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Abstract

The system GMM estimator for dynamic panel data models combines moment
conditions for the model in first differences with moment conditions for the model in
levels. It has been shown to improve on the GMM estimator in the first differenced
model in terms of bias and root mean squared error. However, we show in this paper
that in the covariance stationary panel data AR(1) model the expected values of
the concentration parameters in the differenced and levels equations for the cross-
section at time t are the same when the variances of the individual heterogeneity
and idiosyncratic errors are the same. This indicates a weak instrument problem
also for the equation in levels. We show that the 2SLS biases relative to that of the
OLS biases are then similar for the equations in differences and levels, as are the
size distortions of the Wald tests. These results are shown to extend to the panel
data GMM estimators.

JEL Classification: C12, C13, C23
Keywords: Dynamic Panel Data, System GMM, Weak Instruments
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1 Introduction

A commonly employed estimation procedure to estimate the parameters in a dynamic

panel data model with unobserved individual specific heterogeneity is to transform the

model into first differences. Sequential moment conditions are then used where lagged

levels of the variables are instruments for the endogenous differences and the parameters

estimated by GMM, see Arellano and Bond (1991). It has been well documented (see

e.g. Blundell and Bond (1998)) that this GMM estimator in the first differenced (DIF)

model can have very poor finite sample properties in terms of bias and precision when

the series are persistent, as the instruments are then weak predictors of the endogenous

changes. Blundell and Bond (1998) proposed the use of extra moment conditions that

rely on certain stationarity conditions of the initial observation, as suggested by Arellano

and Bover (1995). When these conditions are satisfied, the resulting system (SYS) GMM

estimator has been shown in Monte Carlo studies by e.g. Blundell and Bond (1998) and

Blundell, Bond and Windmeijer (2000) to have much better finite sample properties in

terms of bias and root mean squared error (rmse) than that of the DIF GMM estimator.

The additional moment conditions of the SYS estimator can be shown to correspond

to the model in levels (LEV), with lagged differences of the endogenous variables as

instruments. Blundell and Bond (1998) argued that the SYS GMM estimator performs

better than the DIF GMM estimator because the instruments in the LEV model remain

good predictors for the endogenous variables in this model even when the series are very

persistent. They showed for an AR(1) panel data model that the reduced form parameters

in the LEV model do not approach 0 when the autoregressive parameter approaches 1,

whereas the reduced form parameters in the DIF model do.

Because of the good performance of the SYS GMM estimator relative to the DIF

GMM estimator in terms of finite sample bias and rmse, it has become the estimator

of choice in many applied panel data settings. Among the many examples where the
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SYS GMM estimator has been used are the estimation of production functions and

technological spillovers using firm level panel data (see e.g. Levinsohn and Petrin (2003)

and Griffith, Harrison and Van Reenen (2006)), the estimation of demand for addictive

goods using consumer level panel data (see e.g. Picone, Sloan and Trogdon (2004)) and

the estimation of growth models using country level panel data (see e.g. Levine, Loayza

and Beck (2000) and Bond, Hoeffler and Temple (2001)). The country level panel data

in particular are characterised by highly persistent series (e.g. output or financial data)

and a relatively small number of countries and time periods. The variance of the country

effects is furthermore often expected to be quite high relative to the variance of the

transitory shocks. As we show here, these characteristics combined may lead to a weak

instrument problem also for the SYS GMM estimator.

For a simple cross-section linear IV model, a measure of the information content of

the instruments is the so-called concentration parameter (see e.g. Rothenberg (1984)).

In this paper we calculate the expected concentration parameters for the LEV and DIF

reduced form models in a covariance stationary AR(1) panel data model. We do this

per time period, i.e. we consider the estimation of the parameter using the moment

conditions for a single cross-section only for any given time period. We show that the

expected concentration parameters are equal in the LEV and DIF models when the

variance of the unobserved heterogeneity term that is constant over time (σ2η) is equal to

the variance of the idiosyncratic shocks (σ2v). This is exactly the environment under which

most Monte Carlo results were obtained that showed the superiority of the SYS GMM

estimator relative to the DIF GMM estimator. However, the equality in expectation of

the concentration parameters indicates that there is also a weak instrument problem in

the LEV model when the series are persistent.

If the expected concentration parameters are the same, why is it that the extra

information from the LEV moment conditions results in an estimator that has such
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superior finite sample properties in terms of bias and rmse? We first of all show that the

bias of the OLS estimators in the DIF and LEV structural models are very different. The

(absolute) bias of the LEV OLS estimator is much smaller than that of the OLS estimator

in the DIF model when the series are very persistent. Using the results of higher order

expansions, we argue and show in Monte Carlo simulations that the biases of the LEV

and DIF cross-sectional 2SLS estimators, relative to the biases of their respective OLS

estimators, are the same when σ2η = σ2v. Therefore the absolute bias of the LEV 2SLS

estimator is smaller than that of the DIF 2SLS estimator when the series are persistent.

Further expansion results as in Morimune (1989) indicate that we can expect the

size distortions of the Wald tests to be similar in the cross-sectional 2SLS DIF and LEV

models when the expected concentration parameters are the same. This is confirmed by

a Monte Carlo analysis. When the expected concentration parameters are small, which

happens when the series are very persistent, the size distortions of the Wald tests can

become substantial. As the SYS 2SLS estimator is a weighted average of the DIF and

LEV 2SLS estimators, with the weight on the LEV moment conditions increasing with

increasing persistence of the series, the results for the SYS estimator mimic that of the

LEV estimator quite closely.

The expectation of the LEV concentration parameter is larger than that of the DIF

model when σ2η is smaller than σ2v, and the relative biases of LEV and SYS 2SLS es-

timators are smaller and the associated Wald tests perform better than those of DIF.

The reverse is the case when σ2η is larger than σ2v. Also, unlike for DIF, the LEV OLS

bias increases with increasing variance ratio, vr = σ2η/σ
2
v, and therefore the performances

of the LEV and SYS 2SLS estimators deteriorate with increasing vr. These results are

shown to extend to the panel data setting when estimating the model by GMM and are

in line with the finite sample bias approximation results of Bun and Kiviet (2006) and

Hayakawa (2007), and with the findings from an extensive Monte Carlo study by Kiviet
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(2007). Furthermore, our theoretical results provide a rationale for the poor performance

of the SYS GMMWald test when data are persistent, as found by Bond and Windmeijer

(2005).

For the covariance stationary AR(1) panel data model our results therefore show that

the SYS GMM estimator has indeed a smaller bias and rmse than DIF GMM when the

series are persistent, but that this bias increases with increasing vr = σ2η/σ
2
v and can

become substantial. The Wald test can be severely size distorted for both DIF and SYS

GMM with persistent data, but the SYS Wald test size properties deteriorate further

with increasing vr. These results follow from the weak instrument problem that is also

present in the LEV moment conditions.

The setup of the paper is as follows. Section 2 introduces the AR(1) panel data

model, the moment conditions and GMM estimators. Section 3 briefly discusses the con-

centration parameter in a simple cross-section setting. Section 4 calculates the expected

concentration parameters for the DIF and LEF models for cross-section analysis of the

AR(1) panel data model, presents the OLS biases and some Monte Carlo and theoret-

ical results on (relative) biases and Wald tests size distortions for the 2SLS estimators.

Section 5 presents Monte Carlo and some analytical results for the GMM panel data

estimators. Section 6 concludes.

2 Model and GMM Estimators

We consider the first-order autoregressive panel data model

yit = αyi,t−1 + uit, i = 1, ..., n; t = 2, ..., T, (1)

uit = ηi + vit

where it is assumed that ηi and vit have an error components structure with

E (ηi) = 0, E (vit) = 0, E (vitηi) = 0, i = 1, ..., n; t = 2, ..., T (2)
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E (vitvis) = 0, i = 1, ..., n and t 6= s, (3)

and the initial condition satisfies

E (yi1vit) = 0, i = 1, ..., n t = 2, ..., T. (4)

Under these assumptions the following (T − 1) (T − 2) /2 linear moment conditions are
valid

E
¡
yt−2i ∆uit

¢
= 0, t = 3, ..., T, (5)

where yt−2i = (yi1, yi2, ..., yit−2)
0 and ∆uit = uit − ui,t−1 = ∆yit − α∆yi,t−1.

Defining

Zdi =

⎡⎢⎢⎣
yi1 0 0 · · · 0 · · · 0
0 yi1 yi2 · · · 0 · · · 0
. . . · · · . · · · .
0 0 0 · · · yi1 · · · yiT−2

⎤⎥⎥⎦ ; ∆ui =

⎡⎢⎢⎢⎣
∆ui3
∆ui4
...

∆uiT

⎤⎥⎥⎥⎦ ,
moment conditions (5) can be more compactly written as

E (Z 0di∆ui) = 0, (6)

and the GMM estimator for α is given by (see e.g. Arellano and Bond (1991))

bαd =
∆y0−1ZdW

−1
n Z 0d∆y

∆y0−1ZdW−1
n Z 0d∆y−1

where ∆y = (∆y01,∆y02...∆y0n)
0, ∆yi = (∆yi3,∆yi4, ...,∆yiT )

0, ∆y−1 the lagged version

of ∆y, Zd = (Z 0d1, Z
0
d2, ..., Z

0
dn)

0 and Wn is a weight matrix determining the efficiency

properties of the GMM estimator. Clearly, bαd is a GMM estimator in the differenced

model and we refer to it as the DIF-GMM estimator, and moment conditions (5) or (6)

as the DIF moment conditions.

Blundell and Bond (1998) exploit additional moment conditions from the assumption

on the initial condition (see Arellano and Bover (1995)) that

E (ηi∆yi2) = 0, (7)
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which holds when the process is mean stationary:

yi1 =
ηi

1− α
+ εi, (8)

with E (εi) = E (εiηi) = 0. If (2), (3), (4) and (7) hold then the following (T−1)(T−2)/2
moment conditions are valid

E
¡
uit∆yt−1i

¢
= 0, t = 3, ..., T, (9)

where ∆yt−1i = (∆yi2,∆yi3, ...,∆yit−1)
0. Defining

Zli =

⎡⎢⎢⎣
∆yi2 0 0 · · · 0 · · · 0
0 ∆yi2 ∆yi3 · · · 0 · · · 0
. . . · · · . · · · .
0 0 0 · · · ∆yi2 · · · ∆yiT−1

⎤⎥⎥⎦ ; ui =
⎡⎢⎢⎢⎣

ui3
ui4
...

uiT

⎤⎥⎥⎥⎦ ,
moment conditions (9) can be written as

E (Z 0liui) = 0, (10)

with the GMM estimator based on these moment conditions given by

bαl =
y0−1ZlW

−1
n Z 0ly

y0−1ZlW−1
n Z 0ly−1

,

where we will refer to bαl as the LEV-GMM estimator, and (9) or (10) as the LEVmoment

conditions.

The full set of linear moment conditions under assumptions (2), (3), (4) and (7) is

given by

E
¡
yt−2i ∆uit

¢
= 0 t = 3, ..., T ; (11)

E (uit∆yi,t−1) = 0 t = 3, ..., T,

or

E (Z 0sipi) = 0, (12)
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where

Zsi =

⎡⎢⎢⎢⎣
Zdi 0 · · · 0
0 ∆yi2 0

. .
. . . .

0 0 · · · ∆yiT

⎤⎥⎥⎥⎦ ; pi =
∙
∆ui
ui

¸
.

The GMM estimator based on these moment conditions is

bαs =
q0−1ZsW

−1
n Z 0sq

q0−1ZsW−1
n Z 0sq−1

with qi = (∆y0i, y
0
i)
0. This estimator is called the system or SYS-GMM estimator, see

Blundell and Bond (1998), and we refer to moment conditions (11) or (12) as the SYS

moment conditions.

In most derivations below, we further assume that the initial observation is drawn

from the covariance stationary distribution, implying that E (ε2i ) =
σ2v
1−α2 in (8).

3 Concentration Parameter

Consider the simple linear cross section model with one endogenous regressor x and kz

instruments z

yi = xiβ + ui (13)

xi = z0iπ + ξi,

for i = 1, ..., n, where the (ui, ξi) are independent draws from a bivariate normal distrib-

ution with zero means, variances σ2u and σ
2
ξ, and correlation coefficient ρ. The parameter

β is estimated by 2SLS: bβ = x0PZy

x0PZx
,

where PZ = Z (Z 0Z)−1 Z 0.

It is well known that when instruments are weak, i.e. when they are only weakly

correlated with the endogenous regressor, the 2SLS estimator can perform poorly in

finite samples, see e.g. Bound, Jaeger and Baker (1995), Staiger and Stock (1997),
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Stock, Wright and Yogo (2002) and Stock and Yogo (2005). With weak instruments, the

2SLS estimator is biased in the direction of the OLS estimator, and its distribution is

non-normal which affects inference using the Wald testing procedure.

A measure of the strength of the instruments is the concentration parameter, which

is defined as

μ =
π0Z 0Zπ

σ2ξ
.

When it is evaluated at the OLS, first stage, estimated parameters

bμ = bπ0Z 0Zbπbσ2ξ ,

it is clear that bμ is equal to the Wald test for testing the hypothesis H0 : π = 0, and

bμ/kz equal to the F-test statistic. Bound, Jaeger and Baker (1995) and Staiger and Stock
(1997) advocate use of the first-stage F-test to investigate the strength of the instruments.

Rothenberg (1984) shows how the concentration parameter relates to the distribution

of the IV estimator by means of the following expansion

bβ = β +
π0Z 0u+ ξ0PZu

π0Z 0Zπ + 2π0Z 0ξ + ξ0PZξ
, (14)

and so
√
μ
³bβ − β

´
=

σu
σξ

A+ s√
μ

1 + 2
³

B√
μ

´
+ S

μ

,

where

A =
π0Z 0u

σu
√
π0Z 0Zπ

; B =
π0Z 0ξ

σξ
√
π0Z 0Zπ

s =
ξ0PZu

σξσu
; S =

ξ0Pξ
σ2ξ

.

(A,B) is bivariate normal with zero means, unit variances and correlation coefficient ρ.

s has mean kzρ and variance kz (1 + ρ2) and S has mean kz and variance 2kz. It is clear

that when μ is large,
√
μ
³bβ − β

´
behaves like the n

¡
0, σ2u/σ

2
ξ

¢
random variable.

The concentration parameter μ is a key quantity in describing the finite sample prop-

erties of the IV estimator. The approximate bias of the 2SLS estimator can be obtained

9



using higher order asymptotics based on the expansion in (14), see Nagar (1959) , Buse

(1992) and Hahn and Kuersteiner (2002). Following Hahn and Kuersteiner (2002), the

bias is derived from the expansion

E
³
n1/2

³bβ2SLS − β
´´
≈ E

µ
π0zu
π0Qπ

¶
+n−1/2

µ
E

µ
z0ξQzu
π0Qπ

¶
− 2E

µ
(π0zξ) (π0zu)

(π0Qπ)2

¶¶
(15)

where zu = 1√
n
Z 0u, zξ = 1√

n
Z 0ξ and Q = E

¡
1
n
ziz

0
i

¢
. It follows that the approximate bias

of the IV estimator can be expressed as

E
³bβ2SLS´− β ≈ 1

n

(kz − 2)σuξ
π0Qπ

=
σuξ
σ2ξ

(kz − 2)
nE

¡
1
n
μ
¢ . (16)

Hence the bias is inversely proportional to the value of the concentration parameter.

It does not only depend on the concentration parameter, but also on the number of

instruments kz and the degree of endogeneity embodied in the covariance σuξ. However,

the relevance of the concentration parameter for finite sample bias becomes even more

pronounced when we consider the absolute bias of the IV estimator, relative to that of

the OLS estimator as defined by

RelBias =

¯̄̄
E
³bβ2SLS´− β

¯̄̄
¯̄̄
E
³bβOLS´− β

¯̄̄ ,
see e.g. Bound et al. (1995). The bias of the OLS estimator can be approximated by

(see e.g. Hahn and Hausman (2002))

E
³bβOLS´− β ≈ σuξ

π0Qπ + σ2ξ
=

σuξ
σ2ξ

1

E
¡
1
n
μ
¢
+ 1

,

which is equal to inconsistency of OLS. The relative bias is then approximately given by

RelBias ≈ (kz − 2)
¡
E
¡
1
n
μ
¢
+ 1
¢

nE
¡
1
n
μ
¢ , (17)

i.e. a function of E
¡
1
n
μ
¢
, n, and kz only.

The concentration parameter is further an important element in describing size dis-

tortions of t or Wald tests based on the 2SLS estimator. For μ large the standard 2SLS
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t-ratio for testing H0 : β = β0 behaves approximately as standard normal. Morimune

(1989) derives a higher-order expansion of this conventional 2SLS t-ratio. Applying The-

orem 2 of Morimune (1989) we find for the set-up with one endogenous regressor and no

additional exogenous regressors that the O(n−1/2) and O(n−1) terms in the expansion of

the 2SLS t-statistic only depend on μ, kz and ρuξ. The latter quantity is the correlation

coefficient of u and ξ. Moreover, for a two-sided t-test the O(n−1/2) term cancels in the

approximation.

All results discussed above are based on conventional higher-order asymptotics, i.e.

assuming strong identification. Hence, these higher-order approximations may not al-

ways be informative in case of weak instruments. However, regarding the relevance of

the concentration parameter, weak instrument asymptotics as derived by Staiger and

Stock (1997) lead to similar conclusions compared with conventional fixed-parameter

higher-order asymptotics. Staiger and Stock (1997) develop weak instrument asymptot-

ics by setting π = πn = C/
√
n, in which case the concentration parameter converges to

a constant. They then show that 2SLS is not consistent and has a nonstandard asymp-

totic distribution. These results are of course different from conventional asymptotics.

However, Staiger and Stock (1997) show that the asymptotic bias of the 2SLS estimator,

relative to that of the OLS estimator again only depends on kz and μ. Furthermore, the

distributions of the 2SLS t-ratio and Wald statistic only depend on μ, kz and ρuξ.

Summarizing, conventional first-order fixed-parameter asymptotics fail to give accu-

rate approximations in case of weak instruments. Inspired by Bound, Jaeger and Baker

(1995) and Staiger and Stock (1997) we use the concentration parameter to characterize

relative bias and size distortions of Wald tests. One can proceed either with higher-order

fixed-parameter asymptotics or consider weak instrument asymptotics. In the analysis

below we have chosen for the former approach. In the panel AR(1) model weak instru-

ments arise when α → 1 and/or σ2η
σ2v
→ ∞. Kruiniger (2009) applies ‘local to unity’
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asymptotics and shows that the Staiger and Stock (1997) set up does not always ap-

ply straigthforwardly to dynamic panel data models. More importantly, we find in our

cross-sectional simulations below a weak instrument problem already for α = 0.4 and
σ2η
σ2v
= 4, with the relative bias well approximated by (17). Expansion (15) also allows

us to approximate the bias for less straightforward cases, like the cross-sectional system

2SLS estimator.

4 Cross section results for the AR(1) panel data
model

Although the data are not generated as in the cross-section model (13), we can write the

structural equation and the reduced form model for the AR(1) panel data model in first

differences for the cross-section at time t as

∆yit = α∆yi,t−1 +∆uit

∆yi,t−1 = yt−20i πdt + di,t−1.

For the general expression of the expected value of the concentration parameter divided

by n we get

E

µ
1

n
μdt

¶
=

π0dtE
¡
yt−2i yt−20i

¢
πdt

σ2dt
.

For the model in levels we have for the cross-section at time t

yit = αyi,t−1 + ηi + vit

yi,t−1 = ∆yt−10i πlt + li,t−1

and the expected concentration parameter is given by

E

µ
1

n
μlt

¶
=

π0ltE
¡
∆yt−1i ∆yt−10i

¢
πlt

σ2lt
.

In the Appendix we show that, under covariance stationarity of the initial observation,

E

µ
1

n
μdt

¶
=

(1− α)2
¡
σ2v + (t− 3)σ2η

¢
(1− α2) σ2v + ((t− 1)− (t− 3)α) (1 + α)σ2η
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and

E

µ
1

n
μlt

¶
=

(t− 2) (1− α)2 σ2v
(1− α2)σ2v + ((t− 1)− (t− 3)α) (1 + α)σ2η

,

from which it follows that

E
¡
1
n
μdt
¢

E
¡
1
n
μlt
¢ =

¡
σ2v + (t− 3)σ2η

¢
(t− 2)σ2v

=
1

t− 2
µ
1 + (t− 3) σ

2
η

σ2v

¶
.

Therefore

E

µ
1

n
μdt

¶
= E

µ
1

n
μlt

¶
if t = 3,

and for t > 3

E

µ
1

n
μdt

¶
> E

µ
1

n
μlt

¶
if σ2η > σ2v

E

µ
1

n
μdt

¶
= E

µ
1

n
μlt

¶
if σ2η = σ2v

E

µ
1

n
μdt

¶
< E

µ
1

n
μlt

¶
if σ2η < σ2v.

Figure 1 graphs the values of E
¡
1
n
μdt
¢
and E

¡
1
n
μlt
¢
as a function of α for t = 6 and

various values of σ
2
η

σ2v
=
©
1
4
, 1, 4

ª
. The values of the concentration parameters decrease with

increasing α. The concentration parameter for the LEV model is much more sensitive to

the value of the variance ratio σ2η
σ2v
than the concentration parameter of the DIF model.

4.1 Discussion

The fact that the concentration parameters are the same in expectation for the IV es-

timators based on the DIF or LEV moment conditions for t = 3 and for t > 3 when

σ2η = σ2v seems contrary to the findings in Monte Carlo studies, see e.g. Blundell and

Bond (1998) and Blundell, Bond and Windmeijer (2000) who use a covariance station-

ary design with σ2η = σ2v = 1. In those simulation studies bαl outperforms bαd in terms

of bias and rmse, especially when the series become more persistent, i.e. when α gets
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Figure 1: E
¡
1
n
μ
¢
as a function of α, t = 6 and vr =

σ2η
σv
=
©
1
4
, 1, 4

ª
.

larger. The identification problem is apparent in the DIF model, where the reduced form

parameters approach zero when α approaches 1. This is in sharp contrast to the reduced

form parameters in the LEV model that approach 1
2
when α approaches 1. This was the

argument used by Blundell and Bond (1998) to assert the strength of the LEV moment

conditions for the estimation of α for larger values of α.

There are two questions to be addressed. Firstly, why are the behaviours of the two

estimators so different in terms of bias and rmse when they have the same expected

concentration parameter? Secondly, how does the weak instrument problem in the LEV

model manifest itself?

To answer the first question one has to realise that the structural models are different

for DIF and LEV, with different endogeneity problems. Therefore, different biases arise

for both OLS and 2SLS estimators in the two equations. For the DIF model

∆yit = α∆yi,t−1 +∆uit,
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the OLS estimator for the cross-section at time t is given by

bαdOLS = α+
∆y0t−1∆ut
∆y0t−1∆yt−1

,

and the limiting bias of the OLS estimator is, again assuming covariance stationarity,

plim (bαdOLS − α) = −1 + α

2
.

For the LEV model

yit = αyi,t−1 + ηi + vit,

the OLS estimator is given by

bαlOLS = α+
y0t−1ut
y0t−1yt−1

,

and the limiting bias of the OLS estimator is given by

plim (bαlOLS − α) = (1− α)

σ2η
σ2v

σ2η
σ2v
+ 1−α

1+α

which reduces to plim (bαlOLS − α) = (1− α2) /2 when σ2η = σ2v. The asymptotic absolute

bias of bαlOLS is therefore (much) smaller than that of bαdOLS for high values of α.

Using (16) we can approximate the bias of the 2SLS estimator in the DIF model by

E (bαd)− α ≈ (kz − 2) σ∆u,d

σ2d
/E (μd) = (t− 4)

σ∆u,d

σ2d
/E (μd) , (18)

where we have suppressed the subscripts t for ease of exposition, and where

σ∆u,d = E
¡¡
∆yi,t−1 − yt−2i πd

¢
∆uit

¢
= −σ2v.

Therefore

E (bαd)− α ≈ − (t− 4)σ2v/
nσ2v

(1 + α)2

Ã
1− α2 − σ2η (1 + α)2

σ2v + σ2η
¡
t− 3 + 1+α

1−α
¢!

= − (t− 4) (1 + α)2

n

µ
1− α2 − σ2η(1+α)

2

σ2v+σ
2
η(t−3+ 1+α

1−α)

¶ ,
15



where we have used the expressions for σ2d and E(μd) from the Appendix. Equivalently

for the LEV model we get

E (bαl)− α ≈ (t− 4) σu,l
σ2l

/E (μl) (19)

with

σu,l = E
¡¡
yi,t−1 −∆yt−1i πl

¢
uit
¢
=

σ2η
1− α

,

and therefore

E (bαl)− α ≈ (t− 4)σ2η
1− α

/
n (t− 2)σ2v

(1 + α) ((t− 1)− (t− 3)α)
=

t− 4
t− 2

σ2η
σ2v

(1 + α) ((t− 1)− (t− 3)α)
n (1− α)

.

Comparing these expressions is somewhat complicated but when σ2η = σ2v the absolute

bias of the LEV 2SLS estimator will tend to be smaller than that of the DIF estimator.

The main reason for this is that the absolute LEV OLS bias is smaller than the DIF OLS

bias.

To answer the second question we now consider relative bias. Combining the results

above on absolute OLS and 2SLS bias we get for the approximate relative absolute bias

RelBiasd =
|E (bαd)− α|
|E (bαdOLS − α)| ≈

(t− 4)E ¡ 1
n
μd
¢
+ 1

E (μd)

= 2 (t− 4) (1 + α)

n

µ
1− α2 − σ2η(1+α)

2

σ2v+σ
2
η(t−3+ 1+α

1−α)

¶ ,
and

RelBiasl =
|E (bαl)− α|
|E (bαlOLS − α)| ≈

(t− 4)E ¡ 1
n
μl
¢
+ 1

E (μl)

=
t− 4
t− 2

³
σ2η
σ2v
+ 1−α

1+α

´
(1 + α) ((t− 1)− (t− 3)α)

n (1− α)2
.

When σ2η = σ2v we have that E
¡
1
n
μd
¢
= E

¡
1
n
μl
¢
and we expect therefore that the relative

biases are the same for the DIF and LEV 2SLS estimators. Indeed this is the case and

16



it amounts to

RelBiasd = RelBiasl ≈ 2 (t− 4)
t− 2

((t− 1)− (t− 3)α)
n (1− α)2

.

Finally, as mentioned in Section 3, the finite sample behaviour of the Wald test

depends on the magnitude of the concentration parameter, the number of instruments

and the correlation between the model errors. It is easily verified that ρ2∆u,d = ρ2u,l when

σ2η = σ2v and therefore the size distortions of the Wald test will be the expected to be

same for the DIF and LEV estimators in that case. When σ2η < σ2v we have that both

E(μd) < E(μl) and that ρ
2
∆u,d > ρ2u,l, and therefore the Wald size distortion is expected

to be smaller for the LEV estimator in that case. It is expected to be smaller for the

DIF estimator when σ2η > σ2v as then both E(μd) > E(μl) and ρ2∆u,d < ρ2u,l.

4.2 System Estimator

For the cross-section at time t the SYS estimator combines the moment conditions of the

DIF and LEV estimators. The OLS estimator in the SYS "model"µ
∆yit
yit

¶
= α

µ
∆yi,t−1
yi,t−1

¶
+

µ
∆uit
uit

¶
(20)

is given by

bαsOLS =
¡
∆y0t−1∆yt−1 + y0t−1yt−1

¢−1 ¡
∆y0t−1∆yt + y0t−1yt

¢
and is clearly a weighted average of the DIF and LEV OLS estimators

bαsOLS = eγbαdOLS + (1− eγ) bαlOLS

where

eγ = ∆y0t−1∆yt−1
∆y0t−1∆yt−1 + y0t−1yt−1

and

plim (eγ) = 1− α
3
2
− α+ 1

2

σ2η
σ2v

1+α
1−α

.
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The bias of the OLS estimator will therefore behave like the bias of the LEV OLS

estimator when α → 1 and/or σ2η/σ
2
v → ∞, as eγ → 0 in these cases. The asymptotic

bias of bαsOLS is given by

plim (bαsOLS − α) =
(1− α2)

³
α− 1 + σ2η

σ2v

´
(3− 2α) (1− α) +

σ2η
σ2v
(1 + α)

.

We can express the limiting bias of the SYS OLS estimator as

plim (bαsOLS)− α =
(σ∆u,d + σul) / (σ

2
d + σ2l )

E
¡
1
n
μs
¢
+ 1

where

E

µ
1

n
μs

¶
= φE

µ
1

n
μd

¶
+ (1− φ)E

µ
1

n
μl

¶
and

φ =
σ2d

(σ2d + σ2l )
.

When σ2η = σ2v, we have then that E
¡
1
n
μs
¢
= E

¡
1
n
μd
¢
= E

¡
1
n
μl
¢
. As

σ∆u,d + σul =
σ2η
1− α

− σ2v

we see that the absolute SYS OLS bias is then (substantially) smaller than the DIF and

LEV OLS biases, and equal to 0 when α = 0.

Figure 2 shows the asymptotic biases of the DIF, LEV and SYS OLS estimators as a

function of α for different values of σ2η/σ
2
v =

©
1
4
, 1, 4

ª
. It is clear from this picture that

the LEV and SYS OLS biases are much smaller than the DIF OLS bias for higher values

of α.

The SYS 2SLS estimator for cross section t is also a weighted average of the DIF and

LEV cross sectional 2SLS estimators

bαs = eδbαd +
³
1− eδ´ bαl

where eδ = bπ0dZ 0
dZdbπdbπ0dZ 0

dZdbπd + bπ0lZ 0
lZlbπl ,

18



Figure 2: Asymptotic biases of OLS estimators, vr = σ2η/σ
2
v =

©
1
4
, 1, 4

ª
.

see also Blundell, Bond and Windmeijer (2000), with

plim
³eδ´ = E

¡
1
n
μd
¢

E
¡
1
n
μd
¢
+

σ2l
σ2d
E
¡
1
n
μl
¢

and again eδ → 0 if α → 1 and/or σ2η/σ
2
v → ∞. Clearly, the absolute bias of the SYS

2SLS estimator will be smaller than the maximum of the absolute biases of the DIF and

LEV 2SLS estimators.

Combining the results of the OLS biases, values of the concentration parameters in

the DIF and LEVmodels and relative weights on the DIF and LEVmoment conditions in

the SYS 2SLS estimator, we expect the absolute bias of the SYS estimator to be small for

large values of α, but that this bias is an increasing function of σ2η
σ2v
. This happens because

the bias of the LEV OLS estimator is an increasing function of σ
2
η

σ2v
, the LEV concentration

parameter a decreasing function of σ2η
σ2v
, and the weight

³
1− eδ´ an increasing function in

σ2η
σ2v
, implying that more weight will be given to the LEV moment conditions.

The definition of μs above suggest a concentration parameter equivalent for the SYS
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model given by

μs =
π0dZ

0
dZdπd + π0lZ

0
lZlπl

σ2d + σ2l
.

However, in this case the value of μs does not directly convey the magnitude of the bias

of the 2SLS estimator, relative to the bias of the OLS estimator. This is due to the

additional covariance terms of the reduced form errors d and l. As in (15), consider the

approximation

E
¡
n1/2 (bαs − α)

¢ ≈ E

µ
π0dzd,∆u + π0lzl,u
π0dQdπd + π0lQlπl

¶
+n−1/2E

µ
z0d,dQdzd,∆u + z0l,lQlzl,u

π0dQdπd + π0lQlπl

¶
−2n−1/2E

Ã
(π0dzd,d + π0lzl,l) (π

0
dzd,∆u + π0lzl,u)

(π0dQdπd + π0lQlπl)
2

!
,

where za,b = 1√
n
Z 0ab. We then get the approximate bias expression for the SYS 2SLS

estimator:

E (bαs)− α ≈ 1

n

(t− 2) (σ∆u,d + σul)

π0dQdπd + π0lQlπl
(21)

−2
n

σ2η/ (1− α)π0lQlπl − σ2vπ
0
dQdπd

(π0dQdπd + π0lQlπl)
2

−2
n
E

Ã
(π0dzd,d) (π

0
lzl,u) + (π

0
lzl,l) (π

0
dzd,∆u)

(π0dQdπd + π0lQlπl)
2

!

We calculate this approximate bias expression and the associated relative bias for the

Monte Carlo simulation example in the next section, where it is shown that the relative

bias of the SYS estimator is smaller than that of the LEV or DIF estimator when σ2η = σ2v

even though in that case E(μd) = E(μl) = E(μs).

Clearly, the SYS 2SLS estimator is not efficient as there is heteroskedasticity and

correlation between the errors in model (20). We will focus on the 2SLS estimator here

in the cross-section analysis and consider the efficient 2-step GMM estimator below when

considering the full panel data analysis.
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4.3 Some Monte Carlo Results

To investigate the finite sample behaviour of the estimators and Wald test statistics

we conduct the following Monte Carlo experiment. We compute the OLS and 2SLS

estimators for LEV, DIF and SYS for the cross section t = 6 for the model specification

yi1 =
ηi

1− α
+ εi;

yit = αyi,t−1 + ηi + vit;

εi ∼ n

µ
0,

σ2v
1− α2

¶
; ηi ∼ N

¡
0, σ2η

¢
; vit ∼ N

¡
0, σ2v

¢
,

for sample size n = 200; σ2v = 1, and different values of α = {0.4, 0.8} and σ2η =
©
1
4
, 1, 4

ª
.

Note that in this design results depend only on the relative value vr = σ2η/σ
2
v, not the

total variance σ2η + σ2v. There are 4 instruments for the DIF and LEV 2SLS estimators,

whereas the SYS 2SLS estimator is in this cross-sectional case based on the 8 combined

moment conditions. Tables 1 and 2 present the estimation results for 10, 000Monte Carlo

replications.

The results in Tables 1 and 2 confirm the findings and conjectures stated in the

previous sections. The DIF OLS (absolute) bias is larger than the LEV OLS bias in all

cases, especially when the series are more persistent when α = 0.8. The relative biases of

the DIF and LEV 2SLS estimators are, however, the same when vr = σ2η/σ
2
v = 1. These

relative biases are equal to 0.052 and 0.057 respectively when α = 0.4, in which case

the expected concentration parameters are equal to 46.75. The relative biases are larger,

0.310 and 0.312 respectively when α = 0.8. For this case the expected concentration

parameters are much smaller and equal to 6.35, which corresponds to a first-stage F-

statistic of 6.35/4 = 1.58.

The relative bias of the DIF 2SLS estimator does not vary much with the different

values of vr when α = 0.4, whereas that of the LEV 2SLS estimator does. It is only

0.029 when vr = 1/4, but increases to 0.169 when vr = 4. These are exactly in line with
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the larger variation in the values of the expected concentration parameter for the LEV

model. They are 132.7 when vr = 1/4 and 13.0 when vr = 4, compared to 58.1 and 42.3

respectively for the DIF model. The absolute bias of the DIF 2SLS estimator is smaller

than that of the LEV 2SLS one when vr = 4, but larger in the other cases.

When α = 0.8, there is a similar pattern to the results of the relative biases. For the

LEV 2SLSmodel it now decreases to 0.11 when vr = 1/4, with the expected concentration

parameter equal to 20.9. It increases to 0.68 when vr = 4 and the expected concentration

parameter is only 1.68. As explained before, we see that the weak instrument problem

for the LEV moment conditions, given α, becomes more severe with increasing vr. As

both the OLS bias and the relative bias increase with increasing vr, so does the absolute

bias of the 2SLS estimator. When α = 0.8, the absolute bias of the LEV 2SLS estimator

ranges from 0.015 when vr = 1/4 to 0.132 when vr = 4.

The SYS 2SLS estimator has a slightly smaller relative bias than the DIF and LEV

ones when vr = 1. It is 0.03 when α = 0.4 and 0.24 when α = 0.8. Unlike the results for

the LEV 2SLS estimator, the relative bias actually increases when vr = 1/4, although

the absolute bias is quite small, especially when α = 0.8. The relative bias is quite large

in that case because the bias of the SYS OLS estimator is very small. When vr = 4 the

relative and absolute biases of the SYS 2SLS estimator are similar to that of the LEV

2SLS estimator, albeit slightly smaller.

Table 2 further shows that the higher order bias and relative 2SLS bias approximations

calculated from (16) and (17) for DIF and LEV and from (21) for SYS are very accurate.

The exception is when the concentration parameter is very small for LEV when α = 0.8

and vr = 4. Then the bias approximations indicate too high a bias for LEV and SYS.

Figures 3 and 4 display p-value plots for the Wald test for testing H0 : α = α0 with

α0 the true parameter value. When vr = 1, the size properties of the Wald tests based

on the DIF and LEV 2SLS estimates are virtually identical, which is as expected as the
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Table 1: Cross Section Estimation Results for n = 200 and t = 6

DIF LEV SYS
α vr Coeff StDev Coeff StDev Coeff StDev
0.4 1/4 OLS -0.300 0.067 0.621 0.056 0.224 0.057

2SLS 0.370 0.173 0.406 0.092 0.389 0.081
E (μ) 58.06 132.7

1 OLS -0.301 0.067 0.820 0.041 0.523 0.049
2SLS 0.364 0.189 0.424 0.113 0.404 0.095
E (μ) 46.75 46.75

4 OLS -0.301 0.067 0.942 0.024 0.812 0.029
2SLS 0.360 0.197 0.492 0.157 0.462 0.122
E (μ) 42.31 13.02

0.8 1/4 OLS -0.100 0.070 0.938 0.025 0.824 0.028
2SLS 0.597 0.404 0.815 0.084 0.793 0.083
E (μ) 9.15 20.92

1 OLS -0.100 0.070 0.980 0.014 0.938 0.015
2SLS 0.521 0.464 0.856 0.092 0.834 0.090
E (μ) 6.35 6.35

4 OLS -0.100 0.070 0.995 0.007 0.983 0.007
2SLS 0.484 0.485 0.932 0.085 0.917 0.079
E (μ) 5.45 1.68

Notes: Means and standard deviations of 10,000 estimates. vr = σ2η/σ
2
v .
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Table 2: Bias approximations n = 200 and t = 6

DIF LEV SYS
α vr Bias RelBias Bias RelBias Bias RelBias
0.4 1/4 -0.030 0.043 0.006 0.029 -0.011 0.063

-0.031 0.044 0.006 0.025 -0.012 0.068
1 -0.036 0.052 0.024 0.057 0.004 0.031

-0.037 0.053 0.022 0.053 0.003 0.021
4 -0.039 0.057 0.092 0.169 0.062 0.151

-0.040 0.057 0.089 0.164 0.065 0.157
0.8 1/4 -0.203 0.225 0.015 0.109 -0.007 0.314

-0.206 0.229 0.015 0.106 -0.010 0.403
1 -0.279 0.310 0.056 0.312 0.034 0.243

-0.293 0.325 0.059 0.325 0.033 0.241
4 -0.316 0.351 0.132 0.681 0.117 0.640

-0.339 0.377 0.234 1.203 0.208 1.140

Notes: Mean bias and relative bias from 10,000 estimates. RelBias=
¯̄̄bα2SLS − α

¯̄̄
/
¯̄̄bαOLS − α

¯̄̄
.

Higher order bias approximations in italics. vr = σ2η/σ
2
v.

concentration parameters are equal in expectation as are the correlation coefficients of

the model errors. It is also clear that when α = 0.8, the size properties of the Wald

tests are very poor, with a large overrejection of the null reflecting the low value of the

concentration parameters. The size properties of the Wald test based on the SYS 2SLS

estimation results are better than those based on the DIF and LEV 2SLS results, but

again very poor when α = 0.8. When vr = 1/4 the size properties of the Wald tests

based on the LEV and SYS 2SLS estimation results are quite good, even when α = 0.8,

whereas they are very poor when vr = 4. The Wald test results based on the DIF 2SLS

estimates are not very sensitive to the value of vr. These results are again in line with

expectation given the results of the previous section.

24



Figure 3: P-value plots, Wald test, H0 : α = 0.4; vr = σ2η/σ
2
v.
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Figure 4: P-value plots, Wald test, H0 : α = 0.8; vr = σ2η/σ
2
v.
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4.4 Mean Stationarity Only

In all the derivations so far we assumed covariance stationarity of the initial condition.

When we assume mean stationarity only, i.e.

yi1 =
ηi

1− α
+ εi

with E (ε2i ) = σ2ε, we show in the Appendix that for t = 3

E

µ
1

n
μl3

¶
> E

µ
1

n
μd3

¶
if σ2ε <

σ2v
1− α2

E

µ
1

n
μl3

¶
< E

µ
1

n
μd3

¶
if σ2ε >

σ2v
1− α2

,

so that, when t = 3, the expected concentration parameter for the LEV model is larger

than that of the DIF model when the variance of the initial condition is smaller than the

covariance stationary level and vice versa.

5 Panel Data Analysis

The concept of the concentration parameter and its relationship to relative bias and size

distortion of the Wald test does not readily extend itself to general GMM estimation,

see e.g. Stock and Wright (2000) and Han and Phillips (2006). Estimation of the panel

AR(1) model by 2SLS, using all available time periods and the full set of sequential

moment conditions for the DIF and SYS models (6) and (12) will result in a weighted

average of the period specific 2SLS estimates. Weighting by the efficient weight matrix

will lead to different results, but we expect the weak instrument issues as documented in

the previous section for the DIF and LEV cross-sectional estimates to carry over to the

linear GMM estimation. This is indeed confirmed by our Monte Carlo results presented

here.

Tables 3 and 4 presents Monte Carlo estimation results for the AR(1) model with

normally distributed ηi and vi, with n = 200, T = 6, α = 0.8 and vr = (0.25, 1, 4). We
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Table 3: Panel Data Estimation Results, n = 200, T = 6, α = 0.8

DIF LEV SYS
Coeff StDev Coeff StDev Coeff StDev

vr = 1/4
OLS -0.100 0.033 0.938 0.011 0.824 0.018
2SLS 0.581 0.162 0.812 0.056 0.779 0.074
1-step 0.734 0.131 0.798 0.067
2-step 0.734 0.140 0.812 0.060 0.797 0.060
vr = 1
OLS -0.100 0.033 0.980 0.006 0.938 0.009
2SLS 0.469 0.212 0.850 0.068 0.813 0.079
1-step 0.672 0.181 0.830 0.073
2-step 0.664 0.201 0.844 0.042 0.818 0.068
vr = 4
OLS -0.100 0.033 0.995 0.003 0.983 0.004
2SLS 0.401 0.240 0.924 0.069 0.889 0.075
1-step 0.618 0.213 0.900 0.070
2-step 0.601 0.241 0.913 0.079 0.884 0.079

Note: Means and standard deviations of 10,000 estimates.

Table 4: Bias and Relative Bias, α = 0.8, T = 6

DIF LEV SYS
vr Bias RelBias Bias RelBias Bias RelBias
1/4 -0.219 0.244 0.012 0.086 -0.021 0.887
1 -0.331 0.367 0.050 0.279 0.013 0.093
4 -0.399 0.443 0.124 0.637 0.089 0.488

Notes: Mean and relative bias from 10,000 estimates. RelBias=
¯̄̄bα2SLS − α

¯̄̄
/
¯̄̄bαOLS − α

¯̄̄
.
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Figure 5: P-value plots, Wald test, H0 : α = 0.8, T = 6; vr = σ2η/σ
2
v.
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present 2SLS and 1-step and 2-step GMM estimation results. We use for the initial weight

matrix for the 1-step GMM DIF estimator Wn =
Pn

i=1 Z
0
diAZdi where A is a (T − 2)

square matrix that has 2s on the main diagonal, −1s on the first subdiagonals, and zeros
elsewhere. This is the efficient weight matrix for the DIF moment conditions when the vit

are homoskedastic and not serially correlated, as is the case here. For the 1-step GMM

SYS estimator we use the commonly used initial weight matrix Wn =
Pn

i=1 Z
0
siHZsi

where H is a 2 (T − 2) square matrix

H =

∙
A 0
0 IT−2

¸
,

where IT−2 is the identity matrix of order T − 2.
The pattern of results for the 2SLS estimates is quite similar to that found for the

t = 6 cross-section as reported in Table 1. The DIF 2SLS estimator displays somewhat

larger relative biases, whereas the LEV 2SLS estimator has smaller relative biases than

in the cross-section. SYS has smaller relative and absolute biases at vr = 1 and vr = 4,

but the direction of the biases remain the same.

Use of the efficient initial weight matrix reduces the bias of the 1-step GMM DIF

estimator significantly. This is due to the fact that the comparison bias is now no longer

the OLS bias in the first differenced model, but the bias of the within groups estimator,

which is smaller. There is no clear pattern to the bias of the SYS one- and two-step

GMM estimators in comparison to the 2SLS estimator.

Figure 5 displays the p-value plots of the Wald tests for testing H0 : α = 0.8 based

on the DIF and SYS GMM estimation results, where the Wald tests based on the 2-

step GMM results use the Windmeijer (2005) corrected variance estimates. The pattern

of size properties is very similar to that for the cross-section analysis. The Wald test

based on the SYS GMM estimation results has better size properties than that based on

the DIF GMM estimation results when vr = 0.25, especially for the 1-step SYS GMM

estimator. The size behaviours are very similar when vr = 1, but the SYS Wald tests
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size properties are much worse than that of the DIF Wald tests when vr = 4.

As for the cross-sectional SYS estimator, we can start with the bias of the panel DIF

OLS estimator in order to obtain a suggestion for a concentration parameter.

plim (bαdOLS)− α =
− (T − 2)σ2vPT

t=3 π
0
dtQdtπdt +

PT
t=3 σ

2
dt

,

suggesting a concentration parameter defined as

μd =

PT
t=3 π

0
dtZ

0
dtZdtπdtPT

t=3 σ
2
dt

.

For the 2SLS bias we get

E
¡
n1/2 (bαd − α)

¢ ≈ E

µ
π0dzd,∆u

π0dQdπd

¶
+n−1/2

Ã
E

µ
z0d,dQdzd,∆u

π0dQdπd

¶
− 2E

Ã
(π0dzd,d) (π

0
dzd,∆u)

(π0dQdπd)
2

!!
,

E (bαd)− α ≈ −1
n

((T − 1) (T − 2) /2− 2)σ2v
π0dQdπd

−2
n
E

ÃPT
t=3

P
j 6=t (π

0
dtzd,dt)

¡
π0djzd,∆uj

¢
(π0dQdπd)

2

!

As before for the SYS cross-sectional 2SLS estimator, the concentration parameter μpd

does not convey all the information concerning the relative bias of the 2SLS estimator, due

to the additional covariance terms in the expansion. Equivalent results can be obtained

for the panel LEV and panel SYS 2SLS estimators. For the efficient one-step panel DIF

GMM estimator, similar expansions can be derived, but now for the model where the

individual data in the model is premultiplied by A−1/2, but the instruments by A1/2.

5.1 Bias Approximations for Panel 2SLS Estimators

Although the concept of concentration parameter does not automatically extend to panels

it is possible to analyse absolute and relative bias of panel estimators of α. We now
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consider panel IV estimators, i.e. exploiting the identity weight matrix in the definitions

of α̂d and α̂l. Hence, the WN matrix is of the simple form Z 0Z. We analyze the DIF and

LEV panel IV estimators using results from Alvarez and Arellano (2003) and Hayakawa

(2008) respectively. In those studies probability limits of the DIF and LEV panel IV

estimators have been derived assuming both T and N growing large with T/N → c,

0 ≤ c < ∞. Regarding the panel DIF 2SLS estimator from Theorem 4 of Alvarez and

Arellano (2003) we have

plim (α̂d − α) = −1 + α

2

µ
c

2− (1 + α)(2− c)/2

¶
,

while for the panel LEV 2SLS estimator using Theorem 3 of Hayakawa (2007) we have

plim (α̂l − α) =

c
2

σ2η
σ2v

¡
1

1−α
¢

c
2

σ2η
σ2v

¡
1
1−α
¢2
+ 1

1−α2
.

Hence, for both T and N large panel IV estimators are inconsistent. Comparing these

asymptotic 2SLS biases with the limiting biases of OLS (see Section 4.1 for analytical

expressions) we find that for σ2η
σ2v
= 1 relative bias for DIF and LEV is equal and amounts

to
c

c
2
(1 + α) + 1− α

.

Furthermore, relative bias for LEV is larger then DIF when σ2η
σ2v

> 1 and vice versa. Hence,

these results for panel IV estimators mimic the cross-sectional results on relative bias as

discussed in Section 4.

Panel 2SLS estimators can be expressed as a weighted average of period specific 2SLS

estimators. This suggests that cross-section based concentration parameters as derived

in the previous section are also informative about absolute and relative 2SLS bias when

exploiting the whole panel. This conjecture is correct as we will now show. The above

results of Alvarez and Arellano (2003) and Hayakawa (2008) can be interpreted as the

2SLS inconsistency under many instrument asymptotics. Hence, the bias of panel 2SLS
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estimators when the number of instruments is reasonably large can be approximated by

E (α̂d − α) ≈ E
¡
∆y0−1Zd (Z

0
dZd)

−1 Z 0d∆u
¢

E
¡
∆y0−1Zd (Z 0dZd)

−1 Z 0d∆y−1
¢ ,

E (α̂l − α) ≈ E
¡
y0−1Zl (Z

0
lZl)

−1 Z 0lu
¢

E
¡
y0−1Zl (Z 0lZl)

−1 Z 0ly−1
¢ .

The above expressions are basically an evaluation of the expected value of the leading

term (inconsistency) in an asymptotic expansion of the estimation error under many

instruments. In the Appendix we show that

E (α̂d − α) ≈ 0.5(T − 1)(T − 2)σ∆u,dPT
t=3 σ

2
dt (E (μdt) + (t− 2))

,

E (α̂l − α) ≈ 0.5(T − 1)(T − 2)σu,lPT
t=3 σ

2
lt (E (μlt) + (t− 2))

.

Indeed cross-section specific concentration parameters appear in these bias approx-

imations. Although analytically no tractable expression results it is interesting that

regarding relative bias numerically the same pattern as in the pure cross-section case

emerges. In other words, relative bias for panel DIF is larger than for panel LEV when

σ2η < σ2v and vice versa. And when the variance ratio σ
2
η/σ

2
v is equal to 1 we have that

the relative biases for the estimators are equal.

Regarding the panel SYS 2SLS estimator we can proceed in a similar way and evaluate

E (α̂s − α) ≈ E
¡
q0−1Zs (Z

0
sZs)

−1 Z 0sp
¢

E
¡
q0−1Zs (Z 0sZs)

−1 Z 0sq−1
¢ .

In the Appendix we show that

E (α̂s − α) ≈ 0.5(T − 1)(T − 2)σ∆u,d + (T − 2)σu,lPT
t=3 σ

2
dt(E (μdt) + (t− 2)) +

PT
t=3 σ

2
lt(E (μlt) + 1)

.

We expect the bias approximations of the panel IV estimators to work well when at

least T is moderately large compared with N . Table 5 presents estimation results for

the panel data Monte Carlo exercise when T = 15. Table 6 further presents the bias
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Table 5: Panel Data Estimation Results, n = 200, T = 15, α = 0.8

DIF LEV SYS
Coeff StDev Coeff StDev Coeff StDev

vr = 1/4
OLS -0.100 0.019 0.938 0.007 0.824 0.014
2SLS 0.426 0.069 0.828 0.024 0.730 0.041
1-step 0.767 0.034 0.793 0.029
2-step 0.766 0.039 0.822 0.027 0.796 0.027
vr = 1
OLS -0.100 0.019 0.980 0.003 0.938 0.006
2SLS 0.374 0.075 0.880 0.027 0.776 0.043
1-step 0.757 0.040 0.819 0.031
2-step 0.754 0.046 0.866 0.032 0.816 0.030
vr = 4
OLS -0.100 0.019 0.995 0.001 0.983 0.002
2SLS 0.355 0.078 0.946 0.023 0.868 0.039
1-step 0.751 0.042 0.882 0.031
2-step 0.748 0.048 0.935 0.031 0.877 0.033

Notes: Means and standard deviations of 10,000 estimates; vr = σ2η/σ
2
v.

approximations. As expected, we now find that the relative biases of the DIF and LEV

estimators are virtually identical for T = 15. We also include those for T = 6. These

results corroborate our large T theoretical findings, with reasonable approximations even

when T = 6, especially for DIF.

6 Conclusions

We have shown that the concentration parameters in the reduced forms of the DIF

and LEV cross-sectional models are the same in expectation when the variances of the

unobserved heterogeneity (σ2η) and idiosyncratic errors (σ
2
v) are the same in the covariance

stationary AR(1) model. The LEV concentration parameter is smaller than the DIF one

if σ2η > σ2v and it is larger if σ
2
η < σ2v. Therefore, the well-understood weak instrument

problem in the DIF model also applies to the LEV model, especially when σ2η ≥ σ2v,
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Table 6: Panel Bias Approximations, α = 0.8

DIF LEV SYS
T vr Bias RelBias Bias RelBias Bias RelBias
6 1/4 -0.219 0.244 0.012 0.086 -0.021 0.887

-0.227 0.252 0.023 0.164 -0.017 0.673
1 -0.331 0.367 0.050 0.279 0.013 0.093

-0.339 0.377 0.068 0.377 0.028 0.203
4 -0.399 0.443 0.124 0.637 0.089 0.488

-0.407 0.453 0.134 0.691 0.107 0.583
15 1/4 -0.374 0.416 0.028 0.200 -0.070 2.960

-0.376 0.418 0.031 0.227 -0.069 2.813
1 -0.426 0.473 0.080 0.445 -0.024 0.174

-0.428 0.475 0.086 0.475 -0.020 0.145
4 -0.445 0.495 0.146 0.752 0.068 0.370

-0.447 0.497 0.150 0.770 0.075 0.409

Notes: Mean and relative bias from 10,000 estimates. RelBias=
¯̄̄bα2SLS − α

¯̄̄
/
¯̄̄bαOLS − α

¯̄̄
. Bias

approximations in italics. vr = σ2η/σ
2
v.

with both concentration parameters decreasing in value with increasing persistence of

the data series. The weak instrument problem does manifest itself in the magnitude of

the bias of 2SLS relative to that of OLS, which we show are equal for DIF and LEV when

σ2η = σ2v. The LEV 2SLS estimator has a smaller finite sample performance in terms of

bias though, because the OLS bias of the LEV structural equation is smaller than that

of DIF, especially when the series are persistent. The weak instrument problem further

manifests itself in poor performances of the Wald tests, which we show to have the same

size distortions in the DIF and LEV models when σ2η = σ2v. Although our theoretical

results do not apply automatically to GMM based inference (Kiviet (2008)) we show by

simulation that these properties generalise to the system GMM estimator.

Having established this potential weak instrument problem for the system GMM

estimator, for inference one should therefore consider use of testing procedures that are

robust to the weak instruments problem. The Kleibergen (2005) Lagrange Multiplier test

and his GMM extension of the Conditional Likelihood Ratio test of Moreira (2003) are
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possible candidates, as is the Stock and Wright (2000) GMM version of the Anderson-

Rubin statistic. Newey and Windmeijer (2009) show that the behaviours of these test

statistics are not only robust to weak instrument asymptotics, they are also robust to

many weak instrument asymptotics, where the number of instruments grow with the

sample size, but with the model bounded away from non-identification. Newey and

Windmeijer (2009) also propose use of the continuous updated GMM estimator (CUE,

Hansen, Heaton and Yaron (1996)) with a new variance estimator that is valid under

many weak instrument asymptotics. They show that the Wald test using the CUE

estimation results and their proposed variance estimator performs well in a static panel

data model estimated in first differences. As the number of potential instruments in this

panel data setting grow quite rapidly with the time dimension of the panel, this may be

a sensible approach also for the system moment conditions.

As a final remark, the direction of the biases of the DIF (downward) and LEV (up-

ward) GMM estimators in the AR(1) panel data model are quite specific to this model

specification. In different models these biases may be different and the SYS GMM esti-

mator may have a larger absolute bias than the DIF GMM estimator. For example in

the static panel data model

yit = xitβ + ηi + vit

xit = ρxi,t−1 + γηi + δvit + wit

the DIF GMM estimator may have a smaller finite sample bias than the SYS GMM

estimator when the xit series are persistent, but |δ| is small and |γ| is large, as then the
endogeneity problem and OLS bias in the DIF model may be less than that of the LEV

model.

36



Acknowledgements

We are grateful for helpful comments by Steve Bond, Jan Kiviet, Jon Temple and two

anonymous referees.

References

[1] Alvarez, J. and M. Arellano (2003). The Time Series and Cross-Section Asymptotics

of Dynamic Panel Data Estimators. Econometrica 71, 1121-1159.

[2] Arellano, M. and S. Bond (1991). Some Tests of Specification for Panel Data: Monte

Carlo Evidence and an Application to Employment Equations. Review of Economic

Studies 58, 277-298.

[3] Arellano, M. and O. Bover (1995). Another Look at the Instrumental Variable

Estimation of Error-Components Models. Journal of Econometrics 68, 29-51.

[4] Blundell, R. and S. Bond (1998). Initial Conditions and Moment Restrictions in

Dynamic Panel Data Models. Journal of Econometrics 87, 115-143.

[5] Blundell, R.W., S.R. Bond and F. Windmeijer (2000). Estimation in Dynamic Panel

Data Models: Improving on the Performance of the Standard GMM Estimator. In

B. Baltagi (Ed.), Nonstationary Panels, Panel Cointegration, and Dynamic Panels,

Advances in Econometrics 15, 53-91, New York: JAI Press, Elsevier Science.

[6] Bond, S.R., A. Hoeffler and J. Temple (2001). GMMEstimation of Empirical Growth

Models. Working Paper, University of Oxford.

[7] Bond, S.R. and F. Windmeijer (2005). Reliable Inference for GMM Estimators? Fi-

nite Sample Properties of Alternative Test Procedures in Linear Panel Data Models.

Econometric Reviews 24, 1-37.

37



[8] Bound, J., D.A. Jaeger and R.M. Baker (1995). Problems with Instrumental Vari-

ables Estimation when the Correlation between the Instruments and the Endogenous

Explanatory Variable is Weak. Journal of the American Statistical Association 90,

443-450.

[9] Bun, M.J.G. and J.F. Kiviet (2006). The Effects of Dynamic Feedbacks on LS

and MM Estimator Accuracy in Panel Data Models. Journal of Econometrics 132,

409-444.

[10] Buse, A. (1992). The Bias of Instrumental Variable Estimators. Econometrica 60,

173-180.

[11] Griffith, R., R. Harrison and J. Van Reenen (2006). How Special is the Special

Relationship? Using the Impact of U.S. R&D Spillovers on U.K. Firms as a Test of

Technology Sourcing. The American Economic Review 96, 1859-1875.

[12] Hahn, J. and J. Hausman (2002). Note on Bias in Estimators for Simultaneous

Equation Models. Economics Letters 75, 237-241.

[13] Hahn, J. and G. Kuersteiner (2002). Discontinuities of Weak Instrument Limiting

Distributions. Economics Letters 75, 325-331.

[14] Han, C. and P.C.B. Phillips (2006). GMM with Many Moment Conditions. Econo-

metrica 74, 147-192.

[15] Hansen, L.P., J. Heaton and A. Yaron (1996). Finite-Sample Properties of Some

Alternative GMM Estimators. Journal of Business and Economic Statistics 14,

262-280.

[16] Hayakawa, K. (2007). Small Sample Bias Properties of the System GMM Estimator

in Dynamic Panel Data Models. Economics Letters 95, 32-38.

38



[17] Hayakawa, K. (2008). The Asymptotic Properties of the System GMM Estimator

in Dynamic Panel Data Models When Both N and T are Large. mimeo, Hiroshima

University.

[18] Kiviet, J.F. (2007). Judging Contending Estimators by Simulation: Tournaments

in Dynamic Panel Data Models. In G.D.A. Phillips and E. Tzavalis (Eds.), The

Refinement of Econometric Estimation and Test Procedures, 282-318, Cambridge

University Press.

[19] Kiviet, J.F. (2008). Strength and Weakness of Instruments in IV and GMM Esti-

mation of Dynamic Panel Data Models. Working Paper, University of Amsterdam.

[20] Kleibergen, F. (2005). Testing Parameters in GMM Without Assuming They are

Identified. Econometrica 73, 1103-1123.

[21] Kruiniger, H. (2009). GMM Estimation and Inference in Dynamic Panel Data Mod-

els with Persistent Data. Forhtcoming in Econometric Theory.

[22] Levine, R., N. Loayza and T. Beck (2000). Financial Intermediation and Growth:

Causality and Causes. Journal of Monetary Economics 46, 31-77.

[23] Levinsohn, J. and A. Petrin (2003). Estimating Production Functions Using Inputs

to Control for Unobservables. Review of Economic Studies 70, 317-341.

[24] Moreira, M. (2003). A Conditional Likelihood Ratio Test for Structural Models.

Econometrica 71, 1027-1048.

[25] Morimune, K. (1989). t Test in a Structural Equation. Econometrica 57, 1341-1360.

[26] Nagar, A.L. (1959). The Bias and Moment Matrix of the General k-class Estimators

of the parameters in Simultaneous Equations. Econometrica 27, 575-595.

39



[27] Newey, W.K. and F. Windmeijer (2009). GMM with Many Weak Moment Condi-

tions. Econometrica 77, 687-719

[28] Picone, G.A., F. Sloan and J.G. Trogdon (2004). The Effect of the Tobacco Settle-

ment and Smoking Bans on Alcohol Consumption. Health Economics 13, 1063-1080.

[29] Ridder, G. and T. Wansbeek (1990). Dynamic Models for Panel Data. In F. van

der Ploeg (Ed.), Advanced Lectures in Quantitative Economics, 557-582. London:

Academic Press.

[30] Rothenberg, T.J. (1984). Approximating the Distributions of Econometric Estima-

tors and Test Statistics. In Z. Griliches and M.D. Intriligator (Eds.), Handbook of

Econometrics, Volume 2, 881-935. Amsterdam: North Holland.

[31] Staiger, D. and J.H. Stock (1997). Instrumental Variables Regression with Weak

Instruments. Econometrica 65, 557-586.

[32] Stock, J.H. and J.H. Wright (2000). GMM with Weak Identification. Econometrica

68, 1055-1096.

[33] Stock, J.H., J.H. Wright and M. Yogo (2002). A Survey of Weak Instruments and

Weak Identification in Generalized Method of Moments. Journal of Business &

Economic Statistics 20, 518-529.

[34] Stock, J.H. and M. Yogo (2005). Testing for Weak Instruments in Linear IV Regres-

sion. In D.W.K. Andrews and J.H. Stock (Eds.), Identification and Inference for

Econometric Models, Essays in Honor of Thomas Rothenberg, 80-108. New York:

Cambridge University Press.

[35] Windmeijer, F. (2005). A Finite Sample Correction for the variance of Linear Effi-

cient Two-Step GMM Estimators. Journal of Econometrics 126, 25-517.

40



Appendix

A.1 Concentration Parameters in Cross-Section Analysis

The model in first differences for the cross-section at time t is given by

∆yit = α∆yi,t−1 +∆uit

∆yi,t−1 = yt−20i πdt + di,t−1.

For the general expression of the expected value of the concentration parameter divided

by n we get

E

µ
1

n
μdt

¶
=

π0dtE
¡
yt−2i yt−20i

¢
πdt

σ2dt

but as

πdt =
£
E
¡
yt−2i yt−20i

¢¤−1
E
¡
yt−2i ∆yi,t−1

¢
and

σ2dt = E
³¡

∆yi,t−1 − yt−20i πdt
¢2´

we get

E

µ
1

n
μdt

¶
=

¡
E
¡
yt−2i ∆yi,t−1

¢¢0 £
E
¡
yt−2i yt−20i

¢¤−1
E
¡
yt−2i ∆yi,t−1

¢
E
¡
∆y2i,t−1

¢− ¡E ¡yt−2i ∆yi,t−1
¢¢0 £

E
¡
yt−2i yt−20i

¢¤−1
E
¡
yt−2i ∆yi,t−1

¢ .
Under covariance stationarity

E
¡
yt−2i yt−20i

¢
=

σ2η

(1− α)2
ιt−2ι0t−2 +

σ2v
1− α2

Gt−2

where

Gt−2 =

⎡⎢⎢⎢⎣
1 α · · · αt−3

α 1
...

...
. . . α

αt−3 · · · α 1

⎤⎥⎥⎥⎦ .
The inverse of E

¡
yt−2i yt−20i

¢
is given by (see e.g. Ridder and Wansbeek (1990))

£
E
¡
yt−2i yt−20i

¢¤−1
=
1

σ2v

"
R0t−2Rt−2 −

σ2ηht−2h
0
t−2

σ2v + σ2η
¡
t− 3 + 1+α

1−α
¢#

41



where

Rt−2 =

⎡⎢⎢⎢⎢⎢⎣
1 −α 0 0
0 1 −α

. . . . . .
1 −α

0 0
√
1− α2

⎤⎥⎥⎥⎥⎥⎦ ; ht−2 = (1− α) ιt−2 + α (e1 + et−2)

and ej is the j-th unit vector of order t− 2.
We further have that

E
¡
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¢
= − σ2v

1 + α
gt−2
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α
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and so
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Further
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2σ2v
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Combining these results in
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n
μdt

¶
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1− α2 − σ2η(1+α)
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σ2v+σ
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.

For the model in levels we have for the cross-section at time t

yit = αyi,t−1 + ηi + vit

yi,t−1 = ∆yt−10i πlt + li,t−1

and the expected concentration parameter is given by
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Again, under covariance stationarity, we have that
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It then follows that
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.

A.2 Mean Stationarity Only

We now relax the assumption of covariance stationarity, while maintaining mean station-

arity, i.e. we specify the initial condition as

yi1 =
ηi

1− α
+ εi

with E (ε2i ) = σ2ε.

For t = 3, we get in this case

πd3 =
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σ2v + (1− α)2 σ2ε + πd3 (1− α) σ2ε
y01y1.

E

µ
1

n
μd3

¶
=

³
(1−α)σ2ε

σ2y1

´2
σ2v + (1− α)2 σ2ε − ((1−α)σ2ε)2

σ2y1

σ2y1

=

((1−α)σ2ε)
2

σ2y1

σ2v + (1− α)2 σ2ε − ((1−α)σ2ε)2
σ2y1

For the levels model we get

πl3 =
E (y2∆y2)

E
¡
(∆y2)

2¢
=

σ2v − α (1− α)σ2ε
σ2v + (1− α)2 σ2ε

and

σ2l3 = E
¡
y22
¢− πl3E (y2∆y2)

=
σ2η

(1− α)2
+ σ2v + α2σ2ε −

(σ2v − α (1− α)σ2ε)
2

σ2v + (1− α)2 σ2ε
.

The concentration parameter is therefore given by

μl3 =
π2l3∆y02∆y2

σ2l3

=

³
σ2v−α(1−α)σ2ε
σ2v+(1−α)2σ2ε

´2
σ2η

(1−α)2 + σ2v + α2σ2ε − (σ2v−α(1−α)σ2ε)2
σ2v+(1−α)2σ2ε

∆y02∆y2

and so

E

µ
1

n
μl3

¶
=

(σ2v−α(1−α)σ2ε)
2

σ2v+(1−α)2σ2ε
σ2η

(1−α)2 + σ2v + α2σ2ε − (σ2v−α(1−α)σ2ε)2
σ2v+(1−α)2σ2ε

.
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Calculating these expectations shows thatE
¡
1
n
μl3
¢
> E

¡
1
n
μd3
¢
if σ2ε <

σ2v
1−α2 andE

¡
1
n
μl3
¢
<

E
¡
1
n
μd3
¢
if σ2ε >

σ2v
1−α2 , i.e. the expected concentration parameter in the levels model is

larger than that of the differenced model if the variance of the initial condition is smaller

than the covariance stationary level and vice versa.

A.3 Bias Approximations for Panel 2SLS Estimators

We will first evaluate the bias approximation for the panel DIF estimator. Note that due

to the block-diagonal structure of the Zdi instrument matrix we have

(Z 0dZd)
−1
= diag

h
(Z 0d3Zd3)

−1
, ..., (Z 0dTZdT )

−1
i
,

where the n× (t− 2) matrix Zdt is yt−2 = (yt−21 , ..., yt−2n )0. Hence, we can write

∆y0−1Zd (Z
0
dZd)

−1
Z 0d∆y−1 =

TX
t=3

∆y0t−1Zdt (Z
0
dtZdt)

−1
Z 0dt∆yt−1,

∆y0−1Zd (Z
0
dZd)

−1
Z 0d∆u =

TX
t=3

∆y0t−1Zdt (Z
0
dtZdt)

−1
Z 0dt∆ut.

Exploiting ∆yt−1 = Zdtπdt + dt−1 and defining Pdt = Zdt (Z
0
dtZdt)

−1 Z 0dt we have

E
³
∆y0t−1Zdt (Z

0
dtZdt)

−1
Z 0dt∆yt−1

´
= π0dtE (Z

0
dtZdt)πdt +E

¡
d0t−1Pdtdt−1

¢
= σ2dt(E (μdt) + (t− 2)).

The expectation of the numerator of the estimation error is

E
³
∆y0t−1Zdt (Z

0
dtZdt)

−1
Z 0dt∆ut

´
= σ∆u,d(t− 2).

Combining results we have

E (α̂d − α) ≈
PT

t=3 σ∆u,d(t− 2)PT
t=3 σ

2
dt(E (μdt) + (t− 2))

=
0.5(T − 1)(T − 2)σ∆u,dPT
t=3 σ

2
dt(E (μdt) + (t− 2))

.
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The bias approximation for the panel LEV estimator can be derived in the same way.

Regarding the SYS estimator we can write

q0−1Zs (Z
0
sZs)

−1
Z 0sq−1 =

TX
t=3

∆y0t−1Zdt (Z
0
dtZdt)

−1
Z 0dt∆yt−1 +

TX
t=3

y0t−1Zlt (Z
0
ltZlt)

−1
Z 0ltyt−1,

q0−1Zs (Z
0
sZs)

−1
Z 0sp =

TX
t=3

∆y0t−1Zdt (Z
0
dtZdt)

−1
Z 0dt∆ut +

TX
t=3

y0t−1Zlt (Z
0
ltZlt)

−1
Z 0ltut.

It should be noted that only the non-redundant LEV moment conditions have been used

in system estimation. In other words, Zli and, hence, Zlt in system estimation are defined

as

Zli =

⎡⎢⎢⎣
∆yi2 0 · · · 0
0 ∆yi3 · · · 0
. . · · · .
0 0 · · · ∆yiT−1

⎤⎥⎥⎦ , Zlt =

⎡⎢⎢⎣
∆y1,t−1
∆y2,t−1

.
∆yn,t−1

⎤⎥⎥⎦ ,
hence we exploit one instrument per period only. As a result we have

E
³
y0t−1Zlt (Z

0
ltZlt)

−1
Z 0ltyt−1

´
= π0ltE (Z

0
ltZlt) πlt +E

¡
l0t−1Pltlt−1

¢
= σ2lt(E (μlt) + 1).

and

E
³
∆y0t−1Zlt (Z

0
ltZlt)

−1
Z 0ltut

´
= σu,l.

Combining results we find

E (α̂s − α) ≈
E
³PT

t=3∆y0t−1Zdt (Z
0
dtZdt)

−1 Z 0dt∆ut +
PT

t=3 y
0
t−1Zlt (Z

0
ltZlt)

−1 Z 0ltut
´

E
³PT

t=3∆y0t−1Zdt (Z 0dtZdt)
−1 Z 0dt∆yt−1 +

PT
t=3 y

0
t−1Zlt (Z 0ltZlt)

−1 Z 0ltyt−1
´

=
0.5(T − 1)(T − 2)σ∆u,d + (T − 2)σu,lPT

t=3 σ
2
dt(E (μdt) + (t− 2)) +

PT
t=3 σ

2
lt(E (μlt) + 1)

.
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