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ABSTRACT.We propose and study a class of regression models, in which the mean function is specified
parametrically as in the existing regression methods, but the residual distribution is modeled nonpara-
metrically by a kernel estimator, without imposing any assumption on its distribution. This specification
is different from the existing semiparametric regression models. The asymptotic properties of such like-
lihood and the maximum likelihood estimate (MLE) under this semiparametric model are studied. We
show that under some regularity conditions, the MLE under this model is consistent (as compared to the
possibly pseudo consistency of the parameter estimation under the existing parametric regression model),
and is asymptotically normal with rate

√
n and efficient. The nonparametric pseudo-likelihood ratio has

the Wilks property as the true likelihood ratio does. Simulated examples are presented to evaluate the
accuracy of the proposed semiparametric MLE method.
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1 Introduction

Consider a general (non)linear regression problem with observations

Yi|(Xi,θ
∗) = g(θ∗,Xi) + �i, (i = 1, . . . , n), (1)

where θ∗ is the “true” value of the model parameters θ ∈ Θ ⊂ IRk, and g(θ,x) = E(Yi|(Xi,θ))

is a specified conditional mean function of the k-dimensional parameter vector θ and the covari-

ates x ∈ X ⊂ IRp, and where it is assumed that the (Yi,Xi, �i)’s are independent and identically

distributed (i.i.d.) realizations from a common random source (Y,X, �). In the classical para-

metric situation the �i’s are assumed to have some known distribution f(·), or equivalently
Yi|(Xi,θ) ∼ f(· − g(θ,Xi)). Then the maximum likelihood estimator (MLE) of θ has the de-

sirable optimal properties when f(·) is the true residual distribution. But, in practice, the true
form of f(·) is unknown. Its choice is often based on convenience, and usually restricted to a
limited few. In reality, however, any pre-assumed distribution model may not easy to justify

and be deviated more or less. Let q(x) be the (usually unknown) density of X. If it happens

that the correct model f(·) is used and if the data are generated at the true parameter θ∗, then
it is well-known that the MLE will almost surely (a.s.) converges to

arg sup
θ∈Θ

Z
f(y − g(θ∗,x))q(x) log[f(y − g(θ,x))q(x)]dydx,

which is achieved by θ∗, the true parameter.

On the other hand, if an incorrect model f1(·) is specified, it is known (Huber, 1967; Pfanzagl,
1969) that the MLE from the parametric model Yi|(Xi,θ) ∼ f1(·− g(θ,Xi)) will a.s. converge

to the pseudo-true parameter Θ1,

Θ1 = arg sup
θ∈Θ

Z
f(y − g(θ∗,x))q(x) log[f1(y − g(θ,x))q(x)]dydx. (2)

The points in Θ1 may not necessarily correspond to the “true” parameter(s) generating the

data.

As an alternative, several nonparametric approaches may be adopted (Nadaraya, 1964; Wat-

son, 1964; Priestley & Chao, 1972; Gasser & Müller, 1979; Eubank, 1988). These approaches

involve estimation of the general functional form E(Y |X = x) = m(x) by variants of kernel

weighted empirical estimates. The resulting estimates are robust and have lots of optimality

properties. But the estimated regression function m̂(·) is, in general, not given in a simple
descriptive form. Thus, making it difficult to examine the quantitative effects of the covariates
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X on the response variable Y . Also, nonparametric tools for testing certain hypotheses about

the covariates are limited. Further, it is well-known that estimates of m(x) are subject to the

so-called boundary or edge effects (Gasser & Müller 1979; Rice 1984), in which estimation bias

increases near the ends of the estimation interval. Härdle & Mammen (1993) compared the

L2-difference between parametric and nonparametric regressions. Their analysis indicated that

the estimation bias is usually significant.

Semiparametric regression methods are a third category of approaches to estimate (1) (Cox,

1975; Cleveland, 1979; Severini & Staniswalis, 1994). Typically, the parametric part involves

the modeling of the conditional mean function g(·, ·) while the residual distribution function
f(·) is specified partially, such as through an estimating equation. But these specifications are
equivalent, implicitly, to some known exponential models.

In an attempt to derive a general regression method without imposing too strong subjective

model assumptions and, in some situations, make more reasonable inference (in the sense of truly

consistent, as compared to the pseudo consistency to a member ofΘ1 given before), we try to take

advantage of the parametric regression in characterizing the response-covariates relationship, and

that of the nonparametric regression for robustness. Here we consider a semiparametric method,

in which for a given mean function, the regression coefficients are modeled parametrically, and

f(·) is modeled by a nonparametric kernel density estimator. This intuitively simple method
seems not been addressed in the literature, and is the topic of this manuscript. We will show

that, under fairly general conditions, the MLE of the regression parameter(s) under this model

is consistent, and asymptotically normal with rate
√
n and efficient.

The paper is organized as follows. In Section 2, we introduce the semiparametric regression

method to estimate (1). Also we briefly review some related methods. In Section 3 we study the

consistency of the nonparametric likelihood and the MLE based on it. Asymptotic normality of

the MLE is considered in Section 4. Further, we introduce a “nonparametric” likelihood ratio

(NLR) test statistic and demonstrate that its null distribution follows an asymptotically χ2

distribution, independent of nuisance parameters. In Section 5 we address asymptotic efficiency.

Section 6 contains several numerical results. Section 7 provides a brief discussion on the selection

of the mean function. It discusses the basic difference between robust regression and the approach

presented here. Proofs of lemmas are relegated to the Appendix.
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2 Semiparametric kernel regression

2.1 The method

For a fixed function g(·, ·), given the covariate x, and given the parameter value θ, the function
f(·) can be estimated nonparametrically. A direct approach is the Nadaraya-Watson kernel

estimator, given by

fn(�|θ) = 1

nhn

nX
j=1

K
³�− Yj + g(θ,Xj)

hn

´
,

where K(·) is a probability density function called the kernel, and hn (the bandwidth) is a

positive sequence tending to zero as n tends to infinity. It is known that under various sets of

regularity conditions

sup
z
|fn(z)− f(z)|→ 0, a.s. (3)

LetWα be the class of densities with continuous and bounded α-th derivatives. Stone (1980) has

established the well-known optimal rate of convergence of the r-th derivative of fn(·). The best
rate of convergence in probability, uniformly over Wα, is n−(α−r)/(2α+1). On the other hand, for

some smooth functionals of fn(·), it is known that the rate of n−1/2 is achievable (Ibragimov et
al., 1986; Bickel & Ritov, 1988).

Now, the key idea of our method is to plug in the estimator fn(·|θ) for the “true” density
of the �i = Yi − g(θ,Xi)’s. For g(θ,X) = θ0X with the constant term θ0, we assume f(·) is
symmetric about the origin as usual, otherwise the problem is not identifiable (Stone, 1975).

From the construction of fn(·|θ), we see that this involves terms of K(·) evaluated at the data-
points Yi − Yj − g(θ,Xi) + g(θ,Xj) (i, j = 1, . . . , n). For some specifications of g(·, ·),this
will cause the cancellation of some parameters in the difference −g(θ,Xi) + g(θ,Xj), and thus

gives rise to an idenfiability problem. One can overcome this problem by choosing another

known nonlinear function r(·) such that there is no parameter cancellation in the difference
r(Yi− g(θ,Xi))− r(Yj− g(θ,Xj)), and this is always possible. For instance, for the linear mean

function g(θ,X) = θ0X, we may choose r(z) = cez/(1 + ez), for some c > 0. This will map the

range of w = r(z) into (0, c), and r(·) is one-to-one, strict monotone, bounded differentiable and
with inverse r−1(w) = log(w/(c−w)). When there is no parameter cancellation in the difference
−g(θ,Xi) + g(θ,Xj), we just let r(·) to be the identity. Note that, conditional on (Xi,θ), the

models

Yi = g(θ,Xi) + �i and r(Yi − g(θ,Xi)) = r(�i)
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are equivalent. Clearly, for given θ, the random variables Zi = r(Yi−g(θ,Xi)) (i = 1, . . . , n) are

i.i.d. Now, instead of modeling the distribution of the �i’s, the idea is to model the distribution

of the Zi’s. With a slight abuse of notation, the true density of Zi and its estimate will be

denoted by respectively f(·) and fn(·).
Since all Zj ’s are used in the construction of fn(·) at each Zi, the nonparametric likelihood

specification will contain some unwanted values of (nhn)−1K(0). This suggests the use of the

delete-one version of fn(·) in the likelihood structure. In particular, the likelihood function of
Y = (Y1, . . . , Yn) given X = (X1, . . . ,Xn) is

ln(Y |θ,X) =
nY
i=1

f(n,i)(Zi|θ) =
nY
i=1

f(n,i)(Yi − g(θ,Xi)), (4)

where f(n,i)(·|θ) denotes fn(·|θ) with the ith data-point Zi deleted, i.e.

f(n,i)(Zi|θ) = 1

(n− 1)hn
X
j 6=i

K
³r(Yi − g(θ,Xi))− r(Yj − g(θ,Xj))

hn

´
.

Maximizing (4) over θ yields the MLE θ̂n.

2.2 Some related methods

At first sight it seems that similar ideas have been proposed earlier in the literature; see Manski

(1984) for a comprehensive, but outdated, review. Beran (1974) and Sievers (1978) considered

a weighted rank statistic method. Although this method has a few similarities with ours, in

essence it is different. Also, some other related methods can be found in, for example, Hall &

Marron (1990), Müller et al. (2004), and Schick & Wefelmeyer (2004). These methods address

different regression problems and the results are different. The semiparametric model in Andrews

(1994) is to optimize a criterion function, its application to the regression problem (Section 5)

is closely related to the nonparametric regression method, and different from ours. So are the

estimation of the least favourable curve in Severini & Wong (1992), and the semiparametric

model in Murphy & Van der Vaart (2000). For the estimation of a location parameter with

unknown distribution, Van Eden (1973), Stone (1975) and Beran (1978) proposed an efficient

estimator. But the problem considered by these authors and the methods used, are different.

For instance, Stone’s (1975) estimator of the location parameter θ (one-dimensional) has a

two-step structure. Given an initial asymptotic normal scale invariant estimator θ̄n of θ, he

constructed the estimator θ̂n = θ̄n− (1/n)
Pn

i=1Gn(Xi− θ̄n), where Gn(·) depends on a normal
kernel estimate f̂n(·) of the unknown density f(·) of the data X1, . . . ,Xn. In our case, we have
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covariates and their coefficients as parameters. We also plug in f̂n(·) to estimate f(·), but our
estimate has a one-step structure without using any θ̄n.

More recently, Wolsztynski et al. (2005) proposed a minimum-entropy estimation of the re-

gression problem considered here. They choose θ̂n to minimize Ĥn(θ)=−
R An

−An
fn(u|θ) log fn(u|θ)du,

where An is a suitable (slowly) increasing sequence of positive numbers, fn(u|θ) = (Kn(u|θ) +
Kn(−u|θ))/2 is the kernel estimate of the error distribution at fixed θ, and Kn(u|θ) = (nhn)−1Pn

i=1K(h
−1
n (u− (Yi − g(θ,Xi)))). Newey (1988) proposed a method with moment restrictions.

Bickel (1982) and Schick (1993) considered asymptotically efficient estimation in semiparamet-

ric and general regression models respectively. Their construction of an efficient estimate is

based on the fact that any efficient estimation Ĥn of a functional H(θ) must have the form

Ĥn = H(θ)+n−1
Pn

i=1 ψ(Yi,θ, f)+oP (n
−1/2), where ψ(·,θ, f) is the efficient influence function

of the semiparametric model, which can be evaluated in closed form for given (θ, f). But, since

θ and f are still unknown, they find estimates θ̃ and f̃ such that k H(θ̃)−H(θ) k= oP (n
−1/2)

and n−1
Pn

i=1 k ψ(Yi,θ, f)− ψ(Yi, θ̃, f̃) k= oP (n
−1/2), where k · k denotes the Euclidean norm.

The proposed constructions are involved, and some of the necessary conditions are not easy to

verify. Also, Efromovich (1996) studied the nonparametric regression problem Yi = g(Xi) + �i,

in which the �i’s are i.i.d. with known f(·), g(·) is unknown and is the subject of inference, and
Yi|Xi ∼ f(· − g(Xi)). The goal is to estimate the regression function g(·) nonparametrically.
Clearly, our setting has some similarity with that in Efromovich, but the problem is different.

3 Consistency

In this section we study the consistency of the nonparametric likelihood (4) and the MLE based

on it. For convenience, when we emphasize the dependence on θ, we use f(z|θ) to denote
f(r(y − g(θ,x)), and f [1](·|·) to denote its first partial derivative vector ∂

∂ θ
f(z|θ) with respect

to θ. Its Hessian matrix ∂2

∂θ∂θ0
f(z|θ) will be denoted by f [2](·|·). Also we adopt the notation

f (k)(z|θ) to denote its k-th derivative with respect to z. Further, let µg(θ) = E[g[1](θ,X)],

Ωg(θ) = V arθ[r
(1)(r−1(Z))g[1](θ,X)], Ω̃g(θ) = Eθ[(r

(1)(r−1(Z))2g[1](θ,X)g[1](θ,X)0] and

Ω̌g(θ) = Eθ[r
(1)(r−1(Z))g[2](θ,X)− r(2)(r−1(Z))g[1](θ,X)g[1](θ,X)0]. We also define τ j as the

total variation of K(j)(·) (j = 0, 1, 2), and τg as the total variation of g[1](θ, ·).
To study the asymptotic behavior of cn(Y |θ,X) and θ̂n, we first list the following regularity

assumptions.

(A1) K(i)(·) is bounded (i = 0, 1, 2).
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(A2) hn → 0 and
P∞

n=1 exp(−εnh8n) <∞, for all ε > 0.
(A3) f (2)(·) exists on the support of f(·).
(A4) g[2](·, ·) is continuous.
(A5) f(·) has compact support.
(A6) |fn(z)− f(z)| = o(fn(z)) uniformly in z (a.s.) on the support of f(·).
(A7) q(·) has compact support.
(A8) 0 < infθ∈AΩg(θ) <∞ componentwise, is nonsingular and continuous on some A.

(A9)
R
ujK(r)(u)du = 0 (0 ≤ j ≤ r − 1), 0 6= γr := r−1

R
urK(r)(u)du <∞, (r = 1, 2).

(A10) 0 < E(f (1)(Z)/f(Z))2 <∞.

Remark 1: Conditions (A1)—(A10), except (A6), are practical and easy to satisfy. If K(1)(·)
is bounded then K(·) is of bounded variation. If we take K(·) to be the truncated normal
density with mean 0 and variance σ2, since K(1)(u) and uK(2)(u) are odd functions of u, we

have
R
K(1)(u)du =

R
uK(2)(u)du = 0. Also the condition

R
K(2)(u)du = 0 is equivalent to

(
√
2πσ)−1

R
u2e−u2/(2σ2)du = σ2, which is automatically true since σ2 is the variance. In most

of the proofs, we need (A2) with h4n in the exponent. Only the proof of Lemma 4 needs h
8
n.

Nevertheless, we still keep the stronger condition h8n in (A2). Conditions under which (A6) holds

will be discussed in Subsection 3.2.

Remark 2: For inference-based parametric models, (A5) will be a serious concern since most

commonly used models are of unbounded support. But it is not so serious for nonparametric

models, as inferences are based on the estimated “true” model, and in reality it’s rare to have a

practical true probability model with infinite support.

Entropy estimation has been studied by many authors using the kernel density estimator.

Although the kernel density estimator itself is not
√
n-consistent, a functional of it may be,

as is the entropy estimation based on it. Györfi & Van der Meulen (1990) studied the strong

consistency of such entropy estimators using data in An = {z : fn(z) ≥ an} for some an → 0.

Eggermont & LaRiccia (1999) obtained the bias of o(n−1/2) (a.s.) under relatively simple condi-

tions not involving θ, using the double exponential kernel. Their estimator is best asymptotically

normal. We will use their results in our case. Below we state the corresponding conditions.

(A11) K(·) is the double exponential density.
(A12) hn = O(n−γ/(3γ+2)) for some γ > 2.

(A13) E(|Z|λ) <∞ for some λ > γ.

(A14) f(·) is twice differentiable, and E(|f (r)(Z)|/f(Z))2 <∞, (r = 1, 2).
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3.1 Consistency of the pseudo-likelihood

Let θ∗ be the “true” θ for the observed data, define an “entropy-like” quantity L(θ) by

L(θ) =

Z Z
f(y − g(θ∗,x))q(x) log f(y − g(θ,x))dydx

=

Z Z
f(y − g(θ∗,x))q(x) log[f(y − g(θ,x))q(x)]dydx−

Z Z
f(y − g(θ∗,x))q(x) log q(x)dydx.

Note that L(·) is maximized by the maximizer of the first term above, which is θ∗. The empirical
version of L(θ) is the average pseudo log-likelihood, defined as

Ln(θ) =
1

n

nX
i=1

log f(n,i)(Yi − g(θ,Xi)).

Let

L̃n(θ) =
1

n

nX
i=1

log f(Zi|θ) = 1

n

nX
i=1

log f(Yi − g(θ,Xi)).

By the strong law of large numbers (SLLN), L̃n(θ) → L(θ) (a.s.). If L(·) can be well approxi-
mated by Ln(·), then the MLE from Ln(·) can be expected to be close to the true parameter θ∗,
given the smoothness condition on g(θ,Xi) in (A4). The following results assert the consistency

of the nonparametric likelihood.

Theorem 1. (i) Under condition (A6), for any compact set A of θ, we have

sup
θ∈A

|Ln(θ)− L(θ)|→ 0, a.s.

(ii) Under conditions (A11)—(A14), we have

|Ln(θ)− L̃n(θ)| = o(n−1/2), a.s.

Consequently, Ln(θ) is strongly consistent to L(θ), and the central limit theory (CLT) and the

law of iterated logarithm hold for Ln(θ) as for L̃n(θ).

Proof: (i) By (A6) we have supθ∈A |Ln(θ)− L̃n(θ)| = o(1) a.s. Now we show that

sup
θ∈A

|L̃n(θ)− L(θ)|→ 0, a.s. (5)

Recall the large deviation result ( Bahadur & Zabell, 1979; Kotz & Johnson, 1982, p. 32): Under

mild regularity conditions, for any i.i.d. random variable V1, . . . , Vn taking values in some space

V , and U , a finite union of open convex non-empty real sets of V , one has

lim
n→∞n−1 logP (V n ∈ U) = s(U) := sup{ρ(u) : u ∈ U}, or P (V n ∈ U) ≤ CenCs(U),
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for large n and some 0 < C < ∞, where −∞ < s(U) ≤ 0, V n is the sample mean of the Vi’s,

and

ρ(u) = inf
t
[−tu+ logφ(t)], φ(t) = E(etV1).

The regularity conditions (Bahadur and Zabell, 1979) are easily satisfied for most commonly

used distributions. In particular, we take V n = L̃n, µ = L, and for fixed � > 0, we take

U = U(�) = (−∞, µ− �) ∪ (µ+ �,∞), the sphere centered at µ = E(V1) with radius �.

The infimal t in the definition of ρ(u) must satisfy E(V1e
tV1) = uE(etV1), t 6= 0 (otherwise

u = E(V1) /∈ U). Apparently, sup{ρ(u) : u ∈ U} 6= 0, otherwise there is a t0 = inft[−tu +
logφ(t)] < 0 arbitrarily close to 0, corresponding to a u arbitrarily close to µ /∈ U in the

equation E(V1e
t0V1) = uE(et0V1), which is impossible. Thus, −∞ < s(�) = s(U(�)) < 0.

Observe that L(θ) = Eθ∗ [log f(Yi − g(θ,Xi))]. Hence, for any � > 0, there exists a finite

constant C > 0 such that P (|L̃n(θ) − L(θ)| ≥ �) ≤ exp(nCs(�)). Since L(·) and log f(·|θ) are
uniformly continuous on A, there exists a finite number of points θ1, . . . , θJ ∈ A, such that
∀ θ ∈ A, ∃ θl, we have

|L̃n(θ)− L̃n(θl)| < �/3, and |L(θ)− L(θj)| < �/3.

Moreover, for all θ ∈ A there exists a j such that

|L̃n(θ)− L(θ)| ≤ |L̃n(θ)− L̃n(θj)|+ |L̃n(θj)− L(θj)|+ |L(θj)− L(θ)|.

By the inequality above we have

P

µ
sup
θ∈A

|L̃n(θ)−L(θ)| ≥ �

¶
≤ P

µ
sup
θ∈A

|L̃n(θ)−L̃n(θj)| ≥ �/3

¶
+P

µ
max
j
|L̃n(θj)−L(θj)| ≥ �/3

¶

+P

µ
sup
θ∈A

|L(θj)− L(θ)| ≥ �/3

¶
= P

µ
max
j
|L̃n(θj)− L(θj)| ≥ �/3

¶

≤
JX
j=1

P

µ
|L̃n(θj)− L(θj)| ≥ �/3

¶
≤ J exp(Cs(�/3)n).

Accordingly, by the Borel-Cantelli lemma, (5) holds.

(ii) This is a direct result from Theorem 2 in Eggermont & LaRiccia (1999). The difference

is that, in their case the Zi’s are i.i.d. random variables and in our case, Zi = Yi − g(θ,Xi).

Hence, the corresponding distribution involves θ, and L(·) involves the marginal distribution of
the Xi’ s.
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3.2 Consistency of the MLE θ̂n

In this section we study the consistency of the MLE θ̂n, under the nonparametric likelihood

(4). First, note that under conditions (A1), (A2) and (A5), (A3) is the sufficient and necessary

condition for (3) to hold (Rao 1983, Theorem 2.1.3). For clarity, in the subsequent proofs, we

assume r(·) to be identity. We have

f
[1]
(n,i)(Zi|θ) = 1

(n− 1)h2n
X
j 6=i

K(1)
³Zi − Zj

hn

´
(g[1](θ,Xj)− g[1](θ,Xi))

and

f
[2]
(n,i)(Zi|θ) = 1

(n− 1)h2n
X
j 6=i

µ
h−1n K(2)

³Zi − Zj

hn

´
(g[1](θ,Xj)− g[1](θ,Xi))(g

[1](θ,Xj)− g[1](θ,Xj))
0

+K(1)
³Zi − Zj

hn

´
(g[2](θ,Xj)− g[2](θ,Xi))

¶
.

In case r(·) is not the identity function, the g[1](θ,Xj)’s should be replaced by r(1)(r−1(Zj))g
[1](θ,Xj).

Similarly, the g[2](θ,Xj)’s should be replaced by r(1)(r−1(Zj))g
[2](θ,Xj)−r(2)(r−1(Zj))g

[1](θ,Xj)×
g[1]

0
(θ,Xj)’s.

Theorem 2. Suppose (A1)—(A10) hold and that L(·) has a unique maximizer θ∗. Then for any
compact set A of θ on which (A8) holds, we have supθ∗∈A ||θ̂n − θ∗||→ 0, a.s.

Proof: Given (A1) and (A4), by Taylor’s expansion we have 0 = L
[1]
n (θ̂n) = L

[1]
n (θ

∗) +

L
[2]
n (θn)(θ̂n − θ∗), where θn is an intermediate value between θ̂n and θ∗. Or θ̂n − θ∗ =

−(L[2]n (θn))−1L[1]n (θ∗). Let B(θ∗, r) be the ball centered at θ∗ and with radius r. By (A6),
for large n, f(n,i)(·)→ f(·) uniformly, so θn is the maximizer of

1

n

nX
i=1

f(n,i)(Yi − g(θ,Xi)) =
1

n

nX
i=1

f(Yi − g(θ,Xi)) + o(1).

The first term on the right hand side above is maximized by θ̃ which is consistent, and there-

fore close to θ∗. Since we assumed L(·) has an unique maximizer, for large n, θn should be
close to θ̃, and hence to θ∗. Thus there is an r > 0 such that θn ∈ B(θ∗, r) for all large n.

Let abs(|L[2]n (·)|) be the absolute value of the determinant of L[2]n (·). Then abs(|L[2]n (θn)|) ≥
infθ∈B(θ∗,r) abs(|L

[2]
n (θ)|). Hence, it remains to prove that

sup
θ∗∈A

L[1]n (θ
∗) a.s.→ 0 (6)

and

lim
n

inf
θ∈B(θ∗,r)

inf
θ∗∈A

abs(|L[2]n (θ)|) = limn inf
θ∈Ã

abs(|L[2]n (θ)|) > 0, (7)

9



where Ã = {θ ∈ IRd : inf α∈A ||θ − α|| ≤ r} is A unioning its r-neighborhood. Since A is

arbitrarily compact, (7) can be proved with Ã replaced by A. However by (A10) it suffices to

prove that, for any compact set A satisfying (A8),

sup
θ∈A

||L[2]n (θ)− γ21E(f
(1(Z)/f(Z))2Ωg(θ)||→ 0, a.s.

Note (A2) implies (B3), the above result follows from Lemma 1 in the Appendix.

We now prove (6). Recall that θ∗ is the only parameter value under which the Zi’s are i.i.d.

with f(·). Hence, by (A6), we have

1

f(n,i)(z|θ∗)
=

1

f(z|θ∗) +
o(f(n,i)(z|θ∗))

f(z|θ∗)f(n,i)(z|θ∗)
=
1 + o(1)

f(z|θ∗) , uniformly in z, a.s.

and so

L[1]n (θ
∗)=

1

n

nX
i=1

f
[1]
(n,i)(Zi|θ∗)
f(n,i)(Zi|θ∗)=

1 + o(1)

n(n− 1)
nX
i=1

nX
j 6=i

K(1)(
Zi−Zj
hn

)[g[1](θ∗,Xi)−g[1](θ∗,Xj)]

h2nf(Zi|θ∗) , a.s.

(8)

We first prove the pointwise convergence of

1

n(n− 1)
nX
i=1

nX
j 6=i

K(1)(
Zi−Zj
hn

)[g[1](θ∗,Xi)− g[1](θ∗,Xj)]

h2nf(Zi|θ∗)

:=
1

n(n− 1)
nX
i=1

nX
j 6=i

Kn(Zi,Xi;Zj ,Xj ,θ
∗) := Un,n(θ

∗)→ 0, a.s.

Note, for each fixed n, the left hand side above is a U-statistic.

Let Z(1), . . . , Z(n), . . . be the order statistics of Z1, . . . , Zn, . . ., X<i> be the associated co-

variate of Z(i), Fn = σ((Z(i),X<i>) : i ≤ n; (Zn+1,Xn+1), . . .), and define for n ≥ 2,

Ũn,m(θ
∗) =

1

n(n− 1)
nX
i=1

nX
j 6=i

K̃m(Zi,Xi;Zj ,Xj ,θ
∗)

with K̃m to be specified latter. Then for each fixed m, {Ũn,m(θ
∗)} is a sequence of U-statistics,

and a reverse martingale with respect to {Fn}. Thus, by Theorem 4.3 in Doob (1953, p. 331),

limn Ũn,m(θ
∗) = limnE(Ũ2,m(θ

∗)|Fn) → E(Ũ2,m(θ
∗)|F∞) (a.s.). Since F∞ is permutable, it is

trivial by the Hewitte-Savage 0-1 law, and so by (A4) and (A7) limn Ũn,m(θ
∗) = E(Ũ2,m(θ

∗)|F∞) =
E(E(Ũ2,m(θ

∗)|F∞)) = E(Ũ2,m(θ
∗)) = 0. Now

Un,n = Ũn,m + (Un,n − Ũn,n) + (Ũn,n − Ũn,m).

10



By (A10) and hn → 0, for any � > 0, there is a positive sequence {bn} such that h−2n K(1)(bn/hn) =

� for all n. Note {bn} must satisfy bn → 0, bn/hn →∞. Now we choose K̃m(·) = Km(·)χ(| · | ≥
bm) where χ(·) denotes the indicator function. Note¯̄̄̄

1

h2n
K̃(1)

n (
Zi − Zj

hn
)− 1

h2m
K̃(1)
m (

Zi − Zj

hm
)

¯̄̄̄
≤ 2�, all (i, j).

Thus,

(Ũn,n−Ũn,m)
+ ≤ 1

n(n− 1)
nX
i=1

nX
j 6=i

¯̄̄̄
1

h2n
K̃(1)

n (
Zi − Zj

hn
)− 1

h2m
K̃(1)
m (

Zi − Zj

hm
)

¯̄̄̄
(g[1](θ∗,Xi)− g[1](θ∗,Xj))

+

f(Zi|θ∗)

≤ 2�

n(n− 1)
nX
i=1

nX
j 6=i

(g[1](θ∗,Xi)− g[1](θ∗,Xj))
+

f(Zi|θ∗) .

Note, the last summation above is a U-statistic. It converges (a.s.) to 2�E(g[1](θ∗,Xi) −
g[1](θ∗,Xj))

+ < ∞. This implies that, for large m, limn(Ũn,n − Ũn,m)
+ can be arbitrarily

small (a.s.). Similarly, for large m, limn(Ũn,n − Ũn,m)
− can be arbitrarily small (a.s.).

Also, by definition of K̃(1)
n , and by (A5), |g[1](θ∗,Xi) − g[1](θ∗,Xj)| is bounded, and the

symmetry of K(1)(·) implies R|u|<bn K(1)(u)du = 0. Let C denote a generic constant. We have

Un,n−Ũn,n =
1

n(n− 1)
nX
i=1

nX
j 6=i

1

h2n

µ
K(1)(

Zi−Zj

hn
)− 1

h2n
K̃(1)
n (

Zi−Zj

hn
)

¶
g[1](θ∗,Xi)− g[1](θ∗,Xj)

f(Zi|θ∗)

=
1

n(n− 1)
nX
i=1

nX
j 6=i

1

h2n
K(1)(

Zi − Zj

hn
)
g[1](θ∗,Xi)− g[1](θ∗,Xj)

f(Zi|θ∗) χ(|Zi − Zj | < hnbn)

∼ C
1

n(n− 1)
nX
i=1

nX
j 6=i

1

h2n
K(1)(

Zi − Zj

hn
)

1

f(Zi|θ∗)χ(|Zi − Zj | < hnbn)

∼ C
1

h2n

Z
|z1−z2|<hnbn

Z
K(1)(

z1 − z2
hn

)f(z2)dz1dz2 = C
1

hn

Z
|u|<bn

Z
K(1)(u)f(z1 − hnu)dz1du

= C
1

hn

Z
|u|<bn

Z
K(1)(u)(f(z1)− f (1)(z1 + rnu)hnu)dz1du

= −C
Z
|u|<bn

Z
uK(1)(u)f (1)(z1 + rnu)dz1du ∼ −Cbn → 0,

where rn is an intermediate value between 0 and -hnu. We thus have limn Un,n(θ
∗)→ 0, a.s.

Since A is compact, given any � > 0, there is a finite number of points θ1, . . . , θJ in A, such

that ∀θ∗ ∈ A, ∃θl ∈ A, with ||θ∗ − θl|| ≤ �. For some intermediate values θi we have

Un,n(θ
∗)−Un,n(θl)=

1

n(n− 1)
nX
i=1

nX
j 6=i

K(1)(
Zi−Zj
hn

)[g[2](θi,Xi)− g[2](θj ,Xi)](θ
∗ − θl)

h2nf(Zi|θ∗) := Ǔn,n.

11



Also, we have

sup
θ∗∈A

||Un,n(θ
∗)|| ≤ ||Ǔn,n||+max

j
||Un,n(θj)||.

Since, by definition of Kn(· · · ), E(Ǔn,n) = E(Un,n(θ
∗)) − E(Un,n(θl)) = 0 and E(Un,n(θj)) =

0, and by (A1) and (A7) the kernels of the U-statistics Ǔn,n and Un,n(θj) are bounded by

±||θ∗ − θl||Ch−2n ⊂ ±�Ch−2n and ±Ch−2n , for some 0 < C < ∞. Applying Hoeffding’s (1963)
inequality for U-statistics (Serfling, 1980, p. 201) componentwise, we have

P

µ
sup
θ∗∈A

||Un,n(θ
∗)|| > �

¶
≤ P

µ
||Ǔn,n|| > �−1/2

¶
+

JX
j=1

P

µ
||Un,n(θj)|| > �/2

¶

≤ e−C
−2nh4n + Je−�

2C−2nh4n .

Hence, by (A2) and the Borel-Cantelli lemma, (6) holds.

Remark 3: From (2) we see that the bias of θ̂n may be significant if f(·) and g(·, ·) do not
match the data distribution. But Theorem 2 tells us that under fair conditions, the bias of θ̂n

is asymptotically negligible. Clearly, the bias is quantifiable as θ̂n−θ∗ = −(L[2]n (θn))−1L[1]n (θ∗).
Now, by Lemma 4 in the Appendix, L[1]n (θ∗)

a.s.→ γ1L
[1](θ∗) = 0. Also, by Lemma 1 in the

Appendix, L[2]n (θn)
a.s.→ γ21E[(f

(1)(Z)/f(Z))2]Ωg(θ
∗). So, provided L

[2]
n (·) is non-singular in a

neighborhood of θ∗, the bias is asymptotically equal to zero. The convergence property depends

on the convergence of f [i]n (·) to f [i](·) (i = 1, 2) (cf. Lemma 4).

Now we discuss some conditions under which (A6) holds. Reference will be made to conditions

(Bj)s given in Section 4.

Proposition 1. Under (A1), (A5), (B1)-(B3), and assuming f(·) is continuous, infz f(z) > 0
on the support of f(·) and Pn exp(−C1nh2n) <∞ for all C > 0, then (A6) holds.

Proof: Under (A1), and (B1)-(B3) and the uniform continuity of f(·), by Theorem 2.1.1 in Rao
(1983) we have

sup
z
|E(fn(z))− f(z)|→ 0.

Let Fn(·) and F (·) respectively be the empirical and real distribution functions of Z, since (B2)
implies K(·) has bounded variation τ0, the proof of Theorem 2.1.3 (Rao, 1983) gives that

P (sup
z
|fn(z)−E(fn(z))| > �) ≤ P (sup

z
|Fn(z)− F (z)| > �hnτ

−1
0 ) ≤ C exp(−C1nh2n),

12



for some 0 < C,C1 <∞. Since
P

n exp(−C1nh2n) <∞, we have

sup
z
|fn(z)− f(z)| = o(1), a.s.

Since infz f(z) > 0, from the above relationship we have infz fn(z) > 0 for large n, and thus

sup
z
|fn(z)− f(z)| = o(1)f−1n (z)fn(z) ≤ o(1)(inf

z
fn(z))

−1fn(z) = o(1)fn(z), a.s.

Remark 4: The assumption infz f(z) > 0 on the support of f(·) is used in entropy estimation
by a number of authors ( Hall 1986; Joe 1989; Van Es 1992; Hall & Morton 1993).

Proposition 2. Assume (A5) holds, and E
R |fn(z)− f(z)|dz → 0. Then (A6) holds.

Proof: The given conditions imply (fn(z) − f(z)) → 0 (a.s.) for any z. If (A6) is not true,

then for a given � > 0, there exists a constant 0 < C < ∞ and a sequence of sets {An}, with
µ(An) ≥ � and |fn(z)−f(z)| ≥ Cfn(z), ∀z ∈ An, where µ(·) is the Lebesque measure on IR. Let
A be the support of f(·), and Ac be the complement of A. The condition (fn(z) − f(z)) → 0

(a.s.) implies µ(An∩Ac)→ 0. Let χA(·) be the indicator function on A, and A = inf limnAn∩A.
Then A ⊂ A and µ(A) > 0. By Fatou’s lemma we have,

E

Z
|fn(z)− f(z)|dz ≥ E

Z
|fn(z)− f(z)|χAn∩A(z)dz ≥ CE

Z
fn(z)χAn∩A(z)dz

≥ CE

Z
inf lim

n
fn(z)χA(z)dz = C

Z
f(z)χA(z)dz > 0,

which is a contradiction.

For various conditions to ensure E
R |fn(z) − f(z)|dz → 0, one may consult Devroye & Györfi

(1985).

4 Asymptotic Normality and Wilks Property

4.1 Asymptotic normality of the MLE θ̂b

To study the asymptotic normality of θ̂n, we impose the following conditions.

(B1)
R
K(y)dy = 1.

(B2) K(·) has compact support and symmetric around 0.
(B3) hn → 0, nh4n →∞.
(B4) f (1)(·)/f(·) is bounded on the support of f(·).
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Let D→ denote convergence in distribution and P→ convergence in probability. The following

asymptotic result holds.

Theorem 3. Under (A1), (A3)—(A10) and (B2)—(B4), we have

√
n(θ̂n − θ∗) D→ N(0,Ω(θ∗)),

where Ω−1(θ∗) = E[(f (1)(Z)/f(Z))2]Ωg(θ
∗).

Note: the asymptotic variance of θ̂n does not depend on the kernel K(·), while most of the
kernel type estimators do.

Proof: Observe that
√
n(θ̂n − θ∗) = (−L[2]n (θn))−1√nL[1]n (θ∗). By Lemma 1, and integrating

by parts gives γ1 =
R
uK(1)(u)du = −1, so we have

L[2]n (θn) = −γ21E
µ
f (1)(Z)

f(Z)

¶2
Ωg(θ

∗) + oP (1) = −Ω−1(θ∗) + oP (1). (9)

Thus we only need to show that

√
nL[1]n (θ

∗) D→ N(0,Ω−1(θ∗)). (10)

From (9) and the expression of L[1]n (θ∗) as given in (8), it follows that we need to show that
√
n

n(n− 1)
nX
i=1

nX
j 6=i

K(1)(
Zi−Zj
hn

)[g[1](θ∗,Xj)− g[1](θ∗,Xi)]

h2nf(Zi|θ∗)
D→ N(0,Ω−1(θ∗)). (11)

Rewriting the left hand side of (11) as a U-statistic gives
√
n

n(n− 1)
nX
i=1

nX
j 6=i

Kn(Zi,Xi;Zj ,Xj) :=
√
nUn, (12)

where

Kn(Zi,Xi;Zj ,Xj) =
1

2

µ
K(1)(

Zj−Zi
hn

)[g[1](θ∗,Xj)− g[1](θ∗,Xi)]

h2nf(Zi|θ∗)

+
K(1)(

Zi−Zj
hn

)[g[1](θ∗,Xi)− g[1](θ∗,Xj)]

h2nf(Zj |θ∗)
¶

is a symmetric kernel in the (Zi,Xi)’s. Let Kn(Zi,Xi) = E(Kn(Zi,Xi;Zj ,Xj)|Zi,Xi). Then,

it follows from (12) that

Un =
1

n(n− 1)
nX
i=1

nX
j 6=i

µ
Kn(Zi,Xi;Zj ,Xj)−Kn(Zi,Xi)−Kn(Zj ,Xj)

¶

+
1

n(n− 1)
nX
i=1

nX
j 6=i

µ
Kn(Zi,Xi) +Kn(Zj ,Xj)

¶

:=
1

n(n− 1)
nX
i=1

nX
j 6=i

K̃n(Zi,Xi;Zj ,Xj) +
2

n

nX
i=1

Kn(Zi,Xi). (13)
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Now to prove (11), we only need to show that

√
n
2

n

nX
i=1

Kn(Zi,Xi)
D→ N(0,Ω−1(θ∗)),

which is given by Lemma 3 in the Appendix, and

√
n

2

n(n− 1)
X

1≤i<j≤n
K̃n(Zi,Xi;Zj ,Xj)

P→ 0. (14)

Note that the left hand side of (14) is a vector of dimension dim(θ). Thus it suffices to prove

that (14) holds componentwise. Since by Lemma 2 in the Appendix, E(K̃n(Z1,X1;Z2,X2)) = 0,

and the variance of each component on the left hand side in (14) is C/(nh3n) → 0 by (B3), for

some 0 < C <∞. Thus, by Chebychev’s inequality, we obtain the desired result.

Remark 5: In contrast, the convergence rate of the estimated mode, quantiles, etc of the kernel

density estimator is typically of
√
nhn. Here θ̂n, the estimated mode of the likelihood under the

kernel density estimator achieves the
√
n-rate, as it does under a known true model.

Remark 6: A natural estimate of Ω−1(θ∗) is given by

Ω̂−1(θ̂n)=
³ 1
n

nX
i=1

hf (1)n,i (zi)

fn,i(zi)

i2´ 1
n

nX
i=1

³
g̃(θ̂n,xi, zi)

´³
(g̃(θ̂n,xi, zi)

´0
, (15)

where g̃(θ̂n,xi, zi) = r(1)(r−1(zi))g[1](θ̂n,xi)− (1/n)
Pn

i=1 r
(1)(r−1(zi))g[1](θ̂n,xi).

The following theorem shows that the semiparametric model MLE θ̂n obeys the functional

invariance principle enjoyed by the MLE from a known parametric model. For t ∈ [0, 1], let [nt]
be the largest integer caped by nt,

Ln(θ) =
1

n

[nt]X
i=1

log f(n,i)(Yi − g(θ,Xi)),

and θ̂[nt] be the MLE of θ under L[nt](·). Let W be the k-dimensional standard Brownian

motion on [0, 1], and D[0, 1] be the space of k-dimensional functions of right continuity with left

limit at every point.

Theorem 4. Under conditions of Theorem 3, we have

√
nΩ−1/2(θ∗)(θ̂[nt] − θ∗) D→W

in the J1-topology on D[0, 1].
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Proof: As in the proof of Theorem 3, we have for all t ∈ (0, 1],
√
nΩ−1/2(θ∗)(θ̂[nt] − θ∗) = (−L[2][nt](θ[nt]))−1Ω−1/2(θ∗)

√
nL

[1]
[nt](θ

∗), (16)

and

L
[2]
[nt]
(θ[nt]) = −Ω−1(θ∗) + o

(1)
Pt
(1),

√
nL

[1]
[nt]
(θ∗) =

1 + o(1)√
n

[nt]X
i=1

2Kn(Zi,Xi) + o
(2)
Pt
(1),

where by (13), (14) and Lemma 2, the o(i)Pt (1)s may depend on t, but tend to zero in probability

uniformly in t. Let Un,h(t) be the left hand side of (16). The argument for the finite dimensional

weak convergence of Un,h(t) is similar as in the proof of Theorem 3, now we only need to prove

the tightness of the family of distributions of the Un,h(t)’s, indexed by t. For this, let

Vn,h(t) = n−1/2
[nt]X
i=1

2Ω−1/2(θ∗)Kn(Zi,Xi).

For simplicity of proof we assume θ to be one-dimensional. The multi-dimensional case can be

handled similarly, using norm rather than absolute differences to check the tightness condition.

By Theorem 15.6 in Billingsley (1968), we only need to show, ∀λ > 0, there is a 0 < C <∞
such that for all fixed t1 < t < t2,

P

µ
|Un,h(t)− Un,h(t1)| ≥ λ, |Un,h(t2)− Un,h(t)| ≥ λ

¶
≤ C

λ4
(t2 − t1)

2, t1 < t < t2. (17)

In fact, by (16), and the boundedness of Ω−1(θ∗), Un,h(t) = (1 + o
(1)
Pt
(1))Vn,h(t) + o

(2)
Pt
(1), thus

∀0 ≤ t1 < t < t2 ≤ 1,

|Un,h(t)− Un,h(t1)| ≤ |1 + o
(1)
Pt,t1

(1)||Vn,h(t)− Vn,h(t1)|+ |o(2)Pt,t1
(1)|,

where o
(1)
Pt,t1

(1) = o
(1)
Pt
(1) if Un,h(t) ≥ Un,h(t1), and o

(1)
Pt,t1

(1) = o
(1)
Pt1
(1) if Un,h(t) < Un,h(t1);

o
(2)
Pt,t1

(1) = max{o(2)Pt
(1), o

(2)
Pt1
(1)}. From now on let C be a generic constant and n0 be a generic

integer. Since o
(2)
Pt,t1

(1) → 0 uniformly in (t, t1), there is an n0 such that |o(2)Pt,t1
(1)| < λ/2

∀n ≥ n0. Thus, there is 0 < C <∞ such that, ∀n ≥ n0 and all t1 < t, we have

|Un,h(t)− Un,h(t1)| ≤ C|Vn,h(t)− Vn,h(t1)|+ λ/2.

Similarly, ∀n ≥ n0 and all t < t2,

|Un,h(t2)− Un,h(t)| ≤ C|Vn,h(t2)− Vn,h(t)|+ λ/2.

Now we have

P

µ
|Un,h(t)− Un,h(t1)| ≥ λ, |Un,h(t2)− Un,h(t)| ≥ λ

¶
16



≤ P

µ
|Vn,h(t)− Vn,h(t1)| ≥ λ/(2C), |Vn,h(t2)− Vn,h(t)| ≥ λ/(2C),

¶
.

Since Vn,h(t)− Vn,h(t1) and Vn,h(t2)− Vn,h(t) are independent, and in the proof of Lemma 3 for

the variance computation, there is 0 < C < ∞ such that for large n, E(Vn,h(t) − Vn,h(t1))
2 ≤

C([nt]− [nt1])/n, ∀t > t1. So the right hand side of the previous expression is

P (|Vn,h(t) − Vn,h(t1)| ≥ λ/(2C))P (|Vn,h(t2)− Vn,h(t)| ≥ λ/(2C))

≤ 16C4

λ4
E(Vn,h(t)− Vn,h(t1))

2E(Vn,h(t2)− Vn,h(t))
2

≤ 16C

λ4n2
([nt]− [nt1])([nt2]− [nt])

≤ 16C

λ4
(
[nt2]− [nt1]

n
)2 ≤ C

λ4
(t2 − t1)

2.

4.2 Wilks property

The likelihood ratio statistics plays an important role in statistical hypothesis testing. Let

Z = (Z1, . . . , Zn), with Z1, . . . , Zn i.i.d. with known common density f(·|θ), Θ0 be a proper
sub-space of the parameter space Θ of θ, with 0 ≤ r = dim(Θ0) < dim(Θ) = k, θ̂n as

before, θ̂n,0 be the MLE of the true data generating θ∗ under the same true distribution, but

confined within Θ0, and ln(Z|θ) =
Qn

i=1 f(Zi|θ) be the likelihood function. Let χ2(k−r) be a
χ2 random variable with k − r degrees of freedom. Under the null hypothesis H0 : θ∗ ∈ Θ0,
Wilks (1938) proved that the LR statistic 2 log(ln(Z|θ̂n)/ln(Z|θ̂n,0) D→ χ2(k−r). This result was

generalized under various settings to various forms (Owen, 1990; Fan et al., 2001). Here, with

f(n,i)(Yi−g(θ,Xi)) and ln(Y|θ,X) as given in (4), we expect that a similar result will hold with
f(Zi|θ) replaced by f(n,i)(Yi − g(θ,Xi)) (i = 1, . . . , n) i.e. we consider asymptotic distribution

of the NLR statistic λn defined λn = log(ln(Y|θ̂n,X)/ln(Y|θ̂n,0,X)).

Theorem 5. Under the null hypothesis H0: θ∗ ∈ Θ0, and the conditions of Theorem 3, then

the NLR statistic 2λn
D→ χ2(k−r).

Proof: For simplicity, we rewrite θ as (θ0,θ1) with dim(θ0) = r, and θ∗ = (θ∗0,θ
∗
1). Recall

the notation Ln(θ) introduced in Subsection 3.1. By Taylor’s expansion we have, for some

intermediate value θn between θ̂n and θ∗,

log ln(Y|θ̂n,X) = nLn(θ̂n) = nLn(θ
∗) +

1

2

µ√
n(θ̂n − θ∗)

¶0
L[2]n (θn)

µ√
n(θ̂n − θ∗)

¶
.

By (A.7), Theorem 3, and the Slutsky theorem, we haveµ√
n(θ̂n − θ∗)

¶0
L[2]n (θn)

µ√
n(θ̂n − θ∗)

¶
D→ V0Ω−1(θ∗)V,
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where Ω−1(θ∗) = γ21E[(f
(1)(Z)/f(Z))2]Ωg(θ

∗), and V ∼ N(0,Ω(θ∗)). For ease of notation we

omit the θ∗ in Ω and Ω2. Let U = Ω−1/2V, then U = (u1, . . . , uk)
0 ∼ N(0, Ik), and

V0Ω−1V = U0(Ω1/2)0Ω−1Ω1/2U = u21 + . . .+ u2k ∼ χ2k. (18)

Let Ω0 and Ω−10 be the upper left r × r block of Ω and Ω−1. Similarly we have

log ln(Y|θ̂n,0,X) = nLn(θn,0) = nLn(θ
∗
0) +

1

2

µ√
n(θ̂n,0 − θ∗0)

¶0
L[2]n (θn,0)

µ√
n(θ̂n,0 − θ∗0)

¶
,

with µ√
n(θ̂n,0 − θ∗0)

¶0
L[2]n (θn,0)

µ√
n(θ̂n,0 − θ∗0)

¶
D→ V0

0Ω
−1
0 V0,

and V0 ∼ N(0,Ω0). Let U0 = Ω
−1
0 V 0, then V 0

0Ω
−1
0 V 0 = U

0
0U0 = u21 + . . . + u2r ∼ χ2r. This,

together with the fact that under H0 nLn(θ
∗) = nLn(θ

∗
0) and (18), gives

2λn = 2(nLn(θ
∗)− nLn(θ

∗
0)) +

µ√
n(θ̂n − θ∗)

¶0
L[2]n (θn)

µ√
n(θ̂n − θ∗)

¶
−
µ√

n(θ̂n,0 − θ∗0)
¶0
L[2]n (θn,0)

µ√
n(θ̂n,0 − θ∗0)

¶
D→ U 0U −U 0

0U0 = u2r+1 + . . .+ u2k ∼ χ2k−r.

5 Efficiency

Let F be a collection of distributions, T (F ) be a functional of the data distribution F ∈ F .
Further, let Tn be any estimator of T (F ), which depends only on the data, such that

√
n(Tn −

T )
D→ Z for some random variable Z with V ar[Z] = Ω, and let I−1(F |T,F) be the information

bound for this problem. It is well-known by the Hájek convolution theorem (e.g. Bickel et al.,

1993), that under fairly general conditions, Ω ≥ I−1(F |T,F) in the sense of matrix non-negative
definiteness. When the equality holds, Tn is called an efficient estimator of T . For our problem,

when f(·) is known, the information bound is the Fisher information given by

I(θ) = E

µ
∂

∂θ
log f(Y − g(θ,X))

¶µ
∂

∂θ
log f(Y − g(θ,X))

¶0
= −E

µ
∂2

∂θ∂θ0
log f(Y − g(θ,X))

¶
= Ω̃g(θ)E

µ
f (1)(Z)

f(Z)

¶2
,

where Ω̃g(θ) = Eθ[(r
(1)(r−1(Z))2g[1](θ,X)g[1](θ,X)0]. When f(·) is unknown, the information

bound is bigger. From Example 1, p. 105, Bickel et al. (1993), the efficient score function for

this problem is given by

I∗ = (g[1](θ∗,X)−E(g[1](θ∗,X)))f (1)(Z)/f(Z).
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Also, under fair conditions (Corollary 1, p. 72, Bickel et al., 1993), the efficient influence function

is given by Ĩ = ||I∗||−2I∗, while the information bound can be written as

I−1(F |T,F) = ||Ĩ||2 := Eθ∗(Ĩ Ĩ
0), or I(F |T,F) = E[(f (1)(Z)/f(Z))2]Ωg(θ

∗).

By Theorem 3 the asymptotic variance-covariance matrix of the MLE θ̂n under our semipara-

metric model is given by Ω(θ∗) = I−1(F |T,F), which does not depend on the kernel K(·),
achieves the information lower bound for this problem and thus θ̂n is efficient. In contrast,

the information lower bound may not hold for many estimators which depend on some other

structure than the data. For instance, many kernel type estimators have an asymptotic vari-

ance with
R
K2(u)du as a factor in it (Fan et al., 1994; Fan & Gijbels, 1994), which can take

an arbitrarily value in (0,∞) by choosing K(·). It is easy to see that I−1(F |T,F) ≥ I−1(θ),

when the equality holds, and if there exists an estimator which achieves the Fisher information

lower bound, such an estimate is called adaptive. Clearly, adaptation is a property of the model

parametrization. Begun et al. (1983) gave necessary conditions (Corollary 3.1) for adaptation

in the case of semiparametric estimation.

6 Numerical studies

In this section, we present the results of two Monte Carlo experiments to show the finite sample

behaviour of the MLE θ̂n vis-à-vis the linear least squares (LS) estimator, and the nonlinear

least squares (NLS) estimator through the use of various performance measures. We also eval-

uate the NLR statistic λn defined in Subsection 4.2. Throughout the simulations, we use the

biweight kernel K(u) = 15
16(1 − u2)2χ(|u| ≤ 1). The experiments were carried out in Fortran

using IMSL-Fortran subroutines UMINF (minimization of a function of k variables using a quasi-

Newton method and a finite difference gradient), RNLIN (fitting a nonlinear regression model),

RCOVB (computing the estimated asymptotic covariance matrix of the estimated NLR parame-

ters), RNNOR (generating pseudorandom numbers from a standard normal distribution using

an inverse CDF method), and RNGAM (generating pseudorandom numbers from a standard

gamma distribution).

6.1 Bandwidth selection

Implementing the MLE θ̂n requires a method for choosing the value of the bandwidth hn. For

the kernel density estimator fn(·), there is a vast literature on this topic, ranging from simple
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to involved methods. But none of the methods has overall advantage (Turlach, 2006). For the

problem under study, a good estimator of the regression parameters relies on a good estimator

of the error density. A simple and convenient method to use in this case is the so-called rule of

thumb bandwidth selector of Deheuvels (1977), which is given by hn = 1.06σ̂nn−1/5 where σ̂n is

the standard deviation of the data. This choice of hn does not affect the asymptotic distribution

of θ̂n, and satisfies conditions (A2), (A12) and (B3).

Now, let θ0 be an initial estimate of θ, e.g. the least squares estimate. Then σ̂2n can be

computed as σ̂2n =
Pn

i=1(Z
∗
i −Z∗)2/(n−1), where Z∗i = Yi−g(θ0,Xi), and Z∗ = (1/n)

Pn
i=1 Z

∗
i .

Given this result, the bandwidth hn can be computed prior to the maximization of the pseudo-

likelihood (4). Next, in each step of the numerical optimization routine the value of hn can be

adjusted, given intermediate estimates of the true parameter θ∗. This choice of the bandwidth

is based mainly on convenience. It may not be optimal, and as such a topic of future study.

6.2 Results

Example 1. Consider the regression model (1) with

E(Yi|Xi,θ
∗) = g(θ∗,Xi) = θ∗0 + θ∗1Xi, (19)

where θ∗ = (θ∗0, θ
∗
1)
0. In a parametric setting, this model corresponds with Yi = θ0 + θ1Xi +

�i. In the case of (19) the errors �i’s must be distributed symmetrically about 0, as pointed

out in Section 1. Here we take �i
i.i.d.∼ (0.5N(−1, 1) + 0.5N(1, 1))χ(−10, 10), the truncated

normal mixture. For the linear regression model we assume Zi
i.i.d.∼ N(0, σ2), with σ2 unknown.

To avoid the identifiability problem we employ the nonlinear function r(v) = 10ev/(1 + ev).

For each simulation, we draw 1000 random samples of size n = 500 of (Yi,Xi) with Xi
i.i.d.∼

N(1, 1)χ(−11, 10).

Table 1 about here

Averaged over all replications, Table 1 shows the MLE θ̂n and the LS squares estimates,

denoted by θn, for some selected values of θ∗. Further we present values of the empirical mean-

squared errors (MSEs) for each component of the estimators. We observe that the MLE θ̂n and

the LS estimator θn perform equally well.

Table 2 about here
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Example 2. Consider the regression model (1) with the following two specifications for the

conditional mean function

E(Yi|Xi,θ
∗
1) = g(θ∗1,Xi) = θ∗1 exp(θ

∗
2X1i), (20)

E(Yi|Xi,θ
∗
2) = g(θ∗2,Xi) = θ∗1 exp(θ

∗
2X1i) + θ∗3 exp(θ

∗
4X2i), (21)

where θ∗1 = (θ
∗
1, θ

∗
2))

0 and θ∗2 = (θ
∗
1, θ

∗
2, θ

∗
3, θ

∗
4)
0. Model (20) was fitted to empirical data by Neter

et al. (1983, pp. 475-478). Model (20) may be considered as a generalization of (21). We sample

the Zi’s from a standard gamma distribution with density function f(z) = z exp(−z), z > 0.

Since the functions g(·, ·) have no constant term, we don’t have the identifiability problem. So
we can take r(·) to be the identity function. Furthermore, for each simulation we draw random
samples of size n of (Yi,Xi) with, in the case of (20), X1i

i.i.d.∼ N((1.5, 1)χ(−8 ≤ x1 ≤ 5), and, in
the case of (21), Xi

i.i.d.∼ N((1.5, 4.6)0, I2)χ(−8 ≤ x1 ≤ 5;−3 ≤ x2 ≤ 10). The true parameters
are taken as θ∗1 = (60,−0.03)0 and θ∗2 = (1,−1.4, 1, 0.8)0.

Figure 1 about here

Averaged over all 1000 replications, Table 2 shows the empirical means and MSEs of θ̂n

for n = 100, 300, and 500. And, with the same conditional mean functions g(·, ·), the means
and MSEs of the NLS estimate θ̃n. These latter results are based on Zi

i.i.d.∼ N(0, σ2) with

σ2 unknown. For θ∗1 we see that, in terms of mean parameter values, the performance of the

MLE θ̂n and the NLS estimator θ̃n is very similar. However, the NLS estimator has slightly

lower MSE values for θ∗1. On the other hand, for θ
∗
2, the lowest MSE values are obtained by the

MLE estimator. Figure 1 shows plots of the mean estimated standard error of θ̂n (solid lines)

obtained from the 1000 simulations, and the asymptotic standard errors (dashed lines) of the

estimated parameters, using (15), for sample sizes n = 100, 150, . . . , 500. Asymptotic results

appear to take effect at about n = 200.

Figure 2 about here

Note that for θ∗2 the performance of the MLE and NLS estimators is quite different. We see

that the semiparametric MLE θ̂n is performing well, and gives much more accurate estimates of

the parameters θ∗ than the NLS estimator θ̃n. This is confirmed by the reported MSE values. To

verify the accuracy of our estimator of the asymptotic variance-covariance matrix Ω(θ∗), Figure 2

shows plots of the mean estimated standard error of θ̂n (solid lines) and the asymptotic standard

errors (dashed lines) of the estimated parameters, for sample sizes n = 100, 150, . . . , 500. Clearly,
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in this case, our asymptotic results can be employed at about n = 400. These results are typical

for other parameter vectors θ∗2, and sample sizes.

Example 3. To gain insight in the performance of the test statistic λn, we consider the mean

function

E(Yi|Xi,θ
∗) = g(θ∗,Xi) = θ∗1 exp(θ

∗
2X1i) + θ∗3X2i exp(θ

∗
4X2i).

Similar to Example 2, the Zi’s are sampled from a standard gamma distribution. The null

hypothesis H0 : θ
∗
4 = 0 will be investigated versus the alternative H1 : θ

∗
4 6= 0. The parameter

vector of interest is θ∗ = (1,−1.4, 1, 0)0. According to Theorem 5, the distribution of λn should

be asymptotically χ21-distributed. To verify this empirically, we plot the quantile of the 1000

computed statistics against the quantile of the χ21-distribution. Figure 3 shows the Q-Q plots

for n = 100 and n = 200. The reference lines are chosen to pass through the 25% and 75% data

quantiles. The plots depict the λn statistic closely following the χ21-distribution, with better

results for the case n = 200 than for n = 100; this is consistent with the asymptotic theory.

Figure 3 about here

7 Discussion

7.1 Mean function

Specification of the mean function is an important issue for any parametric/semiparametric

regression method. Since the error distribution is model free, a mis-specification of the mean

function seems to be less serious as in the parametric case. However, it may still result in

inferior inference as for any parametric/semiparametric regression method. How to select the

mean function g(·, ·) is a practical issue. A good mean function should fit the data well and

be as simple (smooth) as possible. By fitting the data well, we mean the corresponding log

semiparametric likelihood, evaluated at the MLE, is relatively large. But typically, this will favor

a sophisticated mean function. So there is a trade-off between goodness-of-fit and the complexity

of the model. Let G = {g(·, ·)} be a finite set of available optional mean functions we are to use
for the problem under study. Different gi’s in G may have the same parametric dimension but
different parametrizations, or different parametric dimensions and the corresponding model not

necessarily be nested. So our case is different from the common model selection, which chooses

the optimal parameter dimension among a set of nested models. In our case, we suggest to
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select the optimal g ∈ G in the sense of balancing the goodness-of-fit and its complexity. The
commonly used AIC or BIC do not apply, since here the models under consideration may not

be nested. Rather we suggest the use of Rissanen’s (1996) minimal description length criterion

to choose the mean function. A full investigation of this criterion awaits further research.

7.2 Robustness

Although in Subsection 2.2 we discussed some related estimation methods, the literature on

robust statistics was not addressed. The reason is that robust parametric statistics tend to rely

on replacing the normal distribution by the t-distribution, with low degrees of freedom (high

kurtosis). Our method is more general in this respect. Also, the focus and treatment are differ-

ent between robust regression and the semiparametric regression method presented here. The

former is more focused on treatment of breakdown points (the proportion of “incorrect” obser-

vations), using the empirical influence function and sensitivity curves to evaluate the behavior

of the estimator(s). It also deals with the construction of robust algorithms, usually called M -

estimator, which needs the specification of a ρ function to replace the likelihood function. For

our method, we use a kind of “empirical likelihood” to replace the subjective specification of the

likelihood, with the main focus on consistent estimates of the parameters, no matter what the

error specification is, and robust with respect to uncertainty on f(·).

7.3 Concluding remarks

The semiparametric MLE method studied in this paper, allows for a great deal of generality in

the error specification. The method is ready to use because of the Wilks property. It is powerful

since it achieves optimal rates of convergence. The MLE achieves the lower bound for the class

of semiparametric estimators, and hence is efficient in this class. This information lower bound

is generally bigger than or equal to the inverse of the Fisher information. When the information

lower bound equals the inverse of the Fisher information under some model specification, the

MLE is “adaptive” by definition. But in general adaptation is not possible.

Based on our simulated examples, the semiparametric MLE method accurately estimates

the true parameters, while the traditional NLS may fail (see, e.g., Example 2). However, the

suggested naive estimate of the asymptotic variance is not satisfactory in Example 2 for n < 400.

This may due to the difficulty in estimating the factor E[f (1)(Z)/f(Z)]2 in the asymptotic

variance. Recall, in Remark 6, we suggested the estimate (1/n)
Pn

i=1[f
(1)
n,i (zi)/fn,i(zi)]

2. It is

known that fn(·) is consistent for f(·) does not necessarily mean that f (1)n (·) is consistent for
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f (1)(·). Generally, f (1)n (z) ∼ h−1n
R
K(1)(u)du−f (1)(z) R uK(1)(u)du+o(1), and f (1)n (z)→ f (1)(z)

only if
R
K(1)(u)du = 0 and

R
uK(1)(u)du = −1. The first condition above is asserted by

(A9), the second is also true (see 2nd line in the proof of Theorem 3). So the conditions imply

f
(1)
n (z)→ f (1)(z) (a.s.). But we still don’t know if this convergence is uniform, or the convergence

speed (usually slower than that of fn(·) to f(·)). Here we require more, i.e. we need the uniform
convergence of [f (1)n (·)/fn(·)]2 to [f (1)(·)/f(·)]2, and this has not been fully investigated.

Acknowledgments: The authors are grateful to Professor Ali Gannoun, CNAM-Paris, for

useful comments on an earlier version of this paper. They also thank the Editor and two

referees, whose comments greatly improved the presentation of the results.

References

Andrews, D.W. (1994). Asymptotics for semiparametric econometric models via stochastic

equicontinuity. Econometrica 62, 43-72.

Bahadur, R.R. & Zabell, S.L. (1979). Large deviations of the sample mean in general vector

spaces. Ann. Probab. 7, 587-621.

Begun, J.M., Hall, W.J., Huang W.-M. & Wellner, J.A.(1983). Information and asymptotic

efficiency in parametric-nonparametric models. Ann. Statist. 11, 432-452.

Beran, R. (1974). Asymptotically efficient rank estimates in location models. Ann. Statist. 2,

63-74.

Beran, R. (1978). An efficient and robust adaptive estimator of location, Ann. Statist. 6,

292-313.

Bickel, P.J. (1982). On adaptive estimation. Ann. Statist. 10, 647-671.

Bickel, P.J. & Ritov, Y. (1988). Estimating integrated squared density derivatives: sharp best

order of convergence estimates. Sankhya, Ser. A 50, 381-393.

Bickel, P.J., Klaassen, C.A.J., Ritov, Y. & Wellner, J.A. (1993). Efficient and adaptive estima-

tion for semiparametric models, Johns Hopkins University Press, Baltimore, Maryland.

Billingsley, P. (1968). Convergence in probability measures, Wiley, New York.

Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scatterplots, J.

Amer. Statist. Assoc., 74, 823-836.

Cox, D.R. (1975). Partial likelihood, Biometrika 62, 269-276.

Deheuvels, P. (1977). Estimation non paramétrique de la densité par histogrammes généralisés,

Rev. Statist. Appl. 35, 5-42.

24



Devroye, L. & Györfi, L. (1985). Nonparametric density estimation, the L1 view. Wiley, New

York.

Doob, J.L. (1953). Stochastic processes. Wiley, New York.

Dvoretzky, A., Kiefer, J. & Wolfowitz, J. (1956). Asymptotic minimax character of the sample

distribution function and of the classic multinomial estimator. Ann. Math. Statist. 27,

642-669.

Efromovich, S. (1996). On nonparametric regression for IID observations in a general setting.

Ann. Statist. 24, 1126-1144.

Eggermont, P.P.B. & LaRiccia, V.N. (1999). Best asymptotic normality of the kernel density

entropy estimator for smooth densities. IEEE Trans. Inf. Theory 45, 1321-1326.

Eubank, R.L. (1988). Spline smoothing and nonparametric regression. Marcel Dekker, New

York.

Fan, J., Hu, T. & Truong, Y.K. (1994). Robust nonparametric function estimation. Scand. J.

Statist. 21, 433-446.

Fan, J. & Gijbels, I. (1994). Censored regression: local linear approximations and their appli-

cations. J. Amer. Statist. Assoc. 89, 560-570.

Fan, J., Zhang, C. & Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phe-

nomenon. Ann. Statist. 29, 153-193. Correction 30, 1811.

Gasser, T. & Müller, H.-G. (1979). Kernel estimation of regression functions. In Smoothing

techniques for curve estimation (eds. T. Gasser and M. Rosenblatt), Springer, New York,

23-68.

Györfi, L. & Van der Meulen E.C. (1990). On the nonparametric estimation of the entropy

functional. In Nonparametric functional estimation and related topics (ed. George Roussas),

pp. 81-95, NATO ASI Series, Ser. C: Mathematical and Physical Science, Vol. 335, Kluwer

Academic Publishers Dordrecht/Boston/London.

Joe, H. (1989). Estimation of entropy and other functionals of a multivariate density. Ann.

Inst. Statist. Math. 41, 683-697.

Hall, P. (1986). On powerful distributional tests based on sample spacings. J. Multivariate

Statist. 19, 201-225.

Hall, P. & Marron, J.S. (1990). On variance estimation in nonparametric regression, Biometrika

77, 521-528.

Hall, P. & Morton, S.C. (1993). On the estimation of entropy. Ann. Inst. Statist. Math. 45,

69-88.

25



Härdle, W. & Mammen, E. (1993). Comparing nonparametric versus parametric regression fits,

Ann. Statist. 21, 1926-1947.

Hoeffding, J.B.S. (1963). Probability inequalities for sums of bounded random variables, J.

Amer. Statist. Assoc. 58, 13-30.

Huber, P.J. (1967). The behavior of maximum likelihood estimates under nonstandard condi-

tions, Proc. Fifth Berkeley Symp. Math. Statist. Probab. 1, 221-233.

Ibragimov, I.A., Nemirovskii, A.S. & Khas’minskii, R.Z. (1986). Some problems on nonpara-

metric estimation in Gaussian white noise. Theory of Probab. and Its Appl. 31, 391-406.

Kotz, S. & Johnson, N.L. (1982). Encyclopedia of statistical sciences, Vol. 6. Wiley, New York.

Manski, C. (1984). Adaptive estimation of nonlinear regression models. Econometric Reviews

3(2), 145-194.

Murphy, S.A. & Van der Vaart, A.W. (2000). On profile likelihood, J. Amer. Statist. Assoc.

95, 449-485.

Müller, U.U., Schick, A. & Wefelmeyer, W. (2004). Estimating the error variance in nonpara-

metric regression by a covariate-matched U-statistic, manuscript.

Nadaraya, E.A. (1964). On estimating regression, Theory of Probab. and Its Appl. 9, 141-142.

Neter, J., Wasserman, W. & Kutner, M.H. (1983). Applied linear regression models, Irwin,

Homewoods.

Newey, W.K. (1988). Adaptive estimation of regression models via moment restrictions. J. of

Economics 38, 301-339.

Owen, A. (1991). Empirical likelihood for linear models, Ann. Statist. 19, 1725-1747.

Pfanzagl, J. (1969). On the measurability and consistency of minimum contrast estimators,

Metrika 14, 249-272.

Priestley, M.B. & Chao, M.T. (1972). Non-parametric function fitting, J. Roy. Stat. Soc., Ser.

B 34, 385-392.

Rao, B.L.S. (1983). Nonparametric functional estimation. Academic Press: Orlando, Florida.

Rice, J. (1984). Boundary modification for kernel regression, Commun. Statist. Theor. Meth.

13, 893-900.

Rissanen, J. (1996). Fisher information and stochastic complexity, IEEE Transactions on In-

formation Theory 42, 40-47.

Schick, A. (1993). On efficient estimation in regression models. Ann. Statist. 21, 1486-1521.

Schick, A. & Wefelmeyer, W. (2004). Root n consistent and optimal density estimators for

moving average processes. Scand. J. Statist. 31, 63-78.

26



Serfling, R. (1980). Approximation theorems of mathematical statistics. Wiley, New York.

Severini, T.A. & Staniswalis, J.G. (1994). Quasi-likelihood estimation in semiparametric models,

J. Amer. Statist. Assoc. 89, 501-511.

Severini, T.A. & Wong, W.H. (1992). Profile likelihood and conditionally parametric models.

Ann. Statist. 20, 1768-1802.

Sievers, G.I. (1978). Weighted rank statistics for simple linear regression, J. Amer. Statist.

Assoc. 73, 628-631.

Stone, C.J. (1975). Adaptive maximum likelihood estimators of a location parameter, Ann.

Statist. 3, 267-284.

Stone, C.J. (1980). Optimal rates of convergence for nonparametric estimators, Ann. Statist.

8, 1348-1360.

Turlach, B.A. (2006). Bandwidth selection in kernel density estimation: A review, http://

citeseer.ist.psu.edu/214125.html

Van Eden, C. (1973). Efficient-robust estimation of location, Ann. Math. Statist. 41, 172-181.

Van Es, B. (1992). Estimating functionals related to a density by a class of statistics based on

spacings, Scand. J. Statist. 19, 61-72.

Watson, G.S. (1964). Smooth regression analysis, Sankhya, Ser. A 26, 359-386.

Wilks, S.S. (1938). The large-sample distribution of the likelihood ratio for testing composite

hypotheses, Ann Math. Statist. 9, 60-62.

Wolsztynski, E.W., Thierry, E. & Pronzato, L. (2005). Minimum-entropy estimation in semi-

parametric models, Signal Processing 85, 937-949.

Jan G. De Gooijer, Department of Quantitative Economics, University of Amsterdam, Roetersstraat

11, 1018 WB Amsterdam, The Netherlands.

E-mail: j.g.degooijer@uva.nl

27



Appendix

Lemma 1. Assume (B3), (A3), (A4), (A7), (A9) and (A10) hold. Then for any compact set

A satisfying (A8),

sup
θ∈A

||L[2]n (θ)− γ21E[(f
(1)(Z)/f(Z))2]Ωg(θ)||→ 0, a.s.

Proof: Plugging in the expressions for f [1](n,i)(·) and f
[2]
(n,i)(·), we have

L[2]n (θ) =
1

n

X
i=1

f
[2]
(n,i)(Zi|θ)
f(n,i)(Zi|θ) −

1

n

X
i=1

f
[1]
(n,i)(Zi|θ)(f [1](n,i)(Zi|θ))0

f2(n,i)(Zi|θ)

=
1 + o(1)

n

X
i=1

f
[2]
(n,i)(Zi|θ)
f(Zi|θ) − 1 + o(1)

n

X
i=1

f
[1]
(n,i)(Zi|θ)(f [1](n,i)(Zi|θ))0

f2(Zi|θ)

= (1 + o(1))
X
i=1

X
j 6=i

1

n(n− 1)h3n
K(2)(

Zi−Zj
hn

)(g[1](θ,Xi)− g[1](θ,Xj))(g
[1](θ,Xi)− g[1](θ,Xj))

0

f(Zi|θ)

+(1 + o(1))
X
i=1

X
j 6=i

1

n(n− 1)h2n
K(1)(

Zi−Zj
hn

)(g[2](θ,Xi)− g[2](θ,Xj))

f(Zi|θ)

−
X
i=1

X
j 6=i

X
l 6=i,j

1 + o(1)

n(n− 1)2h4n
K(1)(

Zi−Zj
hn

)K(1)(Zi−Zlhn
)(g[1](θ,Xi)− g[1](θ,Xj))(g

[1](θ,Xi)− g[1](θ,Xl))
0

f2(Zi|θ)

−
X
i=1

X
j 6=i

1 + o(1)

n(n− 1)2h4n
K(1)2(

Zi−Zj
hn

)(g[1](θ,Xi)− g[1](θ,Xj))(g
[1](θ,Xi)− g[1](θ,Xj))

0

f2(Zi|θ)

:= (1 + o(1))U (1)n,n(θ) + (1 + o(1))U (2)n,n(θ)− (1 + o(1))
n− 2
n− 1U

(3)
n,n(θ)−Rn(θ),

where Rn(θ) is the last term in the previous equation. As in the proof of Theorem 2, for each

fixed n, the U (k)n,m(θ)’s are U-statistics and reverse martingales with respect to {Fm}, and so

U (1)n,n(θ)
a.s.→ 2Ωg(θ) lim

n

Z Z
h−3n K(2)(

zi − zj
hn

)f(zj)dzidzj

= 2Ωg(θ)

Z Z
u2K(2)(u)f (2)(v)dudv = 2Ωg(θ)γ2

Z
f (2)(v)dv = 0,

U (2)n,n(θ)
a.s.→ E[g[2](θ,Xi)− g[2](θ,Xj)]

Z Z
h−2n K(1)(

zi − zj
hn

)f(zj)dzidzj

= −E[g[2](θ,Xi)− g[2](θ,Xj)]

Z Z
uK(1)(u)f (1)(v)dudv

− γ1

Z
f (1)(v)dvE[g[2](θ,Xi)− g[2](θ,Xj)] = 0.

In the above we used (A4), (A7) and the fact that, by (A3) and (A9),Z Z
h−2n K(1)(

z1 − z2
hn

)f(z2)dz1dz2 =

Z Z
h−1n K(1)(u)f(z − hnu)dzdu
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=

Z Z
h−1n K(1)(u)[f(z)− f (1)(z)hnu+O(h2n)f

(2)(z)u2]dzdu = −γ1
Z

f (1)(v)dv +O(hn).

Similarly, by (A10)

U (3)n,n(θ)
a.s.→ Ωg(θ) lim

n

Z Z Z
h−4n

K(1)(z1−z2hn
)K(1)(z1−z3hn

)f(z2)f(z3)

f(z1)
dz1dz2dz3

= Ωg(θ)γ
2
1E[(f

(1)(Z)/f(Z))2].

Also, since there are n(n− 1) terms in Rn(θ), with a dividing factor n(n− 1)2h4n, and by (B3),
(n− 1)h4n → ∞, so we have supθ∈ARn(θ)

a.s.→ 0. Now we centralize the U (i)n,n(θ)’s, and by the

same way as in the proof of (6), we can prove

sup
θ∈A

||U (i)n,n(θ)−E(U (i)n,n(θ))||→ 0, a.s.

Thus, collecting terms, we complete the proof.

Lemma 2. Let K̃n(Zi,Xi;Zj ,Xj) as given by (12) and (13), and Un = 2(n(n−1))−1
P
1≤i<j≤n

K̃n(Zi,Xi;Zj ,Xj). Let Un,r be the r-th component of Un. Under conditions (B2)-(B4), (A1) and

(A4)-(A7) it holds that, for some 0 < C <∞, V ar(Un,r) = C(n2h3n)
−1 (r = 1, . . . , dim(θ)).

Proof: Since Un,r is Un with g[1](·, ·) replaced by g
[1]
r (·, ·), the r-th component of g[1](·, ·). The

proof is the same by assuming θ as one-dimensional, and so for g[1](·, ·) in the rest proof. Recall

K̃n(Zi,Xi, Zj ,Xj) = Kn(Zi,Xi;Zj ,Xj)−Kn(Zi,Xi)−Kn(Zj ,Xj)

andKn(Zi,Xi) = E(Kn(Zi,Xi;Zj ,Xj)|Zi,Xi). LetHn1(Z1,X1) = E(K̃n(Z1,X1;Z2,X2)|Z1,X1),
ηn1 = V ar(Hn1(Z1,X1)) and ηn2 = V ar(K̃n(Zi,Xi;Zj ,Xj)). By Lemma A in Serfling (1980,

p. 183) we have

V ar(Un) =

 n

2

−1 2X
r=1

 2

r

 n− 2
2− r

 ηnr.

By (A4) and (A7),

E(Kn(Zi,Xi)) = E(Un) =
1

h2n

Z Z Z Z
K(1)(

zj−zi
hn

)[g[1](θ∗,xi)− g[1](θ∗,xj)]
f(zi)

×f(zi)q(xi)f(zj)q(xj)dzidxidzjdxj = 0,

so Hn1(Z1,X1) = E(Kn(Z2,X2)) ≡ 0, ηn1 = 0, and

ηn2 = E

µ
K̃n(Z1,X1;Z2,X2)

¶2
= E(K2

n(Z1,X1;Z2,X2)) + 2E(K
2
n(Z1,X1))
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−4E(Kn(Z1,X1;Z2,X2)K
0
n(Z1,X1)) + 2E(Kn(Z1,X1)K

0
n(Z2,X2)). (22)

By (B2) and (A5), K(·) and f(·) have compact support. So by the continuity of f(·) (which is
implied by (A3)) and the dominated convergence theorem we have

E(K2
n(Z1,X1;Z2,X2)) =

2Ωg(θ
∗)

h3n

Z Z µ
K(1)(u)

¶2 f(z + uhn)

f(z)
dudz

= O(1)
2Ωg(θ

∗)
h3n

Z Z µ
K(1)(u)

¶2
dudz.

Since (A1) and (B2) imply
R µ

K(1)(u)

¶2
du <∞, we get for some 0 < C <∞,

E(K2
n(Z1,X1;Z2,X2)) ≤ Ch−3n .

Also,

Kn(Z1,X1) =
[g[1](θ∗,X1)− µg(θ

∗)]
2hn

Z
K(1)(u)

f(Z1 + hnu)− f(Z1)

f(Z1)
du.

Thus

E

µ
Kn(Z1,X1;Z2,X2)Kn(Z1,X1)

¶
=
Ωg(θ

∗)
4h3n

µZ Z
K(1)(

z2 − z1
hn

)
f(z2)

f(z1)

Z
K(1)(u)[f(z1+hnu)

−f(z1)]dudz1dz2 −
Z Z

K(1)(
z1 − z2
hn

)

Z
K(1)(u)[f(z1 + hnu)− f(z1)]dudz1dz2

¶
=
Ωg(θ

∗)
4h2n

Z Z Z
K(1)(v)K(1)(u)[f(z + hnu)− f(z)][

f(z + hnv) + f(z)

f(z)
]dvdudz

∼ Ωg(θ
∗)

4hn

Z Z Z
K(1)(v)uK(1)(u)(f (1)(z)/f(z))[f(z + hnv) + f(z)]dvdudz.

By the compactness of the supports ofK(·) and f(·), and (B4), the above integration is O(1)h−1n .
Thus there is a 0 < C <∞, such that for large n, the absolute value of the above term is bounded
by Ch−1n . Similarly,

E[K
2
n(Z1,X1)] =

1

4h2n
Ωg(θ

∗)
Z µZ

K(1)(u)
f(z + hnu)− f(z)

f(z)
du

¶2
f(z)dz = o(1)h−2n ,

and there is a 0 < C <∞, such that for large n,

|E[K2
n(Z1,X1)]| ≤ Ch−2n .

Thus, the leading term in (22) is of order h−3n . So we have, for some 0 < C <∞,

V ar(Un) =

 n

2

−1 ηn2 = C

n2h3n
.
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Lemma 3. Let Kn(Zi,Xi) be as given prior to (13). Under conditions (B2), (B3), (A3), (A4),

(A7), (A8)-(A10), we have
√
n 2n
Pn

i=1Kn(Zi,Xi)
D→ N(0,Ω−1(θ∗)).

Proof: We have

Kn(Zi,Xi) = −
[g[1](θ∗,Xi)− µg(θ

∗)]
2hnf(Zi)

Z
K(1)(u)[f(Zi + hnu)− f(Zi)]du.

We need to show that for any constant vector a = (a1, . . . , ak+1)0,

√
n
2

n

nX
i=1

a0Kn(Zi,Xi)
D→ N(0,a0Ω−1(θ∗)a).

Rewrite the above double array average as (omitting the negative sign in Kn )

2

n

nX
i=1

a0Kn(Zi,Xi) =
1

n

nX
i=1

Vn,i, Vn,i =
a0[g[1](θ∗,Xi)− µg(θ

∗)]
hnf(Zi)

Z
K(1)(u)[f(Zi+hnu)−f(Zi)]du.

For each fixed n, the Vn,i’s are i.i.d. random variables, with E(Vn,i) = 0. We only need to check

the Lindeberg condition for {Vn,i} (e.g. Serfling 1980, pp. 31-32). By (B2), (B3), (A3), (A4),
(A7), (A8) and (A10), and the fact that hn → 0, we have

V ar(Vn,1) = E(V 2n,1) =
a0Ωg(θ∗)a

h2n

Z
1

f(z)

µZ
K(1)(u)[f(z + hnu)− f(z)]du

¶2
dz

= a0Ωg(θ∗)a
Z

1

f(z)

µZ
uK(1)(u)f (1)(z + ξnu)du

¶2
dz → a0Ωg(θ∗)aγ21E(

f (1)(Z)

f(Z)
)2,

where in the above ξn is an intermediate value between 0 and hn, which may depend on z. By

(B2) and (A5), K(·) and f (1)(·) have compact supports. Then, by the boundedness of f (1)(·),
we can use the dominated convergence theorem to get the limit. So,

B2n := V ar(
nX
i=1

Vn,i) =
nX
i=1

V ar(Vn,i) = n(a0Ω−1(θ∗)a+ o(1)).

Since the Vn,i’s are i.i.d. with E(Vn,i) = 0, the Lindeberg condition is

1

B2n

nX
i=1

Z
|v|>�Bn

v2dFn,i(v) = V ar(Vn,1χ(|Vn,1| > �
p
n(a0Ω−1(θ∗)a+ o(1))))→ 0, ∀ � > 0,

since V ar(Vn,1) <∞, where Fn,i is the distribution function of Vn,i. Thus

B−1n
nX
i=1

Vn,i
D→ N(0, 1)

.
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In the following, let Ẽf [0](z) = f(z), Ẽf [1](z) = γ1f
[1](z) = γ1[g

[1](θ,x)−µg(θ)]f (1)(z), and for
some X i.i.d. with the Xi’s,

Ẽf [2](z) = γ2E

µ
g[1](θ,x)− g[1](θ,X)

¶µ
g[1](θ,x)− g[1](θ,X)

¶0
f (2)(z)

+ γ1(g
[2](θ,x)− Ω̌g(θ))f (1)(z),

where the expectation E is with respect to X.

Lemma 4. Suppose conditions (B2), (A1), (A2), (A4), and (A7) hold, and assume that f (j)(·)
is uniformly continuous and supz |f (j)(z)| < ∞ (j = 1, 2). Then, as n → ∞, supx,z ||f [j]n (z) −
Ẽf [j](z)||→ 0, (a.s.) (j = 0, 1, 2).

Proof: Note

f [1]n (z) =
1

nh2n

nX
j=1

K(1)(
z − Zj

hn
)

µ
g[1](θ,x)− g[1](θ,Xj)

¶
and

f [2]n (z) =
1

nh3n

nX
j=1

K(2)(
z − Zj

hn
)

µ
g[1](θ,x)− g[1](θ,Xj)

¶µ
g[1](θ,x)− g[1](θ∗,Xj)

¶0
+

1

nh2n

nX
j=1

K(1)(
z − Zj

hn
)(g[2](θ,x)− g[2](θ∗,Xj)).

The case of j = 0 is implied in Theorem 2.1.3 in Rao (1983). Here we only prove the case j = 1.

The case j = 2 is similar. We have

sup
x,z
||f [1]n (z)− Ẽf [1](z)|| ≤ sup

x,z
||f [1]n (z)−Ef [1]n (z)||+ sup

x,z
||Ef [1]n (z)− Ẽf [1](z)|| := Vn,1 + Vn,2.

Let Fn1(·) and F1(·) respectively be the empirical and true distributions of the Zi’s, and Fn2(·)
and F2(·) be those for the Xi’s. Note that (A1) implies that K(j)(·) has bounded variation τ j

(j = 0, 1, 2), (A4) and (A7) imply that g[j](·) has bounded variation τg,j (j = 1, 2), and we have

Vn,1 =
1

h2n
sup
x,z
||
Z

K(1)(
z − y

hn
)(g[1](θ,x)− g[1](θ,v))dFn1(y)dFn2(v)

−
Z

K(1)(
z − y

hn
)(g[1](θ,x)− g[1](θ,v))dF1(y)dF2(v)||

≤ 1

h2n
sup
x,z

Z
|Fn1(y)Fn2(v)− F1(y)F2(v)||dK(1)(

z − y

hn
)| × ||d[g[1](θ,x)− g[1](θ,v])||

=
1

h2n
sup
z

Z
|Fn1(y)Fn2(v)− F1(y)F2(v)||dK(1)(

z − y

hn
)| × ||dg[1](θ,v)||

≤ 1

h2n
τ1τg,1 sup

v,y
|Fn1(y)Fn2(v)− F1(y)F2(v)|.
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By the result on large deviation in Dvoretzky et al. (1956), there are positive constants Cr and

0 < αr ≤ 2 (r = 1, 2), such that

P

µ
sup
y
|Fn1(y)− F1(y)| > �

¶
≤ C1 exp(−α1�2n), ∀ � > 0,

and

P

µ
sup
x
|Fn2(x)− F2(x)| > �

¶
≤ C2 exp(−α2�2n), ∀ � > 0.

Since

|Fn1(y)Fn2(x)− F1(y)F2(x)| ≤ Fn1(y)|Fn2(x)− F2(x)|+ F2(x)|Fn1(y)− F1(y)|

≤ |Fn2(x)− F2(x)|+ |Fn1(y)− F1(y)|,

we have

P

µ
Vn,1 > �

¶
≤ P

µ
sup
x,y
|Fn1(y)Fn2(x)− F1(y)F2(x)| > �h2nτ

−1
1

¶
≤ P

µ
sup
y
|Fn1(y)− F1(y)| > �

2
h2nτ

−1
1

¶
+ P

µ
sup
x
|Fn2(x)− F2(x)| > �

2
h2nτ

−1
1

¶
≤

2X
k=1

Ck exp(−αk �
2

4
τ−21 nh4n).

Since by (A2),
P∞

n=1 e
−αk �

2

4
τ−21 nh4n < ∞, by the Borel-Cantelli lemma we have Vn,1 → 0 (a.s).

Note that, for some 0 ≤ θn ≤ 1,

Ef [1]n (z) =
1

h2n

Z
K(1)(

z − y

hn
)(g[1](θ,x)− g[1](θ,v))f1(y)f2(v)dydv

= (g[1](θ,x)− µg(θ))

Z
uK(1)(u)f (1)(z + θnhnu)du.

So

||Ef [1]n (z)− Ẽf [1](z)|| ≤ ||g[1](θ,x)− µg(θ)||
µ
sup
|v|≤δ

|f (1)(z + v)− f (1)(z)|
Z
|uK(1)(u)|du

+ sup
|v|>δh−1n

|vK(1)(v)|δ−1
Z

f (1)(z)dz + sup
z
|f (1)(z)|

Z
|u|>δh−1n

|uK(1)(u)|du
¶

= ||g[1](θ,x)− µg(θ)||
µ
sup
|v|≤δ

|f (1)(z + v)− f (1)(z)|
Z
|uK(1)(u)|du

+ sup
z
|f (1)(z)|

Z
|u|>δh−1n

|uK(1)(u)|du
¶
.

Since (A2) implies hn → 0 and nh8n → ∞, by the uniform continuity of f (1)(·), the first term
above can be arbitrarily small uniformly in z as δ does. Conditions (A4) and (A7) imply
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supx ||g[1](θ,x)− µg(θ)|| <∞. Also, by assumption, supz |f (1)(z)| is finite, so the second term
in brackets above is zero for large n by (B2). Thus, Vn,2 → 0. This completes the proof for

j = 1. For j = 2, f [j]n (z) has two terms. The proof is an easy modification of the case j = 1

with K(1)(·) replaced by K(2)(·), γ1 by γ2, µg(θ) by Ω̌(θ), u|K(1)(u)| by u2|K(2)(u)|, and nh4n

by nh6n. Hence, the proof has been omitted.
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Table 1: Mean and MSE values of θ̂n and θn for the estimates of the parameters in (19).

Mean MSE

θ∗ θ̂n θn θ̂n θn

(1, -0.15) (0.9985, -0.1473) (0.9960, -0.1472) (0.0032, 0.0013) (0.0041, 0.0013)

(1, 0.15) (0.9983, 0.1524) (0.9960, 0.1528) (0.0032, 0.0013) (0.0041, 0.0013)

Table 2: Means, and MSEs of θ̂n and θ̃n for the estimates of the parameters in (20) and (21).

n Parameter θ∗1 Parameter θ∗2

60 -0.03 1 -1.4 1 0.8

Mean θ̂n 100 62.0212 -0.0291 1.0211 -1.4076 0.9985 0.8003

θ̃n 62.0160 -0.0292 2.7386 -0.7044 1.0597 0.7927

MSE θ̂n 4.1577 0.0715×10−4 0.0328 0.0264 0.0003 0.0000

θ̃n 4.1374 0.0693×10−4 2.9017 0.4706 0.0059 0.0001

Mean θ̂n 300 62.0072 -0.0290 1.0065 -1.4110 0.9996 0.8001

θ̃n 62.0029 -0.0290 2.6835 -0.7605 1.0707 0.7912

MSE θ̂n 4.0503 0.0236×10−4 0.0267 0.0159 0.0002 0.0000

θ̃n 4.0330 0.0285×10−4 2.9006 0.4368 0.0056 0.0001

Mean θ̂n 500 62.0069 -0.0289 1.0063 -1.4052 1.0001 0.8000

θ̃n 62.0021 -0.0290 2.6899 -0.7835 1.0727 0.7909

MSE θ̂n 4.0409 0.0191×10−4 0.0129 0.0064 0.0001 0.0000

θ̃n 4.0221 0.0214×10−4 2.9027 0.3959 0.0056 0.0001
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Figure 1: Mean estimated standard errors of θ̂n (solid lines) based on 1000 simulations, and

asymptotic standard errors (dashed lines) for sample sizes n = 100, 150, . . . , 500; conditional

mean specification (20) with a) θ∗1 = 60 and b) θ
∗
2 = −0.03.

36



b)

n

100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

d)

n

100 200 300 400 500
0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

a)

n

100 200 300 400 500
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

c)

n

100 200 300 400 500
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Figure 2: Mean estimated standard errors of θ̂n (solid lines) based on 1000 simulations, and

asymptotic standard errors (dashed lines) for sample sizes n = 100, 150, . . . , 500; conditional

mean specification (21) with a) θ∗1 = 1, b) θ
∗
2 = −1.4, c) θ∗3 = 1, and d) θ∗4 = 0.8.
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Figure 3: Q-Q plots for the λn statistic for the case n = 100 and n = 200.
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