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1 Introduction

Most economists believe that agents maximize something and that they are
successful in doing so. Stigler (1976) provides a typical and outspoken exam-
ple of such a view in his critique of Leibenstein’s (1966) notion of X-efficiency.
Any inefficiency claimed by Leibenstein or others is — according to Stigler
— nothing but a failure to measure all relevant inputs, or to correctly specify
what is being maximized. For example, John Capozzi’s well-known business
maxim:

Only make a great deal if you have no intention of ever doing
business with that person again. . . otherwise make a good deal,

would not — if followed — indicate inefficiency. It might indicate that the
firm does not maximize short-term profit, but the firm would still maximize
long-term profit or market power or “utility.” Førsund, Lovell and Schmidt
(1980, p. 21) point out that such a view is essentially an act of faith, as it
can be neither proved nor disproved.

Perhaps, however, we can prove or disprove the hypothesis that agents
are successful maximizers. For this we would need a situation where (a)
it is unambiguous what it is that the agent wishes to maximize, and (b)
clean and complete data are available. Under these conditions any apparent
suboptimality must be true suboptimality. Such a situation can only be
found in a very structured environment. One possibility for creating such an
environment is through a laboratory experiment. This has the advantage of
maximum control, but it also has disadvantages. Instead we have chosen a
“field experiment” as our environment: the service strategy of tennis players
at Wimbledon. This is a real-life setting where high prizes can be won and
where the participants are highly trained and very experienced. Thus we
study not top firms but top tennis players.

Tennis is a highly competitive sport and the top players (our agents)
want to win matches on the professional tour, especially at the “grand slam”
tournaments of which Wimbledon is arguably the most important. It seems
reasonable to assume that these agents wish to maximize the probability of
winning a match. In addition, our data are clean. The tennis environment is
therefore ideal for our purpose. Based on a simple model we can calculate the
players’ optimal strategy and we can compare this with their actual strategy.
The discrepancy (ratio) between the two defines their efficiency. We intend
to show that tennis players are not entirely successful in maximizing their
objective function and we shall provide a lower bound of the inefficiency.

Given the difficulty of establishing efficiency using economic data, the
principal question in efficiency analysis for firms (or other institutions or in-
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dividuals) is to establish relative efficiency: how well does one firm perform
relative to another firm, in particular relative to a top firm. There exist
various well-established techniques to measure relative efficiency, in partic-
ular data envelopment analysis (DEA), developed by Charnes, Cooper and
Rhodes (1978), and widely employed in management science. In contrast,
we shall be interested in absolute efficiency by asking: how well do agents
perform compared to the optimum achievable. Thus we shall not assume
that top agents lie on the efficiency frontier. Instead we want to measure
how far they are removed from the frontier.

Several methods have been proposed to allow for inefficiencies of firms,
in particular stochastic frontier analysis (SFA), see the surveys by Førsund,
Lovell and Schmidt (1980) and Schmidt (1985/86), the monograph by Kumb-
hakar and Lovell (2000), and a Bayesian perspective by Koop, Osiewalsky
and Steel (1997). The main emphasis of these studies is the measurement
of efficiency (productivity) of an average firm, taking into account measure-
ment error and inefficiency at the frontier. The interest is not primarily
on estimating the inefficiency of the top firm and indeed estimates of such
inefficiencies are hard to find.

Our interest, however, is entirely focussed on the top agents, not on av-
erage agents. We want to know whether top tennis players are efficient and,
if not, how much room for improving their efficiency exists.

Sports statistics (and sports economics) has developed from an anecdotal
field where one collects statistics (so many double faults, so many aces), to an
almost-respectable discipline. An important reason for this development is
that sport statistics can help answer behavioral questions. Moreover, sports
data are readily available and they are measured much more precisely than
most economic data. This has led to studies on racial discrimination (Gwart-
ney and Haworth, 1974; Kahn and Sherer, 1988; Nardinelli and Simon, 1990;
Stone and Warren, 1999; Szymanski, 2000; Kanazawa and Funk, 2001; and
Goff, McCormick and Tollison, 2002), efficiency of the betting market (Zu-
ber, Gandar and Bowers, 1985; Sauer, Brajer, Ferris and Marr, 1988; Golec
and Tamarkin, 1991; Dixon and Coles, 1997; and Gray and Gray, 1997), com-
parison of betting markets and financial markets (Levitt, 2004), the effect of
labor strikes on consumer demand (Schmidt and Berri, 2004), preferences
under risk (Julien and Salanié, 2000), mixed strategy equilibria (Walker and
Wooders, 2001; and Chiappori, Levitt and Groseclose, 2002), incentive ef-
fects (Ehrenberg and Bognanno, 1990), rationality (Gandar, Zuber, O’Brian
and Russo, 1988), optimal labor contracts (Lazear and Rosen, 1981), control
of externalities (Carlton, Frankel and Landes, 2004), favoritism (Garicano,
Palacios-Huerta and Prendergast, 2005), and so on.
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One possible problem with the application of sports data is that they
typically apply to top athletes and that top athletes behave rather differently
than average athletes. Hence to use sports data to say something about top
firms (as we shall do) may be reasonable, whereas the application to average
firms may be less reasonable. Nevertheless, we shall show that inefficiencies
are larger for the relatively weak top players.

To study efficiency of human behavior, tennis data are particularly useful.
This is because tennis has an unusual and archaic rule which does not exist in
other comparable sports (table tennis, badminton, volleyball), namely that
the server has two chances to bring the ball into play (first service, second
service) rather than one. Even with one service the question needs to be
answered how difficult to make this service: too easy and the server loses
the point in the subsequent rally, too difficult and the service will be a fault
much of the time. Choosing the right balance is obviously important. In the
current situation the server has two services, and this has two consequences.
First, to determine the optimal strategy of choosing the strengths of the two
services is more difficult than in the one-service case. Second, the existence
of two services doubles the amount of information we possess about a player’s
strategy against a specific opponent.

The organization of this paper is as follows. In Section 2 we present the
theoretical model, based on the relationship between the probability that
a service is in (x) and the conditional probability that the server wins the
point if the service is in (y(x)). We prove the existence and uniqueness of
an optimal strategy and introduce the concept of efficiency of the service.
In Section 3 we propose a functional form for y(x). Since tennis allows two
services, we have information on the (current, not necessarily optimal) strat-
egy (x1, x2) and the corresponding “yield” (y1, y2). We do not, however,
observe these probabilities directly, only the associated relative frequencies.
In Section 4 we estimate the key probabilities using a generalized method of
moments (GMM) approach. Next, in Section 5 we discuss the identification
and estimation of the curvature of the y-curve. Then, in Section 6, we esti-
mate and discuss the (in)efficiencies of top tennis players. In our conclusion
we try to relate these results to the inefficiency of economic agents.

2 Theoretical model

Consider a tennis match between two players i and j. Both i and j are maxi-
mizing the probability of winning the match. If points are independent, then
each server chooses that service strategy which will maximize the probability
of winning a point. We will develop a model that answers the question how
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difficult a player should make his or her service in order to maximize the
probability of winning a point on service.

2.1 Existence and uniqueness of an optimal strategy

Given the strengths of both players, let x1 denote the probability that the
first service is in, and let x2 denote the probability that the second service is
in. Also, let y(x) denotes the conditional probability that player i wins the
point if the service has probability x of being in. So, y1 := y(x1) denotes the
conditional probability that player i wins the point on his or her first service
if the first service is in, and similarly for the second service y2 := y(x2). We
realize that both x and y will be influenced by other factors (speed, direction,
spin). For the moment we abstract from these unobservable factors, but we
shall discuss them in Section 2.3.

Given x and y(x) we define w(x) := x · y(x), which transforms the con-
ditional probability y into an unconditional probability w. The probability
that player i wins the point is then given by

p(x1, x2) = w(x1) + (1 − x1)w(x2). (1)

If the functional form of y(x) is known, we can calculate the optimal service
strategy (x∗

1, x
∗
2) by maximizing p(x1, x2). Under suitable regularity condi-

tions and in the absence of a boundary solution, the optimal strategy satisfies
the first-order conditions

w′(x∗
1) = w(x∗

2), w′(x∗
2) = 0. (2)

In what follows we shall, however, allow for the possibility of a boundary
solution x∗

2 = 1.
It seems reasonable to assume that the easier a player makes his or her

service, the more likely it is that the service is in (x increases), but the less
likely it is that the point is won if the service is in (y decreases). Hence, we
impose the condition that y is a decreasing function of x.

Condition R1 (monotonicity): The real-valued function y is continu-
ous and monotonically decreasing on [0, 1], and satisfies 0 ≤ y(x) ≤ 1 for all
x ∈ [0, 1].

In order to achieve existence and uniqueness of the optimal strategy we need
more than monotonicity. We shall also impose (local) concavity.
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Condition R2 (concavity): The real-valued function y is twice differ-
entiable on (0, 1) with y′(1) := limx↑1 y′(x) < 0, and w(x) satisfies w′′(x) < 0
for all x ∈ (0, 1).

Condition R2 implies that w is strictly concave on the interval (0,1) and
reaches a unique maximum for some x ∈ (0, 1]. This reflects the fact that
if a player’s service is too easy he/she is unlikely to win the point, but if
the service is too difficult he/she is also unlikely to win the point — in fact,
w(0) = 0. There should be an optimal service, neither too difficult nor too
easy, which maximizes the player’s probability of winning the point on that
service. Given these regularity conditions we can now prove Theorem 1.

Theorem 1 (existence and uniqueness): Assume that regularity con-
ditions R1 and R2 hold. Then there exists a unique optimal service strategy
(x∗

1, x
∗
2) which maximizes p(x1, x2).

Proof. Both steps of the proof use the fact that w′ is monotonically decreas-
ing. For the first step (regarding x∗

2) we note that w′(0) := limx↓0 w′(x) =
y(0) > 0. If w′(1) := limx↑1 w′(x) < 0, then there exists a unique x∗

2 ∈ (0, 1)
such that w′(x∗

2) = 0. If w′(1) ≥ 0, then w(x) is monotonically increasing for
all x and hence reaches its maximum at x∗

2 = 1.
For the second step (regarding x∗

1) we show first that w(x∗
2) > w′(x∗

2). If
w′(1) < 0, then w′(x∗

2) = 0 and w(x∗
2) > 0, and hence w(x∗

2) > w′(x∗
2). If

w′(1) ≥ 0, then x∗
2 = 1 and

w(x∗
2) = w(1) = y(1) > y(1) + y′(1) = w′(1) = w′(x∗

2),

because y′(1) < 0. In addition,

w(x∗
2) = x∗

2y(x∗
2) ≤ y(x∗

2) < y(0) = w′(0).

Thus we find that
w′(x∗

2) < w(x∗
2) < w′(0),

and hence there exists a unique x∗
1 with 0 < x∗

1 < x∗
2 such that w′(x∗

1) =
w(x∗

2). ‖

We remark that condition R2 (global concavity) imposes a strong restric-
tion on the y-curve. In fact, condition R2 can be much weakened. First,
we note from the proof that all that is required is that R2 holds locally for
all x ∈ (x0, 1), where 0 ≤ x0 < x∗

1, and this is in fact what we shall use in
our estimation. (The choice x0 = 0.4 appears to be satisfactory.) Second,
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we may wish to choose the y-curve such that it gives us maximum flexibility
over the slopes at x∗

1 and x∗
2. This is possible because all we need is that there

exists a pair (x∗
1, x

∗
2) with 0 < x∗

1 < x∗
2 ≤ 1, such that w(x) has a unique

maximum at x∗
2 and w(x) + (1− x)w(x∗

2) has a unique maximum at x∗
1. The

y-curve may thus have kinks. We shall use this generalization later when we
discuss the robustness of the specification.

2.2 Implications

Theorem 1 has certain implications for the optimal service strategy (x∗
1, x

∗
2);

see also Gale (1971).

Theorem 2 (implications): If conditions R1 and R2 are satisfied, then
the following relations must hold for the optimal strategy (x∗

1, x
∗
2):

(a) x∗
1 < x∗

2,
(b) y(x∗

1) > y(x∗
2),

(c) w(x∗
1) < w(x∗

2), and
(d) w(x∗

2) − w(x∗
1) < (x∗

2 − x∗
1)w(x∗

2).

Proof. Statement (a) is implied in the proof of Theorem 1. Statement (b)
then follows since y is a decreasing function. Statement (c) follows from the
fact that if (x∗

1, x
∗
2) is the optimal service strategy, then this strategy should

lead to a higher probability of winning the point than the strategy (x∗
1, x

∗
1)

(always using the first service), that is,

w(x∗
1) + (1 − x∗

1)w(x∗
2) > w(x∗

1) + (1 − x∗
1)w(x∗

1),

and this simplifies to (c). Similarly, the optimal strategy (x∗
1, x

∗
2) should lead

to a higher probability of winning the point than the strategy (x∗
2, x

∗
2) (always

using the second service). This implies

w(x∗
1) + (1 − x∗

1)w(x∗
2) > w(x∗

2) + (1 − x∗
2)w(x∗

2)

which simplifies to (d). ‖

Relations (a) and (b) say that the first service should be more difficult than
the second in two senses: (a) it is less often in, and (b) if it is in it is more
likely to win the point. Relation (c) is less obvious. It says that the proba-
bility of winning a point at the first (difficult) service should be smaller than
the probability of winning a point on the second (easier) service.
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As a preliminary exercise, we calculate the observed frequencies for each
player in each match using the data described in Section 4.1.

If a player serves optimally, he or she should satisfy the four implications
stated in Theorem 2. In fact, these implications are often not satisfied.

Table 1—Four Consistency Conditions

(a) (b) (c) (d) Total
Men 1.00 0.91 0.78 0.80 0.59

Women 0.98 0.72 0.77 0.64 0.42

The condition x1 < x2 appears to be almost always satisfied, which means
that almost all players take more risk on their first service than on their
second service (as they should). However, this additional risk does not nec-
essarily translate into higher productivity: the condition y(x1) > y(x2) is
only satisfied for 91% of the men and 72% of the women. Condition (c)
requires that (x1, x2) is a better service strategy than (x1, x1), but this is
only true for 77–78% of the players. Condition (d) requires that (x1, x2) is a
better service strategy than (x2, x2), but this is only true for 80% of the men
and 64% of the women. For only 59% of the men and 42% of the women are
all four consistency requirements satisfied.

It therefore seems that for many players the probability of winning a
point can be increased by making small changes to their service strategy.
Indeed, since the four consistency conditions are necessary but not sufficient
for an optimal strategy (and hence even if all four conditions are satisfied
a player may not follow the optimal strategy), the actual deviations from
the optimum will be even larger. This conclusion, however, is too hasty
and simplistic. For one, there will be measurement error: we are interested
in probabilities but we observe relative frequencies, and this might lead to
smaller deviations from the optimum. A more careful statistical analysis is
required.

2.3 Other influences

It would be naive to believe that the y-curve only depends on x. In fact, both
x and y will depend on a p × 1 vector ω representing speed, direction, spin,
et cetera. We define an auxiliary vector v = (v1, . . . , vp−1)

′ such that (x, v)
and ω are in one-to-one correspondence, and we write y = y(x, v). Suppose
we have only one service. Then we should maximize w(x, v) := x · y(x, v)
with respect to x and v. The first-order conditions are

y(x, v) + x
∂y(x, v)

∂x
= 0, ϕh(x, v) :=

∂y(x, v)

∂vh

= 0 (h = 1, . . . , p − 1).
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For given x, assume that the equations ϕh(x, v) = 0 have a unique solution
v = ζ(x), so that each ϕh(x, ζ(x)) = 0 for all x. At the optimum (x∗, v∗) we
have ϕh(x

∗, v∗) = 0, and hence

∂y(x, ζ(x))

∂x

∣∣∣∣
x=x∗

=
∂y(x, ζ(x∗))

∂x

∣∣∣∣
x=x∗

+

p−1∑

h=1

ϕh(x
∗, v∗)

∂ζh(x)

∂x

∣∣∣∣
x=x∗

=
∂y(x, ζ(x∗))

∂x

∣∣∣∣
x=x∗

.

The same reasoning applies when there are two services. We conclude that
we may think of the y-curve as y(x, ζ(x)), where v = ζ(x) is chosen optimally
for given x. Obviously some assumption is required on v, since no data are
available on either v or ω. The particular assumption of choosing v optimally
implies a “conservative” estimate of the efficiency. The same applies to the
identification and estimation of λ (the curvature parameter of the y-curve),
as we shall see in Section 5: no data and a conservative approach. We shall
come back to the effects of the conservative approach when we discuss our
efficiency results in Section 6.

2.4 Efficiency

In a given match between two players the probability that the server wins a
point is given by (1):

p = x1y1 + (1 − x1)x2y2. (3)

Whether or not (x1, y1) and (x2, y2) are the optimal probabilities, the y-
curve will pass through these two points. If the y-curve were linear then the
two points would determine the curve, but we shall see that linearity is too
restrictive. Suppose therefore that the y-curve depends on one (or more)
curvature parameter λ. Given the y-curve, we obtain the optimal strategy
(x∗

1, x
∗
2) and the corresponding function values y∗

1 = y(x∗
1) and y∗

2 = y(x∗
2), all

of which depend on λ. The maximum probability of winning a point is thus

p∗ = x∗
1y

∗
1 + (1 − x∗

1)x
∗
2y

∗
2, (4)

and we define the efficiency of the server in this match as

eff := p/p∗, (5)

which is a number between zero and one. The closer eff is to one, the higher
is the efficiency. Note that the efficiency differs per player.

Of course, we do not know the probabilities (x1, y1) and (x2, y2) and the
curvature parameter λ. Their estimation is taken up in Sections 4 and 5.
But first we need to discuss the specification of the y-curve.
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3 Functional form for y(x)

The simplest specification for y is a linear function. This, however, does
not work well in practice. For example, it forces x∗

1 ≤ 1/2, which is not
realistic since the observed frequencies for x1 are 59.5% for men and 61.6%
for women. Some curvature is required. We propose the following simple
nonlinear function:

y(x) =
α − xλ

τ
, λ > 0. (6)

The two regularity conditions R1 and R2 are satisfied if and only if

1 ≤ α ≤ τ + xλ
0 , (7)

where 0 ≤ x0 < x∗
1. The proposed y-curve allows y to be either concave

or convex (or linear) on the (0, 1) interval, depending on whether λ > 1 or
0 < λ < 1 (or λ = 1). Given (6) we obtain w(x) = x(α−xλ)/τ . If α < λ+1,
then w′(1) < 0 and x∗

2 is obtained from the first-order condition

w′(x∗
2) =

α − (λ + 1)x∗
2
λ

τ
= 0,

so that x∗
2
λ = α/(λ + 1). If α ≥ λ + 1, then w′(1) ≥ 0 and x∗

2 = 1. Hence,

x∗
2
λ = min

(
α

λ + 1
, 1

)
. (8)

Given x∗
2, we find x∗

1 from the equation w′(x∗
1) = w(x∗

2), that is

α − (λ + 1)x∗
1
λ = x∗

2(α − x∗
2
λ)

from which we solve

x∗
1
λ = x∗

2
λ

(
1 −

λ

λ + 1
x∗

2

)
. (9)

From (x∗
1, x

∗
2) we immediately obtain y∗

1 = y(x∗
1) and y∗

2 = y(x∗
2).

The geometry of the solution is illustrated in Figure 1, where we have
chosen α = 2.4, τ = 3.0, and λ = 3.0. On the horizontal axis we find
the probability x that the service is in; on the vertical axis we find the
conditional probability y(x) that server wins the point if the service is in,
the unconditional probability w(x) = x · y(x) that server wins the point on
this service, and the derivative w′(x). The optimal service strategy is found
from Equations (8) and (9) which yields x∗

1 = 60.4% and x∗
2 = 84.3%. If the

optimal strategy is employed, the probability of winning a point on service
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y(x)

w′(x)

w(x)

(x∗
1, y

∗
1)

(x∗
2, y

∗
2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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0.9

1.0

Figure 1. Optimal service strategy.

is p∗ = 63.9%, the probability of a double fault is 6.2%, and the probability
of winning a service game is 81.1%.

Suppose we have observed x1, x2, y1, and y2 for the server in a given
match. This gives us two points (x1, y1) and (x2, y2) on the curve. For each
λ we can solve τ and α from the two equations

α − xλ
1

τ
= y1,

α − xλ
2

τ
= y2. (10)

The solution reads

τ =
xλ

2 − xλ
1

y1 − y2
, α =

y1x
λ
2 − y2x

λ
1

y1 − y2
. (11)

Inserting (11) into (6) then gives

y(x) =
y1x

λ
2 − y2x

λ
1

xλ
2 − xλ

1

−
y1 − y2

xλ
2 − xλ

1

· xλ. (12)

Hence, in order to compute the y-curve and the optimal service strategy, we
need to estimate λ and the probabilities (x1, y1) and (x2, y2); that is, the
probabilities actually employed by the player. The method of estimating
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(x1, y1) and (x2, y2) is outlined in Section 4. The parameter λ is essentially
unidentified from the data, and we shall discuss this problem (and a way
round it) in Section 5.

4 Estimation of the key probabilities

In Section 2 we highlighted the importance of the two probabilities x (prob-
ability that service is in) and y (conditional probability that server wins the
point if service is in). For player i against player j the key probabilities are
given by

zij := (x1,ij , x2,ij , y1,ij, y2,ij)
′ ,

where x1,ij denotes the probability that i (playing against j) serves his or her
first service in, and similarly for the other three probabilities. We cannot ob-
serve these four key probabilities, but we can observe the associated relative
frequencies, denoted by fij, and the associated number of observations un-
derlying each of the relative frequencies, denoted by tij . If the tij-dimension
were sufficiently large, then the probabilities in zij would be well approx-
imated by the relative frequencies in fij, and there would be no need to
model zij further. In that case we could jump directly to Section 5 and
treat (zij , zji) as given. However, the tij-dimension is not large, especially
for the second service where (in our data set) it gets as low as 14 (men) and
5 (women). Hence important efficiency gains can be achieved by modeling
zij .

4.1 The data

Our data consist of singles matches played at Wimbledon during 1992–1995:
508 matches for the men and 508 matches for the women. For each of these
matches we know the two players, their rankings at the beginning of the
tournament, and the match result. For almost half of the matches (258
matches in the men’s singles and 223 matches in the women’s singles) we
know the complete sequence of points. The data are described in detail in
Magnus and Klaassen (1999a).

The reason that we do not have detailed data on all matches played
during the four years is that only matches played on one of the five “show
courts” (Centre Court and Courts 1, 2, 13, and 14) have been recorded.
Typically, matches involving the most important players are scheduled on
the show courts, and this causes an under-representation in the data set
of matches involving weaker players. All results in this section have been
corrected for this selection problem by weighting the matches by the inverses
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of the sampling percentages. The weighting procedure is discussed in detail
in Magnus and Klaassen (1999b).

In the current section we need sixteen summary statistics per match (al-
though we need more match information in some of the sensitivity analysis).
For player i serving against player j we use the relative frequencies fij and
the associated numbers of observations tij ; and the same for player j serving
against i. For example, suppose player i serves 100 times against player j.
Of the 100 first services, 60 are in and 40 are a fault; if the first service
is in, player i wins the point in 44 cases and loses it in 16 cases. Of the
40 second services, 35 are in and 5 are a fault (double fault); if the second
service is in, player i wins the point in 21 cases and loses it in 14 cases.
This information allows us to compute fij = (0.600, 0.875, 0.733, 0.600)′ and
tij = (100, 40, 60, 35)′.

We do not have access to more matches of which all relevant summary
statistics are known. If we had, this would have decreased the estimation
uncertainty from the GMM procedure described below. We could have in-
creased the number of matches where we only require the rankings (currently
508 matches) by including Wimbledon singles matches from 1996 onwards.
This would, however, have added nothing and it would also have raised the
question of parameter instability over time.

4.2 The measurement equation

In what follows we assume that matches are independent (even when servers
occur in several matches), and that points played in one match are inde-
pendent and identically distributed (i.i.d.). The independence of matches
seems a reasonable assumption, but the i.i.d. assumption of points within
one match is a hot issue (not only in tennis), and was analyzed by Klaassen
and Magnus (2001). They conclude that points in tennis are neither inde-
pendent nor identically distributed, but that the deviation is small (though
statistically significant) and that therefore the i.i.d. assumption will still be
reasonable in many specific directions. In addition, in our case, we do not use
the points themselves but summary statistics (averages) so that any possible
harm caused by the wrong assumption is much reduced.

In measuring the (nonobservable) random probability zij with the (ob-
servable) random relative frequency fij, a measurement error occurs:

fij = zij + ηij. (13)

Since each t
(k)
ij f

(k)
ij (k = 1, . . . , 4) follows a binomial distribution conditional
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on zij , we obtain

E(ηij | zij) = 0, var(ηij | zij) = ∆ij , (14)

where the diagonal elements of ∆ij are given by

∆
(k)
ij =

1

t
(k)
ij

z
(k)
ij (1 − z

(k)
ij ) (k = 1, . . . , 4). (15)

We assume that the off-diagonal elements of ∆ij are zero, which is reasonable,
because the components of ηij represent “pure noise.” In addition and for
the same reason, we assume that E(ηji | zij) = 0 and that ηij and ηji are
uncorrelated (conditional on zij and zji).

4.3 A model for zij

Since the four probabilities in zij will be correlated and, in addition, zij and
zji will be correlated, we need to model an eight-dimensional distribution.
The probabilities depend on the characteristics of the server and his or her
opponent. Some of these characteristics are observable, some are not. An
important characteristic is a player’s “quality.” In tennis a player’s quality
is partly measured by his or her official ranking. Although this is not a per-
fect measure of quality (for example, it does not account for “form of the
day”), the ranking contains important information about the key probabili-
ties, which we want to exploit.

Let RANKi denote the ranking of player i at the moment of the tourna-
ment. Direct use of the ranking is not satisfactory, because quality in tennis
is a pyramid: the difference between the top two players (ranked 1 and 2)
is generally larger than between two players ranked 101 and 102. As moti-
vated in Klaassen and Magnus (2001), RANKi is transformed into a smooth
version of the “expected round” by defining

ri = 8 − log2(RANKi).

For example, if RANKi = 4 then ri = 6.00, and if RANKi = 3 then ri = 6.42,
indicating that both are expected to lose in round 6 (the semifinal in grand
slam tournaments like Wimbledon). The additional 0.42 indicates that the
number 3 ranked player is somewhat better than the player ranked 4.

Apart from the ranking there are also quality components that we do
not observe, such as form of the day, special ability on the court surface
on which the match is played (grass for Wimbledon), and fear against a
specific opponent. In addition, each player has his or her own style of play,
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a characteristic that may also affect the four key probabilities. None of
these features is observed, but we correct for them by including two four-
dimensional vectors εij and εji of unobservable effects.

We model the key probabilities in a given match between i and j as an
eight-dimensional vector (z′

ij , z
′
ji)

′, where

zij = µ + riβS + rjβR + εij . (16)

The linearity assumption underlying this equation is acceptable when we use
ri as a regressor, but not when we use RANKi, as preliminary nonparametric
regressions show. The vectors βS and βR contain the effects of the server’s
and receiver’s rankings on each probability in zij , respectively. For the errors
we assume (

εij

εji

)
∼

((
0
0

)
,

(
Σ1 Σ2

Σ2 Σ1

))
. (17)

It is convenient to center ri and rj. The zero mean standardization of the
errors then implies that µ is equal to the mean of zij .

The assumption regarding the errors implies that εij is a random (instead
of fixed) effect. Because the rankings RANKi and RANKj are determined
before the tournament starts, we assume that there is no correlation between
εij and the rankings. To account for the correlations between the key proba-
bilities for a given server we include a variance matrix Σ1. In addition, there
may be correlations between the key probabilities across the two servers in a
given match. For example, if player i is better on the present court surface
(grass, say) than his or her ranking indicates, or if player i usually performs
well against j, then especially the two last components of εij and εji, which
concern the winning probabilities, are negatively correlated. Thus we intro-
duce a covariance matrix Σ2. Since the moments do not depend on the spe-
cific players (i and j), we have, for example, cov(ε

(3)
ij , ε

(4)
ji ) = cov(ε

(3)
ji , ε

(4)
ij ),

so that Σ2 is symmetric.
In summary, we have a model for the whole vector (z′

ij , z
′
ji)

′ of probabil-
ities that govern the two service series within a match. These probabilities
are restricted to be constant within a match. However, in all other respects,
the probabilities are unrestricted, as we allow for full heterogeneity across
players and for possible correlations within a match. There are four free
parameters in each of µ, βS, and βR, and ten free parameters in each of Σ1

and Σ2, in total 32 parameters.

4.4 Moment conditions

We employ the generalized method of moments (GMM) to estimate the 32
parameters. Hence we need to derive moment conditions, taking into account
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that the lengths of the service series across players vary, as do the lengths of
the four service series for each player (in tij). We define

B = (µ : βS : βR), r′
ij = (1, ri, rj),

and write (16) in matrix form as

zij = Brij + εij. (18)

Combining (18) with (13) then gives

fij = Brij + εij + ηij,

where the fact that E(ηij | zij) = E(ηji | zij) = 0 implies that εij is uncorre-
lated with ηij and ηji. From the conditional moments (14) we find E(ηij) = 0
and var(ηij) = E(∆ij). Since zij (and hence ∆ij) cannot be observed, we

define the diagonal matrix ∆̂ij whose k-th diagonal element is given by

∆̂
(k)
ij =

1

t
(k)
ij − 1

f
(k)
ij (1 − f

(k)
ij ) (k = 1, . . . , 4), (19)

and we note that E(∆̂ij | zij) = ∆ij so that E(∆̂ij) = E(∆ij). (If t
(k)
ij

equals one or zero, then (19) breaks down. This does not occur in our data
set, because the minimum number of second services in is 14 (men) and 5
(women), and the minimum number of first services in is 31 (men) en 14
(women).) The following expectations are then implied:

E((fij − Brij)r
′
ij) = O

var(fij − Brij) = Σ1 + E(∆̂ij)

cov(fij − Brij, fji − Brji) = Σ2. (20)

The first moment is the usual OLS orthogonality condition (12 restrictions),
the second moment concerns the within-server variance (10 restrictions, be-
cause of the symmetry), and the third moment captures the correlation be-
tween the frequency vectors of the two servers in a match (10 restrictions).

4.5 Implementation

Let n denote the number of server series (twice the number of matches),
the cross-section dimension of the panel. In our sample we have n = 516
in the men’s singles and n = 446 in the women’s singles. Because n is
substantially larger than the elements of tij (especially the elements that
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concern the second service), our asymptotic justification is based on large n
and finite tij . The moment conditions have thus been set up in a format that
is standard in studies that rely on large-n asymptotics.

The set of moment conditions (20) contains 32 different elements. Each
server i in his or her match against j has exactly one observation of each ele-
ment. Let mij denote the 32-dimensional vector containing all observations:

mij =




vec
(
(fij − Brij)r

′
ij

)

vech
(
(fij − Brij)(fij − Brij)

′ − Σ1 − ∆̂ij

)

vech ((fij − Brij)(fji − Brji)
′ − Σ2)


 ,

where vech() denotes the half-vec operator stacking the nonrepeated elements
of a symmetric matrix. Obviously, E(mij) = 0 and one could use the sample
average (1/n)

∑
mij in a GMM procedure to estimate the parameters. There

are however two sources of inefficiency that we wish to take account of. First,
all players serve a different number of points, so that the precision of the
frequencies varies. Taking an unweighted average across players does not
take this into account. Second, for a given server the number of points varies
across the key frequencies. To increase the efficiency of our estimates, we
weight each element of mij by the number of observations used to compute
that element. Hence, we obtain a new moment vector

m̃ij = Ωijmij ,

where Ωij is a diagonal 32× 32 matrix with the 32 weights on the diagonal.
This leads to the following GMM objective function:

min

(
1

n

∑
m̃ij

)′

W

(
1

n

∑
m̃ij

)
,

where we minimize over all 32 parameters. We use the standard optimal
weighting matrix W , that is, the inverse of the variance of the limiting
distribution of m̃ij. We begin with W = I32 to obtain a consistent estimate

of the parameter vector, then we estimate W by Ŵ , and finally we minimize
the objective function again using Ŵ instead of the identity matrix. This
two-step procedure gives us consistent, asymptotically normal, and efficient
estimates.

4.6 Estimation results

The estimates of µ, βS, βR, Σ1, and Σ2, together with their standard errors
are reported in Table 2.
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TABLE 2

The µ parameters give the results for the average player and are estimated
very precisely. On average 59.5% of the first services are in for the men
(61.6% for the women) and 86.4% of the second services (same for men and
women). The similarity between men and women is remarkable. The scoring
power of the service is of course rather different for men and women. If the
first service is in then men score 74.0% (63.1% for women) on average, and
if the second service is in they score 59.4% (52.6% for women).

The βS-estimates show that the better a player is, the higher are the
key probabilities. As expected, this is clearly true for y1 and y2 and (less
strongly) also for x1 and x2. The estimates of βR show just the opposite.

The estimates in the variance matrix Σ1 are presented as standard devia-
tions (for the four diagonal elements) and correlations (for the six off-diagonal
elements). Of the ten estimated parameters in the covariance matrix Σ2,
seven are statistically and logically insignificant, and are set equal to zero.
Yet we use 32 (rather than 25) moments at the estimation stage. This allows
an overidentifying restrictions test (ORT), giving ORT = 11.77 (0.11) for
the men and ORT = 2.33 (0.94) for the women (p-values in brackets), thus
providing further support for restricting the seven parameters to zero. The
three remaining estimates in Σ2 are correlations, also the estimate indicated
by (y1, y1) (and similarly (y2, y2)) as it measures the correlation between y1,ij

and y1,ji. The three correlations are negative because if player i is “in form”
(relative to j) as a server he or she is also likely to be “in form” as a receiver.

The correlations in the (not reported) 25 × 25 variance matrix of the
estimates are all small, so that the variables satisfy a high degree of orthog-
onality and there is no problem of multicollinearity. The estimates are all
very plausible and the fact that all signs are the same for men and women
underlines their significance.

5 Identification of λ

Now that we have estimated the distribution of (zij , zji), we know the dis-
tribution of (x1, y1) and (x2, y2) for server i in his/her match against j, but
we do not yet know λ, a necessary ingredient for the estimation of the y-
curve (12). The curvature parameter λ is essentially unidentified, because
the y-curve depends on three parameters and we only observe two points on
each curve: (x1, y1) and (x2, y2). In principle we could increase the number
of points on the curve by looking at sets instead of matches, but this does
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not help because the set results are too clustered.
Thus we treat λij as a random effect, in the same way as we have treated

εij in the estimation of zij , and assume

λij | (zij , zji) ∼ (λ, σ2
λ). (21)

We shall obtain “conservative” estimates of λ and σλ, in line with our dis-
cussion in Section 2.3, in the sense that we shall solve

max
λ,σλ

1

n

∑
E(effij),

where eff = p/p∗ is the efficiency defined in (5), and n = 1016 denotes the
number of players. We maximize the average of the expected efficiency (over
the n players), because the elements over which we maximize are all positive,
so that the average is equal to the mean absolute error and therefore takes
account of the spread as well as the location. This measure is therefore
preferable over the median (only location).

The (nontrivial) estimation procedure is described below. We shall see
that the conservative estimate of σλ is essentially zero, so that we may take
λij = λ (constant). Apparently we may assume that for each player the
y-curve has the same curvature (but different height and slope).

We treat men and women separately. For both men’s singles and women’s
singles we consider 508 matches, that is, all singles matches played at Wim-
bledon during 1992–1995. For each match we require the rankings ri and rj,
but not the summary statistics used in Section 4.

5.1 Monte Carlo

In Section 4 we estimated the 25 parameters in µ, βS, βR, Σ1, and Σ2, and
also the 25 × 25 variance matrix. We collect the 25 parameters in a vector
θ, denote its estimator by θ̂, the asymptotic variance matrix of θ̂ by V , and
its estimator by V̂ . Then, approximately, θ̂ ∼ N(θ, V ).

The Monte Carlo procedure consists of two stages. In the first stage we
draw, for r = 1, . . . , R (R = 50), a vector θ(r) from the N(θ̂, V̂ ) distribution
under the restriction that the matrix

(
Σ

(r)
1 Σ

(r)
2

Σ
(r)
2 Σ

(r)
1

)

is positive definite. Hence we draw from a truncated normal distribution.
The first stage of the Monte Carlo draw is independent of λij.
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In the second stage we simulate E(effij) by drawing (zij , zji, λij, λji), for
each of the 508 matches and for each of the R draws of θ. By (16) and (17)
we have in each match

(
zij

zji

)
∼

((
µ(r) + riβ

(r)
S + rjβ

(r)
R

µ(r) + rjβ
(r)
S + riβ

(r)
R

)
,

(
Σ

(r)
1 Σ

(r)
2

Σ
(r)
2 Σ

(r)
1

))
.

Since the densities of the four frequencies in fij have the appearance of
normal curves, it seems reasonable to assume normality of the distribution
of (zij , zji), but truncated for two reasons. First, we must have x0 ≤ x1 ≤ 1
and x0 ≤ x2 ≤ 1. In particular, the condition x2 ≤ 1 must be imposed.
Second, conditions R1 and R2 must hold, which is the case if and only if
condition (7) holds. Using (11), the truncation thus depends on λij because

1 ≤
y1,ijx

λij

2,ij − y2,ijx
λij

1,ij

y1,ij − y2,ij

≤
x

λij

2,ij − x
λij

1,ij

y1,ij − y2,ij

+ x
λij

0 ,

where we set x0 = 0.4. We also assume normality of (λij , λji), but truncated
because of the restriction λ > 0. We now draw S = 50 ten-dimensional vec-
tors of independent realizations (uij, uji) from the uniform distribution de-
fined on the [0, 1] interval. We transform them into S draws (zij, zji, λij, λji)
using the GHK procedure; see Hajivassiliou, McFadden and Ruud (1996).
The resulting draws will satisfy regularity conditions R1 and R2, have pos-
itive λ, and all probabilities will be in the [0, 1] interval. We then compute
eff ij for each draw, and approximate E(effij) by taking the average over the
S draws.

5.2 Conservative estimation of λ

The result of the two-stage procedure is that we can calculate, for each of
the R draws θ(r) and for each server, the expectation E(effij) as a function
of λ and σλ, and hence also the average expected efficiency

eff(λ, σλ) :=
1

n

∑
E(effij).

To estimate λ and σλ conservatively, we calculate the function eff(λ, σλ) for
different values of λ and σλ, where in each function calculation the draw
of (zij , zji, λij, λji) is based on the same draw of (uij, uji). Because of the
concavity of the underlying functions, the function eff(λ, σλ) will have a max-
imum in a suitably chosen parameter range.

The R maximizing parameter values have a mean (standard error) of

λ̂ = 3.07 (0.13) and σ̂λ = 0.002 (0.003) for the men, and λ̂ = 3.77 (0.35) and
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σ̂λ = 0.005 (0.008) for the women. Since σ̂λ is not significantly different from
zero, we set σλ = 0 and re-estimate λ. The R draws for λ

con
have a mean

(standard error) of 3.07 (0.13) in the men’s singles and 3.83 (0.37) in the
women’s singles, where the subscript “con” is a reminder of the fact that we
estimate λ conservatively in the sense that λ

con
provides an average expected

efficiency which is at least as high as the true average expected efficiency. (If
we maximize the median instead of the mean of the expected efficiency, we
obtain λ

con
= 3.06 (0.13) for the men and λ

con
= 3.71 (0.35) for the women.)

The estimate of λ is significantly different for men and women, and is
rather precise. There is thus ample evidence that the y-curve is concave
(λ > 1) in the relevant interval. At the end of this admittedly complicated
estimation procedure we thus have, for each of the R draws of θ, S feasible
8 × 1 vectors (zij, zji) for all 508 matches and one λ

con
. In short, we have

S = 50 feasible 9 × 1 vectors (zij , zji, λcon
).

5.3 Sensitivity

A crucial element in this paper is the specification of the y-curve and the
estimation of its curvature. It is therefore important to find out how sensitive
our results are to (small) deviations from the chosen specification.

Table 3—Estimates of λ
con

y-curve Curvature Men Women
C0 λ 3.0677 3.7727

(0.1315) (0.3455)

C1 λ 3.0553 3.4338
(0.1246) (0.2751)

C2 λ1 3.1373 3.5720
(0.1879) (0.2816)

λ2 2.8955 2.9366
(0.2538) (0.6754)

In Table 3 we compare the conservative λ-estimates from three different spec-
ifications of the y-curve. The curve C0 is our preferred specification (6), while
the curves C1 and C2 are based on the idea that the most important aspect
of the y-curve is the area around x1 and x2. Suppose we allow two y-curves:
one around x1 and one around x2. The two curves are both power curves
like (6), but with different sets of parameters (α, τ, λ). In the curve C1 we
set λ1 = λ2, while in the curve C2 we do not restrict λ. We see that for the
men the conservative estimate of λ is hardly affected; the value λ

con
= 3.1



22

appears to be very stable. For the women slightly less so. Still, there is no
statistical support for rejecting the specification (6).

6 Efficiency results

For both men and women the previous section provides S feasible 9×1 vectors
(zij , zji, λcon

) for each of the 508 matches (1016 players). Thus we obtain a
distribution of the 50 × 1016 = 50,800 observations on the efficiency eff ij.
The density is estimated nonparametrically using the quartic kernel. This
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Figure 2. Distribution of the efficiency p/p∗ across players
(men left, women right).

standard approach, however, leads to a downward bias near the boundary
of the support, in our case near one. To avoid the boundary effect we use
a local linear fitting method, described in Karunamuni and Alberts (2005).
Repeating this for all R replications we find the median and the 2.5 and 97.5
percentiles in Figure 2. The 95% band reflects uncertainty resulting from the
GMM procedure of Section 4.

For the men, the mean of the (median) distribution is 98.9% (with a
standard error of 0.2%) and the distribution can be characterized by the 5%,
25%, 50%, 75%, and 95% quantiles given by (96.7, 98.6, 99.3, 99.7, 99.9).
Hence, on average the inefficiency is 1.1%, while 25% of the players have an
inefficiency of more than 1.4% and 5% of the players an inefficiency of more
than 3.3%.

For the women, the mean of the distribution is 98.0% (0.3%) and the 5%,
25%, 50%, 75%, and 95% quantiles are given by (94.2, 97.2, 98.6, 99.4, 99.8).
Hence, on average the inefficiency is 2.0%, while 25% of the players have an
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inefficiency of more than 2.8% and 5% of the players an inefficiency of more
than 5.8%. The women are thus less efficient servers than the men.

If we assume, instead of model C0, one of the models C1 or C2, then λ
con

changes little (see Table 3), but this does not necessarily imply that the effi-
ciency p/p∗ also changes little. This, however, is the case. For example, under
model C2 the median efficiency is estimated as 99.0% for men (89.9% under
C0) and 98.1% for women (98.0% under C0). The (in)efficiency estimates are
therefore not very sensitive to small misspecifications in the y-curve.

We reject the hypothesis that top tennis players use an efficient service
strategy and we obtain a lower bound of the estimated mean inefficiency
in tennis: 1.1% for men and 2.0% for women. The estimated inefficiencies
may seem small, but (a) the estimates are lower bounds so that the actual
inefficiencies will be larger, and (b) the inefficiencies are calculated at point
level.

We can also calculate the inefficiency at game-, set-, and match-level. If
we consider a game, the inefficiency increases, not because the players per-
form differently but because of the structure of the tennis scoring system:
from 1.1% at point level to 1.4% at game level for the men, and from 2.0% at
point level to 4.0% at game level for the women. The inefficiency increases
further if we consider a match (perhaps the most natural unit) between two
players i and j. The (in)efficiency now does not only depend on the efficiency
of player i but also of player j. What would be the efficiency gain for player
i if he or she serves efficiently while player j does not? This question is
answered in Figure 3. For all S draws of (zij, zji, λcon

) and for each match,
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Figure 3. Efficiency gain m∗ − m as a function of m,
match level (men left, women right).

we compute the probabilities mij (i wins the match against j, both serving
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normally) and m∗
ij (i wins the match against j, i serves optimally, j serves

normally). Then we regress (m∗
ij − mij) on mij (50,800 observations) using

nonparametric quantile regressions. We use the same kernel as above, in-
cluding the boundary correction method, though now not only for mij near
one but also near zero. The fact that the support is bounded also implies
that the fitted regression curve exhibits flattening at the boundaries. We
avoid this by using the local linear regression method instead of the more
standard locally weighted averaging approach; see Fox (2000). Finally, to
account for the skewness of m∗

ij − mij , we use quantile regression instead
of the usual (mean) regression, taking the 10, 50 and 90% quantiles; see
Koenker (2005, p. 222) on locally linear quantile regression. This whole pro-
cedure gives median and 10 and 90 percentiles regression curves, where the
80% band represents the variation of m∗

ij − mij across servers. These are
the three solid lines in Figure 3. We repeat the procedure for each of the R
replications, so that we can estimate the 95% confidence intervals around the
three curves to measure the impact of the GMM estimation uncertainty. For
simplicity, Figure 3 only contains the confidence band (dashed) around the
median curve. If the two players are approximately of equal strength then
the median efficiency gain at match level for the efficient server is 2.7% for
the men and 4.4% for the women. Moreover, 10% of the players will have an
efficiency increase of more than 10–15%.

We now have estimates of the inefficiency at point level (1.1%), game
level (1.4%), and match level (2.7% against a player of equal strength) for
the men (2.0%, 4.0%, and 4.4% for the women), but this does not yet answer
the question what the effect of inefficiency is. To answer this question we run
a hypothetical tournament of 128 players (seven rounds, like Wimbledon),
where in each match both players have probability 0.50 to win the match,
except one player who serves efficiently. The only efficient player has 52.7%
(that is, an additional 2.7%) probability of winning a match in the men’s
singles (54.4% in the women’s singles). What is the expected monetary gain
for the efficient player? In grand slam tournaments the paycheck approxi-
mately doubles in each round. If we assume that this is exactly true, then
the expected paycheck for the efficient player will rise by 18.7% for men and
32.8% for women. At Wimbledon this would mean an expected additional
income of approximately $10,000 for the efficient man and $15,000 for the
efficient woman. Hence, even though the inefficiency at point level may seem
small, the monetary effect of inefficiency is not small at all.

Since a player has two services, we may ask whether an optimal first ser-
vice is more or less important than an optimal second service. This question
is answered in Figure 4, where we only consider the median. The graph
(x∗

1, x
∗
2) is the same as the median in Figure 3, but now decomposed into
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Figure 4. Decomposition of efficiency gain into first and second service,
match level (men left, women right).

(x1, x
∗
2) where only the second service is optimal and (x∗

1, x2) where only the
first service is optimal. The figure shows that players can achieve a larger
efficiency gain on their second service than on their first service, possibly
because of a misguided (inefficient) fear for a double fault.

Finally we ask whether better players are more efficient than weaker play-
ers, as we would perhaps expect. This is no tautology because better players
could also be more talented and equally efficient as weaker players. Our basic
equality is

success = talent + efficiency.

A talented but not so efficient player may be as successful as a less talented
player who is more efficient. We observe success by the ranking of a player,
and we can measure efficiency; talent is unobserved, but can be deduced.

We run the following simple linear regression:

effij = β1 + β2ri + β3|ri − rj| + β4rirj + ξij.

To account for the random effects in eff ij, we use for each server the draws
(zij , λcon

) from Section 5.2, so that we have 50,800 observations. The re-
gression is performed for each of the R replications of θ. To combine the
results across θ, we draw 100 times from each estimated distribution of β̂

and, to account for skewness, the resulting 5000 draws are summarized in a
95% confidence interval around the median.

Two conclusions emerge. First, the confidence interval for β̂2 is (0.0004,
0.0015) for the men and (0.0004, 0.0023) for the women. Hence, higher-
ranked players are indeed more efficient. Second, the confidence interval for
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β̂3 is (−0.0010, −0.0001) for the men and (−0.0011, 0.0000) for the women.
Hence, the closer the contest, the more efficient players are forced to be.

7 Conclusions and implications

In a tennis match between two players, the objective of each player is to
win the match. If it is a match between two amateurs (possibly business
partners), one player may be hesitant to beat his or her boss or to win too
decisively. But top professionals do not act like this. If we were studying
a minor tournament, even a top player might not fully commit because he
or she wants to be fit for next week’s major tournament. That is why we
study only a major tournament, namely Wimbledon. Our “utility” function
to be maximized is the probability that a player (given his or her opponent
and given the strengths of both players) wins a point while serving. It seems
likely that this is indeed the function which players wish to maximize.

We asked the question whether the service strategy for top tennis play-
ers, playing in a top tournament, is efficient. The answer is that it is not.
Our estimates are “conservative” and thus provide lower bounds — the real
inefficiencies are larger. Our model and set-up are very general. Most as-
sumptions have been subjected to extensive sensitivity analyses in order to
check whether (small) deviations from the assumptions have a significant im-
pact on the results. We are confident that we have proved inefficiency among
top players. In addition, we have obtained estimates for the lower bound of
the inefficiency.

The chosen level of investigation in this paper is a point. At point level the
inefficiency is on average 1.1% for men (2.0% for women). At game level the
inefficiency is 1.4% (4.0%), and at match level, assuming two players of the
same strength, 2.7% (4.4%). These differences do not reflect the players but
the scoring system. In terms of expected monetary gains we have calculated
that the expected paycheck for the efficient player will rise by 18.7% for men
and 32.8% for women.

What is the reason for this inefficiency? Perhaps top tennis players know
their y-curve, but are not able to solve the optimization problem. Or do they
correctly solve the optimization, but on the wrong y-curve? The decompo-
sition into first and second service (Figure 4) may help us here. From the
point of view of achieving optimality it is much easier for a server to work out
the optimal second service (maximize w(x)) than to work out the optimal
first service (maximize w(x) + (1 − x)w(x∗

2)). Nevertheless, the second ser-
vice appears to be less efficient than the first service. This provides evidence
that, although players may be maximizers, they do not maximize the correct
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function.
We also find that higher-ranked players are more efficient than lower-

ranked players, and that the closer the match, the more efficient a player
serves.

Let us now try and relate these results to economics, and in particular to our
original question whether economic agents are successful maximizers. First,
our results show that economic agents and even top agents are not fully ef-
ficient, and that this inefficiency can be financially nontrivial. Second, the
different inefficiency results at point-, game-, and match level show that the
market form has an impact on the measurement of inefficiency. For example,
in the case of Bertrand competition for homogeneous goods, a “winner-takes-
all” effect is induced, and this nonlinearity is not related to productivity but
to the nature of the competition. Third, the fact that tighter matches cause
players to be more efficient suggests that in a more competitive market firms
are forced to be more efficient; otherwise they will be driven out of the mar-
ket. This supports the view of many policy makers that measures aimed at
strengthening market mechanisms lead to a more efficient economy.

What contribution, if any, does this paper make to the closely related
subject of rational behavior? In rational choice theory the “rational man” is
assumed to (a) know his or her preferences over all relevant alternatives, and
(b) choose the best alternative. In our tennis framework this corresponds
to (a) a player who knows the pay-off structure p(x1, x2), and (b) is able to
maximize that pay-off.

We find inefficiency and hence the agent does not know the pay-off struc-
ture and/or is not able to solve the maximization problem. This would reject
rationality in favor of bounded rationality, and therefore corroborates find-
ings from the experimental economics literature.

The inefficiency is larger for the second than for the first service, even
though the maximization problem for the second service is easier. This sug-
gests that at least (a) is rejected, that is, the agent does not fully use his or
her true preference relations.

The inefficiency is small and hence rationality might be an acceptable
approximation in many applications, at least for the top agents. Friedman’s
(1953, p. 21) expert billiard players are like our top tennis players: they
make their shots as if they know and can implement the complicated math-
ematical formulas underlying the optimal paths of the balls. This will be
approximately true for expert billiard players, but not necessarily for the
average billiard player. Since we find that the efficiency is smaller for weak
players than for strong players, rationality may not be a good approxima-
tion for the average tennis player, the average billiard player, or the average
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economic agent. Hence, in spite of Friedman’s (p. 21) assertion that

It is only a short step from these examples to the economic hypoth-
esis that under a wide range of circumstances individual firms be-
have as if they were seeking rationally to maximize their expected
returns,

it is not justified to think of “individual firms” (that is, non-top firms) as
rational.
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Table 2—Estimates of Men’s and Women’s Singles Equations (16) and (17)

Men Women
Coefficients Estimate Standard error Estimate Standard error
µ x1 0.5947 0.0034 0.6157 0.0051

x2 0.8642 0.0031 0.8644 0.0047
y1 0.7403 0.0037 0.6308 0.0051
y2 0.5942 0.0044 0.5262 0.0077

βS x1 0.0010 0.0015 0.0056 0.0029
x2 0.0028 0.0013 0.0108 0.0031
y1 0.0148 0.0017 0.0228 0.0025
y2 0.0110 0.0020 0.0144 0.0037

βR x1 0.0007 0.0015 0.0042 0.0024
x2 -0.0011 0.0013 -0.0002 0.0025
y1 -0.0062 0.0017 -0.0198 0.0026
y2 -0.0088 0.0021 -0.0200 0.0039

Σ1 x1 0.0488 0.0049 0.0685 0.0059
x2 0.0317 0.0051 0.0505 0.0075
y1 0.0547 0.0042 0.0486 0.0083
y2 0.0540 0.0062 0.0754 0.0113

(x2, x1) 0.6390 0.1540 0.2973 0.1343
(y1, x1) -0.0985 0.1226 -0.5923 0.1720
(y2, x1) 0.0652 0.1377 0.2415 0.1782
(y1, x2) -0.2593 0.1671 -0.3052 0.1970
(y2, x2) 0.2700 0.2112 0.1454 0.2308
(y2, y1) 0.5752 0.1360 0.0919 0.2473

Σ2 (y1, y1) -0.1070 0.1547 -0.5843 0.3830
(y2, y2) -0.4106 0.2347 -0.3392 0.3889
(y2, y1) -0.2375 0.1319 -0.3370 0.2411


