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Is Economic Recovery a Myth?
Robust Estimation of Impulse
Responses

Coen N. Teulings & Nick Zubanov

Abstract

We estimate the impulse response function (IRF) of GDP to
a banking crisis, applying an extension of the local projections
method developed in Jorda (2005). This method is shown to be
more robust to misspecification than calculating IRFs analyti-
cally. However, it suffers from a hitherto unnoticed systematic
bias which increases with the forecast horizon. We propose a
simple correction to this bias, which our Monte Carlo simula-
tions show works well. Applying our corrected local projections
estimator to a panel of 99 countries observed between 1974-2001,
we find that an average banking crisis yields a long-term GDP loss
of around 10 percent with little sign of recovery within 10 years.
GDP losses to banking crises are even more severe in African
countries. Like the original Jorda’s (2005) method, our extension
of it is quite widely applicable.

JEL codes: G01; E27; C53
Key words: banking crisis; impulse response; panel data
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1 Introduction

The demise of Lehman Brothers left the world economy in a state of dis-
array. GDP in most OECD countries has declined by an order of mag-
nitude of 5 percent, a number unseen since World War II and the Great
Depression. Will output recover from this shock in the next five to ten
years, or will (part of) the loss be permanent? The Council of Economic
Advisors has a clear view on this issue: “A key fact is that recessions
are followed by rebound. Indeed, if periods of lower-than-normal growth
were not followed by periods of higher-than-normal growth, the unem-
ployment rate would never return to normal.” (Cited in Greg Mankiw’s
blog of March 3, 2009).

This view, implying no long-term GDP loss after a recession, is not
shared by all economists. For example, Campbell and Mankiw (1987)
show that there is little mean reversion in output. This does not au-
tomatically imply that the effect of a banking crisis will be permanent.
GDP can be mixture of random processes, some of which have a unit
root, while others do not. Banking crises may affect the non-unit root
components of GDP, an idea paraphrased by Paul Krugman: “I always
thought the unit root thing involved a bit of deliberate obtuseness - it in-
volved pretending that you didn’t know the difference between, say, low
GDP growth due to a productivity slowdown like the on that happened
from the 1973 to 1995, on one side, and low GDP growth due to a se-
vere recession.” (Krugman’s blog of March 3, 2009.) For Krugman, the
conclusion that shocks in GDP have permanent effects is implied by the
fact that long-run productivity growth follows a random walk. Contrary
to productivity growth, short-run fluctuations in the business cycle have
largely temporary effects.

Empirical evidence presented in a recent paper by Valerie Cerra and
Sweta Saxena (2008), which goes under an ominous tittle “The Myth of
Economic Recovery”, seems to run contrary to Krugman’s view. The au-
thors estimate a dynamic model of GDP growth as a function of lagged
growth rates and a dummy for the occurrence of a banking crisis. They
use their regression estimates for a recursive calculation of the impulse-
response function (IRF) of GDP to a banking crisis event. We refer
to this approach as the analytical estimator of the IRF, since it cal-
culates the IRF analytically from the assumed data generating process
which parameters are estimated only once. As the tittle of their pa-
per suggests, the authors find strong persistence of the initial negative
effect of banking crises. However, the analytical estimator is sensitive
to misspecifications of the data generating process for GDP, which may
have dramatic consequences for IRF estimates as the forecast horizon
increases. This is a serious constraint for the assessment of the long
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run effects of banking crises on GDP. We give some simple examples
illustrating the severity of this problem of the analytical IRF estimates.

Oscar Jorda (2005) proposed a method to reduce the dependence of
the IRF estimates on the specification of the data generating process
which we will refer to as the local projections estimator. Essentially, a
local projections estimate of the IRF of variable y to a shock in a regres-
sor x k periods after the shock is the coefficient on x in the regression
of yt+k, k > 1, on the regressors measured at time t, without including
their intermediate values realised between t and t+k. This method is far
more robust to misspecifications because a new regression is estimated
for each k, instead of using the same set of coefficients from the assumed,
and potentially incorrect, autoregressive specification for y in calculating
the IRF analytically. This advantage comes at the cost of some loss in
the IRF estimates’ efficiency. We provide a formula for this efficiency
loss for a simple case.

However, in the panel data context, Jorda’s (2005) local projections
method is shown to be prone to a hitherto unnoticed bias similar in origin
to the bias in the dynamic panel regression estimates demonstrated by
Nickell (1981). Intuitively, fixed effects soak up part of the dynamic
interactions, so that the variation in the fixed effect is overestimated
and the dynamic interactions are underestimated. We show that in
our application where banking crises happen infrequently (28 out of 99
countries in our sample had no banking crises at all, and 56 had it
only once) but have persistent effects, this problem can be serious, in
particular for long forecasting horizons. We derive a formula for the size
of the bias in a simple case and propose a solution for this problem –
the inclusion of banking crises happening between t and t + k in the
local projections regression. Our Monte Carlo simulations show that
our simple solution produces estimates which are fairly close to the true
parameters and are more robust to misspecification than the analytical
estimator of the IRF.

Turning to our empirical results, we find that an average GDP loss
linked to a banking crisis is about 10 percent and persists for years
after the crisis. There is appreciable heterogeneity in the effect of the
crisis, with African countries suffering much greater losses after the crisis
– 14 percent compared to 6 percent for Non-Africa. The rest of this
paper is organized as follows. Section 2 discusses the local projections
estimator. In section 2.1, we compare and contrast it to the analytical
IRF estimator in terms of robustness to misspecifications and efficiency
loss. Its robustness notwithstanding, section 2.2 shows that the local
projections estimator is biased for longer forecast horizons. Therein we
also present a method to eliminate the local projections bias, followed
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by the results of numerical simulations (section 2.3) illustrating the bias
performance of the corrected local projections estimator. In section 3 we
apply the corrected local projections and other estimators to the data
on banking crises in order to estimate their effect on GDP. Section 4
concludes with a brief summary of our findings.

2 IRF estimation in models with fixed effects

2.1 Analytical and local projections estimators

Consider the following stationary AR(R) panel data model with fixed
effects:

yt = α0i + α∗0t+
R∑
r=1

α1ryt−r +
L∑
l=1

α2ldt−l + ut, (1)

where yt is log GDP per capita for country i in year t, dt is a dummy
variable that takes the value of 1 at the start of a banking crisis in
country i and 0 otherwise, and the error term ut is an i.i.d. random
variable for country i, ut ∼ N (0, σ2). Since all our data are country
specific, we omit the suffix i for all variables for the sake of convenience,
except when necessary. Hence, α0i denotes country fixed effect, while
α∗0 refers to time trend common to all countries. Stationarity implies∣∣∣∑R

r=1 α1r

∣∣∣ < 1. We assume that banking crises arrive randomly at a

country specific rate λi, so that E[dt − λi] = 0 (see Cerra and Saxena
(2008) for some evidence on this issue). We further assume that banking
crises happen independently of all forward and backward realizations of
the error term, that is, E[usdt] = 0,∀s, t.

Define the IRF of GDP to banking crisis k years after its start as

IRF (k)≡E [yt+k−1|dt−1 = 1, ys, ds−1, s < t]

−E [yt+k−1|dt−1 = 0, ys, ds−1, s < t] . (2)

Based on this definition, one can calculate the IRF analytically for
each k by expressing the conditional expectation of yt+k as a function
of equation (1)’s parameter estimates. For example, if R = L = 1
IRF(k) = α21α

k−1
11 . We will refer to this method of calculating IRFs as

the analytical estimator. There are two problems with the analytical
estimator. First, it relies heavily on the correct specification of the un-
derlying model (1). As the model includes more lags of yt and dt, and
as the length of the forecast k increases, IRF(k) becomes a more and
more complex expression that is more and more sensitive to even slight
specification errors. Since we are interested in the long run effect of a
banking crisis, this is a serious problem. Second, the growing complexity
of IRF(k) will make the calculation of its standard errors increasingly
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cumbersome and the distribution of the parameter increasingly fat-tailed
since it raises the underlying coefficient to higher powers (e.g. ak−1

11 in
the example above).

An alternative to calculating the IRF analytically which circumvents
both these problems is known as the local projections estimator (Jorda,
2005). This estimator, initially developed for the case of a VAR model,
is rather generally applicable and has recently been extended to the case
of a nonstationary VAR (Chong, Jorda and Taylor, 2011). Here we
consider its application for a one-equation model. The local projections
method estimates IRF(k) directly from the forecast equation for GDP
k periods ahead, as we now explain. Since the process is stationary,
the lagged values of yt can be eliminated from the model by recursive
substitution of lagged versions of equation (1) to get

yt = γ0i + γ∗0t+
∞∑
l=1

γ2ldt−l +
∞∑
m=1

γ3mut−m + ut, (3)

where the γ-parameters are functions of the α-parameters. For example,
for R = L = 1:

γ0i =α0i/ (1− α11)− α∗0α11/(1− α11)2,

γ∗0 =α∗0/ (1− α11) ,

γ2l =α21α
l−1
11 ,

γ3m =αm11.

Therefore, yt can be expressed as a linear function of all past shocks
dt and ut. Let ytk denote a k-period ahead forecast conditional on the
information available at t− 1:

ytk ≡ E [yt+k−1|ys, ds, s < t] = E [yt+k−1|us, ds, s < t]

The second equality uses equation (3) to eliminate the lags of yt from
equation (1). Since E[ds] = λi and E[us] = 0, ytk satisfies:

ytk = γ0ik + γ∗0 (t+ k − 1) +
∞∑
l=k

γ2ldt+k−1−l +
∞∑
m=k

γ3mut+k−1−m, (4)

γ0ik≡ γ0i +
k−1∑
l=1

γ2lλi.

The shocks hitting yt between time t and time t + k do not affect the
forecast ytk since their expected value conditional on the information
available at the moment that the forecast is made, is zero. For k = 1, we
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obtain yt1 = yt − ut, that is, the one-period ahead forecast is the actual
value of yt minus the error term. By the definition of IRF (equation
(2)), IRF(k) = γ2k. This substitution procedure can reversed, by solving
equation (1) for ut and using that solution to eliminate ut and its lags
from equation (4):

ytk = δ0ik + δ∗0kt+
R∑
r=1

δ1rkyt−r +
L∑
l=1

δ2lkdt−l, (5)

where the δ-parameters can be expressed as functions of the γ-parameters
in the original forecast equation; in particular, δ21k = γ2k =IRF(k).

The local projections method involves estimating equation (5) with
an added error term vtk:

yt+k−1 = δ0ik + δ∗0kt+
R∑
r=1

δ1rkyt−r +
L∑
l=1

δ2lkdt−l + vtk, (6)

where

vtk ≡
k−1∑
l=1

γ2l (dt+k−1−l − λi) +
k−1∑
m=1

γ3mut+k−1−m + ut+k−1 (7)

This method can be interpreted as estimating a reduced form model,
where all “endogenous” variables - the realizations of ys between the
moment t at which the forecast is made and the moment t+ k for which
ys is forecasted – have been eliminated. Clearly, the forecast error is
serially correlated, following a moving average process of order k. Fully
efficient estimation of the IRF by the local projections method would
therefore require an appropriate general least squares transformation
of the original equation to eliminate serial correlation in the residuals.
The simpler alternative, which we will follow, is to use OLS with serial
correlation-robust standard errors, which of course involves some effi-
ciency loss. To gauge the magnitude of this loss compared to the case
of analytical IRF estimation, the following proposition is helpful:

Proposition 1
Consider model (1) with α0i = α∗0 = 0, R = 1 (that is, AR(1) without

trend and intercept) and L = 0 (that is, no banking crises). The variance
of the analytical estimator for the k-period ahead forecast, ytk = α̂k11,
satisfies:

plim
(
N(T − 1)Var

[
α̂k11

])
= k2

(
1− α2

11

)
α

2(k−1)
11

where T is the number of observations per country and where N is the
number of countries. The variance of the local projections estimator for
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the same forecast, ytk = δ̂11k, satisfies

plim
(
N(T − k)Var

[
δ̂11k

])
= 1− α2k

11 + 2 (k − 1)− 2
α2

11 − α2k
11

1− α2
11

The proof of this proposition is in the Appendix. By way of visu-
alizing the differences between the analytic IRF and local projections
forecast variances, Figure 1 plots the variances of α̂k11 and δ̂11k and their
ratio for α11 = 0.95. The efficiency loss of the local projections estimator
compared with analytical IRF estimator is growing with k and can be
quite large. However, the advantage of the local projections estimator
is its greater robustness to misspecifications of the underlying model (1)
than the analytic estimator of the IRF can deliver. We illustrate this
point in the coming two paragraphs.

Consider a simple third-order autoregressive model (1) where α0i =
α∗0 = 0, R = 3, and L = 1. Suppose α12 = 0 and α13 is so much
smaller in magnitude than α11 that it turns out to be insignificant in
the regression, and the econometrician decides therefore to proceed with
the parsimonious AR(1) specification. This misspecification will result
in a biased estimate for the AR(1) parameter α11, since the probability
limit of its OLS estimate is equal to α11

1−α13(α11+α13)
.1 Figure 2 plots the

IRF for the true AR(3) model and the estimated AR(1) model for the
case of α11 = 0.95 and α13 = −0.10. In this case, if one proceeds
with the misspecified AR(1) process one gets a biased α11 = 0.88, and
consequently an IRF which underestimates the shock for relatively small
k and overestimates it for larger k. On the other hand, applying the

1Consider the general AR(3) model:

yt = α11yt−1 + α12yt−2 + α13yt−3 + ut, u ∼ N(0, σ2)

Rewrite this model in the three equivalent ways: first, as it stands, second, with
the part α11yt−1 brought to the left side, and third, with the part α11yt−1 +α12yt−2

brought to the left side. Taking the variance of these three equations, one has a system
of linear equations in the variance of y, denoted var(y), and two autocovariances,
cov(yt, yt−1) and cov(yt, yt−2):

(i) var (y) =
(
α2
11 + α2

12 + α2
13

)
var (y) + 2α12 (α11 + α13) cov (yt, yt−1) + 2α11α13cov (yt, yt−2) + σ2,

(ii)
(
1 + α2

11

)
var (y)− 2α11cov (yt, yt−1) =

(
α2
12 + α2

13

)
var (y) + 2α12α13cov (yt, yt−1) + σ2,

(iii)
(
1 + α2

11 + α2
12

)
var (y)− 2α11 (1− α12) cov (yt, yt−1)− 2α12cov (yt, yt−2) = α2

13var (y) + σ2.

Solving this system and substituting the expressions for cov(yt, yt−1) and var(y) in
the OLS formula for α11,

α̂11 =
cov (yt, yt−1)

var (y)
,

one obtains the result in the text.
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local projections method yields a consistent IRF, since δ21k is estimated
separately for each k so as to minimize the difference between the actual
and predicted value of GDP for each k, irrespective of the assumed
specification of the data generating process.

Another form of misspecification to which the local projections esti-
mator is robust is the assumption that shocks in dt and ut have the same
dynamics. This assumption will result in a bias in analytical estimator
of the IRF in the presence of unobserved dynamic components in yt.
Suppose yt has two components: an unobserved AR(1) process zt, and
the banking crisis dt which effect dies out after a year:

yt+1 =xt+1 + zt+1,

zt+1 = γzt + ut+1, u ∼ N(0, σ2)

xt+1 =α21 (dt − λ) .

The presence of zt induces autocorrelation in yt, and if zt is unobserved,
the AR(1) coefficient in the regression for yt (model (1) under the sim-
plifying restriction α0i = α∗0 = 0) satisfies:2

plim (α̂11) =
γ

1 + λ (1− λ)α2
21 (1− γ2)σ−2

.

Consequently, a banking crisis will appear to have the same dynamic
effect as any shock to zt through the AR(1) term α11, whereas in fact
its effect is one-off.3 Analytical IRFs are clearly prone to this error.
The local projections estimator, on the other hand, does not suffer from
this problem because it estimates the IRF (the coefficient δ21k) directly
from the forecast equation (6) rather than relying on the (mis)estimated
autoregression coefficients when calculating it analytically. Since the
local projections estimator is robust to misspecification of the order of
the AR process, albeit at the expense of lower estimation efficiency, this
estimator gives a more reliable picture of the true IRF.

2Since

var [xt] = λ (1− λ)α2
21,

cov [xt, xt−1] = 0,

var [zt] =
(
1− γ2

)−1
σ2,

cov [zt,zt−1] = γ
(
1− γ2

)−1
σ2,

plim (α̂1) =
cov [xt, xt−1] + cov [zt,zt−1]

var [xt] + var [zt]
.

3Cai and Den Haan (2009) make the same point criticizing “one-type-shock” mod-
els of output which in their view tend to overestimate the impact of recessions.
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2.2 The bias in the local projections estimator

Regrettably, the local projections estimator is subject to a bias which
increases with the forecast horizon k. This bias has the same origins as
the more general one, derived in Nickell (1981) and Alvarez and Arellano
(2003), which applies to all dynamic panel models, with fixed or random
effects. Namely, part of the persistent influence of the variables in the
model is misattributed to the effects. The mechanisms through which
the two biases come about, however, are different. The Nickell bias hap-
pens due to a negative correlation between the error term and lagged
values of yt induced by the fixed effects or first difference transformation,
which correlation increases with the strength of autocorrelation in y (the
coefficients α1r in model (1)). The relative importance of this correla-
tion fades as the panel grows longer, and consequently the Nickell bias
decreases in magnitude as T becomes large relative to N (see Judson
and Owen (1999) and further studied in Alvarez and Arellano (2003) for
Monte Carlo evidence on this bias). In what follows, we will abstract
from the Nickell bias.

The local projections bias occurs because the forecast equation (6)
does not include banking crises happening within the forecast horizon,
that is between the moment of forecasting at time t and the moment
for which a forecast is made, t + k. The effects of these omitted crises
enter equation (6)’s error term (see the first term of equation (7)) and
consequently disturb the moment conditions identifying its regression
coefficients. Unlike the Nickell bias, the local projections bias does not
always decrease with T ; holding N fixed, it goes down only as T grows
relative to the length of the forecast horizon k. In fact, as the example in
the following paragraph shows, the local projections bias does not even
require a dynamic specification to occur.

Suppose a country is hit by a banking crisis only once at, say, t = 5,
so d5 = 1 and dt = 0 for all other t. Let us assume for the ease of
explanation that R = 0 (no lagged dependent variables) and α∗0 (no
trend). Consider what happens when the econometrician applies the
local projections estimator to estimate IRF(4). He will regress yt+4 on dt,
a fixed effect and nothing else for all t. For t = 1, this is the right model,
since yt+4 = y5 is just equal to the country fixed effect (the banking
crisis at t = 5 will start affecting GDP only a year later, see equation
1). However, for t = 2, yt+4 = y6, which is affected by the banking crisis
that will happen at t = 5, but that has not yet happened at t = 2.
Therefore, y6 is misspecified because in fact it is equal to the fixed effect
plus IRF(1), not just the fixed effect that the local projections estimate.
We have a similar misspecification again for t = 3, when yt+4 equals the
fixed effect plus IRF(2), and for t = 4, when yt+4 equals fixed effect plus
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IRF(3). From t = 5 onwards, we are back to the correct specification for
yt+4 since the banking crisis happens at t = 5 and is therefore included
in the model. Misspecification of yt+4 for some t’s results in an omitted
variable bias to the estimate of the fixed effect, and this bias will spill
over to the estimates for IRF(4) causing them to be attenuated. The
following Proposition 2 gives insight into the magnitude of the biases
to the fixed effect and IRF estimates for the case without lags of the
dependent variable, R = 0.4

Proposition 2:
Consider equation (6). Let R = α∗0 = 0 and let data be available for

estimation for t = 1, T (so L+ k− 1 lags of the data are available) and
suppose that there are no countries with a banking crisis happening in
years t = 1, k − 1.5 The local projections estimates of the fixed effect
( δ0ik) and IRF(k) ( δ2lk), δ̂0ik and δ̂2lk, respectively, satisfy:

E
[
δ̂0ik

]
= δ0ik + (T − L)−1

k−1∑
l=1

γ2l,

E
[
δ̂2lk

]
= δ2lk − (T − L)−1

k−1∑
l=1

γ2l.

This proposition, which proof is in the Appendix, implies that the
IRF estimates δ2lk are biased downward in absolute value. The bias
is zero for k = 1, but it increases with the forecast horizon k, both
because the cumulative effect of the omitted banking crisis dummies
Σk−1
l=1 γ2l becomes larger and because the effective number of observations

becomes smaller since more lags of data are lost in the estimation when
yt+k is regressed on yt. The bias is also larger for bigger L, because
the estimated coefficient δ̂2lk will have to adjust to offset the bias in the
estimated fixed effect δ̂0ik for L of the T observations available.

Our proposed solution to the bias in the local projections estimator
is to augment equation (6) with the banking crises occurring between t
and t+ k − 1 and estimate the corrected local projections equation:

yt+k−1 = δ0ik + δ∗0kt+
R∑
r=1

δ1rkyt−r +
L∑
l=1

δ2lkdt−l (8)

4Including lags of the dependent variable will not change the message of Proposi-
tion 2, that the local projections estimator brings an upward bias to the fixed effects
and a downward bias to the IRF estimates. These lags, however, will have to be
controlled away by means of orthogonal projections, which will make the maths less
succinct without adding any extra insights.

5Having countries with banking crisis in these initial years complicates the ex-
pressions without changing the essentials of the argument.
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+
k−1∑
l=1

γ2ldt+k−1−l + v∗tk,

v∗tk =
k−1∑
m=1

γ3mut+k−1−m + ut+k−1.

where v∗tk is the error term vtk conditional on the information available at
time t and the information on the occurrence of banking crises between
t and t + k − 1 (compare it with the vtk as defined by equation(7)).
With the intermediate banking crisis observations included, solving the
moment conditions will produce unbiased IRF estimates, since the error
term no longer contains dt.

The idea of augmenting the forecast equation with intermediate ob-
servations is not new and can be applied in a variety of settings beyond
the immediate topic of this paper. A recent application of this idea is
Faust and Wright (2011), showing that a forecast of excess bond and
stock returns improves in accuracy when the forecast equation is aug-
mented with the forecast errors observed ex post between t and t+k. Ex-
tending their argument to our case, adding intermediate banking crises
will also reduce the local projections IRF’s standard errors through a
reduction in the variance of the original forecast equation (6)’s error
term vtk which contains the intermediate banking crises (see equation
(7)). A further insight, specific to our panel data case, however, is that
augmentation not only improves estimation efficiency but also reduces
the estimation bias when the regressors in the forecast equation are
correlated with its error term because of the presence of intermediate
observations.

Interestingly, a slightly rewritten version of equation (8) yields esti-
mates of all γ2l for l = 1, k. This suggests an alternative IRF estimator,
where all γ2k’s are estimated at once from a version of equation (8) in
which all lags of yt are eliminated through recursive substitution (as in
equation (4)):

yt+k−1 = γ0ik + γ0!t+
∞∑
k=1

γ2kdt−k + vt. (9)

The advantage of estimating equation (9) rather than equation (8) is
that (9) yields estimates of γ2k free from the Nickell bias due to the
lagged dependent variable. The disadvantage is that controlling for lags
of yt improves the efficiency of the estimation of γ2k. Besides, there is
a question about the number of lags of the banking crisis dummy to
be included in the feasible version of equation (9), which ultimately is
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an empirical question. In our regression analysis, we observe that the
estimated γ2k’s stabilize when the number of lags is 18 or more.

2.3 Monte Carlo simulations of the bias in the IRFs

This section presents some simulation results for the bias in the IRF
estimates obtained from the three estimators discussed in the paper: (i)
analytical estimator applied by Cerra and Saxena (2008); (ii) Jorda’s
(2005) local projections estimator based on equation (6) which does not
include banking crises between years t and t+ k; and (iii) the corrected
local projections estimator based on equation (8) which includes these
banking crises. We have generated 1000 counterfactual datasets based
on the following AR(5) process:

yt =α0i + 0.25yt−1 + 0.8yt−2 + 0.4yt−3 − 0.1yt−4 − 0.5yt−5 (10)

−0.035dt−1 − 0.045dt−2 − 0.03dt−3 − 0.01dt−4 − 0.01dt−5

+ut,

where the fixed effects α0i ∼ U(0, 3), dt is equal to 1 if α0i/5+3U(0, 1) <
0.45, and zero otherwise, and the idiosyncratic error term ut follows a
standard normal distribution. For each of the 1000 datasets, one hun-
dred observations of yt were generated for t = 1, 100, after which the
first 70 observations were discarded to avoid yt being determined by the
initial, randomly chosen, values. Hence, each dataset had dimensions
corresponding to the real data at hand with T = 30 and N = 100 (see
section 3.1). The parameters of equation (10) have been chosen so that
the moments of the generated data are similar to those in the real data.
Thus, the probability of a banking crisis is about 0.05, the correlation
between the country fixed effect α0i and the banking crisis dummy dt is
about −0.2, and the analytical IRF that one would obtain in the perfect
knowledge of the parameters of (10) is close to the one that we actually
estimate on our data, see section 3.2.

We then estimated a selection of empirical specifications of equation
(10) with different numbers of lags of y and d, as well as their corre-
sponding forecast equations up to k = 10, on each resulting dataset
using the fixed effects estimator with serial correlation-robust standard
errors. Figure 3 plots for each of the three estimators the means of
the IRFs estimated in each of the 1000 runs on different assumed spec-
ifications of the data generating process (10), as well as the true IRF
implied by (10). The results for the analytical estimator are widely dif-
ferent from the true model. Parsimonious specifications produce much
underestimated results on the entire length of the forecast horizon. Only
for the number of lags of y and, especially, d close to the true 5, do the
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analytical IRF estimates converge to the true IRF. The analytical esti-
mator is particularly sensitive to the number of lags of d included in the
estimated regression equation. The consequences of this sensitivity are
important, because longer lags of the banking crisis dummy are increas-
ingly likely to be excluded from the specification by an econometrician
who strives for a parsimonious model. Thus, our simulations (results
available on request) show that the estimated t-statistics of farther lags
of d are progressively smaller and farther apart from their true levels as
implied by the data generation process we specified.

The second method, Jorda’s (2005) local projections estimator that
does not include banking crisis observations within the forecast horizon,
produces IRFs that are much more robust to misspecification and less
biased. However, while the bias of the analytical estimator decreases
as the model’s specification begins to resemble correct, the bias in this
version of the local projections estimator remains appreciable, and in-
creases towards the end of the forecast horizon. The corrected local
projections estimator, which includes intermediate banking crisis obser-
vations, produces the best results. Its estimated IRFs are robust to even
serious misspecifications of the model, and its bias is smaller than that
of the other two estimators. Hence, our simulation results corroborate
our theoretical results.

All three estimators are sensitive to the standard Nickell bias which
we have so far ignored. Although this bias can be large in finite sam-
ples, it disappears asymptotically. To gauge how it affects our estimates
for different lengths of the available time period, we simulated the IRFs
obtained through two methods, the analytical estimator and the cor-
rected local projections estimator, applied to panels of different lengths
T = 20, 30, 40, 50, and 100. The results are plotted in Figure 4. For
each estimator, we estimate one misspecified model (three instead of
five lags for both yt and dt) and one correctly specified model. As ex-
pected, the bias is rather large for T = 20 and declines when T goes
up. The estimated IRFs are tolerably close to the true IRF even for
T = 30. The corrected local projections estimator performs better than
analytical IRFs with respect to Nickell bias, too. First, the corrected
local projections estimates are remarkably robust to model misspecifica-
tions. Second, as T increases they converge to the true parameter values
quicker than the analytical IRF estimates do even when the model is
correctly specified.
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3 Empirical estimates of the IRFs

3.1 Data

Our dataset is compiled from several sources. The data on banking crises
come from Gerard Caprio and Daniela Klingebiel’s (2003) study with
observations available from 1974 to 2001. Penn World Tables (Heston,
Summers and Aten, 2006) provide GDP data from 1960 onwards. The
complete data are available for a panel of 99 countries. The average
length of a time series depends on the forecast length and ranges from
24 (one year after a banking crisis) to 15 observations (ten years after).
There have been 89 banking crises within our sample. The majority
of countries (56) had one banking crisis, 28 countries had no crisis, 13
countries had two, one country had three, and one had four banking
crises. There is a negative correlation (r = −0.35) between the frequency
of banking crises and a country’s GDP level. Our assumption that the
likelihood of a banking crisis is time-invariant is supported by the data:
there is no significant time trend in the observed frequency of crises.

3.2 Regression results

In Table 1 we report estimates of the IRFs to a banking crisis from
a variety of specifications both in levels of log GDP as well as GDP
growth rates, with and without country fixed effects. The specification
in growth rates is a constrained version of the model in levels, implying
Σrα1r = 1. We estimate all specifications with the corrected and un-
corrected versions of the local projections estimator. Every specification
includes four lags of log GDP (or its growth rate) and of the banking
crisis dummy (R = L = 4). We test these lag restrictions and find that
our specifications pass them.

All specifications produce similar estimates of GDP loss within the
first few years after the start of a banking crisis, but diverge thereafter.
The differences between the estimates in different specifications of the
medium- and long-run effects of banking crises can be explained by the
two types of biases discussed above. The first, and most important,
source of bias is the omission of banking crises happening within the
forecast period (recall section 2.2). This omission yields a downward bias
(in absolute value) of the estimated IRFs for longer forecast horizons.
The difference in estimates between the specifications with and without
banking crises leads increases with the length of the forecast period, as we
showed in section 2.2, because the cumulative effect of those intermediate
banking crises increases with k. Then there is the Nickell bias due to
the combination of fixed effects and lags of the dependent variable. This
bias can be appreciated by comparing the specifications in GDP levels
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with and without fixed effects. It is not as important quantitatively as
the local projections bias. Even in the growth rate specifications, where
the Nickell bias is more pronounced, adding banking crises happening
within the forecast horizon brings the estimates fairly close to those in
our preferred specification (equation (8)). The last specification in Table
1, based on equation (9) where all lags of GDP have been recursively
substituted in an attempt to eliminate the Nickell bias, gives only slightly
larger, but less precise, IRF estimates.

Our estimation results imply that banking crises lead to large and
prolonged GDP losses, and that recovery, if any, is a distant and un-
certain prospect. Figure 5 plots the IRF point estimates and their the
95% confidence interval bounds for our preferred specification (equation
(8)). GDP loss continues for seven years after the crisis with only a little
recovery starting from the eighth year, far from sufficient to make up for
the prolonged loss. The estimated cumulative GDP loss ten years after
the crisis is around 9 percent. To put this estimate into perspective,
consider that the median GDP growth rate observed in our sample is
roughly 3% per year, so that the median economy would have grown by
34% over ten years. Thus, a single episode of a banking crisis would cost
about a quarter of that economy’s long-term growth potential.

As another illustration of the quantitative importance of banking
crises, we calculate the share of residual variance in log GDP explained
by these events, and report the results in Table 2. The first column
in Table 2 reports the share in the current GDP’s residual variance
explained by one particular crisis which happened k years ago. The
second column contains the shares in residual variance due to the entire
history of crises between now and k years ago. Starting with 1% in the
next year, a single banking crisis can explain up to about 2.5% of GDP’s
residual variance in the next several years. The history of banking crisis
during the last 10 years explains just under 9% of the current (log)
GDP’s residual variance. For a relatively rare event such as a banking
crisis, these shares are quite high.

To check the robustness of our results to a change in the identifying
assumptions, we test whether a part of the observed negative effect of a
banking crisis on GDP may in fact be a correction of excessive growth
in the period of an expectations bubble typically preceding the crisis,
an argument advanced in Jorda, Schularick and Taylor (2011). We do
so by including in our regressions banking crises happening up to three
years after the current GDP is observed. The results in Table 3 do not
suggest that exuberant expectations play a significant part in shaping
our IRF estimates, at least to the extent that these expectations cause
surges in GDP. While the correlations between the current GDP and the

15



upcoming banking crisis event are indeed positive, they are not nearly
significant.

Finally, as another extension to our results, we estimate IRFs on
different parts of our sample to see how sensitive our results are to vari-
ations in local context. In particular, since banking crises sometimes
coincide with war, social unrest, major political reform or other disturb-
ing events which consequences for GDP are hard to isolate, our estimates
may be vulnerable to a lack of appropriate controls. We therefore rerun
our regressions (specification (8)) separately on subsamples of African
countries known to be hard hit by these problems and the rest of the
countries (excluding countries in transitions). There are 41 countries
in the African subsample, and 54 countries in the non-Africa subsam-
ple (the remaining four countries, excluded from both subsamples, are
transition economies). Table 4 and Figure 6, reporting the results, reveal
that African countries suffer more profound GDP losses than other coun-
tries, but experience stronger recovery towards the end of the ten-year
period. The IRFs for the African subsample are less precisely estimated,
however, suggesting that the effects of banking crises for those countries
are also more heterogeneous. GDP losses for the non-African sample are
less severe, but the recovery is slower, too.

4 Concluding remarks

Solid empirical evidence is needed to inform the lively theoretical de-
bate on the long-run impact of banking crises on GDP. Our study’s
main contribution to the empirical literature on banking crises lies in
the proposed improvement to Jorda’s (2005) local projections method
of estimating the impulse response function of GDP to a banking crisis.
This method is a good alternative to calculating the IRF analytically
from an estimated dynamic model, since it relies far less on a particular
specification of the dynamic model which may be incorrect, estimating
instead a forecast equation in each year after the crisis. Yet, we have
demonstrated, both theoretically and by stochastic simulations, the exis-
tence of a hitherto unknown bias in the IRF estimates to which the local
projections method is vulnerable. Our proposed correction to this bias
involves augmenting the GDP forecast equation with banking crises oc-
curring within the forecast horizon. Our Monte Carlo simulation results
for this correction show its effectiveness and exceptional robustness of
its results even under severe misspecifications of the underlying dynamic
model for GDP. One particularly interesting case of misspecification to
which our method is robust is what Cai and Den Haan (2009) call “one-
type-shock” model, whereby biased estimates of IRF are derived because
of inability to distinguish between different components of GDP each of
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which having its own dynamic properties (recall the last example at the
end of section 2.1).

Applying our method to the data, we find, as Cerra and Saxena
(2008) do, that GDP loss from a banking crisis is largely permanent.
Our findings suggest that an average banking crisis may cause an GDP
loss of around 9 percent over a period of ten years from its start. The
consequences of banking crises vary by country. Thus, comparing the
IRF estimation results on the two sub-samples of countries – Africa
versus the other countries (excluding also 4 transition economies) – we
find that in African countries banking crises are quite severe, consting
10-12 percent of GDP over the long run, whereas in other countries
GDP loss is not as strong (6-7 percent). Even though the estimates vary
by country subsample and are increasingly imprecise for more distant
future, the upshot of our findings is that GDP is unlikely to return to
its pre-crisis path.
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6 Appendix

Proof of proposition 1:
We have:

yt =α11yt−1 + ut,

Var (yt)≡σ2
y = σ2

(
1− α2

11

)−1
,

Cov (yt, yt−1) = σ2α2
11

(
1− α2

11

)−1
,

yt =
∞∑
j=1

αj−1
11 ut−j,

vtk =
k−1∑
j=0

αk−j−1
11 ut+j.

The variance estimator for α11 reads:

plim [(T − 1) Var (α̂11)] = σ2σ−2
y =

(
1− α2

11

)
, (11)

The variance of α̂k11 satisfies:

Var
(
α̂k11

)
= E

(
α̂2k

11

)
− E2

(
α̂k11

)
;

E
(
α̂k11

)
= lim

t→0

dk

dtk
exp

[
α11t+

1

2
Var (α̂11) t2

]
.

where we use the moment generating function of the normal distribution
in the second line, see Mood, Graybill, and Boes (1974, p.540). We have:
k 1 2 3
E
(
α̂k11

)
α11 Var(α̂11) + α2

11 3Var(α̂11)α11 + α3
11

Var
(
α̂k11

)
Var(α̂11) 2Var(α̂11)2 + 15Var(α̂11)3 + 36Var(α̂11)2 α2

11+
4Var(α̂11)α2

11 9Var(α̂11)α4
11

k 4 6

E
(
α̂k11

)
3Var(α̂11)2 + 15Var(α̂11)3 + 45Var(α̂11)2 α2

11+
6Var(α̂11)α2

11 + α4
11 15Var(α̂11)α4

11 + α6
11

Substi-

tution of the expression for Var(α̂11) and taking limits yields:

plim
[
(T − 1)Var

(
α̂k11

)]
= k2

(
1− α2

11

)
α

2(k−1)
1 .

The variance of δ̂11k satisfies:

: Var
(
δ̂11k

)
= (X ′X)

−1
X ′V X (X ′X)

−1

= (T − k)−2 σ−4
y E

[
(T − k)

(
y2
t v

2
tk

)
+ 2

k−1∑
j=1

(T − k − j)
(
ytvtkvt+j(k)yt+j

)]
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=σ−4
u

(1− α2
11)

2

T − k
×

E

 (∑−1
r=−∞ α

−r−1
11 ut+r

)2
(∑k−1

l=0 α
k−l−1
11 ut+l

)2

+

2
∑k−1

j=1
T−k−j
T−k

∑−1
r=−∞

∑j−1
s=−∞

∑k−1
l=0

∑k−1+j
m=j α2k−r−s−l−m−4

11 ut+rut+sut+lut+m


=σ−4

u

(1− α2
11)

2

T − k
α2k

11 ×

E

[
−1∑

r=−∞

k−1∑
l=0

α
−2(r+l+2)
11 u2

t+ru
2
t+l + 2

k−1∑
j=1

T − k − j
T − k

−1∑
r=−∞

k−1∑
l=j

α
−2(r+l+2)
11 u2

t+ru
2
t+l

]

=
(1− α2

11)
2

T − k
α2k

11

−1∑
r=−∞

α
−2(r+1)
1

[
k−1∑
l=0

α
−2(l+1)
1 + 2

k−1∑
j=1

T − k − j
T − k

k−1∑
l=j

α
−2(l+1)
1

]

=
1

T − k

[
1− α2k

11 + 2
k−1∑
j=1

T − k − j
T − k

(
1− α2(k−j)

11

)]
.

The second line uses X ′X = (T − k)σ2
y and writes the covariance matrix

X ′V X as the sum of the terms on the main diagonal and two times the
k − 1 diagonal along both sides of the main diagonal that account for
the MA part of the error term. The third line use the expression for σ2

y

and expresses vtk and yt in terms of (lags of) ut. The fourth line uses
the fact that E(utut+k) = 0 for k 6= 0, so that we can drop these terms.
The fifth line takes the expectation. The final lines is straightforward
algebra. Hence, we can write:

plim
[
(T − k)Var

(
δ̂11k

)]
= 1− α2k

11 + 2
k−1∑
j=1

(
1− α2(k−j)

11

)
= 1− α2k

11 + 2 (k − 1)− 2
α2

11 − α2k
11

1− α2
11

.

Proof of proposition 2:
Let etk be the estimation error in ytk for country i, that is, the es-

timation error in the δ-coefficients times the corresponding explanatory
variables. Consider the first order condition associated with the estima-
tion of equation (5). Let I be the set of countries i that is hit by one
banking crisis at time S > k − 1 (as before, we drop the suffix i of S);
hence dS = 1 and dt = 0 for t 6= S. Let −I the set of countries that is not
hit by any banking crisis; hence dt = 0 for all t for these countries. The
condition for the fixed effect δ0ik for country i reads Σt (vtk + etk) = 0.
By equation (7), the expectation of this condition over the error terms
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ut satisfies:

0 =
k−1∑
l=1

γ2l +
T∑
t=1

E [etk] , for i ∈ I, (12)

0 =
T∑
t=1

etk, for i ∈ −I.

The condition for i ∈ −I implies that the sum of the estimation errors for
these countries is equal to zero. Hence, the fixed effect δ0ik is estimated
consistently, since the δ2lk-parameters do not enter the expression for ytk.
The condition for i ∈ I implies that the sum of the estimation errors
must be equal to Σk−1

l=1 γ2l for each country. Summing this equation over
i ∈ I yields Σi∈IΣtetk = −IΣk−1

l=1 γ2l.
The first order condition for δ2lk for each l = 1, L reads ΣiΣt (vtk + etk) dt−l =

0. For countries without a banking crisis, i ∈ −I, dt = 0 for all t. Hence,
these countries do not contribute to the first order condition. For coun-
tries with a banking crisis, i ∈ I, the expected contribution to the first
order condition is equal Σt (vtk + etk) dt−l = vS+l,k + eS+l,k. By equation
(7), E[vS+l,kdS] = 0, since E[ut] = 0 and dS+k−1dS = 0. Hence, the
expectation of the first order condition for δ2lk for l = 1, L reads:

0 =
∑
i∈I

E [eS+l,k] = I
(

E
[
δ̂0ik

]
− δ0ik + E

[
δ̂2lk

]
− δ2lk

)
⇒(13)

E
[
δ̂0ik

]
− δ0ik =−

(
E
[
δ̂2lk

]
− δ2lk

)
.

Consider equation (12) for i ∈ I.
∑

i∈I etk = 0 for all L values of t ∈
[S, S + L− 1] by equation (13) and

∑
i∈I etk =

∑
i∈I

(
E
[
δ̂0ik

]
− δ0ik

)
for all other T − L values of t. Hence:

(T − L)
(

E
[
δ̂0ik

]
− δ0ik

)
=

k−1∑
l=1

γ2l,

satisfies the first order condition for E
[
δ̂0ik

]
. The expression for E

[
δ̂2lk

]
follows from equation (13).
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Figure 1: The probability limits of variances of the AR(1) process IRFs
estimated analytically and through local projections
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Figure 2: The IRFs from the AR(3) and AR(1) models
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Figure 4: Simulated corrected local projections and analytical IRFs for
different lengths of observations, T

Note: Solid lines denote IRFs from correctly specified model, and dashed lines denote IRFs from a misspecified model.
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Figure 5: Predicted GDP loss from a banking crisis, and its 95% confi-
dence interval.

Note: Estimates are based on corrected local projections estimator (equation (8))

Figure 6: Estimated IFRs by subsample of countries
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Table 2: Share of residual variance in log GDP explained by banking
crises

k Single crisis History of crises
1 0.010 0.010
2 0.014 0.019
3 0.014 0.027
4 0.019 0.038
5 0.022 0.050
6 0.027 0.063
7 0.028 0.072
8 0.023 0.081
9 0.022 0.087
10 0.018 0.087

Note: The share of residual variance explained by banking crises is calculated for each k as the

ratio
r1,k−r2,k

r1,k
, where r1,k, r2,k are residual sums of squares (RSS). For the results in the second

column, r1,k is the RSS of the autoregressive model without banking crises,

yt+k−1 = δ0ik + δ∗0kt+

R∑
r=1

δ1rkyt−r + v1tk,

and r2,k is the RSS of the augmented local projections equation (8) from which our preferred IRF

estimates are derived. For the results in the first column, r2,k is the same, and r1,k is the RSS

of equation (8) with all banking crises happening not in year t are present. This ensures that we

capture the share of variance explained by a single banking crisis.

Table 3: GDP growth before the start of a banking crisis

Years before Point Std.
crisis (−k) estimate deviation
1 0.026 0.033
2 0.018 0.042
3 0.004 0.042

Note: results are based on specification (9) augmented with leads of the banking crisis dummy as
follows:

yt+k−1 = γ0ik + γ0!t+

∞∑
k=−3,k 6=0

γ2kdt−k + vt

The coefficients reported in the table for 1, 2 and 3 years before the crisis are those on γ2,−1, γ2,−2

and γ2,−3, respectively.
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Table 4: Impulse response estimates by subsample of countries

African countries (41) The rest (54)
Specification eq. (8) eq. (9) eq. (8) eq. (9)
k
1 -0.033** -0.040 -0.028*** -0.024
2 -0.068** -0.075 -0.053*** -0.021
3 -0.084*** -0.121 -0.056*** -0.041*
4 -0.108*** -0.124 -0.062*** -0.059**
5 -0.104** -0.103 -0.069*** -0.094***
6 -0.118** -0.138 -0.081*** -0.088***
7 -0.153*** -0.198 -0.087*** -0.088***
8 -0.132** -0.195 -0.076*** -0.082***
9 -0.137** -0.188 -0.066*** -0.061**
10 -0.108 -0.124 -0.063*** -0.071***
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