
de Gooijer, Jan G.; Hyndman, Rob J.

Working Paper

25 Years of IIF Time Series Forecasting: A Selective Review

Tinbergen Institute Discussion Paper, No. 05-068/4

Provided in Cooperation with:
Tinbergen Institute, Amsterdam and Rotterdam

Suggested Citation: de Gooijer, Jan G.; Hyndman, Rob J. (2005) : 25 Years of IIF Time Series
Forecasting: A Selective Review, Tinbergen Institute Discussion Paper, No. 05-068/4, Tinbergen
Institute, Amsterdam and Rotterdam

This Version is available at:
https://hdl.handle.net/10419/86645

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/86645
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


TI 2005-068/4 
Tinbergen Institute Discussion Paper 

   

25 Years of IIF Time Series 
Forecasting:  
A Selective Review 

 Jan G. De Gooijer1 

Rob J. Hyndman2 

 

1 University of Amsterdam, and Tinbergen Institute, 
2 Monash University, Australia. 

 



  

Tinbergen Institute 
The Tinbergen Institute is the institute for 
economic research of the Erasmus Universiteit 
Rotterdam, Universiteit van Amsterdam, and Vrije 
Universiteit Amsterdam. 
 
Tinbergen Institute Amsterdam 
Roetersstraat 31 
1018 WB Amsterdam 
The Netherlands 
Tel.: +31(0)20 551 3500 
Fax: +31(0)20 551 3555 
 
Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 
3062 PA Rotterdam 
The Netherlands 
Tel.: +31(0)10 408 8900 
Fax: +31(0)10 408 9031 
 
 
Please send questions and/or remarks of non-
scientific nature to driessen@tinbergen.nl. 
Most TI discussion papers can be downloaded at 
http://www.tinbergen.nl. 



25 Years of IIF Time Series Forecasting:

A Selective Review1

Jan G De Gooijer
Department of Quantitative Economics
University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
Telephone: +31–20–525–4244; Fax: +31–20–525–4349
Email: j.g.degooijer@uva.nl

Rob J Hyndman
Department of Econometrics and Business Statistics,
Monash University, VIC 3800, Australia.
Telephone: +61–3–9905–2358; Fax: +61–3–9905–5474
Email: Rob.Hyndman@buseco.monash.edu

1Also available as Working paper 12/05 Department of Econometrics & Business Statistics, Monash University,
Australia; and at REPEC; htttp://ideas.repec.org/p/msh/ebswps/2005-12.html

1



25 Years of IIF Time Series Forecasting:

A Selective Review

Abstract: We review the past 25 years of time series research that has been published in journals
managed by the International Institute of Forecasters (Journal of Forecasting 1982–1985; Interna-

tional Journal of Forecasting 1985–2005). During this period, over one third of all papers published
in these journals concerned time series forecasting. We also review highly influential works on time
series forecasting that have been published elsewhere during this period. Enormous progress has
been made in many areas, but we find that there are a large number of topics in need of further
development. We conclude with comments on possible future research directions in this field.
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1 Introduction

Twenty five years of the International Institute of Forecasters (IIF) is synonymous to 24 years

(1982–2005) of scientific publications in two leading journals in the field. In 1982 the IIF set up

the Journal of Forecasting (JoF), published with John Wiley & Sons. After a break with Wiley in

19852 the IIF decided to start with the International Journal of Forecasting (IJF), published with

Elsevier since 1985. This paper provides a selective guide to the literature on time series fore-

casting, covering the period 1982–2005 and summarizing about 340 papers published under

the “IIF-flag” out of a total of over 940 papers. The proportion of these time series forecasting

papers as a function of the year of publication is shown in Figure 1, and we note that the be-

haviour of the series is rather stable.3 The review also includes works (key papers and books)

that have been highly influential to various developments in the field. The works referenced

comprise 312 journal papers, and 13 books and monographs.
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Figure 1: Annual proportion of papers published by the IIF that concern time series forecasting.

It was felt convenient to first classify the papers according to the models (e.g., exponential

smoothing, ARIMA) introduced in the time series literature, rather than putting papers under

a heading associated with a particular method. For instance, Bayesian methods in general

can be applied to all models. Papers not concerning a particular model were then classified

according to the various problems (e.g., accuracy measures, combining) they address. In only

a few cases was a subjective decision on our part needed to classify a paper under a particular

section heading. To facilitate a quick overview in a particular field, the papers are referenced

2The IIF was involved with JoF issue 14:1 (1985)
3IJF issue 7:4 (1991) was erroneously dated 1992. The time series forecasting papers published in this issue are

assumed to be published in the year 1991.
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in alphabetical order according to the section headings.

Determining what to include and what not to include in the list of references has been a prob-

lem. There may be papers that we have missed, and papers that are also referenced by other

authors in this Silver Anniversary issue. For example, the ARCH/GARCH papers (Section 8)

will probably be covered in more detail in the finance survey paper, and the vector error correc-

tion/cointegration papers discussed in Subsection 3.4 will also be covered in the econometrics

survey paper. If an article did not belong to the mainstream of time series forecasting, it was

included only if it was deemed important for forecasters to know about.

The review is not intended to be critical, but rather a (brief) historical and personal tour of

the main developments. Still, a cautious reader may detect certain areas where the fruits of 25

years of intensive research interest has been limited. Conversely, clear explanations for many

previously anomalous time series forecasting results have been provided by the end of 2005.

Section 13 discusses some current research directions that hold promise for the future, but of

course the list is far from exhaustive.

2 Exponential smoothing

2.1 Preamble

Twenty five years ago, exponential smoothing methods were considered a collection of ad hoc

techniques for extrapolating various types of univariate time series. Although exponential

smoothing methods were widely used in business and industry, they had received little atten-

tion from statisticians and did not have a well-developed statistical foundation. These methods

originated in the 1950s and 1960s with the work of Brown (1959, 1963), Holt (1957, 2004) and

Winters (1960). Pegels (1969) provided a simple but useful classification of the trend and the

seasonal patterns depending on whether they are additive (linear) or multiplicative (nonlinear).

Exponential smoothing methods received a boost by two papers published in 1985, which laid

the foundation for much of the subsequent work in this area. First, Gardner (1985) provided a

thorough review and synthesis of work in exponential smoothing to that date, and extended

Pegels’ classification to include damped trend. This paper brought together a lot of existing

work which stimulated the use of these methods and prompted a substantial amount of addi-

tional research. Later in the same year, Snyder (1985) showed that simple exponential smooth-

ing (SES) could be considered as arising from an innovation state space model (i.e., a model

with a single source of error). Although this insight went largely unnoticed at the time, in

recent years it has provided the basis for a large amount of work on state space models under-

lying exponential smoothing methods.

Most of the work since 1985 has involved studying the empirical properties of the methods

(e.g., Bartolomei & Sweet, 1989; Makridakis & Hibon, 1991), proposals for new methods of

estimation or initialization (Ledolter & Abraham, 1984), evaluation of the forecasts (Sweet &

Wilson, 1988; McClain, 1988), or has concerned statistical models that can be considered to
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underly the methods (e.g., McKenzie, 1984). The damped multiplicative methods of Taylor

(2003) provide the only genuinely new exponential smoothing methods over this period. There

have, of course, been numerous studies applying exponential smoothing methods in various

contexts including computer components (Gardner, 1993), air passengers (Grubb & Masa, 2001)

and production planning (Miller & Liberatore, 1993).

Hyndman et al.’s (2002) taxonomy (extended by Taylor, 2003) provides a helpful notation in

describing the various methods. Each method is denoted by one or two letters for the trend

(N=none, A=additive, DA=damped additive, M=multiplicative and DM=damped multiplica-

tive) and one for the seasonality (N=none, A=additive and M=multiplicative). Thus, there are

15 different methods, the best known of which are simple exponential smoothing (N-N), Holt’s

linear method (A-N), Holt-Winters’ additive method (A-A) and Holt-Winters’ multiplicative

method (A-M).

2.2 Variations

Numerous variations on the original methods have been proposed. For example, Carreno &

Madinaveitia (1990) and Williams & Miller (1999) proposed modifications to deal with discon-

tinuities, and Rosas & Guerrero (1994) looked at exponential smoothing forecasts subject to one

or more constraints. There are also variations in how and when seasonal components should

be normalized. Lawton (1998) argued for renormalization of the seasonal indices at each time

period, as it removes bias in estimates of level and seasonal components. Slightly different nor-

malization schemes were given by Roberts (1982) and McKenzie (1986). Archibald & Koehler

(2003) developed new renormalization equations that are simpler to use and give the same

point forecasts as the original methods.

One useful variation, part way between SES and Holt’s method, is SES with drift. This is

equivalent to Holt’s method with the trend parameter set to zero. Hyndman & Billah (2003)

showed that this method was also equivalent to Assimakopoulos & Nikolopoulos’s (2000)

“Theta method” when the drift parameter is set to half the slope of a linear trend fitted to

the data. The Theta method performed extremely well in the M3-competition, although why

this particular choice of model and parameters is good has not yet been determined.

There has been remarkably little work in developing multivariate versions of the exponential

smoothing methods. One notable exception is Pfeffermann & Allon (1989) who looked at Israeli

tourism data.

2.3 State space models

Ord et al. (1997) built on the work of Snyder (1985) by proposing a class of innovation state

space models which can be considered as underlying some of the exponential smoothing meth-

ods. Hyndman et al. (2002) and Taylor (2003) extended this to include all of the 15 exponential

smoothing methods. In fact, Hyndman et al. (2002) proposed two state space models for each

method, corresponding to the additive error and the multiplicative error cases. These models

are not unique, and other related state space models for exponential smoothing methods are
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presented in Koehler et al. (2001) and Chatfield et al. (2001). It has long been known that some

ARIMA models give equivalent forecasts to the linear exponential smoothing methods. The

significance of the recent work on innovation state space models is that the nonlinear exponen-

tial smoothing methods can also be derived from statistical models.

2.4 Method selection

Gardner & McKenzie (1988) provided some simple rules based on the variances of differ-

enced time series for choosing an appropriate exponential smoothing method. Tashman &

Kruk (1996) compared these rules with others proposed by Collopy & Armstrong (1992) and

an approach based on the BIC. Hyndman et al. (2002) also proposed an information criterion

approach, but using the underlying state space models.

2.5 Robustness

The remarkably good forecasting performance of exponential smoothing methods has been ad-

dressed by several authors. Satchell & Timmermann (1995) and Chatfield et al. (2001) showed

that SES is optimal for a wide range of data generating processes. In a simulation study, Hynd-

man (2001) showed that exponential smoothing performs better than ARIMA models because

it is not so subject to model selection problems, particularly when data are non-normal.

2.6 Prediction intervals

One of the criticisms of exponential smoothing methods 25 years ago was that there was no

way to produce prediction intervals for the forecasts. The first analytical approach to this prob-

lem was to assume the series were generated by deterministic functions of time plus white

noise (Brown, 1963; Sweet, 1985; McKenzie, 1986; Gardner, 1985). If this was so, a regres-

sion model should be used rather than exponential smoothing methods; thus, Newbold & Bos

(1989) strongly criticized all approaches based on this assumption.

Other authors sought to obtain prediction intervals via the equivalence between exponential

smoothing methods and statistical models. Johnston & Harrison (1986) found forecast vari-

ances for the simple and Holt exponential smoothing methods for state space models with

multiple sources of errors. Yar & Chatfield (1990) obtained prediction intervals for the additive

Holt-Winters’ method, by deriving the underlying equivalent ARIMA model. Approximate

prediction intervals for the multiplicative Holt-Winters’ method were discussed by Chatfield

& Yar (1991) making the assumption that the one-step-ahead forecast errors are independent.

Koehler et al. (2001) also derived an approximate formula for the forecast variance for the multi-

plicative Holt-Winters’ method, differing from Chatfield & Yar (1991) only in how the standard

deviation of the one-step-ahead forecast error is estimated.

Ord et al. (1997) and Hyndman et al. (2002) used the underlying innovation state space model

to simulate future sample paths and thereby obtained prediction intervals for all the exponen-

tial smoothing methods. Hyndman et al. (2005) used state space models to derive analytical
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prediction intervals for 15 of the 30 methods, including all the commonly-used methods. They

provide the most comprehensive algebraic approach to date for handling the prediction distri-

bution problem for the majority of exponential smoothing methods.

2.7 Parameter space and model properties

It is common practice to restrict the smoothing parameters to the range 0 and 1. However,

now that underlying statistical models are available, the natural (invertible) parameter space

for the models can be used instead. Archibald (1990) showed that it is possible for smoothing

parameters within the usual intervals to produce non-invertible models. Consequently, when

forecasting, the impact of change in the past values of the series is non-negligible. Intuitively,

such parameters produce poor forecasts and the forecast performance deteriorates. Lawton

(1998) also discussed this problem.

3 ARIMA models

3.1 Preamble

In a series of articles, and a subsequent book, Box & Jenkins (1970, 1976) set out and illustrated

a methodology for building autoregressive integrated moving average (ARIMA) forecasting

models; see Newbold (1983) for an early survey. Their work has had an enormous impact on

the theory and practice of modern time series analysis and forecasting.

Forecasting time series through univariate ARIMA models, transfer function (dynamic re-

gression) models and multivariate (vector) ARIMA models has generated quite a few IJF pa-

pers. Often these studies were of an empirical nature, using one or more benchmark meth-

ods/models as a comparison. Without pretending to be complete, Table 1 gives a list of these

studies. Naturally, some of these studies are more successful than others. In all cases, the fore-

casting experiences reported are valuable. They have also been the key to new developments

which may be summarized as follows.

3.2 Univariate

If a time series is known to follow a univariate ARIMA model, forecasts using disaggregated

observations are, in terms of MSE, at least as good as forecasts using aggregated observations.

However, in practical applications there are other factors to be considered, such as missing

values in disaggregated series. Both Ledolter (1989) and Hotta (1993) analysed the effect of the

additive outlier on the forecast intervals when the ARIMA model parameters are estimated.

The problem of incorporating external (prior) information in the univariate ARIMA forecasts

have been considered by Cholette (1982), Guerrero (1991) and de Alba (1993).

There are a number of methods (cf. Box & Jenkins, 1970, 1976) for estimating parameters of an

ARMA model. Although these methods are equivalent asymptotically, in the sense that esti-
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Data set Forecast horizon Benchmark Reference

Univariate ARIMA
Electricity load (minutes) 1–30 minutes Wiener filter Di Caprio et al. (1983)
Quarterly automobile
insurance paid claim costs

8 quarters log-linear regression Cummins & Griepentrog (1985)

Daily federal funds rate 1 day random walk Hein & Spudeck (1988)
Quarterly macroeconomic data 1–8 quarters Wharton model Dhrymes & Peristiani (1988)
Monthly department store sales 1 month simple exponential

smoothing
Geurts & Kelly (1986, 1990);
Pack (1990)

Monthly demand for telephone
services

3 years univariate state space Grambsch & Stahel (1990)

Yearly population totals 20–30 years demographic models Pflaumer (1992)
Monthly tourism demand 1–24 months univariate state space;

multivariate state space
du Preez & Witt (2003)

Dynamic regression/Transfer function
Monthly telecommunications
traffic

1 month univariate ARIMA Layton et al. (1986)

Weekly sales data 2 years n.a. Leone (1987)
Daily call volumes 1 week Holt-Winters Bianchi et al. (1998)
Monthly employment levels 1–12 months univariate ARIMA Weller (1989)
Monthly and quarterly
consumption of natural gas

1 month/
1 quarter

univariate ARIMA Liu & Lin (1991)

Monthly electricity
consumption

1–3 years univariate ARIMA Harris & Liu (1993)

VARIMA
Yearly municipal budget data yearly (in-sample) univariate ARIMA Downs & Rocke (1983)
Monthly accounting data 1 month regression, univariate,

ARIMA, transfer function
Hillmer et al. (1983)

Quarterly macroeconomic data 1–10 quarters judgmental methods,
univariate ARIMA

Öller (1985)

Monthly truck sales 1–13 months univariate ARIMA,
Holt-Winters

Heuts & Bronckers (1988)

Monthly hospital patient
movements

2 years univariate ARIMA,
Holt-Winters

Lin (1989)

Quarterly unemployment rate 1–8 quarters transfer function Edlund & Karlsson (1993)

Table 1: A list of examples of real applications.

mates tend to the same normal distribution, there are large differences in finite sample prop-

erties. In a comparative study of software packages, Newbold et al. (1994) showed that this

difference can be quite substantial and, as a consequence, may influence forecasts. They recom-

mended the use of full maximum likelihood. Kim (2003) considered parameter estimation and

forecasting of AR models in small samples. He found that bias-corrected parameter estimators

produce more accurate forecasts than the least squares estimator. Landsman & Damodaran

(1989) presented evidence that the James-Stein ARIMA parameter estimator improves forecast

accuracy relative to other methods, under a MSE loss criterion.

As an alternative to the univariate ARIMA methodology, Parzen (1982) proposed the ARARMA

methodology. The key idea is that a time series is transformed from a long memory AR fil-

ter to a short-memory filter, thus avoiding the “harsher” differencing operator. In addition,

a different approach to the ‘conventional’ Box-Jenkins identification step is used. In the M-
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competition (Makridakis et al., 1982), the ARARMA models achieved the lowest MAPE for

longer forecast horizons. Meade (2000) compared the forecasting performance of an automated

and non-automated ARARMA method.

Automatic univariate ARIMA modelling has been shown to produce one-step-ahead forecast-

ing as accurate as those produced by competent modellers (Hill & Fildes, 1984; Libert, 1984;

Poulos et al., 1987; Texter & Ord, 1989). Several software vendors have implemented auto-

mated time series forecasting methods (including multivariate methods); see, e.g., Geriner &

Ord (1991), Tashman & Leach (1991) and Tashman (2000). Often these methods act as black

boxes. The technology of expert systems (Mélard & Pasteels, 2000) can be used to avoid this

problem.

Rather than adopting a single AR model for all forecast horizons Kang (2003) empirically inves-

tigated the case of using a multi-step ahead forecasting AR model selected separately for each

horizon. The forecasting performance of the multi-step ahead procedure appears to depend

on, among other things, optimal order selection criteria, forecast periods, forecast horizons,

and the time series to be forecasted.

3.3 Transfer function

The identification of transfer function models can be difficult when there is more than one input

variable. Edlund (1984) presented a two-step method for identification of the impulse response

function when a number of different input variables are correlated. Koreisha (1983) established

various relationships between transfer functions, causal implications and econometric model

specification. Gupta (1987) identified the major pitfalls in causality testing. Using principal

component analysis, a parsimonious representation of a transfer function model was suggested

by del Moral & Valderrama (1997). Krishnamurthi et al. (1989) showed how more accurate

estimates of the impact of interventions in transfer function models can be obtained by using a

control variable.

3.4 Multivariate

The vector ARIMA (VARIMA) model is a multivariate generalization of the univariate ARIMA

model. The population characteristics of VARMA processes appear to have been first derived

by Quenouille (1957, 1968), although they were not routinely applied until the early 1980s.

Since VARIMA models can accommodate assumptions on exogeneity and on contemporaneous

relationships, they offered new challenges to forecasters and policy makers. Riise & Tjøstheim

(1984) addressed the effect of parameter estimation on VARMA forecasts. Cholette & Lamy

(1986) showed how smoothing filters can be built into VARMA models. The smoothing pre-

vents irregular fluctuations in explanatory time series from migrating to the forecasts of the de-

pendent series. To determine the maximum forecast horizon of VARMA processes, De Gooijer

& Klein (1991) established the theoretical properties of cumulated multi-step-ahead forecasts

and cumulated multi-step-ahead forecast errors. Lütkepohl (1986) studied the effects of tem-

poral aggregation and systematic sampling on forecasting, assuming that the disaggregated

9



(stationary) variable follows a VARMA process with unknown order. Later, Bidarkota (1998)

considered the same problem but with the observed variables integrated rather than stationary.

Vector autoregressions (VARs) constitute a special case of the more general class of VARMA

models. In essence, a VAR model is a fairly unrestricted (flexible) approximation to the reduced

form of a wide variety of dynamic econometric models. VAR models can be specified in a

number of ways. Funke (1990) presented five different VAR specifications and compared their

forecasting performance using monthly industrial production series. Dhrymes & Thomakos

(1998) discussed issues regarding the identification of structural VARs. Hafer & Sheehan (1989)

showed the effect on VAR forecasts of changes in the model structure. Explicit expressions for

VAR forecasts in levels are provided by Ariño & Franses (2000); see also Wieringa & Horváth

(2005). Hansson et al. (2005) used a dynamic factor model as a starting point to obtain forecasts

from parsimoniously parametrised VARs.

In general, VAR models tend to suffer from ‘overfitting’ with too many free insignificant pa-

rameters. As a result, these models can provide poor out-of-sample forecasts, even though

within-sample fitting is good; see, e.g., Liu et al. (1994) and Simkins (1995). Instead of restrict-

ing some of the parameters in the usual way, Litterman (1986) and others imposed a prior

distribution on the parameters expressing the belief that many economic variables behave like

a random walk. BVAR models have been chiefly used for macroeconomic forecasting (Ashley,

1988; Kunst & Neusser, 1986; Artis & Zhang, 1990; Holden & Broomhead, 1990), for forecasting

market shares (Ribeiro Ramos, 2003), for labor market forecasting (LeSage & Magura, 1991),

for business forecasting (Spencer, 1993), or for local economic forecasting (LeSage, 1989). Kling

& Bessler (1985) compared out-of-sample forecasts of several then-known multivariate time

series methods, including Litterman’s BVAR model.

The Engle-Granger (1987) concept of cointegration has raised various interesting questions re-

garding the forecasting ability of error correction models (ECMs) over unrestricted VARs and

BVARs. Shoesmith (1992, 1995), Tegene & Kuchler (1994) and Wang & Bessler (2004) provided

empirical evidence to suggest that ECMs outperform VARs in levels, particularly over longer

forecast horizons. Also Shoesmith (1995), and later Villani (2001), showed how Litterman’s

(1986) Bayesian approach can improve forecasting with cointegrated VARs. Reimers (1997)

studied the forecasting performance of seasonally cointegrated vector time series processes us-

ing an ECM in fourth differences. Poskitt (2003) discussed the specification of cointegrated

VARMA systems. Chevillon & Hendry (2005) analyzed the relation between direct multi-step

estimation of stationary and non-stationary VARs and forecast accuracy.

4 Seasonality

The oldest approach to handling seasonality in time series is to extract it using a seasonal de-

composition procedure such as the X-11 method. Over the past 25 years, the X-11 method and

its variants have been studied extensively.

One line of research has considered the effect of using forecasting as part of the seasonal de-
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composition method. For example, Dagum (1982) and Huot et al. (1986) looked at the use of

forecasting in X-11-ARIMA to reduce the size of revisions in the seasonal adjustment of data,

and Pfeffermann et al. (1995) explored the effect of the forecasts on the variance of the trend

and seasonally adjusted values.

Quenneville et al. (2003) took a different perspective and looked at forecasts implied by the

asymmetric moving average filters in the X-11 method and its variants.

A third approach has been to look at the effectiveness of forecasting using seasonally adjusted

data obtained from a seasonal decomposition method. Miller & Williams (2003, 2004) showed

that greater forecasting accuracy is obtained by shrinking the seasonal component towards

zero. The commentaries on the latter paper (Findley et al., 2004; Ladiray & Quenneville, 2004;

Hyndman, 2004; Koehler, 2004; and Ord, 2004) gave several suggestions regarding implemen-

tation of this idea.

In addition to work on the X-11 method and its variants, there have also been several new meth-

ods for seasonal adjustment developed, the most important being the model based approach

of TRAMO-SEATS (Gómez & Maravall, 2001) and the nonparametric method STL (Cleveland

et al., 1990). Another proposal has been to use sinusoidal models (Simmons, 1990).

When forecasting several similar series, Withycombe (1989) showed that it can be more efficient

to estimate a combined seasonal component from the group of series, rather than individual

seasonal patterns. Bunn & Vassilopoulos (1993) demonstrated how to use clustering to form

appropriate groups for this situation, and Bunn & Vassilopoulos (1999) introduced some im-

proved estimators for the group seasonal indices.

Twenty five years ago, unit root tests had only recently been invented, and seasonal unit root

tests were yet to appear. Subsequently, there has been considerable work done on the use and

implementation of seasonal unit root tests including Hylleberg & Pagan (1997), Taylor (1997)

and Franses & Koehler (1998). Paap et al. (1997) and Clements & Hendry (1997) studied the

forecast performance of models with unit roots, especially in the context of level shifts.

Some authors have cautioned against the widespread use of standard seasonal unit root mod-

els for economic time series. Osborn (1990) argued that deterministic seasonal components are

more common in economic series than stochastic seasonality. Franses & Romijn (1993) sug-

gested that seasonal roots in periodic models result in better forecasts. This suggestion was

evaluated by Wells (1997), Herwartz (1997) and Novales & de Fruto (1997).

Several papers have compared various seasonal models empirically. Chen (1997) explored the

robustness properties of a structural model, a regression model with seasonal dummies, an

ARIMA model, and Holt-Winters’ method, and found that the latter two yield forecasts that

are relatively robust to model misspecification. Noakes et al. (1985), Albertson & Aylen (1996),

Kulendran & King (1997) and Franses & van Dijk (2005) each compared the forecast perfor-

mance of several seasonal models applied to real data.
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5 State space and structural models and the Kalman filter

At the start of the 1980s, state space models were only beginning to be used by statisticians for

forecasting time series, although the ideas had been present in the engineering literature since

Kalman’s (1960) ground-breaking work. State space models provide a unifying framework in

which any linear time series model can be written. The key forecasting contribution of Kalman

(1960) was to give a recursive algorithm (known as the Kalman filter) for computing forecasts.

Statisticians became interested in state space models when Schweppe (1965) showed that the

Kalman filter provides an efficient algorithm for computing the one-step-ahead prediction er-

rors and associated variances need to produce the likelihood function.

A particular class of state space models, known as “structural models” or “dynamic linear mod-

els” (DLM), was introduced by Harrison & Stevens (1976), who also proposed a Bayesian ap-

proach to estimation. These models bear many similarities with exponential smoothing meth-

ods, but have multiple sources of random error. In particular, the “basic structural model”

(BSM) is similar to Holt-Winters’ method for seasonal data and includes a level, trend and sea-

sonal component. Harvey (1984, 1989) extended the class of structural models and followed a

non-Bayesian approach to estimation.

Ray (1989) discussed convergence rates for the linear growth structural model and showed that

the initial states (usually chosen subjectively) have a non-negligible impact on forecasts. Har-

vey & Snyder (1990) proposed some continuous-time structural models for use in forecasting

lead time demand for inventory control. Proietti (2000) discussed several variations on the BSM

and compared their properties and evaluated the resulting forecasts.

Another class of state space models, known as “balanced state space models”, has been used

primarily for forecasting macroeconomic time series. Mittnik (1990) provided a survey of this

class of models, and Vinod & Basu (1995) obtained forecasts of consumption, income and in-

terest rates using balanced state space models. These models have only one source of random

error and subsume various other time series models including ARMAX models, ARMA mod-

els and rational distributed lag models. A related class of state space models are the “single

source of error” models that underly exponential smoothing methods; these are discussed in

Section 2.

As well as these methodological developments, there have been several papers proposing inno-

vative state space models to solve practical forecasting problems. These include Coomes (1992)

who used a state space model to forecast jobs by industry for local regions, and Patterson (1995)

who used a state space approach for forecasting real personal disposable income.
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6 Nonlinear models

6.1 Preamble

Relative to linear time series study, the development of nonlinear time series analysis and fore-

casting is still in its infancy. The beginning of nonlinear time series has been attributed to

Volterra (1930). He showed that any continuous nonlinear function in t could be approximated

by a finite Volterra series. Wiener (1958) became interested in the ideas of functional series

representation, and further developed the existing material. Although the probabilistic prop-

erties of these models have been studied extensively, the problems of parameter estimation,

model fitting, and forecasting, have been neglected for a long time. This neglect can largely be

attributed to the complexity of the proposed Wiener model, and its simplified forms like the

bilinear model (Poskitt & Tremayne, 1986). At the time, fitting these models led to what were

insurmountable computational difficulties.

Although linearity is a useful assumption and a powerful tool in many areas, it became in-

creasingly clear in the late 1970s and early 1980s that linear models are insufficient in many

real applications. For example, sustained animal population size cycles (the well-known Cana-

dian lynx data), sustained solar cycles (annual sunspot numbers), energy flow and amplitude-

frequency relations were found not to be suitable for linear models. Accelerated by practical

demands, several useful nonlinear time series models were proposed in this same period. De

Gooijer & Kumar (1992) provided an overview of the developments in this area to the begin-

ning of the 1990s. These authors argued that the evidence for the superior forecasting perfor-

mance of nonlinear models is patchy. One factor that has probably retarded the widespread

reporting of nonlinear forecasts is that up to that time it was not possible to obtain closed-form

analytic expressions for multi-step-ahead forecasts.

The monograph by Granger & Teräsvirta (1993) has boosted new developments in estimating,

evaluating, and selecting among nonlinear forecasting models for economic and financial time

series. A good overview of the current state-of-the-art is IJF Special Issue 20:2 (2004). In their

introductory paper Clements et al. (2004) outlined a variety of topics for future research. They

concluded that “. . . the day is still long off when simple, reliable and easy to use non-linear

model specification, estimation and forecasting procedures will be readily available”.

6.2 Regime switching models

The class of (self-exciting) threshold AR (SETAR) models was introduced by Tong (1978). These

models, which are piecewise linear models in their most basic form, have attracted some atten-

tion in the IJF. Clements & Smith (1997) compared a number of methods for obtaining multi-

step-ahead forecasts for univariate discrete-time SETAR models. They concluded that forecasts

made using Monte Carlo simulation are satisfactory in cases were it is known that the dis-

turbances in the SETAR model come from a symmetric distribution. Otherwise the Bootstrap

method is to be preferred. Similar results were reported by De Gooijer & Vidiella-i-Anguera

(2004) for threshold VAR models. Brockwell & Hyndman (1992) obtained one-step-ahead fore-
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casts for univariate continuous-time threshold AR models (CTAR). Since the calculation of

multi-step-ahead forecasts from CTAR models involves complicated higher dimensional in-

tegration, the practical use of CTARs is limited. The out-of-sample forecast performance of

various variants of SETAR models relative to linear models has been the subject of several IJF

papers, including Astatkie et al. (1997), Boero & Marrocu (2004) and Enders & Falk (1998).

One drawback of the SETAR model is that the dynamics change discontinuously from one

regime to the other. In constrast, a smooth transition AR (STAR) model allows for a more

gradual transition between the different regimes. Sarantis (2001) found evidence that STAR-

type models can improve upon linear AR and random walk models in forecasting stock prices

at both short term and medium term horizons. Interestingly, the recent study by Bradley &

Jansen (2004) seems to refute Sarantis’ conclusion.

Franses et al. (2004) proposed a threshold AR(1) model that allows for plausible inference about

the specific values of the parameters. The key idea is that the values of the AR parameter

depend on a leading indicator variable. The resulting model outperforms other time-varying

nonlinear models, including the Markow regime-switching model, in terms of forecasting.

6.3 Neural nets

The artificial neural network (ANN) can be useful for nonlinear processes that have an un-

known functional relationship and as a result are difficult to fit (Darbellay & Slama, 2000). The

main idea with ANNs is that inputs, or dependent variables, get filtered through one or more

hidden layers each of which consist of hidden units, or nodes, before they reach the output

variable. Next the intermediate output is related to the final output. Various other nonlinear

models are specific versions of ANNs, where more structure is imposed.

One major application area of ANNs is forecasting; see Zhang et al. (1998) for a good survey

of the literature. Numerous studies outside the IJF have documented the successes of ANNs

in forecasting financial data. However, in two editorials in this Journal, Chatfield (1993, 1995)

questioned whether ANNs had been oversold as a miracle forecasting technique. This was

followed by several papers documenting that naı̈ve financial models such as the random walk

out-perform ANNs (see, e.g., Church & Curram, 1996; Callen et al., 1996; Gorr et al., 1994;

Tkacz, 2001).

Gorr (1994) and Hill et al. (1994) suggested that future research should investigate and bet-

ter define the borderline between where ANNs and “traditional” techniques out-perform one

other. That theme is explored by several authors. Hill et al. (1994) noticed that ANNs are likely

to work best for high frequency financial data and Balkin & Ord (2000) also stressed the im-

portance of a long time series to ensure optimal results from training ANNs. Qi (2001) pointed

out that ANNs are more likely to out-perform other methods when the input data is kept as

current as possible, using recursive modelling (see also Olson & Mossman, 2003).

A general problem with nonlinear models is the “curse of model complexity and model over-

parametrization”. If parsimony is considered to be really important, then it interesting to com-
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pare the out-of-sample forecasting performance of linear versus nonlinear models, using a wide

variety of different model selection criteria. This issue was considered in quite some depth by

Swanson & White (1997). Their results suggested that a single hidden layer ‘feedforward’ ANN

model, which has been by far the most popular in time series econometrics, offers a useful and

flexible alternative to fixed specification linear models, particularly at forecast horizons greater

than one-step-ahead. However, in contrast to Swanson & White, Heravi et al. (2004) found that

linear models produce more accurate forecasts of monthly seasonally unadjusted European in-

dustrial production series than ANN models. Ghiassa et al. (2005) presented a dynamic ANN

and compared its forecasting performance against the traditional ANN and ARIMA models.

6.4 Deterministic versus stochastic dynamics

The possibility that nonlinearities in high-frequency financial data (e.g., hourly returns) are pro-

duced by a low-dimensional deterministic chaotic process has been the subject of a few studies

published in the IJF. Cecen & Erkal (1996) showed that it is not possible to exploit determinis-

tic nonlinear dependence in daily spot rates in order to improve short-term forecasting. Lisi &

Medio (1997) reconstructed the state space for a number of monthly exchange rates and, using

a local linear method, approximated the dynamics of the system on that space. One-step-ahead

out-of-sample forecasting showed that their method outperforms a random walk model. A

similar study was performed by Cao & Soofi (1999).

6.5 Miscellaneous

A host of other, often less well known, nonlinear models have been used for forecasting pur-

poses. For instance, Ludlow & Enders (2000) adopted Fourier coefficients to approximate the

various types of nonlinearities present in time series data. Herwartz (2001) extended the lin-

ear vector ECM to allow for asymmetries. Dahl & Hylleberg (2004) compared Hamilton’s

(2001) flexible nonlinear regression model, ANNs, and two versions of the projection pursuit

regression model. Time-varying AR models are included in a comparative study by Marcellino

(2004). The nonparametric, nearest-neighbour method was applied by Fernández-Rodrı́guez

et al. (1999).

7 Long memory

When the integration parameter d in an ARIMA process is fractional and greater than zero, the

process exhibits long memory in the sense that observations a long time-span apart have non-

negligible dependence. Stationary long-memory models (0 < d < 0.5), also termed fractionally

differenced ARMA (FARMA) or fractionally integrated ARMA (ARFIMA) models, have been

considered by workers in many fields; see Granger & Joyeux (1980) for an introduction. One

motivation for these studies is that many empirical time series have a sample autocorrelation

function which declines at a slower rate than for an ARIMA model with finite orders and inte-

ger d.
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The forecasting potential of fitted FARMA/ARFIMA models, as opposed to forecast results

obtained from other time series models, has been a topic of various IJF papers and a special is-

sue (2002, 18:2). Ray (1993) undertook such a comparison between seasonal FARMA/ARFIMA

models and standard (non-fractional) seasonal ARIMA models. The results show that higher

order AR models are capable of forecasting the longer term well when compared with ARFIMA

models. Following Ray (1993), Smith & Yadav (1994) investigated the cost of assuming a unit

difference when a series is only fractionally integrated with d 6= 1. Over-differencing a series

will produce a loss in forecasting performance one-step-ahead, with only a limited loss there-

after. By contrast, under-differencing a series is more costly with larger potential losses from

fitting a mis-specified AR model at all forecast horizons. This issue is further explored by An-

dersson (2000) who showed that misspecification strongly affects the estimated memory of the

ARFIMA model, using a rule which is similar to the test of Öller (1985). Man (2003) argued

that a suitably adapted ARMA(2,2) model can produce short-term forecasts that are competi-

tive with estimated ARFIMA models. Multi-step ahead forecasts of long memory models have

been developed by Hurvich (2002), and compared by Bhansali & Koskoska (2002).

Many extensions of ARIFMA models and a comparison of their relative forecasting perfor-

mance have been explored. For instance, Franses & Ooms (1997) proposed the so-called peri-

odic ARFIMA(0, d, 0) model where d can vary with the seasonality parameter. Ravishankar &

Ray (2002) considered the estimation and forecasting of multivariate ARFIMA models. Baillie

& Chung (2002) discussed the use of linear trend-stationary ARFIMA models, while the paper

by Beran et al. (2002) extended this model to allow for nonlinear trends. Souza & Smith (2002)

investigated the effect of different sampling rates, such as monthly versus quarterly data, on

estimates of the long-memory parameter d. In a similar vein, Souza & Smith (2004) looked at

the effects of temporal aggregation on estimates and forecasts of ARFIMA processes.

8 ARCH/GARCH models

A key feature of financial time series is that large (small) absolute returns tend to be followed

by large (small) absolute returns, that is, there are periods which display high (low) volatility.

The class of generalized autoregressive conditionally heteroscedastic (GARCH) models intro-

duced by Engle (1982) are considered extremely useful for modelling and forecasting move-

ments in asset return volatilities over time; see Bollerslev et al. (1992) for a comprehensive

review. Sabbatini & Linton (1998) showed that the simple (linear) GARCH(1,1) model is a good

parametrization for the daily returns on the Swiss market index. However, the quality of the

out-of-sample forecasts suggests that this result should be taken with caution. Franses & Ghi-

jsels (1999) stressed that this feature can be due to neglected additive outliers (AO). They noted

that GARCH models for AO-corrected returns results in improved forecasts of stock market

volatility. At the estimation level, Brooks et al. (2001) argued that standard econometric soft-

ware packages can produce widely varying results. Clearly, this may have some impact on the

forecasting accuracy of GARCH models.

Using two daily exchange rates series, Galbraith & Kisinbay (2005) compared the forecast
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content functions both from the standard GARCH model and from a fractionally integrated

GARCH model, at horizons of up to 30 trading days.

Empirically, returns and conditional variance of next period’s returns are negatively correlated.

That is, negative (positive) returns are generally associated with upward (downward) revisions

of the conditional volatility. This phenomenon is often referred to as asymmetric volatility in

the literature; see, e.g., Engle and Ng (1993). Various nonlinear GARCH have been developed

by researchers to capture asymmetric volatility; see, e.g. Hentschel (1995) and Pagan (1996) for

overviews. Awartani & Corradi (2005) investigated the impact of asymmetries on the out of

sample forecast ability of different GARCH models, at various horizons.

9 Count data forecasting

Count data occur frequently in business and industry, especially in inventory data where they

are often called “intermittent demand data”. Consequently, it is surprising that so little work

has been done on forecasting count data. Some work has been done on ad hoc methods for

forecasting count data, but few papers have appeared on forecasting count time series using

stochastic models.

Most work on count forecasting is based on Croston (1972) who proposed using SES to in-

dependently forecast the nonzero values of a series and the time between non-zero values.

Willemain et al. (1994) compared Croston’s method to SES and found that Croston’s method

was more robust, although these results were based on MAPEs which are often undefined for

count data. The conditions under which Croston’s method does better than SES are discussed

in Johnston & Boylan (1996). Willemain et al. (2004) proposed a bootstrap procedure for in-

termittent demand data which was more accurate than either SES or Croston’s method on the

nine series evaluated.

Evaluating count forecasts raises difficulties due to the presence of zeros in the observed data.

Syntetos & Boylan (2005) proposed using the Relative Mean Absolute Error (see Section 10),

while Willemain et al. (2004) recommended using the probability-integral transform method of

Diebold et al. (1998).

Grunwald et al. (2000) surveyed many of the stochastic models for count time series, using

simple first-order autoregression as a unifying framework for the various approaches. One

possible model, explored by Brännäs (1995), assumes the series follows a Poisson distribu-

tion with a mean that depends on an unobserved and autocorrelated process. An alternative

integer-valued MA model was used by Brännäs et al. (2002) to forecast occupancy levels in

Swedish hotels.

The forecast distribution can be obtained by simulation using any of these stochastic mod-

els, but how to summarize the distribution is not obvious. Freeland & McCabe (2004) pro-

posed using the median of the forecast distribution, and gave a method for computing confi-

dence intervals for the entire forecast distribution in the case of integer-valued autoregressive
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(INAR) models of order 1. McCabe & Martin (2005) further extended these ideas by presenting

a Bayesian methodology for forecasting from the INAR class of models.

10 Forecast evaluation and accuracy measures

A bewildering array of accuracy measures have been used to evaluate the performance of fore-

casting methods. Some of them are listed in the early survey paper of Mahmoud (1984). We

first define the most common measures.

Let Yt denote the observation at time t and Ft denote the forecast of Yt. Then define the forecast

error et = Yt − Ft and the percentage error as pt = 100et/Yt. An alternative way of scaling

is to divide each error by the error obtained with another standard method of forecasting. Let

rt = et/e∗t denote the relative error where e∗t is the forecast error obtained from the base method.

Usually, the base method is the “naı̈ve method” where Ft is equal to the last observation. We

use the notation mean(xt) to denote the sample mean of {xt} over the period of interest (or over

the series of interest). Analogously, we use median(xt) for the sample median and gmean(xt)

for the geometric mean. The mostly commonly used methods are defined in Table 2 below.

Here, MAEb (MSEb) refers to the MAE (MSE) obtained from the base method.

Note that Armstrong & Collopy (1992) referred to RelMAE as CumRAE, and that RelRMSE is

also known as Thiel’s U statistic (Theil, 1966, Chapter 2) and is sometimes called U2. In addition

to these, the average ranking (AR) of a method relative to all other methods considered, has

sometimes been used.

MSE Mean Square Error = mean(e2

t )

RMSE Root Mean Square Error =
√

MSE
MAE Mean Absolute Error = mean(|et|)
MdAE Median Absolute Error = median(|et|)
MAPE Mean Absolute Percentage Error = mean(|pt|)
MdAPE Median Absolute Percentage Error = median(|pt|)
sMAPE Symmetric Mean Absolute Percentage Error = mean(2|Yt − Ft|/(Yt + Ft))
sMdAPE Symmetric Median Absolute Percentage Error = median(2|Yt − Ft|/(Yt + Ft))
MRAE Mean Relative Absolute Error = mean(|rt|)
MdRAE Median Relative Absolute Error = median(|rt|)
GMRAE Geometric Mean Relative Absolute Error = gmean(|rt|)
RelMAE Relative Mean Absolute Error = MAE/MAEb .
RelRMSE Relative Root Mean Squared Error = RMSE/RMSEb .
LMR Log Mean Squared Error Ratio = log(RelMSE)
PB Percentage Better = 100 mean(I{rt < 1})
PB(MAE) Percentage Better (MAE) = 100 mean(I{MAE < MAEb})
PB(MSE) Percentage Better (MSE) = 100 mean(I{MSE < MSEb})

Table 2: Commonly used forecast accuracy measures.
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The evolution of measures of forecast accuracy and evaluation can be seen through the mea-

sures used to evaluate methods in the major comparative studies that have been undertaken. In

the original M-competition (Makridakis et al., 1982), measures used included the MAPE, MSE,

AR, MdAPE and PB. However, as Chatfield (1988) and Armstrong & Collopy (1992) pointed

out, the MSE is not appropriate for comparison between series as it is scale dependent. Fildes

& Makridakis (1988) contained further discussion on this point. The MAPE also has problems

when the series has values close to (or equal to) zero, as noted by Makridakis et al. (1998, p. 45).

Excessively large (or infinite) MAPEs were avoided in the M-competitions by only including

data that were positive. However, this is an artificial solution that is impossible to apply in

practical situations.

In 1992, one issue of IJF carried two articles and several commentaries on forecast evaluation

measures. Armstrong & Collopy (1992) recommended the use of relative absolute errors, espe-

cially the GMRAE and MdRAE, despite the fact that relative errors have infinite variance and

undefined mean. They recommended “winsorizing” to trim extreme values which will par-

tially overcome these problems, but which adds some complexity to the calculation and a level

of arbitrariness as the amount of trimming must be specified. Fildes (1992) also preferred the

GMRAE although he expressed it in an equivalent (but unnecessarily confusing) form as the

square root of the geometric mean of squared relative errors. This equivalence does not seem

to have been noticed by any of the discussants in the commentaries of Ahlburg et al. (1992).

The study of Fildes et al. (1998), which looked at forecasting telecommunications data, used

MAPE, MdAPE, PB, AR, GMRAE and MdRAE, taking into account some of the criticism of the

methods used for the M-competition.

The M3-competition (Makridakis & Hibon, 2000) used three different measures of accuracy:

MdRAE, sMAPE and sMdAPE. The “symmetric” measures were proposed by Makridakis

(1993) in response to the observation that the MAPE and MdAPE have the disadvantage that

they put a heavier penalty on positive errors than on negative errors. However, these mea-

sures are not as “symmetric” as their name suggests. For the same value of Yt, the value of

2|Yt − Ft|/(Yt + Ft) has a heavier penalty when forecasts are high compared to when forecasts

are low. See Goodwin & Lawton (1999) and Koehler (2001) for further discussion on this point.

Notably, none of the major comparative studies have used relative measures (as distinct from

measures using relative errors) such as RelMAE or LMR. The latter was proposed by Thomp-

son (1990) who argued for its use based on its good statistical properties. It was applied to the

M-competition data in Thompson (1991).

Apart from Thompson (1990), there has been very little theoretical work on the statistical prop-

erties of these measures. One exception is Wun & Pearn (1991) who looked at the statistical

properties of MAE.

A novel alternative measure of accuracy is “time distance” which was considered by Granger

& Jeon (2003a,b). In this measure, the leading and lagging properties of a forecast are also

captured. Again, this measure has not been used in any major comparative study.
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A parallel line of research has looked at statistical tests to compare forecasting methods. An

early contribution was Flores (1989). The best known approach to testing differences between

the accuracy of forecast methods is the Diebold-Mariano (1995) test. A size-corrected modifi-

cation of this test was proposed by Harvey et al. (1997). McCracken (2004) looked at the effect

of parameter estimation on such tests and provided a new method for adjusting for parameter

estimation error.

Another problem in forecast evaluation, and more serious than parameter estimation error, is

“data sharing”—the use of the same data for many different forecasting methods. Sullivan

et al. (2003) proposed a bootstrap procedure designed to overcome the resulting distortion of

statistical inference.

11 Combining

Combining, mixing, or pooling quantitative4 forecasts obtained from very different time se-

ries methods and different sources of information has been studied for the past three decades.

Important early contributions in this area were made by Bates & Granger (1969), Newbold &

Granger (1974) and Winkler & Makridakis (1983). Compelling evidence on the relative effi-

ciency of combined forecasts, usually defined in terms of forecast error variances, was summa-

rized by Clemen (1989) in a comprehensive bibliography review.

Numerous methods for selecting the combining weights have been proposed. The simple av-

erage is the most-widely used combining method (see Clemen’s review, and Bunn, 1985), but

the method does not utilize past information regarding the precision of the forecasts or the

dependence among the forecasts. Another simple method is a linear mixture of the individ-

ual forecasts with combining weights determined by OLS (assuming unbiasedness) from the

matrix of past forecasts and the vector of past observations (Granger & Ramanathan, 1984).

However, the OLS estimates of the weights are inefficient due to the possible presence of serial

correlation in the combined forecast errors. Aksu & Gunter (1992) and Gunter (1992) investi-

gated this problem in some detail. They recommended the use of OLS combination forecasts

with the weights restricted to sum to unity.

Rather than using fixed weights, Deutsch et al. (1994) allowed them to change through time us-

ing switching regime models and STAR models. Another time-dependent weighting scheme

was proposed by Fiordaliso (1998), who used a fuzzy system to combine a set of individual

forecasts in a nonlinear way. Diebold & Pauly (1990) used Bayesian shrinkage techniques to

allow the incorporation of prior information into the estimation of combining weights. Com-

bining forecasts from very similar models, with weights sequentially updated, was considered

by Zou & Yang (2004).

Combining weights determined from time-invariant methods can lead to relatively poor fore-

casts if nonstationarity among component forecasts occurs. Miller et al. (1992) examined the

4See Kamstra & Kennedy (1998) for a computationally-convenient method of combining qualitative forecasts.

20



effect of ‘location-shift’ nonstationarity on a range of forecast combination methods. Tenta-

tively they concluded that the simple average beats more complex combination devices; see

also Hendry & Clements (2002) for more recent results. The related topic of combining fore-

casts from linear and some nonlinear time series models, with OLS weights as well as weights

determined by a time-varying method, was addressed by Terui & van Dijk (2002).

The shape of the combined forecast error distribution and the corresponding stochastic be-

haviour was studied by de Menezes & Bunn (1998) and Taylor & Bunn (1999). For non-normal

forecast error distributions skewness emerges as a relevant criterion for specifying the method

of combination. Some insights into why competing forecasts may be fruitfully combined to pro-

duce a forecast superior to individual forecasts were provided by Fang (2003), using forecast

encompassing tests. Hibon & Evgeniou (2005) proposed a criterion to select among forecasts

and their combinations.

12 Prediction intervals and densities

The use of prediction intervals, and more recently prediction densities, has become much more

common over the past twenty five years as practitioners have come to understand the limita-

tions of point forecasts. Unfortunately, there is still some confusion on terminology with many

authors using “confidence interval” instead of “prediction interval”. A confidence interval is

for a model parameter whereas a prediction interval is for a random variable. Almost always,

forecasters will want prediction intervals—intervals which contain the true values of future

observations with specified probability.

Most prediction intervals are based on an underlying stochastic model. Consequently, there

has been a large amount of work on formulating appropriate stochastic models underlying

some common forecasting procedures (see, e.g., Section 2 on Exponential Smoothing).

The link between prediction interval formulae and the model from which they are derived

has not always been correctly observed. For example, the prediction interval appropriate for

a random walk model was applied by Makridakis & Hibon (1987) and Lefrançois (1989) to

forecasts obtained from many other methods. This problem was noted by Koehler (1990) and

Chatfield & Koehler (1991).

With most model-based prediction intervals for time series, the uncertainty associated with

model selection and parameter estimation is not accounted for. Consequently, the intervals

are too narrow. There has been considerable research on how to make model-based prediction

intervals have more realistic coverage. A series of papers on using the bootstrap to compute

prediction intervals for an AR model has appeared beginning with Masarotto (1990), and in-

cluding Grigoletto (1998), Clements & Taylor (2001) and Kim (2004). Similar procedures for

other models have also been considered including ARIMA models (Pascual et al., 2001, 2005),

VAR (Kim, 1999), ARCH (Reeves, 2005) and regression (Lam & Veall, 2002).

When the forecast error distribution is non-normal, finding the entire forecast density is useful
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as a single interval may no longer provide an adequate summary of the expected future. A

review of density forecasting is provided by Tay & Wallis (2000), along with several other arti-

cles in the same special issue of the JoF. Summarizing, a density forecast has been the subject of

some interesting proposals including “fan charts” (Wallis, 1999) and “highest density regions”

(Hyndman, 1995).

As prediction intervals and forecast densities have become more commonly used, attention

has turned to their evaluation and testing. Wallis (2003) proposed chi-squared tests for both

intervals and densities, and Clements & Smith (2002) discussed some simple but powerful

tests when evaluating multivariate forecast densities.

13 A look to the future

In the preceding sections we looked back at the time series forecasting history of the IJF, in the

hope that the past may shed light on the present. But a silver anniversary is also a good time to

look ahead. However, before doing so, it is interesting to summarize the proposals for research

in time series forecasting identified in a set of related papers by Ord, Cogger and Chatfield

published in this Journal more than 15 years ago.

Ord (1988) noted that not much work has been done on multiple time series models, includ-

ing multivariate exponential smoothing. He also indicated the need for deeper research in

forecasting methods based on nonlinear models. While many aspects of both areas have been

investigated in the IJF, they merit continued research. For instance, there is still no clear consen-

sus that forecasts from nonlinear models substantively outperform those from linear models;

see, e.g., Stock & Watson (1999).

Given the frequent misuse of methods based on linear models with Gaussian i.i.d. distributed

errors, Cogger (1988) argued that new developments in the area of ‘robust’ statistical methods

should receive more attention within the time series forecasting community. A robust proce-

dure is expected to work well when there are outliers or location shifts in the data that are hard

to detect. Robust statistics can be based on both parametric and nonparametric methods. An

example of the latter is the Koenker-Bassett (1978) concept of regression quantiles investigated

by Cogger. In retrospect, it is fair to say that the IJF has not attracted many papers in this area.

The reason may be the high level of technicality of many robust methods. Nevertheless, outside

the IJF some progress has been made. For instance, Yao & Tong (1995) proposed the concept

of conditional percentile prediction interval. Its width is no longer a constant, as in the case of

linear models, but may vary with respect to the position in the state space from which forecasts

are being made; see also De Gooijer & Gannoun (2000) and Polonik & Yao (2000). Clearly, the

area of robustifying forecasts and forecast intervals requires further research; see item 14.13 on

Armstrong’s (2001) list of 23 principles that are in great need of research.

Chatfield (1988) stressed the need for future research on developing multivariate methods with

an emphasis on making them more of a practical proposition. The works on state space,

Kalman filtering, and discrete/continuous time structural models by Harvey (1989), West &
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Harrison (1989, 1997) and Durbin & Koopman (2001) have had an impact on the time series lit-

erature. However, as noted earlier, forecasting applications of the state space framework using

the Kalman filter has been rather limited in the IJF. In that sense, it is perhaps not too surprising

that even today, some textbook authors do not seem to realize that the Kalman filter can, for

example, track a nonstationary process stably.

In the 1990s some IJF authors tried to identify new important research topics. Both De Gooijer

(1990) and Clements (2003) in two Editorials, and Ord as a part of a discussion paper by Dawes

et al. (1994), suggested more work on combining forecasts. Although the topic received a fair

amount of attention (see Section 11) there are still several open questions. For instance, what

is the “best” combining method for linear and nonlinear models, and what prediction interval

can be put around the combined forecast? See also Armstrong (2001, items 12.5–12.7). Other

topics suggested by Ord include the need to develop model selection procedures that make

effective use of both data and prior knowledge, and the need to specify objectives for forecasts

and develop forecasting systems that address those objectives.

There are many distinct directions in which the field of time series forecasting could proceed,

some of which have already been noted above. If we look at the areas underrepresented in the

IJF the following potential research themes emerge:

• Conditional quantiles. Relatively little attention has been paid to the use of univariate

and multivariate conditional quantiles as a tool for accurate forecasts in economics. One

important area of application is in estimating risk management tools such as Value-at-

Risk. Recently, Engle & Manganelli (2004) made a start in this direction, proposing a

conditional value at risk model.

• Panel data models/longitudinal data analysis. In many panels analyzed in the past the

time series dimension t has been small whilst the cross-section dimension n is large. How-

ever, nowadays in many applied areas such as marketing large datasets can be easily col-

lected with n and t both large. Extracting features from megapanels of longitudinal data

is well-known under the name “functional data analysis”; see, e.g., Ramsay & Silverman

(1997, 2005). Yet, the problem of making multi-step ahead forecasts based on functional

data is still open for both theoretical and applied research.

• Count forecasting. Forecasting time series of counts is an area still in its infancy, despite

the prevalence of these data in business and industry. There are many unresolved the-

oretical and practical problems associated with count forecasting, and we expect much

productive research in this area over the next few years.

• Computationally intensive methods for large data sets. While neural networks have been

used in forecasting for more than a decade now, there are many outstanding issues asso-

ciated with their use and implementation, including when they are likely to out-perform

other methods. Other methods involving heavy computation (e.g., bagging and boost-

ing) are even less understood in the forecasting context. With the availability of very

large data sets and high powered computers, we expect this to be an important area of

research in the coming years.
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