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Abstract
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1 Introduction

The increasing availability of high frequency financial data has led to the development of new measures

of variation. It is common to model financial returns as a continuous-time real-valued stochastic

process such as a jump-diffusion. A possible measure of variation of such a process is quadratic

variation. Realized variance is an estimate of quadratic variation and can be computed from an of

observed sequence of prices for some time-interval, typically one trading day, see Andersen, Bollerslev,

Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002). Realized variance can be

employed for a wide range of applications including volatility forecasting, measuring financial risk and

testing for jumps in financial price data. An up-to-date review of realized variance and its applications

is presented by Andersen and Benzoni (2009). In financial market applications, quadratic variation is

decomposed into integrated variance and jump variation. Integrated variance is defined as the integral

of so-called spot variance. Jump variation is defined as a sum of squared jumps and is estimated by

the difference between estimates of quadratic variation and integrated variance. Estimated jump

variation indicates a presence, if any, of a jump component in a given time-interval. It does not give

an insight into the arrival time, size or direction of a jump. For this we require the spot variance path

in high frequency data, see Lee and Mykland (2008). In this paper we modify an existing estimator of

integrated variance for the purpose of estimating the spot variance path and with the aim to improve

testing procedures for jumps.

Most contributions for estimating spot variance are based on nonparametric methods. Under

the absence of jumps and microstructure noise, estimation of spot variance is discussed, among oth-

ers, in Foster and Nelson (1996), Andreou and Ghysels (2002), Alvarez, Panloup, Pontier, and Savy

(2008), Fan and Wang (2008) and Kristensen (2009). Kinnebrock (2008), Mykland and Zhang (2008)

and Ogawa and Sanfelici (2008) consider estimation when price observations are contaminated with

microstructure noise. Bandi and Reno (2009) discuss estimation when price data contain either mi-

crostructure noise or jumps by making use of different consistent estimators of integrated variance.

Boudt, Croux, and Laurent (2008) and Lee and Mykland (2008) estimate spot variance in the presence

of jumps, but they rule out microstructure noise. In this paper, however, we adapt the pre-averaging

approach and estimate the spot variance path when jumps and microstructure noise are both present

in high frequency price observations. In a Monte Carlo study we find that leverage effects do not

have any adverse effect on the estimation performance. However, we also find that diurnal patterns

can lead to systematic bias in the estimation. We therefore modify the method further to extract a

periodic diurnal component in a robust manner.

Earlier theoretical and empirical contributions have focussed on modifying estimation methods

for integrated variance using high frequency data to allow for jumps, leverage effects, microstructure

distortions and periodic variance patterns. This work has led to mild assumptions for the spot variance

process; for example, see Barndorff-Nielsen, Graversen, Jacod, and Shephard (2006). The application

of the multipower variation estimation methods for testing for jumps using high frequency data has
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shown that it is necessary to allow for jumps into models for financial data. The importance of jumps

is revealed by Huang and Tauchen (2005) who found that jumps account for around 7% of S&P cash

index variation. It implies that jumps in financial returns have a severe impact on risk management,

option pricing and derivative hedging. For example, Tauchen and Zhou (2006) have shown that for

investment-grade bond spread indices, jump variation yields more forecasting power than interest rates

and other volatility measures. It illustrates the importance of developing sound statistical methods

for the detection and characterization of jumps in financial returns.

Related work on high frequency jump testing with the use of nonparametric methods is presented

by Barndorff-Nielsen and Shephard (2006) where jumps are detected on the basis of a standardized

difference between quadratic variation and integrated variance. A similar test for the robustness of

microstructure noise is recently proposed by Podolskij and Vetter (2009a). Jiang and Oomen (2008)

propose a test based on higher order return moments, that can also be employed in the presence of

microstructure noise. Aı̈t-Sahalia and Jacod (2009) use multipower variation at different sampling

intervals to detect jumps. These tests are able to detect the presence of jumps in a fixed time

interval. Alternatively, Andersen, Bollerslev, and Dobrev (2007) and Lee and Mykland (2008) have

developed tests for finding a jump in each realized price increment. It reveals the timing as well as

the distributional characteristics of realized jumps in terms of mean, variance or intensity of the jump

process. Moreover, realized jumps can provide an insight into the nature of jumps for asset classes or

common movements (co-jumps) between assets, see Lahaye, Laurent, and Neely (2009). Parametric

methods to test for jumps are adapted by Duan and Fülöp (2007) and Bos (2008) where jumps are

detected as part of the estimation method.

Boudt et al. (2008) have shown that pronounced intraday periodicity leads to the distorted jump

inference based on the Lee and Mykland (2008) test. They modify the test to account for diurnal

variance patterns. Both tests rule out microstructure noise and rely on an estimate of the spot variance

path that is not robust to microstructure noise. Empirical applications of these tests are therefore

based on sampling intervals that mitigate noise effects. However, sampling at high frequencies is of

key importance for spot variance estimation and jump detection. Since financial time series are now

widely available at high frequencies (see Table 1 of Shephard and Sheppard, 2009) sampling at low

frequencies discards available information. For instance, if asset prices are observed each second, then

sampling every 15 minutes discards 899 out of every 900 observations.

In this paper we adopt a consistent estimator of integrated variance to estimate the spot variance

path based on price observations which are sampled at ultra-high frequencies. The estimated spot

variance path in a jump-diffusion framework with microstructure noise allows us to extend the jump

test statistic of Lee and Mykland (2008). We study the impact of leverage effects, microstructure

noise and diurnal patterns on our proposed spot variance estimate as well as on our extended jump

statistic by means of a Monte Carlo study.

We conduct an empirical study for the intraday EUR/USD exchange rates at different sampling
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intervals over the period of July 2 to December 31, 2007. The difference between the daily estimates of

quadratic variation and integrated variance indicates the presence of jumps at the considered sampling

intervals. However, when sampling intervals increase, we are not able to detect jumps for some days

even though the estimated relative jump variation has a substantial level. As shown in the simulations,

the accuracy of the spot variance estimation and the power in jump detection both increase when based

on finer sampling intervals.

The remainder of the paper is organized as follows. Section 2 discusses the estimation of spot

variance path. Section 3 deals with the robust estimation of the intraday return periodicity. Section

4 reviews the Lee-Mykland jump test and proposes an adjusted statistic. In Section 5 we present and

discuss the results of a Monte Carlo study. Section 6 presents an empirical illustration, while Section

7 concludes.

2 Integrated and Spot Variance

2.1 General framework

For the modeling of asset prices in continuous-time, we adopt a jump-diffusion process in a similar

way as Barndorff-Nielsen and Shephard (2004), Jiang and Oomen (2008), Lee and Mykland (2008)

and many others. The efficient log price process Xt is assumed to follow a Brownian semi-martingale

plus jumps defined as

dXt = σtptdWt + κtdNt, t ≥ 0, (2.1)

where σt > 0 is the stochastic part of spot volatility, pt > 0 is the deterministic diurnal part of spot

volatility, Wt is a standard Brownian motion, κt is a random variable with mean µκ(t) and variance

σ2
κ(t) and Nt is a counting process that represents the number of jumps in the price path up to time

t. We allow for leverage effects, that is (negative) correlation between Wt and σt. In this section we

have pt = 1, ∀t in (2.1) and in Section 3 we take pt as a deterministic function of time. Our aim is to

estimate spot variance σ2
t by means of a consistent estimator of integrated variance for a local window

[t− h, t] with h→ 0. We assume some degree of smoothness for the spot variance path as in Lee and

Mykland (2008), Ogawa and Sanfelici (2008) and Kristensen (2009). For example, in the Monte Carlo

study of Section 5, we use the Heston variance process driven by Brownian motion.

The price observations for (2.1) are assumed to be available at normalized equidistant times

0 = t0 < t1 < . . . < tn = 1, where the interval [0, 1] represents a trading day. Let ∆ = ti − ti−1 = n−1

be the distance between two adjacent price observations such that ∆→ 0 when n→∞. The observed

log price Yti is the underlying efficient log price Xti plus error,

Yti = Xti + εti , (2.2)

where εti represents market microstructure noise with E[εti ] = 0, E[εtiεtk ] = 0 for i 6= k and E[ε2
ti ] =

$2. We further assume that the efficient price Xti and the microstructure noise εti are independent
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of each other at all lags and leads. The variance and autocovariance structure of price increments is

then given by

E
[
(Yti − Yti−1)(Yti−k − Yti−1−k)

]
=


∫ ti
ti−1

σ2
sds+ 2$2, if k = 0,

−$2, if k = 1,

0, if k > 1.

(2.3)

The first order autocorrelation coefficient of price increments is negative with a lower limit of −1/2

and all higher order autocorrelations are zero.

2.2 Integrated variance

The quadratic variation (QV) of the efficient price process (2.1) over the interval [0, 1] (trading day)

is defined as

QV[0,1] = plim
∆→0

n∑
i=1

(Xti −Xti−1)2, (2.4)

which in case of price process (2.1) can be decomposed into integrated variance (IV) and jump variation

(JV)

QV[0,1] = IV[0,1] + JV[0,1], (2.5)

where

IV[0,1] =
∫ 1

0
σ2
t dt and JV[0,1] =

N1∑
j=1

κ2
j . (2.6)

The convergence results of the IV estimators rely on the continuous-time framework. For instance,

the realized bipower variation (BPV) defined as

BPV[0,1] =
π

2

n∑
i=2

|Xti −Xti−1 ||Xti−1 −Xti−2 |, (2.7)

is a consistent estimator of IV[0,1] in the absence of microstructure noise, see Barndorff-Nielsen and

Shephard (2004). However, increasing the sampling frequency in the presence of microstructure noise

leads to a severe bias in BPV, see Huang and Tauchen (2005). For consistent estimation of IV in the

presence of jumps and noise, one can use the pre-averaging approach. We use the pre-averaged bipower

variation (PBPV) estimator, see Jacod, Li, Mykland, Podolskij, and Vetter (2009) and Podolskij and

Vetter (2009a,b).

For applying PBPV, we select Θ ∈ (0,∞) and integer kn such that

kn
√

∆ = Θ + o(n−
1
4 ), (2.8)

and we select a weight function g(u) on the [0, 1] interval for some variable u with g(0) = g(1) = 0.

Jacod et al. (2009) and Podolskij and Vetter (2009a,b) take g(u) = min(u, 1− u) for 0 ≤ u ≤ 1. The

PBPV estimator is then given by

PBPV[0,1](l, r) = n
l+r
4
−1

n−2kn+1∑
i=0

|Ȳi|l|Ȳi+kn |r, (2.9)
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where

Ȳi =
kn−1∑
j=1

g (j/kn) (Yti+j − Yti+j−1), (2.10)

and for l, r > 0. The estimator (2.9) is the (l, r) order of pre-averaged bipower variation. We only

consider the cases (l, r) = (2, 0) and (l, r) = (1, 1). The PBPV estimator (2.9) is biased due to

microstructure noise (see Theorem 1 and 2 of Podolskij and Vetter, 2009a). The bias term depends

on the microstructure noise variance $2 which we estimate on the basis of (2.3), that is

$̂2 = − 1
n− 1

n∑
i=2

(Yti − Yti−1)(Yti−1 − Yti−2), (2.11)

see Oomen (2006). The bias-corrected PBPV is then given by

P̂BPV[0,1](l, r) =
µ−1
l µ−1

r

Θϕ2
PBPV[0,1](l, r)−

ϕ1

Θ2ϕ2
$̂2, (2.12)

where µp = E[|z|p] for z ∼ N (0, 1) such that µ1 =
√

2/
√
π and µ0 = µ2 = 1 and where

ϕ1 =
∫ 1

0
(g′(u))2du, ϕ2 =

∫ 1

0
(g(u))2du,

with g′(u) as the first derivative of g(u) with respect to u. In case g(u) = min(u, 1 − u), we have

ϕ1 = 1 and ϕ2 = 1
12 . The estimate P̂BPV[0,1](l, r) with (l, r) = (2, 0) measures daily quadratic

variation QV[0,1] and with (l, r) = (1, 1) measures daily integrated variance IV[0,1]. The relative jump

variation (RJV) is estimated by

R̂JV[0,1] = 100×
P̂BPV[0,1](2, 0)− P̂BPV[0,1](1, 1)

P̂BPV[0,1](2, 0)
, (2.13)

and measures the percentage contribution of jumps in total price variation for a trading day. Finally,

Jacod et al. (2009) show that for the special case with g(u) = min(u, 1−u), σt ≡ σ and dNt = 0,∀t in

(2.1), an optimal Θ is obtained by minimizing the asymptotic variance of the estimator, and they obtain

Θ = 4.777 $/σ. We follow the authors in their suggestion to fix Θ = 1/3, such that kn = [1/3
√
n ];

for instance, kn = 98 when n = 86400 and ∆ = 1sec in a 24h market.

2.3 Spot variance

The spot variance is defined as the derivative of the integrated variance

σ2
t = lim

h→0

IV[t−h,t]

h
, (2.14)

where IV[t−h,t] =
∫ t
t−h σ

2
sds, h > 0, and can be estimated by

σ̂2
t =

nÎV[t−h,t]

hn
, (2.15)

where ÎV[t−h,t] is an unbiased and consistent estimator of IV[t−h,t], and hn = hn, with hn → ∞

satisfying hn/n→ 0. The spot variance can be estimated for each observation at time ti = bt/∆c. In

the absence of microstructure noise, spot variance is consistently estimated by

σ̂2
ti =

µ−2
1 n

hn

i∑
j=i−hn+1

|Xtj −Xtj−1 ||Xtj−1 −Xtj−2 |, (2.16)
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for the ith observation. However, to estimate σ2
t in the presence of jumps and additive noise, we adopt

(2.12) to obtain

σ̂2
ti =

µ−2
1 n1/2

Θϕ2hn

i−2kn∑
j=i−hn

|Ȳj ||Ȳj+kn | −
ϕ1

Θ2ϕ2
$̂2, (2.17)

for the ith observation. Since kn is of order n1/2, we consider hn = nβ with β ∈ (1/2, 1]. In case

i − hn < 0, we take a practical stance and use price realizations from a previous day, disregarding

issues related to overnight returns. We refer to Bandi and Reno (2009) for a general theory of spot

variance estimation.

The choice of the local window h for IV[t−h,t] estimation is subject to a trade-off between bias and

variance of the spot variance estimator. A small h leads to an increased variation of the estimator but

it does not restrict σ2
t to be constant over a larger time interval. A large h assumes σ2

t to be constant

over a large window and increases bias when spot variance is more volatile. The simulation study in

Section 5.3 will show that different spot variance specifications and different choices of window length

in (2.17) lead to different levels of estimation error.

3 Intraday Periodicity

3.1 Preliminaries

The intraday periodic patterns in return variance are mostly due to the opening, lunch-break and

closing of the own market and other markets. The variance and autocorrelation functions of absolute

intraday returns are typically U-shaped and persistent, see Andersen and Bollerslev (1997). We allow

for diurnal patterns by decomposing spot volatility in the price process (2.1) into a stochastic variable

σt and a smooth deterministic multiplier pt.

3.2 Model with periodicity and noise

The efficient log price process (2.1) has spot volatility σtpt where pt is higher (lower) than unity when

intraday trading activity due to periodic effects increases (decreases). We further assume that

(i)
∫ 1

0 p
2
tdt = 1;

(ii) the diurnal pattern pt is the same for each trading day;

(iii) the efficient price increment Xti − Xti−1 is observed with noise term εti − εti−1 that has mean

zero and variance 2$2p2
ti .

In practice, assumption (i) is sufficient to ensure that the integrated variance IV[0,1] estimate for an

entire trading day is not affected by intraday periodicity pt, see also the discussion in Andersen (2004).

However, in case we estimate σtpt using observations from an interval smaller than one trading day,

diurnal patterns do matter. Assumption (iii) is motivated by Kalnina and Linton (2008) who have
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considered equity data and estimated U-shaped intraday variance patterns in microstructure noise.

However, it does imply that the noise-to-signal ratio

NSRti =
2$2p2

ti

σ2
ti
p2
ti

∆ + 2$2p2
ti

=
2$2

σ2
ti

∆ + 2$2
, (3.1)

is not subject to a diurnal shape. Otherwise, the constant Θ in the pre-averaged based estimator (2.8)

would be a function of the diurnal shape pt. The issue of periodic behavior of Θ is not considered here.

The diurnal effect is therefore a strict multiplicative effect and it does not affect the noise-to-signal

ratio.

3.3 Periodicity extraction

Assumption (ii) implies that the estimation of the diurnal effect can be based on financial returns from

multiple trading days. For this purpose, we denote the observed price, spot variance, microstructure

noise variance and pre-averaged bipower estimator (2.12) at time ti on day d by

Yd+ti , σ2
d+ti

, $2
d, and P̂BPVd(l, r),

respectively, for days d = 1, . . . , D. We follow Boudt et al. (2008) in benchmark estimation of the

periodic component pti on the basis of cross-sectional variances. In case of no jumps in the price

process (2.1), the mean and variance of the price increment

Yd+ti − Yd+ti−1
= Xd+ti −Xd+ti−1

+ εd+ti − εd+ti−1
, (3.2)

are given by

E
[
Yd+ti − Yd+ti−1

]
= 0 and Var

[
Yd+ti − Yd+ti−1

]
= σ2

d+ti
p2
ti∆ + 2$2

dp
2
ti . (3.3)

Given assumption (ii), price increments at time ti for allD days have a common deterministic multiplier

pti . When all price increments are standardized based on σ2
d+ti

∆ + 2$2
d, then the variance of the

standardized increments is equal to p2
ti . The cross-section over days of the standardized increments at

time ti is used to estimate p2
ti using all D days.

The estimation of p2
ti requires estimates for σ2

d+ti
and $2

d. We treat σ2
d+ti

as constant over the

dth day and P̂BPV[0,1](1, 1) of (2.12) provides its estimate. We take (2.11) as an estimate for $2
d. To

satisfy assumption (i), we normalize the diurnal estimator for p2
ti by

p̂2
ti =

n
∑D

d=1R
2
d+ti∑n

j=1

∑D
d=1R

2
d+tj

, (3.4)

where

R2
d+ti

=

(
Yd+ti − Yd+ti−1

)2
n−1P̂BPV[0,1](1, 1) + 2$̂2

d

, (3.5)

for i = 1, . . . , n. Our approach differs from Andersen and Bollerslev (1998) in which σ2
d+ti

is estimated

on the basis of a generalized autoregressive conditional heteroskedasticity model for daily returns and

hence does not use intra-daily data for the estimation of σ2
d+ti

.
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3.4 Robust estimation of intraday periodicity

In case jumps are present in the price process (2.1), we need to modify estimator (3.4) to keep it

smooth. We propose to locally smooth the cross-sectional variances (3.4) via the weighted average

̂̄p2
ti =

n∑
j=1

ωij p̂
2
tj , (3.6)

where ωij is a pre-determined weight and
∑n

j=1 ωij = 1, for i = 1, . . . , n. We let the weights be implied

by Kalman filtering and smoothing methods applied to a local level model given by

p̂2
ti = p̄2

ti + ζti , (3.7)

p̄2
ti+1

= p̄2
ti + ηti , (3.8)

where we treat p̂2
ti as the observation, p̄2

ti as the latent variable (local level) and with the disturbances

ζti and ηti are serially independent, with mean zero and variances σ2
ζ and σ2

η respectively. The local

level is modeled as a random walk process with Gaussian disturbances (or increments) ηti . Since

we expect that jumps cause outliers in the “observations” p̂2
ti , we let the disturbances ζti come from

a Student’s t distribution. Only for the purpose of comparison, we also consider ζti to come from

a Gaussian density. This working model for p̂2
ti does not have any implications for our theoretical

framework of Section 2, it only facilitates the construction of weights in (3.6).

In case all disturbances are Gaussian, the estimation of [σζ , ση] and the signal extraction (3.6)

can be carried out by the Kalman filter and corresponding smoother. In case we let ζti come from

a Student’s t distribution, estimation of [σζ , ση, ν] and signal extraction relies on computationally

efficient Monte Carlo simulation methods that employ importance sampling techniques, see Durbin

and Koopman (2001) for a detailed discussion. In both cases, the computations are carried out in Ox

Doornik (2006) using SsfPack of Koopman, Shephard, and Doornik (1999).

4 Intraday Jump Testing

4.1 Lee and Mykland test

Consider the price process (2.1) with pt = 1 and assume that a realization Xti from (2.1) can be

observed without noise. The jump test statistic of Lee and Mykland (2008) standardizes the increment

Xti − Xti−1 by a local measure of variation for the continuous part of the price process. In case a

jump occurs in the (ti−1, ti] interval, the price increment Xti −Xti−1 is obviously larger than we can

expect from the continuous part of the price process. The Lee and Mykland jump test statistic (LMJ)

exploits this notion and proposes a nonparametric statistic to test the hypothesis whether a jump

has occurred in the interval (ti−1, ti]. The LMJ test is based on the asymptotic distribution of the

maximums of absolute values of standard normal variables,

maxi∈[1,n]|L(ti)| − Cn
Sn

, (4.1)
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where the constants Cn and Sn are given by

Sn = (2log n)−
1
2 and Cn = S−1

n −
1
2

(log π + log log n)Sn, (4.2)

and where

L(ti) =
Xti −Xti−1

σ̂ti
√

∆
, (4.3)

is standard normally distributed under the null hypothesis of no jumps. Lee and Mykland (2008)

compute the spot variance estimate σ̂2
ti by the locally averaged bipower variation (2.16) over the

window [ti−hn , ti−1] with sufficiently large hn, say hn = 270 for ∆ = 5min. The test statistic (4.1)

has a standard Gumbel distribution. The null hypothesis of no jump in (ti−1, ti] is rejected when

|L(ti)| > Snα
∗ + Cn at the significance level α% with α∗ = −log (−log (1− α)).

The arrival of a jump of size κ∗ in the interval (ti−1, ti] leads to an increase of Xti − Xti−1 by

κ∗ and thus L(ti) in (4.3) is not standard normally distributed. The jump size κ∗ in L(ti) is divided

by σ̂ti
√

∆ and L(ti) → ∞ when ∆ → 0, so statistic becomes sufficiently large to detect the jump as

∆ → 0, implying that more frequent sampling increases the power of the test (see Theorem 2 of Lee

and Mykland, 2008).

4.2 A jump test correction for periodicity and microstructure noise

When the locally averaged bipower variation estimator is used for spot variance in the presence of

microstructure noise, the statistic L(ti) in (4.3) is not normally distributed under the null hypothesis

of no jumps. Therefore, the LMJ test statistic (4.1) is not valid when microstructure noise is present.

Also, when the return variation is subject to periodicity, Andersen et al. (2007) and Boudt et al. (2008)

have argued that spurious jumps can be detected. Here we correct the LMJ test for both periodicity

and microstructure noise.

Given the assumptions (i)-(iii) of Section 3.2 and under the null hypothesis of no jumps in the

price process (2.1), the realized price increment is given by (3.2) with its mean and variance given by

(3.3). We adopt these results to modify the LMJ test statistic (4.1) by replacing L(ti) with L̃(ti) as

given by

L̃(ti) =
Yti − Yti−1

ŝti
where ŝ2

ti = σ̂2
ti p̂

2
ti∆ + 2$̂2p̂2

ti , (4.4)

where the periodic multiplier p2
ti is estimated as described in Section 3.4 and where σ̂2

ti and $̂2 are

given by (2.17) and (2.11), respectively. The variable L̃(ti) is standard normal and our corrected test

statistic (4.1) remains to have a Gumbel distribution under the null hypothesis of no jumps.

The arrival of a jump of size κ∗ in the interval (ti−1, ti] leads to an increase of Yti − Yti−1 by

κ∗ and thus L̃(ti) in (4.4) is not standard normally distributed. The jump size κ∗ in L̃(ti) is divided

by ŝti and the discontinuous part is proportional to κ∗/
√

2$pti as ∆ → 0. Hence, jump detection

in the presence of microstructure noise depends on the magnitude of price contamination. When the

standard deviation of microstructure noise increases, the statistic L̃(ti) decreases, with the implication

that small jumps are more difficult to detect.
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5 Monte Carlo Studies

In this section we conduct a set of Monte Carlo experiments to study the finite sample properties of

the intraday periodicity and the spot variance path estimation procedures as discussed in the previous

sections. Furthermore we study the small-sample performance of our intraday jump testing procedure.

We first present the design of the Monte Carlo study.

5.1 Design of Monte Carlo study

The price series are generated by (2.1) which depends on assumptions for spot volatility σt, periodic

multiplier pt and random jump process κt. We adopt the mean-reverting Heston (1993) process for

the spot variance σ2
t that is given by

dσ2
t = ψ(θ − σ2

t )dt+ γσtdW σ
t , (5.1)

where coefficient ψ > 0 determines the rate at which the variance σ2
t reverts to the long-run variance

θ > 0, coefficient γ determines the variation of the spot variance path and W σ
t is a standard Brownian

motion. The Brownian motions Wt in (2.1) and W σ
t are possibly contemporaneously correlated, that

is E[dWtdW σ
t ] = ρdt with ρ ∈ (−1, 0]. In case ρ 6= 0, the variance process is subject to a leverage

effect. The multiplicative periodic factor pt in (2.1) is assumed to be a smooth function. The jump

component κt in (2.1) is given by the product κ̄
√
θptUt where κ̄ determines the size of the jump relative

to the long-run volatility and periodicity, and where Ut is a random variable which takes the values

−1 and 1 with equal probability. To produce the process Nt in (2.1) we allocate via the homogeneous

Poisson process at least one jump over a trading day.

We simulate sample paths for the price process with X0 = 0 using the Euler discretization

method at a time interval ti+1 − ti = 86400−1, corresponding to the one second frequency in a 24h

market. Then we sample observations from the price path at different frequencies ∆; by increasing

∆ the sampling becomes more sparse, which mitigates microstructure effects. The price increment

Xti −Xti−1 is contaminated by microstructure noise as implied by assumption (iii) of Section 3.2.

Our Monte Carlo design is based on the following settings:

• For each experiment, we sample M = 2500 realizations of the prices process. Each realization

is a time series of prices for a single 24h trading day. The length of the time series depends on

sampling frequency ∆ ∈ {1sec, 5sec, 30sec, 1min, 5min}.

• The stochastic variance specification (5.1) is adopted from Heston (1993) and is given by the

two variants

i) Heston-A: ψ = 1, θ = 0.04, γ = 0.15;

ii) Heston-B: ψ = 8, θ = 0.04, γ = 0.4.
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where both variants satisfy the condition 2ψθ ≥ γ2 such that the variance is strictly positive.

The Heston-A specification has the smallest mean-revision parameter and the smallest value for

γ. In both specifications we have θ = 0.04 that corresponds to a long-run volatility level of 20%.

• The multiplicative periodic diurnal factor is given by p2
ti = 1− φcos(2πi/n) with φ ∈ [0, 1). For

φ = 0, we have no diurnal shape in the return variance and in the microstructure noise variance.

• The jump size is taken from the set κ̄ ∈ {0, 0.05, 0.15, 0.25, 0.5}. For these values of κ̄,

the mean estimates of relative jump variation in (2.13) at ∆ = 1sec have values R̂JV[0,1] ∈

{0.22%, 0.34%, 2.24%, 6.63%, 23.26%} and R̂JV[0,1] ∈ {0.22%, 0.31%, 2.21%, 6.59%, 23.19%}

with $ = 0.001 and $ = 0.004 respectively. When the data is sampled more sparsely and/or

microstructure noise increases, the impact of jumps decreases. In case κ̄ 6= 0, we enforce at least

one jump in a trading day.

• The microstructure noise standard deviation is taken from the set $ ∈ {0, 0.001, 0.004}. For

positive values of $, the ratios of microstructure noise variance and integrated variance corre-

spond to values found in equity data by Hansen and Lunde (2006, Table 3).

• When a Monte Carlo experiment requires the estimation of periodic factors, we repeat the

simulations for D = 100 trading days. For all other experiments we set D = 1.

Each experiment depends on the choice of parameters: φ (periodicity), κ̄ (jump size), $ (standard

deviation of microstructure noise) and ρ (leverage effect). Their subsequent values are specified for

each experiment and reported in the discussions, figures and tables.

5.2 Periodic patterns in spot variance

We first investigate whether the cross-sectional estimation of the periodic pattern (3.4) in the spot

variance is robust to jumps. To measure the impact of jumps and its sensitivity to different weight

adjustments in (3.6), we carry out the following experiment. Given the features of the empirical data

in the next section, we consider jumps arriving at fixed time arrivals (news announcements at 9:00-

9.01, 15.00-15.01 and 18.00-18.01) and at random time arrivals. The jumps themselves are drawn with

κ̄ = 0.15. The remaining Monte Carlo parameters are given by φ = 0.65, $ = 0.001 and ρ = 0.

Figure 1 presents the estimated periodic pattern. The benchmark estimate of the diurnal shape

from (3.4) shown in panel i) of Figure 1 is affected by jumps. The scheduled news announcements have

an adverse effect. The smoothing method in (3.6) is based on the model (3.7)-(3.8) with Gaussian or

Student’s t disturbances in (3.7). Observation based weighting method (OWM) in (3.6) with Gaussian

(Student’s t) observation disturbances is denoted as OWM-N (OWM-t). Both estimates are presented

in panel ii) of Figure 1 and are more smooth relative to benchmark estimate. However, the symmetric

weights ωij implied by the model with Gaussian observation disturbances do not adjust sufficiently

at the jump location and its neighboring time intervals; see panels iii-a) − v-a) of Figure 1. The
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Figure 1: Periodic factor estimation. Heston-A specification with φ = 0.65, κ̄ = 0.15, $ = 0.001, ρ = 0,

∆ = 1min and D = 100. Panel i) presents square root of cross-sectional variances (dotted line) and true

periodic factor (solid line); ii) presents estimates from OWM-N (dotted line), OWM-t (dashed line) and true

periodic factor (solid line); panels iii), iv) and v) present ωij in (3.6) for 20 lags/leads for OWM-N iii-a)−v-a),

and OWM-t, iii-b)− v-b), in time interval 14:59-15:00, 15:00-15:01 and 15:01-15:02 respectively.
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weights implied by Student’s t observation disturbances are small or zero at jump locations; see panels

iii-b) − v-b) of Figure 1. Also, neighboring weights are not affected by the actual jumps. We can

conclude that our last and preferred extraction procedure is robust to jumps.

5.3 Spot volatility estimation

This section considers the spot volatility estimation with regards to microstructure noise, periodic

pattern, window width and leverage effect.

5.3.1 Presence of microstructure noise

We focus on the effect of microstructure noise and compare performance of σ2
t estimator based on

bipower variation (2.16) and pre-averaged bipower variation (2.17). The Monte Carlo parameters are

given by φ = 0, $ = 0.001 (or $ = 0 for a comparison) and ρ = 0.

Figure 2 presents the root mean squared error (RMSE) against the sampling frequency. Without

microstructure noise, the best estimation performance for both estimators is obtained at the finest
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Figure 2: Root mean squared error (RMSE) against sampling frequency. Panel i) with no microstructure

noise $ = 0; ii) with microstructure noise $ = 0.001. Triangles correspond to spot variance estimator based

on bipower variation (2.16), diamonds to pre-averaged based estimator (2.17). Heston-B specification with

hn = n0.8, φ = 0, ρ = 0, κ̄ = 0.25.
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frequency as shown in panel i) of Figure 2. The bipower variation based spot variance estimator (2.16)

has lower RMSE than the pre-averaged based estimator (2.17) when the sampling frequency increases.

With microstructure noise, the (2.16) estimator is not optimal for the finest sampling frequency; see

panel ii) of Figure 2. The RMSE increases when ∆→ 0 for the bipower variation estimator (2.16). On

the other hand, the pre-averaged based estimator (2.17) has the lowest RMSE when data is sampled

at the finest frequency. It shows that the correction for bias due to microstructure noise is effective.

There is no need to search for an optimal sampling frequency as in the case of bipower variation based

estimator (2.16).

5.3.2 Effect of periodic patterns

Here we show the importance of having separate estimation procedures for the spot variance compo-

nents σt and pt in (2.1). We focus on the impact of periodicity on the joint estimation of σtpt based

on pre-averaged estimator. The Monte Carlo parameters are given by $ = 0.001, ρ = 0 and κ̄ = 0.25.

Figure 3 presents estimates of σtpt obtained by using different window widths determined by β,

i.e. hn = nβ for β ∈ (1/2, 1]. Four different intraday points of time are shown. The top panels of
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Figure 3: Estimates of spot volatility as a function of β; hn = nβ with β ∈ (0.5; 1]. Crosses correspond to 2.5%,

50% and 97.5% quantiles based on M = 2500, solid line is the true value. Panels correspond to four different

points of time: i) 00:00; ii) 03:00; iii) 09:00; iv) 12:00. Top panels with φ = 0 (no diurnal pattern) and bottom

panels with φ = 0.95 (diurnal pattern). For both, ρ = 0, κ̄ = 0.25, $ = 0.001 and ∆ = 1sec.
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Figure 3 correspond to φ = 0 (no periodicity) and the bottom panels have φ = 0.95. Even though

the periodic variance is smooth and data is sampled at the highest frequency ∆ = 1sec, presence of

diurnal pattern induces a systematic bias and increases when the width of the local window gets larger.

Periodic patterns have therefore an adverse effect on the joint estimation of the spot variance. The

systematic bias increases when the data is sampled more sparsely and with more pronounced periodic

patterns.

5.3.3 Selection of window width

Next we turn our attention to the estimation of the stochastic component in spot volatility and the

choice of the window length in (2.17). We consider hn = nβ with β ∈ {0.6, 0.7, 0.8, 0.9}.

Figure 4 presents estimated paths over a trading day for the Heston-A variance specification.

Estimation based on the small window n0.6 leads to high variation of the spot variance estimator; see

panel i) of Figure 4. When the long window n0.9 is taken, a highly smooth estimate is obtained, see

panel iv) of Figure 4.

Table 1a-b presents simulation results for the selection of the optimal bandwidth for Heston-A
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Figure 4: An example of actual (solid line) vs. estimated (dashed line) spot volatility path based on hn = nβ.

Heston-A specification with φ = 0, ρ = 0, κ̄ = 0.25, $ = 0.001, ∆ = 1sec.
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and Heston-B specifications. We obtain the following findings. For both specifications, the mean

squared error (MSE) increases when the sampling is more sparse. For all sampling frequencies, the

measures of fit for Heston-A are more satisfactory than the one for Heston-B. The lowest MSEs are

obtained for hn = n0.8 (Heston-A) and hn = n0.7 (Heston-B). This result is robust up to the sampling

frequency ∆ = 5min.

When we allow for a leverage effect with ρ = −0.75, we do not find any adverse effect on the

estimation performance; see the lowest panels of Tables 1a-b, where we compare the resulting MSEs

relative to the case with ρ = 0. The obtained MSEs are very much the same with ratios oscillating

around unity.

5.4 Intraday jump testing

In this section we investigate the distribution of the test statistic under the null of no jumps in the

price process, also, effective power and size are studied.

5.4.1 Null distribution of the jump test statistic

We study the distributions of the jump test statistic based on empirical densities of the maximums of

the test statistic under the absence of jumps and compare those to the theoretical standard Gumbel
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Table 1a: The bandwidth selection for the spot variance estimator (2.17); Heston-A specification.

∆ = 1sec ∆ = 5sec ∆ = 30sec ∆ = 1min ∆ = 5min

ρ = 0

β = 0.6 2.066 1.614 2.787 2.046 5.695

β = 0.7 1.186 1.062 1.522 1.128 1.897

β = 0.8 1.000 1.000 1.000 1.000 1.328
[0.001] [0.011] [0.113] [0.283]

β = 0.9 1.778 1.284 1.161 1.098 1.000
[2.403]

ρ = −0.75

β = 0.6 2.107 1.600 2.823 2.052 5.552

β = 0.7 1.207 1.051 1.535 1.128 1.846

β = 0.8 1.000 1.000 1.000 1.000 1.333
[0.001] [0.011] [0.112] [0.280]

β = 0.9 1.788 1.300 1.174 1.005 1.000
[2.407]

ρ = −0.75/ρ = 0

β = 0.6 1.019 0.982 1.001 0.993 0.977

β = 0.7 1.017 0.988 0.997 0.990 0.975

β = 0.8 0.999 0.991 0.988 0.990 1.006

β = 0.9 1.004 1.003 1.001 0.996 1.002

Note: The entries present the mean-squared errors (MSE) relative to the smallest one (between brackets ×106) within the model

setup, e.g. {∆ = 1sec, ρ = 0}. Panel ρ = −0.75/ρ = 0 compares MSEs with and without leverage effect. It holds, φ = 0,

$ = 0.001, κ̄ = 0.25. Estimation done over a local window hn = nβ with β = {0.6; 0.7; 0.8; 0.9}.

distribution. We compute empirical density of test statistic (4.1) based on the original L(ti) in (4.3),

and the extended test statistic based on L̃(ti) in (4.4).

Figure 5 presents empirical densities of simulated test statistics. To see the impact of microstruc-

ture noise, periodicity and leverage effect, we study the empirical distributions under the null sepa-

rately for each of these features shown in panels i)-iii) of Figure 5.

The left-hand panels show the impact of microstructure noise with $ = 0.004. The empirical

distribution of the original LMJ test based on L(ti) is affected, as the mass of the density shifts to

the left as seen in i-a) relative to the theoretical density. Thus, instead of bipower variation (2.16)

we apply pre-averaged bipower variation (2.17). Further, the variance of microstructure noise has to

be accounted for, because when ∆ → 0, then NSR in (3.1) approaches unity and a larger proportion

of return variation is due to microstructure effects. The empirical density of the extended LMJ test

based on L̃(ti) coincides with the theoretical Gumbel density; see i-b).

The impact of diurnal pattern with φ = 0.95 is shown in the middle panels. Intraday periodicity

has an adverse effect on the LMJ test as seen in ii-a), where it overrejects the null of no jump. This
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Table 1b: Continued. Heston-B specification.

∆ = 1sec ∆ = 5sec ∆ = 30sec ∆ = 1min ∆ = 5min

ρ = 0

β = 0.6 1.134 1.029 1.382 1.241 2.592

β = 0.7 1.000 1.000 1.000 1.000 1.119
[0.003] [0.021] [0.256] [0.546]

β = 0.8 1.777 1.644 1.177 1.311 1.000
[5.743]

β = 0.9 4.376 3.125 1.834 1.891 1.107

ρ = −0.75

β = 0.6 1.139 1.025 1.389 1.237 2.588

β = 0.7 1.000 1.000 1.000 1.000 1.120
[0.003] [0.021] [0.259] [0.550]

β = 0.8 1.768 1.649 1.176 1.320 1.000
[5.732]

β = 0.9 4.371 3.122 1.849 1.903 1.122

ρ = −0.75/ρ = 0

β = 0.6 1.008 0.997 1.009 1.005 0.997

β = 0.7 1.004 1.000 0.997 1.009 0.999

β = 0.8 0.998 1.004 0.996 1.016 0.998

β = 0.9 1.002 0.999 1.004 1.015 1.011
Note: See Table 1a.

effect was noticed before by Boudt et al. (2008). Pronounced diurnal patterns lead to systematic

bias in the spot variance estimator, unless a very small local window is selected at the cost of lack of

robustness against jumps and increased variation of the estimator; see the discussion in Section 5.3.2.

We estimate the spot variance components separately and panel ii-b) shows the appropriate empirical

density of extended test based on L̃(ti).

We allow for the leverage effect with ρ = −0.75 and present the resulting empirical densities in

the right-hand panels. The negative correlation in price-variance innovations slightly shifts the mass

of the empirical densities to the right. It is more apparent in the original LMJ test based on L(ti)

shown in panel iii-a). Both tests can possibly overreject the null of no jump due to the leverage.

5.4.2 Effective power and size

This section investigates effective power and size of the extended LMJ statistic (4.1) based on L̃(ti) in

(4.4). The effective power shows how many jumps are correctly identified, that is 1 minus the frequency

of failure to detect an actual jump. On the contrary, the effective size is interpreted as the probability

at each ti of a spurious jump detection that asymptotically equals α% × ∆. The more volatile the

volatility process is, the more difficult jump detection becomes, see Lee and Mykland (2008). Our
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Figure 5: Theoretical density of the jump test statistic (dotted line) versus empirical density under the null of

no jump. Panels a) for LMJ test (4.1) based on original L(ti) in (4.3); panels b) for extended LMJ test based

on L̃(ti) in (4.4). Heston-A specification with ∆ = 1sec and M = 2500. Left panels present the effect of noise

with $ = 0.004 (φ = 0, ρ = 0); middle panels present the effect of periodicity with φ = 0.95 ($ = 0, ρ = 0);

right panels present the effect of leverage with ρ = −0.75 ($ = 0, φ = 0). Grey area is the rejection region at

the α = 1% significance level; α∗ = 4.6001.
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focus here centers on how sparse sampling, microstructure noise and leverage affect detection of jumps.

For brevity, we confine ourselves to the Heston-A specification.

Table 2a-b presents simulation results for the effective power of applying the test to each indi-

vidual price increment. As price observations are sampled more sparsely and ∆ increases, the power

to detect smaller-sized jumps decreases rapidly. For instance, for $ = 0.001 and ρ = 0, the extended

test detects 74.38% of all jumps with size κ̄ = 0.05 at ∆ = 1sec, while only 0.06% at ∆ = 5min. The

jumps from κ̄ = 0.5 are well detected at ∆ = 5min. This is not surprising given that such jumps

contribute around 11% to total price variation. Additional microstructure noise has an adverse effect

on detecting small jumps. When $ increases from 0.001 to 0.004, only 0.02% of all jumps are detected

instead of the original 74.38%. In case $ = 0.004, the smallest jumps are not distinguishable from

the innovations coming from the continuous part of the process. For the smaller jumps from κ̄ = 0.05

and κ̄ = 0.15, and large noise power increases initially with increase of ∆ as microstructure noise is

mitigated. Later it decreases again due to sparse sampling.
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Table 2a: Effective power and daily effective size of extended LMJ test. Heston-A; $ = 0.001.

∆ = 1sec ∆ = 5sec ∆ = 30sec ∆ = 1min ∆ = 5min

ρ = 0

κ̄ = 0.05 0.7438 0.3651 0.0209 0.0044 0.0006
[0.009] [0.009] [0.014] [0.012] [0.038]

κ̄ = 0.15 1.0000 1.0000 0.9761 0.7273 0.0761
[0.006] [0.009] [0.013] [0.013] [0.028]

κ̄ = 0.25 1.0000 1.0000 0.9998 0.9993 0.4857
[0.007] [0.009] [0.009] [0.014] [0.027]

κ̄ = 0.5 1.0000 1.0000 0.9998 0.9998 0.9951
[0.010] [0.007] [0.014] [0.015] [0.020]

ρ = −0.75

κ̄ = 0.05 0.7463 0.3647 0.0232 0.0053 0.0004
[0.009] [0.009] [0.016] [0.014] [0.038]

κ̄ = 0.15 1.0000 1.0000 0.9759 0.7263 0.0774
[0.006] [0.009] [0.014] [0.014] [0.028]

κ̄ = 0.25 1.0000 1.0000 0.9998 0.9993 0.4951
[0.006] [0.008] [0.009] [0.015] [0.025]

κ̄ = 0.5 1.0000 1.0000 0.9998 0.9998 0.9960
[0.012] [0.006] [0.015] [0.014] [0.019]

Note: Significance level α = 1%, thus α∗ = 4.6001. Effective power equals 1 minus frequency of failure to detect an actual

simulated jump. Effective daily size between square brackets equals probability of detecting a spurious jump times number of

observations per day at the sampling frequency. We set hn = n0.8, φ = 0.95 and M = 2500.

Table 2a-b also reports the daily effective size, defined as frequency of spuriously detected jumps

divided by ∆. As long as the data is sampled at fine intervals, the increase of microstructure noise

does not affect the effective size of extended test statistic. When we lower the sampling frequency, the

estimate of the stochastic component in spot volatility becomes too smooth to capture high frequency

volatility movements. This leads to both power and size distortions.

We do not find a noticeable impact of leverage on the effective power and size of the extended test

statistic based on L̃(ti) for data sampled at high frequencies. When ∆ increases, the size is however

more distorted. For instance, for ∆ = 30sec and ρ = 0, the empirical daily size of a test equals 0.014

instead of the theoretical α = 0.01, while it increases to 0.016 when ρ = −0.75. In terms of the

effective size, it means an increase of the probability of a spurious jump detection at each tested time

ti from 4.86 ×10−6 to 5.56 ×10−6, instead of the theoretical α×∆ of 3.47 ×10−6.
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Table 2b: Continued. Heston-A; $ = 0.004.

∆ = 1sec ∆ = 5sec ∆ = 30sec ∆ = 1min ∆ = 5min

ρ = 0

κ̄ = 0.05 0.0002 0.0001 0.0014 0.0004 0.0006
[0.0104] [0.006] [0.006] [0.007] [0.064]

κ̄ = 0.15 0.4190 0.4569 0.3179 0.1890 0.0581
[0.005] [0.006] [0.006] [0.009] [0.052]

κ̄ = 0.25 0.9779 0.9821 0.9636 0.9156 0.4020
[0.008] [0.006] [0.005] [0.005] [0.047]

κ̄ = 0.5 1.0000 1.0000 0.9998 0.9998 0.9907
[0.009] [0.006] [0.006] [0.004] [0.045]

ρ = −0.75

κ̄ = 0.05 0.0002 0.0001 0.0014 0.0003 0.0005
[0.0104] [0.006] [0.006] [0.009] [0.069]

κ̄ = 0.15 0.4074 0.4604 0.3198 0.1896 0.0522
[0.005] [0.006] [0.005] [0.008] [0.060]

κ̄ = 0.25 0.9705 0.9843 0.9666 0.9130 0.4092
[0.007] [0.007] [0.004] [0.005] [0.054]

κ̄ = 0.5 1.0000 1.0000 0.9998 0.9998 0.9924
[0.009] [0.006] [0.006] [0.004] [0.054]

Note: See Table 2a.

6 Testing for Jumps Empirically

6.1 EUR/USD exchange rate data

In our empirical study we analyze the EUR/USD exchange rate data from July 2 to December 31,

2007.1 The data time span is six months with D = 131 working days. The transaction price data at

the sampling frequencies of 1, 5, and 15 minutes is provided by Disk Trading.2 The percentage returns

of the three price series are computed by taking their first differences in logs and multiplying by 100.

Table 3: Descriptive statistics of the EUR/USD returns.

∆ mean std.dev. skewness kurtosis ACF1 #obs

1min 3.60e-05 0.014 -0.083 16.954 -0.176 187816
[±0.0046]

5min 1.84e-04 0.027 0.212 22.045 -0.081 37670
[±0.0103]

15min 5.44e-04 0.044 0.234 14.366 -0.043 12571
[±0.0178]

Note: ACF1 is the first order autocorrelation of raw returns; associated critical range is between square brackets.

1Our empirical study was also partially conducted on GBP/USD, JPY/USD and CHF/USD exchange rates. The

results are relatively similar, thus for brevity only results for most heavily traded EUR/USD rate are presented.
2Source: http://disktrading.is99.com
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Table 3 presents the descriptive statistics of computed returns. The excess kurtosis of the return

series indicates the presence of time-varying volatility or jumps. The first order autocorrelation of raw

returns is negative and significant at all frequencies. This finding is a typical feature of price series

contaminated with microstructure noise.

6.2 Estimation of diurnal volatility patterns

Figure 6 presents diurnal shapes estimated with the benchmark method (Section 3.3) and our robust

procedure (Section 3.4). Panel i) of Figure 6 presents the benchmark p̂ti from (3.4) at ∆ = 1min

sampling frequency. Diurnal shapes are relatively similar for different days of the week. The main

differences arise in the time period of 14.00-17.00, when markets in the US and Europe overlap. The

numerous peaks in the return series correspond to various scheduled news announcements. European

interest rate reports and macroeconomic releases appear on Tuesday and Wednesday whereas US

macroeconomic news and interest rates decisions are released on Tuesday, Thursday and Friday.

Figure 6: Periodicity extraction for the EUR/USD rate; returns sampled at ∆ = 1min frequency. Panel

i) presents square root of cross-sectional variance (3.4); ii) presents absolute price increments of consecutive

Fridays in the sample in time interval 15:00-15.31; iii) presents estimates of square root of a periodic factor

(3.6) based on OWM-N (dotted line) and OWM-t (solid line).
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There are numerous outliers in the benchmark p̂ti . To study whether these are caused by single

distortions or are a part of the diurnal shape, panel ii) of Figure 6 presents the absolute price increments
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in the time interval 15.30-15.31 of all Fridays. Two large return values appear on September, 7 and

October, 5, which are the first Fridays of these months. Both days correspond to news surprises on

payroll data from the US labor market survey.3 At this particular intraday time, p̂ti is affected by

those two large price increments. To be robust against such news surprises, the estimation method of

Section 3.4 is used. Panel iii) of Figure 6 presents the estimated diurnal patterns based on weighting

as in (3.6) with the use of observation disturbances from Gaussian (OWM-N) and Student’s t (OWN-

t) densities. The resulting patterns are much smoother and clearly display repetitive low and high

intraday volatility periods.

Table 4: Maximum likelihood estimates of the observation weight method.

OWM-N OWM-t

σ2
ζ σ2

η σ2
ζ σ2

η ν

Monday 0.0376 0.0003 0.0377 0.0003 14.1876
(0.0015) (0.0001) (0.0017) (0.0001) (5.7772)

Tuesday 0.0398 0.0007 0.0404 0.0005 7.4998
(0.0017) (0.0002) (0.0022) (0.0002) (1.4718)

Wednesday 0.0403 0.0004 0.0403 0.0004 12.2512
(0.0016) (0.0001) (0.0018) (0.0001) (3.6748)

Thursday 0.0378 0.0007 0.0377 0.0006 6.5195
(0.0015) (0.0002) (0.0021) (0.0001) (1.0686)

Friday 0.0524 0.0021 0.0437 0.0008 4.2041
(0.0023) (0.0005) (0.0036) (0.0002) (0.5175)

Note: Estimates of parameters of the periodicity model (3.7)-(3.8) for the EUR/USD rate at ∆ = 1min sampling frequency.

Standard errors between the brackets.

Table 4 presents the likelihood-based estimation results of the parameters in the periodicity model

(3.7)-(3.8). The largest outliers in this sample are on Thursday and Friday, which is reflected by low

values for the degree-of-freedom parameter in the Student’s t distribution (ν = 6.52 and ν = 4.20

respectively). Also, the excess kurtosis, 6
ν−4 , is remarkably high for these days, especially on Friday

(≈ 29.4). Given the low value of the estimates of ν and numerous outliers in the benchmark p̂ti , the

robust method with Student’s t observation disturbances is preferred.

Panels i-a) − iii-a) in Figure 7 present the ACFs for absolute and raw returns at ∆ = 1min.

The U-shape pattern recurring at a daily frequency in the autocorrelations of absolute returns can be

seen in panel i-a). Due to periodicity, the ACF of absolute returns is persistent from day to day as

shown in ii-a). Panels i-b)− iii-b) present the ACFs after the diurnal pattern (robustly estimated) is
3The non-farm payrolls, released by the Bureau of Labor Statistics of the US Department of Labor, measure the

number of people on the payrolls of all non-agricultural businesses. At the FX market a high reading is seen as positive

for the US dollar, while a low reading is seen as negative. On September 7, the actual value of nonfarm payrolls (for

August) was 93k, way below expected by market averaged at 108k. On October 5, the actual value of nonfarm payrolls

(for September) was 96k, below expected by market averaged at 100k. According to the economic calendar data at

http://www.fxstreet.com/ these came as market surprises.
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Figure 7: Autocorrelation functions of EUR/USD returns. Panels i) shows ACF of absolute returns displayed

for 5 days; ii) ACF of absolute returns as in panel i) now showing only values at daily lags; iii) ACF of raw

returns for 4 lags. Panels a) raw returns; b) returns adjusted for variance diurnal shape using OWM-t.
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removed. Periodicity is not perfectly extracted, but the ACF of absolute returns shown in i-b) has no

clear recurring U-shaped cycles as comparing i-b) to i-a). Moreover, the ACF is not that persistent,

comparing ii-b) to ii-a). The significant negative first order serial correlation seen in iii-a) and iii-b)

is due to microstructure noise, and is not affected by removing the diurnal shape.

6.3 Spot measures

Figure 8 presents the returns (after robust adjustment for periodicity) and the estimated path of

the stochastic component in the spot volatility based on the pre-averaged estimator (2.17) at ∆ =

1min. Estimates of σ2
t are based on averaging over a set of local windows with hn = nβ with

β ∈ [0.52; 0.54, . . . , 1]. In panel i) of Figure 8, several return clusters (e.g., in August or November)

can be recognized. These clusters correspond to the increased level of volatility σ̂d+ti ; see panel ii)

of Figure 8. Overall, the level of spot volatility increases and is possibly a sign of the start of the

financial crisis in 2008. Estimated spot volatility reaches its maximum at the beginning of November

2008.

The microstructure noise variance estimator of (2.11) is based on returns over one day. Panel iii)

of Figure 8 displays 24-hour rolling window estimates of $̂d+ti . It is found that the microstructure
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Figure 8: Estimated spot measures. Panel i) EUR/USD periodically adjusted returns at ∆ = 1min frequency;

ii) estimated stochastic component σ̂d+ti (times
√

∆) of the spot volatility path; iii) estimated time-varying

volatility of microstructure noise $̂d+ti .
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noise standard deviation is relatively high at the beginning of the sample, while lower towards the

end of the sample. As a result, the estimated noise-to-signal ratio in (3.1) also varies considerably

over time. Its value (not displayed) starts from around 80% at the beginning of the sample period,

decreasing to 40-50% at the end of the sample.

6.4 Aggregate evidence of jumps

We first report daily estimates P̂BPVd(2, 0) and P̂BPVd(1, 1) for d = 1, . . . , 131. The relative jump

variation estimate R̂JVd indicates the presence of a jump component in the price process. Given the

sampling frequency ∆ = 1min, the average of R̂JVd series equals 13% (16% and 22% at ∆ = 5min and

∆ = 15min, respectively). Mean estimates of RJV increase with an increasing ∆, but the accuracies

of IV and QV estimates decrease. Using realized measures that are not robust to microstructure noise,

Huang and Tauchen (2005) find that jumps contribute in around 7% in the S&P index at ∆ = 5min.

Barndorff-Nielsen and Shephard (2006) find that jumps contribute between 5% and 22% to total price

variation dependently on the exchange rate at frequencies ranging from ∆ = 5min to ∆ = 1h.

Figure 9 presents the sequence of RJV estimates and the number of significant jumps over the

sample period at ∆ = 1min. There are numerous days when R̂JVd exceeds 25-30% as well as when
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Figure 9: Relative jump variation (2.13) in panel i) and the number of significant jumps in panel ii) at

∆ = 1min. Significant jumps based on the LMJ test (4.1) with L̃(ti) in (4.4) at the α = 1% significance level.
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it is roughly zero. Using the extended LMJ statistic we find more jumps at the higher frequency.

At ∆ = 1min, in total 419 jumps are detected at α = 1%, so that 3 jumps occur on average per

trading day. When ∆ = 5min 132 jumps are detected, which means that 1 jump occurs on average

per day. Finally, at ∆ = 15min sampling frequency only 45 jumps are detected, which results in 1

jump on average every 3 days. We find a maximum of 2 jumps (July 18, September 5, October 5 and

December 27) at ∆ = 15min, while we find a maximum of 14 jumps (November 1) at ∆ = 1min.

The significant jumps at ∆ = 1min have an average absolute size of 8.4 basis points (bps), while at

∆ = 5min (∆ = 15min) the average size is of 15.6bps (24.4bps).

Figure 10 presents the dependence structure, timing and histogram of the detected jumps. We

compare the LMJ test statistic based on (4.3) and on the extended statistic (4.4). Since the original

LMJ test does not account for diurnal patterns, the autocorrelation structure indicates the periodical

dependence of the detected jumps; see the autocorrelation clusters at daily time intervals in i-a) of

Figure 10. The LMJ statistic detects more (less) jumps when deterministic volatility is higher (lower);

see ii-a) of Figure 10. It causes spurious time dependence of jumps. Jumps detected with the extended

statistic are not periodically dependent and are more equally distributed over intraday time as seen in

i-b) and ii-b), respectively, of Figure 10. Over this sample period, there were more positive jumps than

negative as seen in iii-b) of Figure 10. Given that the US dollar was depreciating in those months, this
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Figure 10: Autocorrelation function of jumps indicators in panel i) for 5 days; timing aggregated to 1 hour in

panel ii); histogram of significant jumps in panel iii), at ∆ = 1min. Panels a) for original LMJ test based on

L(ti) in (4.3); b) for the extended LMJ test based on L̃(ti) in (4.4).
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result is not surprising. The extended test statistic detects more smaller-sized jumps than the original

test; see the histograms in panel iii-b) to iii-a) of Figure 10. The original test detects more jumps but

in the Monte Carlo study it is shown that the presence of diurnal patterns leads to an overrejection of

the null hypothesis of no jumps. Too many jumps are spuriously detected due to the periodic increase

of return volatility that is not captured when we estimate the two spot variance components jointly.

6.5 Jumps at specific days

The LMJ jump test statistic yields the timing, size and direction of the detected jumps. We study

in some detail the outcome of applying the extended test for two specific days. On the one hand,

we select Wednesday, September 5, when R̂JV2007/09/05 reaches its maximum of 44.4% at ∆ = 1min,

see Figure 9. On the other hand, we choose Thursday, November 1, when a maximum number of 14

jumps is found at ∆ = 1min, while R̂JV2007/11/01 equals 14.8% at this frequency. Figures 11a and

11b zoom in on both days.

Selected days in this case study correspond to scheduled macroeconomic announcements relevant

for the EUR/USD exchange rate, these are listed in Table 5. On September 5 there are 4 jumps

detected at ∆ = 1min frequency at 00:44, 07:38, 15:18 and 17:12. At the 5% significance level, three
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Figure 11a: Case study for September 5, 2007. Panels i) present the EUR/USD exchange rate in level; ii)

EUR/USD returns and significant jumps based on the extended LMJ test with L̃(ti) in (4.4) (at α = 1% marked

with circles; at α = 5% marked with diamonds).
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Figure 11b: Continued. November 1, 2007.
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additional jumps are found at 00:43, 15:19 and 17:10; see panel ii) of Figure 11a. These time intervals

correspond to high intraday volatility time periods, when markets open or overlap. The morning

European news items were positive for the EUR/USD rate on that day. It is seen from Figure 11a

that the EUR/USD rate started to appreciate dramatically in the afternoon when the US readings,

presented in Table 5, were much worse than expected. The sizes (in absolute terms) of the detected

jumps were from 7 to 10bps (or from 6bps at α = 5%), which corresponds to around 0.07-0.1% change

of the fundamental within a 1min interval. When lowering the sampling frequency to ∆ = 15min

only 2 jumps are found to be significant, at 15:18 (-15bps) and at 17:12 (42bps) contributing around

51.6% to the total price variation as measured by the estimate of RJV.

Table 5: News releases.

September 5, 2007

Time Area Event Actual Consensus Previous +/-

08:55 Germany Purchasing Manager Index Services (Aug) 59.8 58.1 58.5 +

09:00 EMU Purchasing Manager Index Services (Aug) 58.0 57.9 58.3

10:00 EMU Retail Sales (MoM) (Jul) 0.4% 0.3% 0.6% +

10:00 EMU Retail Sales (YoY) (Jul) 1.3% 1.1% 1.0% +

13:15 US ADP Employment Change (Aug) 27k 80k 48k +

15:00 US Pending Home Sales (MoM) (Jul) -12.2% -2.0% 5.0% +

19:00 US Fed’s Beige Book

November 1, 2007

Time Area Event Actual Consensus Previous +/-

13:30 US Core PCE - Prices Index (MoM) (Sep) 0.2% 0.2% 0.1%

13:30 US Core PCE - Prices Index (YoY) (Sep) 1.9% 1.8% 1.8% -

13:30 US Initial Jobless Claims (Oct 27) 330k 330k 331k

13:30 US Personal Income (MoM) (Sep) 0.4% 0.4% 0.4%

13:30 US Personal Spending (Sep) 0.3 0.4 0.6

15:00 US ISM Manufacturing (Oct) 50.9 51.4 52.0 +

15:00 US ISM Prices Paid (Oct) 63 64 59
Note: Important news releases on September 5, and November 1, 2007. The + (-) denotes a positive (negative) reading for the

EUR/USD exchange rate. EMU - European Monetary Union, PCE - Personal Consumption Expenditure.

Source: http://www.fxstreet.com/.

On November 1 there are 14 (17) jumps found at ∆ = 1min frequency at the 1% (5%) significance

level. Interestingly, 12 of these jumps cluster in the time period between 03:28-04:06 when only Asian

markets operate as seen in panel ii) of Figure 11b. These jumps have an absolute size of around 10bps.

We have no detailed information what happened in this time interval, but on this particular Thursday

many US news announcements were to be released, see Table 5, which possibly caused some additional
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arrival of orders. At ∆ = 1min, R̂JV2007/11/01 equals 14.8%, which indicates the presence of a jump

component. When lowering the sampling frequency to ∆ = 15min, we find no significant jumps even

at the α = 5% significance level, although the estimate of RJV equals 17.7% at this frequency and

the largest absolute price increment is of 18bps. It indicates that even when estimates of QV and IV

differ considerably (and hence indicate the occurence of jumps) it may not be possible to point out

which price increments are caused by jumps when the sampling frequency is low.

7 Summary and Conclusions

In this paper we introduce a new approach to the estimation of spot variance from high frequency

data. We decompose spot variance into stochastic and deterministic components. Estimation of

the stochastic variance component is based on adopting a pre-averaged bipower variation measure.

The pre-averaging approach allows us to estimate the stochastic component in the jump-diffusion

framework with microstructure noise. As a result, we can apply the estimator without the need for

mitigating noise effects through sparse sampling. Estimation of the deterministic variance component

is based on the newly developed semi-parametric approach. We smooth the cross-sectional variances

using a robust weighting scheme. In a finite sample Monte Carlo study we show that the underlying

spot variance path can be estimated accurately as long as the price observations are sampled at a

sufficiently high frequency, indeed even in practical situations where microstructure noise and jumps

are present or leverage effects confound the variance process.

Particular attention is given to the testing for jumps since our framework with microstructure

noise offers an extension to the jump test statistic introduced by Lee and Mykland (2008) and modified

later by Boudt et al. (2008). The Monte Carlo study has shown that the distribution of our extended

test statistic is not distorted by periodic patterns, leverage effects or microstructure noise. Also, our

extended jump test improves on the detection of smaller-sized jumps, which, however, also depends

on the magnitude of microstructure noise contamination. With large noise, the smallest jumps cannot

be distinguished from microstructure frictions, which is a theoretical result and not due to a failure of

the testing method. The power of our extended test decreases when the sampling is less frequent but

we should emphasize that our framework alleviates the need for sparse sampling.

The empirical illustration focusses on spot volatility and jumps in the EUR/USD exchange rate

series for a period of 2007 when the subprime crisis became apparent. In this period the spot volatility

has increased slowly while the microstructure noise has become less important in the later months. We

provide clear evidence of discontinuities in the exchange rate series. More jumps are detected during

days with important macro news announcements and from a dataset that is sampled at a higher

frequency. When the periodic volatility factor is extracted and removed, we do not find periodic

time dependence in the realized jump series and the number of jumps is also reduced. We therefore

conclude that our modifications for estimating spot volatility and jump testing are effective and can

be successfully applied in studies of financial markets based on intraday high frequency data.
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