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Abstract

We consider the problem of smoothing data on two-dimensional grids with holes or

gaps. Such grids are often referred to as difficult regions. Since the data is not ob-

served on these locations, the gap is not part of the domain. We cannot apply standard

smoothing methods since they smooth over and across difficult regions. More unfavor-

able properties of standard smoothers become visible when the data is observed on an

irregular grid in a non-rectangular domain. In this paper, we adopt smoothing spline

methods within a state space framework to smooth data on one- or two-dimensional

grids with difficult regions. We make a distinction between two types of missing ob-

servations to handle the irregularity of the grid and to ensure that no smoothing takes

place over and across the difficult region. For smoothing on two-dimensional grids, we

introduce a two-step spline smoothing method. The proposed solution applies to all

smoothing methods that can be represented in a state space framework. We illustrate

our methods for three different cases of interest.
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1 Introduction

In recent years, there is a growing interest in designing methods to smooth data on one-

or two-dimensional grids which contain holes or gaps. Surfaces with holes are referred to

as difficult regions and are often associated with geographical locations. In this paper we

propose new solutions for three problems in smoothing data over difficult regions. Firstly,

obtaining smoothed estimates over a difficult region is not desirable, since the gap is not part

of the domain and no information is available in this area. Standard smoothing methods

however still produce estimates over the difficult region. As a result, most of these methods

cannot be applied unless we modify them in an ad-hoc manner. Secondly, standard methods

tend to smooth across the gap. In most cases it is not preferred to let smoothed values on

one side of the gap depend on observations from the other side. Thirdly, when the grid is

irregular or non-rectangular, most of the smoothing methods are inapplicable as they require

the data to be equidistant and observed on a rectangular domain. Regular and rectangular

domains are not common in practice.

Popular surface smoothing techniques are wavelet smoothing methods, kernel smoothing,

spline smoothing and kriging. Wavelet smoothing is removing high frequencies from the data

by decomposing it into a family of so-called analyzing signals, see Horgan (1999). Kernel

smoothing is based on a kernel function that provide observation weights to obtain smoothed

estimates of the data. We refer to Wand & Jones (1995) for an overview. Spline smoothing

minimizes the squared distance between observed data and a spline function subject to a

roughness penalty, see Kohn & Ansley (1987), Wahba (1990), Hastie & Tibshirani (1990)

and Green & Silverman (1994). A method from the geo-statistics literature is kriging and

is based on a linear least squares technique to estimate smooth functions on grids using

information contained in observed data, see amongst others Cressie (1993).

When the grid is regular and it contains no difficult regions, the aforementioned methods

can be applied straightforwardly. However, problems arise when the grid is irregular or non-

rectangular or contains gaps in the domain. Wavelet smoothing cannot be applied when the

grid is not regular, whereas spline smoothing, kernel smoothing and kriging share the problem

that they cannot smooth around holes. We may employ methods such as finite element L-
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splines, see e.g. Ramsay (2002) or low-rank thin plate splines, see e.g. Kammann & Wand

(2003) and Wang & Ranalli (2007). The method of finite element L-splines partitions the

grid and constructs a polynomial function on each piece of the partition such that the union

of these pieces approximates the real function. Thin plate splines are the two-dimensional

analogue of the one-dimensional cubic splines. The low-rank thin plate splines rely on the

Euclidean distance between geographical locations as a measure of similarity among data

points and construct surface approximations through it. This method has become more

popular since it reduces the computation time to smooth the surface.

The key to our solutions of the three aforementioned problems is the straightforward

treatment of missing observations by means of the state space framework. The first type

of missing observations is used to solve the problem of the irregularity of the grid. We add

pseudo points to the grid to create a regular domain. We consider a second type of missing

observations to handle the presence of the difficult region, such that the spline model will not

smooth across or over the difficult region. Moreover, in the case of two-dimensional grids,

we transform non-rectangular grids into rectangular ones by adopting this second type of

missing observations.

The introduction of the two types of missing observations leads to a mild reformulation

of the cubic spline model in state space form. For smoothing on two-dimensional grids, we

introduce a two-step smoothing method. The data is smoothed in one dimension first. In

the second step, smoothing takes place in the other dimension using the smoothed data of

the previous step. When a difficult region is present in the two-dimensional domain, we show

that the same reformulations as we have in the univariate case, can solve the smoothing

problems. The contribution of this paper is that issues related to smoothing over difficult

regions are solved by introducing two types of missing observations and applying state space

methods. By adding these missing observations and by reformulating the model, we obtain

smoothed estimates of the data in a straightforward way.

The paper is organized as follows: section 2 deals with the smoothing methods on one-

and two-dimensional grids. In section 3, we introduce two types of missing observations

and we explain how our approach is able to solve the smoothing problems. In section 4, we

present illustrations for both the univariate and bivariate cases. It is shown that our general
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methodology is effective in handling difficult regions for smoothing. Section 5 concludes.

2 Smoothing Methods

2.1 One-dimensional grids: cubic spline smoothing

Suppose we have a univariate sequential ordered series y1, . . . , yn for which its ith value yi

is observed at location τi for a one-dimensional domain τ . Values are observed at the grid

τ1, . . . , τn. The observations are not necessarily equispaced and the distance between the

observations are denoted by δi = τi+1 − τi. We wish to approximate the series by a smooth

continuous function µ(τ), i.e. yi = µ(τi)+ǫi, where ǫi is the measurement error. The common

approach to smoothing is to choose µ(τ) by minimizing

n
∑

i=1

[yi − µ(τi)]
2 + λ

∫
[

∂2µ(τ)

∂τ 2

]2

dτ, (1)

with respect to µ(τ) and with a known value for the smoothing parameter λ > 0. The

function µ(τ) is referred to as a cubic spline function, see Wecker & Ansley (1983), Kohn &

Ansley (1987), Wahba (1990), Hastie & Tibshirani (1990) and Green & Silverman (1994).

The first term measures the fit to the data and the second term is a roughness penalty. The

smoothing parameter λ controls the trade-off between fit and smoothness. Small values of

λ produce spline estimates which fit the data better, while larger values result in smoother

spline estimates. The connection between splines and the state space framework is discussed

in Wecker & Ansley (1983) and Ansley et al. (1992). When we take the continuous process

µ(τ) at discrete intervals, we have the following model for the cubic spline

yi = µ(τi) + ǫi, ǫi ∼ NID(0, σ2

ǫ ), i = 1, . . . , n,

µ(τi+1) = µ(τi) + δiβ(τi) + ξi, ξi ∼ NID(0, σ2

ζδ
3

i /3),

β(τi+1) = β(τi) + ζi, ζi ∼ NID(0, σ2

ζδi),

(2)

where ǫi is uncorrelated with both ξi and ζi, but the error terms ξi and ζi are correlated with

E(ξiζi) = σ2
ζ δ

2
i /2. The smoothing parameter λ in (1) is given by the ratio λ = σ2

ǫ /σ
2
ζ .

A general representation of models such as the one in (2) is provided by the state space

model, see Durbin & Koopman (2001) for a general treatment. The state space form of the

4



model in (2) is given by:

yi = Ziαi + ǫi, ǫi ∼ NID(0, Gi), i = 1, . . . , n, (3)

αi+1 = Tiαi + ηi, ηi ∼ NID(0, Hi), (4)

where αi =
{

µ(τi), β(τi)
}′

is the state vector, ǫi is the measurement error and ηi =
{

ξi, ζi

}′
is

the disturbance vector of the state equation (4). The measurement equation (3) relates the

observations yi to the state vector αi through the signal Ziαi and the disturbance ǫi. The

state vector αi in (4) is a first order vector autoregressive process with a diffuse initialisation,

that is α1 ∼ N(0, κI), κ → ∞. The system matrices of the state space form are Zi, transition

matrix Ti and the variance matrices Gi and Hi which are given by

Zi =
(

1 0
)

, Gi = σ2

ǫ , Ti =





1 δi

0 1



 , Hi =





σ2
ζ δ

3
i /3 σ2

ζδ
2
i /2

σ2
ζ δ

2
i /2 σ2

ζ δi



 .

The conditional mean and the variance of the spline µ(τ) given the data are obtained by

applying the Kalman filter and smoother. We refer to Appendix A for details. The condi-

tional mean is the smoothed spline estimate. The parameters σ2
ǫ and σ2

ζ are estimated by

maximizing the likelihood function, which is based on the Kalman recursions, see Schweppe

(1965) and Harvey (1989, sec. 3.4). Since λ = σ2
ǫ /σ

2
ζ , the method of maximum likelihood

provides a convenient alternative for the estimation of λ by cross-validation as discussed in

Green & Silverman (1994). The relation between maximum likelihood and cross-validation

estimation is explored in de Jong (1988) and Ansley et al. (1991).

For the computation of the filtered and smoothed state estimates, we implicitly assign

weights to all observations of the sample. The Kalman recursions can be adapted to compute

the weighting pattern, see Koopman & Harvey (2003). The filtered state ai|i−1 and the

smoothed state ai|n can be written as

ai|i−1 =

i−1
∑

t=1

wt(ai|i−1)yt, ai|n =

n
∑

t=1

wt(ai|n)yt, i = 1, . . . , n, (5)

where the weights wt(ai|i−1) and wt(ai|n) are assigned to observation yt. Plots of the weighting

pattern can be informative since it reveals how the spline estimates are constructed. It also

enables the comparison with all kernel functions used in non-parametric smoothing methods,

see Green & Silverman (1994).
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2.2 Two-dimensional grids: two-step smoothing

To estimate smooth functions of data on two-dimensional grids, we use a simple two-step

method based on the single spline function as discussed in the previous section. Let y denote

the observed values of a unknown two-dimensional function µ(τ, ω). The relation between y

and the function µ(τ, ω) is given by

yij = µ(τi, ωj) + ǫij , i = 1, . . . , n, j = 1, . . . , m, (6)

where yij is the observation for gridpoint (i, j) and ǫij is the corresponding measurement

error. In Figure 1, we depict a two-dimensional n × m grid, where the horizontal axis

represents the τ -domain and the vertical axis corresponds to the ω-domain. The rows of the

grid are denoted by ω1, . . . , ωm, whereas the columns are denoted by τ 1, . . . τ n. We propose

a two-step method to estimate the unknown function µ(·).

1. In the first step we smooth the data along the τ -domain. On each slice ωj, for

j = 1, . . . , m, we estimate single smooth spline functions as described in section 2.1.

Smoothing takes place on the basis of model (2) with a known smoothing parameter λ

which we denote by λω,j . The resulting m smoothed splines are stored as data to be

used in the second step.

2. In the second step, we estimate spline functions along the w-domain. On each slice

τ i, for i = 1, . . . , n, we replace the data by the their smoothed estimates from the first

step. The smoothing parameters are denoted by λτ,i. The resulting n smoothed splines

obtained in this step are our final smoothed estimate of the two-dimensional function

µ(·).

The basic two-step smoothing method for two-dimensional surfaces is computationally fast

and easy to implement. The application of m + n univariate smoothing operations is very

fast nowadays, even on standard desktop computers. The decision to start with smoothing in

the τ -domain in the first step may appear somewhat ad-hoc. However, whether we start with

the τ -domain and then the ω-domain or vice-versa, the resulting spline estimates are similar.

The two-step method is flexible, since for each slice in both the τ - and ω-domain, a different

smoothing parameter can be chosen or estimated by the method of maximum likelihood. In
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Figure 1: Two-dimensional grid. The horizontal axis represents the τ -domain and the vertical axis corre-

sponds to the ω-domain.

our applications we have estimated the smoothing parameters for each smoothing operation

by maximum likelihood. It has turned out that the estimates do not vary much locally. Over

a wider set of slices, the smoothing parameter adapts slowly to different values. We regard

this flexibility as a merit to our approach of two-dimensional smoothing.

The implied kernel function for our two-dimensional spline smoothing method is obtained

as follows. By storing the weights in the two steps of our procedure, we obtain the weighting

pattern for smoothing. Suppose we have a n×m grid and we are interested in the weighting

pattern to obtain the smoothed value at (τ ∗, ω∗). For this purpose, we have the following

procedure:

1. We first compute the weighting patterns when we smooth along the τ -domain, i.e.

the weights corresponding to smoothing at the points (τ ∗, 1), (τ ∗, 2), . . . , (τ ∗, m) are

computed and stored. This means that for point (τ ∗, j), we calculate the weights

assigned to the observations at slice ωj for j = 1, . . . , m.

2. Secondly, when we smooth along the ω-domain, we compute the weighting pattern

at the points (1, ω∗), (2, ω∗), . . . , (n, ω∗). For point (i, ω∗), we calculate the weights

assigned to observations at slice τ i for i = 1, . . . , n. By combining the two weighting
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patterns, we obtain the weights for smoothing on two-dimensional grids.

In Figure 2, we present the two-dimensional weighting patterns for smoothing conditional

on high and low values of the smoothing parameters. In panel (i) we present the case where

λτ,i = λω,j = 50 for i = 1, . . . , n and j = 1, . . . , m. Since the smoothing parameters have

relatively small values, the weights decay quickly once observations are away from the location

of interest. The weighting pattern is concentrated around the point (τ ∗, ω∗). In panel (ii),

we have a relatively large value for the smoothing parameters on the slices ω1, . . . , ωm, i.e.

λω,j = 1000. The smoothing parameters on the other slices λτ,i are equal to 50. We see that

more observations on the ωj slices are used to form the estimates, while non-zero weights are

assigned to observations associated with the τ i slices which are relatively close to τ ∗. Panel

(iii) depicts the reverse case where λω,j = 50 and λτ,i = 1000. Non-zero weights are now

assigned to many observations on the slices τ i, whereas a few observations on ωj are used.

In panel (iv), all smoothing parameters are equal to 1000. Many observations around the

point (τ ∗, ω∗) are used to calculate smoothed estimates.
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Figure 2: Weighting pattern for different values for smoothing parameters. Panel (i) depicts the case where

λτ,i = λω,j = 50, i = 1, . . . , n, j = 1, . . . , m. In panel (ii) we have λτ,i = 1000 and λω,j = 50. In panel (iii)

we have λτ,i = 50 and λω,j = 1000. Panel (iv) depicts the case where λτ,i = λω,j = 1000.
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We present the two-step smoothing method as an alternative to the Smoothing Spline

Analysis of Variance (SS–ANOVA) model, see Gu & Wahba (1993), Gu (2002) and Guo

(2002). The SS–ANOVA model provides a framework for multivariate function estimation

that allows for both main effects and interaction terms. It is widely used in biomedical studies

to obtain smoothed estimates of data observed on two-dimensional grids, see amongst others

Gao et al. (2001), Guo et al. (2003) and Wang et al. (2003). Qin & Guo (2006) show that

this parametric smoothing spline model can be cast into state space form. Model parameters

are estimated via the method of maximum likelihood. However, in many cases the weighting

pattern for computing smoothed estimates does not assign nonzero values to data points

located close to the point of interest, i.e. we only use observations in the τ -domain to

calculate smoothed values. Many observations in the ω-domain are not used for this purpose.

The two-step smoothing spline method proposed in this paper does not have this weighting

problem since it assigns nonzero weights to many observations in both the τ -domain and the

ω-domain.

3 Irregular Grids and Difficult Regions

3.1 Irregular grids

In applied work it is common to deal with data that is not observed at all points in the grid.

When no values are recorded at points which are not part of the domain, we have a difficult

region in the domain. The case where the data is not observed on an equispaced grid, is

referred to as an irregular grid. It is not straightforward to smooth data when the grid is

irregular or contains difficult regions, see the discussion by Ramsay (2002). The standard

methods of smoothing require the data to be equispaced and free of gaps in the domain.

We tackle the problem of unequally spaced data by introducing missing observations of type

1. Pseudo points are added to the grid such that the new series is equispaced. Denote D1

as the collection of the indices which correspond to the missing observations of type 1. We

emphasize that estimates should be obtained for these points.

For the univariate cubic spline model, the interpolation or extrapolation over the pseudo

points in D1 is equivalent to setting Gt, the variance of the measurement error ǫj in (3), equal
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to κ, where κ → ∞, that is

Gt =







κ, for t ∈ D1,

σ2
ǫ for t 6∈ D1.

(7)

The idea behind this modification is that although there is no information available for the

measurement equation, the state vector still needs to be updated. As a result, we obtain

estimates of the spline function for D1. Moreover, we should assign zero-valued weights to the

points corresponding to the missing observations of type 1 to form the filtered and smoothed

state at index i, for i = 1, . . . , n, since there is no information available coming from these

points in D1, i.e.

wt(ai|i−1) = 0, wt(ai|n) = 0, t ∈ D1, i = 1, . . . , n. (8)

We show in Appendix B that the modification in (7) leads to weighting patterns with zero

weights for the points corresponding to missing observations of type 1.

For smoothing on two-dimensional grids, we require the same modifications as for the

univariate spline model. By adding missing observations of type 1, we can create a regular

grid. In both steps of the method described in subsection 2.2, we assign zero-valued weights to

missing observations of type 1. The convolution of the weighting patterns resulting from the

two steps (in which the treatment of missing observations is exactly the same) ensures that

in the final weighting pattern, zero-valued weights are assigned to all missing observations of

type 1. This implies that estimates can be obtained for such missing points, while they are

not used to calculate other estimates.

3.2 Presence of difficult regions

When a gap is present in the grid, most smoothing methods just smooth across and over the

gap. Smoothing across the gap is not allowed in the context of difficult regions, see Ramsay

(2002). To deal with the presence of a gap in the domain, we consider the entries of the gap as

missing observations of type 2. We reformulate the spline models such that we do not obtain

estimates over the missing observations of type 2. The introduction of these pseudo-points

also leads to the result that points from opposite sides of the gap do not depend on each

other.
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For smoothing on one-dimensional grids, let D2 = [τ ∗
1 , . . . , τ ∗

2 ] be the collection of indices

corresponding to the points of the gap. When we are interested in the weighting patterns

for the signal extraction of the spline at indices after the gap, i.e. i > τ ∗
2 , we wish to have

that both the filtered and smoothed spline do not depend on the gap and all values before

the gap

wt(ai|i−1) = 0, wt(ai|n) = 0, t = 1, . . . , τ ∗
2 , i > τ ∗

2 . (9)

Similarly, when we are computing the weighting patterns for smoothing at indices before the

gap, i.e. i < τ ∗
1 , zero-valued weights should be assigned to all points in the gap and to those

observed after the gap

wt(ai|n) = 0, t = τ ∗
1 , . . . , n, i < τ ∗

1 . (10)

No restrictions are imposed on the weights for filtering, since they are not affected by the

presence of the gap. In Appendix B, we show that by setting the variance of the irregular

term in the measurement equation to κ, and by re-initializing the elements in the state αi in

(4) at the points which correspond to the difficult region, i.e.

Gt = κ, Var(αt) = κI, t ∈ D2, (11)

we obtain weighting patterns which satisfy the conditions in (9) and (10). Furthermore, we

show in Appendix C that by reformulating the model as given by (11), the variances of the

filtered and smoothed estimates on D2 are equal to κ

Var(at|t−1) = κI, Var(at|n) = κI, t ∈ D2. (12)

When the uncertainty on D2 is large, we can discard estimates which are obtained for this

set of points.

When we smooth on two-dimensional grids, we use missing observations of type 2 to

represent the difficult region. No smoothing should take place over and across the difficult

region. In each of the two steps of our approach, we reformulate the spline models as in the

case of smoothing on a one-dimensional grid. In the first and second step, we assign zero-

valued weights to all missing observations of type 2 and to all observational values located
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from the other side of the gap. As a result, to form our final estimate of the two-dimensional

function, we do not use these pseudo points. Moreover, the pseudo points can also be used to

create a rectangular grid. When the domain is non-rectangular, adding missing observations

of type 2 leads to a rectangular domain.

4 Illustrations

4.1 A first illustration: motorcycle data

The motorcycle dataset consists of observations of acceleration against time (measured in

milliseconds). The dataset is used for illustrative purposes by Silverman (1985) and is also

employed by Koopman & Harvey (2003). The data is a cross section rather than a time

series. The observations are not measured at an equidistance and at some points multiple

values are recorded. Although it is not strictly necessary, they are removed from the dataset

for practical reasons. We add missing observations of type 1 to create a regular grid, resulting

in a new series which consists of 277 points, see panel (i) of Figure 3. All computations for

this paper are done by using the object-oriented matrix language Ox of Doornik (2007).

The smoothing parameter λ = σ2
ǫ /σ

2
ζ is estimated by maximum likelihood and is given

by λ̂ = 0.102. Smoothed estimates of the spline function are shown in panel (i) of Figure 3.

We are interested in the weighting patterns, which are used to extract the smoothed spline

at indices i = 67 and i = 85, which are shown in panels (ii) and (iii) of Figure 3, respectively.

We see that larger values are assigned to observations close to the points of interest, while

smaller weights are assigned to observations located further away. The gaps in the weighting

patterns are caused by the presence of missing observations of type 1 since zero weights must

be assigned to these pseudo points. These results are obtained implicitly by employing our

methods.

Suppose we have a gap in the domain located in D2 = [69, . . . , 78], see the shaded area

in panel (i) of Figure 4. The gap is considered as a sequence of missing observations of type

2. We re-estimate the parameters of the spline model, resulting in an estimated smoothing

parameter of 0.052. The smoothed estimates of the data are presented in panel (i) of Figure

4. In panel (ii) we depict the weighting pattern to form the smoothed state at i = 67. It
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Figure 3: Smoothing on one-dimensional grid. The data and smoothed estimates of the smoothed spline

are shown in panel (i). Panel (ii) presents the weighting pattern for extracting the smoothed spline at i = 67.

In panel (iii) we plot the weighting pattern for extracting the smoothed spline at i = 85.

has zero weights for all values at indices i ≥ 69. This implies that the gap itself and values

observed after the gap are not used to form the state at i = 67. Moreover, the weighting

pattern of the smoothed state at i = 85 has zero weights for all values at indices i ≤ 78, see

panel (iii).

By introducing two types of missing observations, we can handle irregular grids and

assure that no smoothing takes place across and over the gap. Pseudo points are included to

create a regular grid and they do not affect the estimates, since zero weights are assigned to

these points. The results show that smoothed estimates neither depend on the gap nor on

observations from the other side of the gap. Moreover, we do not have estimates for the gap

as estimated values in the gap can be discarded due to the large variance.

4.2 The difficult region problem of Ramsay

Here we consider an illustration of smoothing data on two-dimensional grids. This illustration

is motivated by the original difficult region problem of Ramsay (2002) and is also explored

by Wang & Ranalli (2007). The data is simulated on a U -shaped grid and is represented
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Figure 4: Motorcycle data: missing observations of type 2 are at D2 = [69, . . . , 78], which is represented

by the grey areas in all panels. The data and smoothed estimates of the smoothed spline are shown in panel

(i). Panel (ii) presents the weighting pattern for extracting the smoothed spline at i = 67. In panel (iii) we

plot the weighting pattern for extracting the smoothed spline at i = 85.

in Figure 5. The left-hand leg of the U -shaped function is sloping downwards, while the

right-hand leg of the U -shape is sloping upwards. When we smooth the data, estimates on

the left-hand leg should not depend on values observed from the right-hand leg and the other

way around. Panel (ii) of Figure 5 views the U -shaped domain from the above. Since the

function is not defined in the gap between the two legs, no smoothing should take place

over the gap. The simulated data is obtained by adding noise, generated from a normal

distribution N(0, 1), to the true function, which is shown in panel (i) of Figure 6. To smooth

the data, we apply the two-step smoothing method. The smoothing parameters of the model

are estimated by maximum likelihood, i.e. on each slice of data we estimate the model

parameters. The smoothed estimate of the U -shaped function from the simulated data is

presented in panel (ii) of Figure 6. We observe that it closely resembles the true function.

Furthermore, we observe that no estimates are obtained for all missing observations of type

2.

To show that our method does not smooth over and across the gap, we depict the weighting

patterns corresponding to smoothing at two points located on the legs of the U -shape. We
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Figure 5: Panel (i) shows the data of the U-shaped domain example, which is also employed by Ramsay

(2002). The left-hand leg slopes downward and the right-hand leg slopes upward. Panel (ii) views the U -

shaped domain from above. Missing observations of type 2 are represented by the crosses. They correspond

to the gap or to the points which are added to create a rectangular domain.

are interested in the weights to form the smoothed estimates at gridpoints (15, 30) and (50,

45), which lie on the left-hand and right-hand leg of the U -shape, respectively. The weighting

patterns are graphically presented in Figure 7. Panel (i) corresponds to the point (15, 30)

and panel (ii) is associated to the point (50, 45). The grey area in the figure represents the

missing observations of type 2. In both panels, zero-valued weights are assigned to these

pseudo-points, which implies that estimates do not depend on the gap or pseudo-points,

which are added to form a rectangular grid. Additionally, to form estimates on one leg, we

do not use observations from the other leg. The method only assigns non-zero weights to

observational values located at the same leg as the point of interest.

4.3 A landscape problem

The second illustration of smoothing on two-dimensional grids is related to geographical

problems such as a landscape with a lake or a mountain, which can disorder the composition

of the landscape. The hole is regarded as a difficult region. Specific characteristics, e.g.
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Figure 6: Panel (i) shows the true function µ(τ, ω) of the U -shape example on a 60 × 60 grid. Panel (ii)

shows the smoothed estimates of the function µ(τ, ω) on the two-dimensional domain. Estimates are obtained

by the two-step smoothing spline method. On each slice of the grid we estimate the model parameters.

income of a city located on one side of the lake may depend on cities located closely, but

may not depend on a city which is located on the other side of the lake. Estimates on one

side of the hole should therefore not depend on observations available from the other sides of

the hole. This geographical problem is motivated by the example on income in the island of

Montreal presented in Ramsay (2002). In that example there are holes in the domain which

represent the airport and the water purification plant on the island. Over these areas, we do

not wish to obtain estimates. Panel (i) of Figure 8 shows the simulated data on a 30 × 30

grid. Additionally, we have more difficulties by creating an irregular grid. In panel (ii) of

Figure 8, we see the domain from above. The crosses in the figure represent the gap, while

the black squares are associated to the irregularity of the grid.

The true function of the landscape example is shown in panel (i) of Figure 9. The data is

simulated by adding noise, generated from a normal distribution N(0, 1), to the true function.

The model parameters are estimated on every slice of data in the two stages. In panel (ii)

of Figure 9, we show the smoothed estimates. The proposed method smoothes around the

difficult region and does not produce estimates in the hole. Moreover, we obtain estimates
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Figure 7: Weighting patterns associated to the smoothed function on the U -shaped domain. The grey

area represents missing observations of type 2. Panels (i) shows the weighting pattern associated to the

smoothed estimate at (15, 30), which lies on the left-hand leg of the U -shape. In panel (ii) we depict the

weights corresponding to smoothing at (50, 45), which lies on the right-hand leg of the U -shape. The two-step

smoothing spline method does not smooth across the gap, since estimates do not depend on observational

values from the other side of the gap.

over the missing observations of type 1, which are added to create a regular grid. This

proves that our approach can handle irregularly spaced observations. From the weighting

patterns, we draw the same conclusions as in the case of the U -shape example. Values from

the opposite side of the hole are not used to form smoothed estimates. We have zero-valued

weights for missing observations of type 1 and type 2.

5 Conclusion

Smoothing data on one- or two-dimensional grids is not straightforward when irregularities

are present in the grid. Many standard methods of smoothing cannot be used when the data

is observed on irregular grids. Other problems arise when there is a gap or hole in the domain

in which the data is not observed, since standard methods tend to smooth over and across the

gap. Our solution to these problems is to adopt state space methods and introduce two types
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Figure 8: Panel (i) shows the data of the landscape example. Panel (ii) views the U-shaped domain from

above. Black squares are associated to the irregularity of the grid and are considered as missing observations of

type 1. Points corresponding to the hole are considered as missing observations of type 2 and are represented

by the crosses.
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Figure 9: Panel (i) shows the true function µ(τ, ω) of the landscape example on a 60 × 60 grid. Panel (ii)

shows the smoothed estimates of the function µ(τ, ω) on the two-dimensional domain. Estimates are obtained

by the two-step smoothing spline method. On each slice of the grid we estimate the model parameters.
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of missing observations. For the first type, we can handle irregularly spaced data. For the

second type, we solve problems which are caused by the presence of gaps. By reformulating

the spline models in state space, we can still apply standard smoothing methods when missing

observations of type 1 or 2 are encountered.

To illustrate our methodology, we apply it to data observed on one- and two-dimensional

grids. In the case of a one-dimensional grid, the data is not equally spaced and it contains a

gap. We create a regular spaced grid by adding missing observations of type 1 and the gap

is treated as a region of missing observations of type 2. It appears that our method does not

smooth across or over the gap. When the data is observed on two-dimensional grids, we have

the additional problem that the grid may not be rectangular. By adding missing observations

of type 2 to the grid, we can tranform the grid into a rectangular one. We propose a two-step

smoothing method to smooth the data on two-dimensional grids. Our method is tested on

two examples. In both cases we show that our solution is effective in handling irregular

and non-rectangular grids. Moreover, it does not produce estimates across and over difficult

regions. The weighting patterns show zero-valued weights for points corresponding to the

two types of missing observations and for observations from the other side of the gap.

We further like to emphasize that the necessary modifications for our computations are

relatively small. Once the underlying smoothing model is reformulated in state space form,

standard Kalman filtering and smoothing methods can be employed. In many software

environments, KFS methods are available as a standard tool.
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Appendix

A State space methods

We consider the following univariate linear state space model:

yi = Ziαi + ǫi, ǫi ∼ NID(0, σ2

ǫ ), i = 1, . . . , n, (A.1)

αi+1 = Tiαi + ηi, ηi ∼ NID(0, Hi), α1 ∼ NID(a, P ), (A.2)

where yi is the observation at index i, αi is the unobserved state, ǫi and ηi are the disturbances

in the measurement equation (A.1) and the transition equation (A.2) respectively. We assume

that the disturbances are serially and mutually uncorrelated. The initial state vector is to

have mean a and variance P . When P = κI, κ → ∞, we have a diffuse initialisation of

the state vector. In practice we take κ = 107. The deterministic matrices Ti, Zi and Hi are

referred to as system matrices, which are in our case sparse selection matrices and contain

the model parameters. Estimates of the mean and the variance of the state can be obtained

by applying the Kalman filter and smoother, see Durbin & Koopman (2001). Denote the

filtered state at i by ai|i−1 and its variance by Pi|i−1. The Kalman filter equations are given

by:

vi = yi − Ziai|i−1, Fi = ZiPi|i−1Z
′
i + σ2

ǫ ,

Ki = TiPi|i−1Z
′
iF

−1

i , Li = Ti − KiZi,

ai+1|i = Tiai|i−1 + Kivi, Pi+1|i = TiPi|i−1L
′
i + Hi,

i = 1, . . . , n, (A.3)

where vi is the one-step-ahead prediction error, Fi is its covariance matrix and Ki is known

as the Kalman gain. The filtered state at index i = 1 is initialised by a1|0 = a and P1|0 = P .

Smoothed estimates of the state ai|n, are obtained by running the Kalman filter and

subsequently the backwards recursion:

ri−1 = Z
′

iF
−1

i vi + L
′

iri, Ni−1 = Z
′

iF
−1

i Zi + L
′

iNiLi,

ai|n = ai|i−1 + Pi|i−1ri−1, Vi = Pi|i−1 − Pi|i−1Ni−1Pi|i−1,
i = n, . . . , 1, (A.4)

with the initialisation rn = 0 and Nn = 0. The smoothed state estimate of αi is denoted by

ai|n with its mean square error matrix denoted by Vi.
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Maximum likelihood estimates of the model parameters are obtained by maximising the

Gaussian likelihood function. The Kalman recursions can be used to compute the likelihood

function, which is given by

log L(θ) = −
n

2
log 2π −

1

2

n
∑

i=1

(

log |Fi| + v′
iF

−1

i vi

)

, (A.5)

where the parameters are collected in θ and vi, Fi are from the Kalman filter equations.

B Computing weights of the spline model

The state space form of the cubic spline model is presented in section 2.1. In this part

of the appendix we derive the weights for filtering and smoothing. We consider two types

of missing observations. The Kalman filter and smoother should obtain estimates over the

missing observations of type 1, whereas over missing observations of type 2 we wish not to

have estimates. Assume for simplicity that we have a single missing observation at τ ∗
1 . We can

easily extend the case of a single missing observation to a sequence of missing observations.

However, this does not change the derivation of the weights for filtering and smoothing.

When we deal with a missing observation of type 1, we set

Gi =







σ2
ǫ for i 6= τ ∗

1

κ for i = τ ∗
1

, (B.1)

such that

Fτ∗

1
= κ, Kτ∗

1
= 0, κ → ∞.

In the case of the presence of a missing observation of type 2 at index τ ∗
1 , we set

Gτ∗

1
= κ, Pτ∗

1
+1 = κI, (B.2)

and we have

Fτ∗

1
= κ, Kτ∗

1
= 0, Lτ∗

1
= T,

where κ → ∞.
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B.1 Computing weights for filtering

Suppose that we are interested in computing the weights to form the filtered state at index

i. We implicitly assign weights to the observations yt, t = 1, . . . , i − 1:

ai|i−1 =
i−1
∑

t=1

wt(ai|i−1)yt, (B.3)

where wt(ai|i−1) is the weight assigned to observation yt. We assume further that a missing

observation is found at index τ ∗
1 , where τ ∗

1 < i. The case where τ ∗
1 > i is not interesting since

the presence of the missing observation does not affect the filtering weights for computing

ai|i−1.

Recall from Koopman & Harvey (2003) that the weights for filtering are given by the

following:

wt(ai|i−1) = Bi,tKt, t = i − 1, . . . , 1, (B.4)

where

Bi,i−1 = I, Bi,t = Li−1Li−2 . . . Lt+1, j = i − 2, . . . , 1. (B.5)

Alternatively, Bi,t can also be computed efficiently by the following backward recursion:

Bi,t−1 = Bi,tLt, t = i − 1, . . . , 1. (B.6)

Missing observation type 1

When we deal with a missing observation of type 1 at τ ∗
1 , the weight associated to the missing

value is obviously zero:

wτ∗

1
(ai|i−1) = Bi,τ∗

1
Kτ∗

1
= 0, (B.7)

since Kτ∗

1
= 0. Weights associated to other observations are computed by equation (B.4).

We conclude that the filtered state does not depend on the missing value at τ ∗
1 .

Missing observation type 2

We adapt the model such that the Kalman filter does not filter across the missing observation,
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i.e. we need to show that the weights associated to the values at t = 1, . . . , τ ∗
1 are equal to

zero. In order to show this we need the following at τ ∗
1 + 1:

Pτ∗

1
+1 =





κ 0

0 κ



 ,

Fτ∗

1
+1 = ZPτ∗

1
+1Z

′ + σ2

ǫ = κ,

Kτ∗

1
+1 = TPτ∗

1
+1Z

′F−1

τ∗

1
+1

=





1 δ

0 1









κ 0

0 κ









1

0





1

κ
=





1

0



 ,

Lτ∗

1
+1 = T − Kτ∗

1
+1Z =





1 δ

0 1



 −





1

0





(

1 0
)

=





0 δ

0 1



 ,

(B.8)

where κ → ∞. In the same way, we derive the matrices at τ ∗
1 + 2:

Pτ∗

1
+2 = TPτ∗

1
+1L

′
τ∗

1
+1 + H =





1 δ

0 1









κ 0

0 κ









0 0

δ 1



 + H
κ→∞
=





δ2κ δκ

δ2κ κ



 ,

Fτ∗

1
+2 = ZPτ∗

1
+2Z

′ + σ2

ǫ =
(

1 0
)





δ2κ δκ

δ2κ κ









1

0



 + σ2

ǫ

κ→∞
= δ2κ,

Kτ∗

1
+2 = TPτ∗

1
+2Z

′F−1

τ∗

1
+2

=





1 δ

0 1









δ2κ δκ

δ2κ κ









1

0





1

δ2κ
=





2

1/δ



 ,

Lτ∗

1
+2 = T − Kτ∗

1
+2Z =





1 δ

0 1



 −





2

1/δ





(

1 0
)

=





−1 δ

−1/δ 1



 ,

(B.9)

where H and σ2
ǫ vanish when κ → ∞.

Using equations (B.5), (B.6) and the result that Lτ∗

1
+2Lτ∗

1
+1 = 0, we have

Bi,t = 0, t = 1, . . . , τ ∗
1 ,

and consequently

wt(ai|i−1) = 0, t = 1, . . . , τ ∗
1 , (B.10)

We conclude that the weights for filtering associated to the observations at t = 1, . . . , τ ∗
1

are equal to zero. This implies that the Kalman filter does not filter across the missing

observation of type 2, i.e. the filtered state at i > τ ∗
1 does not depend on values observed

before the missing value.
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B.2 Computing weights for smoothing

We derive in this section the weights for smoothing. To form the smoothed state ai|n, we

assign weights to all observations of the sample:

ai|n =
n

∑

t=1

wt(ai|n)yt, (B.11)

where wt(ai|n) is the weight assigned to observation yt. The weights for smoothing are given

by, see Koopman & Harvey (2003):

wt(ai|n) =







(I − Pi|i−1Ni−1)wt(ai|i−1), for t = 1, . . . , i − 1,

B∗
i,tCt, for t = i, . . . , n,

(B.12)

where wt(ai|i−1) is the weight for filtering from (B.4) and

Ct = Z ′F−1

t − L′
tNtKt,

B∗
i,t+1 = B∗

i,tL
′
t,

t = i, . . . , n, (B.13)

with B∗
i,i = Pi|i−1. As in the case of the filtered weights we assume that the missing observa-

tion is found at index τ ∗
1 . We consider two cases of the location of the missing observation,

i.e. i > τ ∗
1 and i < τ ∗

1 .

B.2.1 Case where i > τ ∗
1

We first derive the weights for smoothing for the case i > τ ∗
1 . This means that the presence

of the missing observation only affects the weights at t = 1, . . . , τ ∗
1 . Other weights can be

computed by equation (B.12).

Missing observation type 1

The presence of missing observation of type 1 only affects the weight at τ ∗
1 :

wτ∗

1
(ai|n) = (I − Pi|i−1Ni−1)wτ∗

1
(ai|i−1) = 0, (B.14)

since wτ∗

1
(ai|i−1) = 0; see also the result in (B.7). Weights associated to other observations

can be computed by equation (B.12).
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Missing observation type 2

The weights for smoothing are given by

wt(ai|n) =



















0 for t = 1, . . . , τ ∗
1 ,

(I − Pi|i−1Ni−1)wt(ai|i−1) for t = τ ∗
1 + 1, . . . , i − 1,

B∗
i,tCt for t = i, . . . , n,

(B.15)

since wt(ai|i−1) = 0 for t = 1, . . . , τ ∗
1 ; see the result in (B.7).

B.2.2 Case where i < τ ∗
1

The presence of the missing observation now only affects the weights associated to the missing

observation and to the observations which appear after the missing observation, i.e. for

t = τ ∗
1 , . . . , n.

Missing observation type 1

The missing observation of type 1 only affects the weight corresponding to i1:

wτ∗

1
(ai|n) = B∗

i,τ∗

1

Cτ∗

1
= 0, (B.16)

since

Cτ∗

1
= Z ′F−1

τ∗

1

− L′
τ∗

1

Nτ∗

1
Kτ∗

1
= 0,

where Kτ∗

1
= 0 and F−1

τ∗

1

= κ−1 = 0 when κ → ∞. Weights associated to other values can be

computed by equation (B.12).

Missing observation type 2

When we encounter a missing observation op type 2 at τ ∗
1 > i, the weights for smoothing are

given by

wt(ai|n) =



















(I − Pi|i−1Ni−1)wt(ai|i−1) for t = 1, . . . , i − 1,

B∗
i,tCt for t = i, . . . , τ ∗

1 − 1,

0 for t = τ ∗
1 , . . . , n.

(B.17)

To derive the weights we need the following intermediate results:

Fτ∗

1
+1 = κ, Fτ∗

1
+2 = δ2κ, Lτ∗

1
+1 =





0 δ

0 1



 , Lτ∗

1
+2 =





−1 δ

−1/δ 1



 .

We derive the smoothing weights as follows:
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• For t = τ ∗
1 , we have

wτ∗

1
(ai|n) = B∗

i,τ∗

1

Cτ∗

1
= 0,

since Cτ∗

1
= 0

• For t = τ ∗
1 + 1, we have

wτ∗

1
+1(ai|n) = B∗

i,τ∗

1
+1Cτ∗

1
+1 = 0,

since

Cτ∗

1
+1 = Z ′F−1

τ∗

1
+1

− L′
τ∗

1
+1Nτ∗

1
+1Kτ∗

1
+1

= Z ′F−1

τ∗

1
+1

− L′
τ∗

1
+1Z

′F−1

τ∗

1
+2

ZKτ∗

1
+1 − L′

τ∗

1
+1L

′
τ∗

1
+2Nτ∗

1
+2Lτ∗

1
+2Kτ∗

1
+1

= 0, when κ → ∞

where we use Nτ∗

1
+1 = Z ′F−1

τ∗

1
+2

Z + L′
τ∗

1
+2Nτ∗

1
+2Lτ∗

1
+2. Notice that

L′
τ∗

1
+1L

′
τ∗

1
+2 = 0, Z ′F−1

τ∗

1
+1

= 0, L′
τ∗

1
+1Z

′F−1

τ∗

1
+2

Z = 0 when κ → ∞.

• For j = τ ∗
1 + 2, we have

wτ∗

1
+2(ai|n) = B∗

i,τ∗

1
+2Cτ∗

1
+2

= B∗
i,τ∗

1
+1L

′
τ∗

1
+1Cτ∗

1
+2

= B∗
i,τ∗

1
+1L

′
τ∗

1
+1(Z

′F−1

τ∗

1
+2

− L′
τ∗

1
+2Nτ∗

1
+2Kτ∗

1
+2)

= 0, when κ → ∞

since L′
τ∗

1
+1

Z ′F−1

τ∗

1
+2

= 0, κ → ∞ and L′
τ∗

1
+1

L′
τ∗

1
+2

= 0.

• For t = τ ∗
1 + 3, . . . , n, it is straightforward to show that the weights are equal to zero

wt(ai|n) = B∗
i,tCt

= B∗
i,τ∗

1
+1L

′
i,τ∗

1
+1L

′
i,τ∗

1
+2 · · ·L

′
t−1Ct

= 0,

since L′
i,τ∗

1
+1

L′
i,τ∗

1
+2

= 0 and we repeatedly use B∗
i,t+1 = B∗

i,tL
′
i,t.
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C Variance of the smoothed state in the difficult region

Suppose we have a set of sequential missing observations of type 2. Collect the indices

corresponding to these points in D2 = [τ ∗
1 , . . . τ ∗

2 ]. In the derivations below we use the results

in (B.8) and (B.9). We have

Ni = Z ′F−1

i+1Z + L′
i+1Ni+1Li+1

= Z ′F−1

i+1
Z + L′

i+1(Z
′F−1

i+2
Z + L′

i+2Ni+2Li+2)Li+2

= Z ′F−1

i+1Z + L′
i+1Z

′F−1

i+2ZLi+2 + L′
i+1L

′
i+2Ni+2Li+2Li+2

= 0, when κ → ∞, for i ∈ D2,

(C.1)

since F−1

i+1
= 0, L′

i+1Z
′F−1

i+2
= 0 and L′

i+1L
′
i+2 = 0 for i ∈ D2 and when κ → ∞. The variance

of the smoothed state ai|n is now given by:

Vi = Pi|i−1 − Pi|i−1Ni−1Pi|i−1

= Pi|i−1, i = τ ∗
1 + 1, . . . τ ∗

2 .
(C.2)

Notice that this does not apply for Vτ∗

1
, since Nτ∗

1
−1 6= 0. Summarising, the diagonal elements

of the variance matrix of the state vector at D2, except for the first point of D2, is equal

to κ which goes to infinity. It is already obvious that the diagonal elements of the variance

matrix of the filtered state is proportional to κ.
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