk−1 \ Uk)) and O(1) actions are needed for calculating

τ(Uk, rk−1)|Uk−1 \ Uk| and for substraction, because τ(Uk, rk−1) was already found before.

Hence mk = mk−1 + O(1). Together with m0 = 1 this yields that mk ≤ O(n). Since the

number of iterations is at most equal to n, it follows that the complexity of the algorithm

is given by n · (O(n3) +O((n− 1)mk)) = O(n4). �
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