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1 Introduction

Modelling and forecasting the term structure of interest rates is by no means an easy

endeavor. As long yields are risk-adjusted averages of expected future short rates, yields

of different maturities are intimately related and will therefore tend to move together,

in the cross-section as well as over time. Long and short maturities are known to react

quite differently, however, to shocks hitting the economy. Furthermore, monetary policy

authorities such as the US Federal Reserve are actively targeting the short end of the

term structure to help promote their national economic goals. Many forces are at work

at moving interest rates and identifying these forces and understanding their impact is of

crucial importance.

During the last decades significant progress has been made in modelling the term

structure, which has come about mainly through the development of no-arbitrage factor

models. The literature on these so-called affine models was kick-started by seminal papers

of Vasicek (1977) and Cox et al. (1985), characterized by Duffie and Kan (1996) and

classified by Dai and Singleton (2000)1. Affine models identify a small number of latent

factors that can be extracted from the panel of yields for different maturities and impose

cross-equation restrictions that rule out arbitrage opportunities. Affine models, provided

they are properly specified, have been shown to accurately fit the term structure, see

for example Dai and Singleton (2000). The models are silent, however, about the links

between the latent factors and macroeconomic forces.

The current term structure literature is actively progressing to resolve this missing

link. A number of recent studies has yielded interesting approaches for studying the joint

behavior of interest rates and macroeconomic variables. One approach that has been un-

dertaken is to extend existing term structure models by adding in macroeconomic factors

and to study the interactions between latent and observed factors. A key contribution

to this strand of the literature is Ang and Piazzesi (2003) who were the first to extend

a standard three-factor affine model with macroeconomic variables. Studies such as Bik-

bov and Chernov (2005), Kim and Wright (2005), Ang et al. (2006a), Dai and Philippon

(2006) and DeWachter and Lyrio (2006) also include various macroeconomic variables and

study their explanatory power for yield movements. Studies that take a more structural

approach are, amongst others, Rudebusch and Wu (2003), Wu (2005) and Hordahl et al.

(2006) who all combine a model for the macroeconomy with an arbitrage-free specification

for the term structure. Moving away from the realm of no-arbitrage interest rate models

to that of more ad-hoc models, in particular the Nelson and Siegel (1987) model, studies

such as Diebold et al. (2006) and Mönch (2006b) have also shown that adding information

1An excellent survey of issues involving the specification and estimation of affine models set in con-
tinuous time is Piazzesi (2003), whereas discrete models are discussed in Backus et al. (1998).
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that reflects the state of the economy is beneficial2.

Whereas modelling interest rates movements over time is already a strenuous task, ac-

curately forecasting future rates is an equally difficult challenge. Yields of all maturities

are close to being non-stationary, which makes it hard for any model to predict yields

better than the simple random walk-based no-change forecast. Several studies have doc-

umented that beating the random walk forecast is indeed difficult, in particular for unre-

stricted yields-only based VAR and standard affine models, see Duffee (2002) and Ang and

Piazzesi (2003). However, all does not seem lost as recently evidence for the predictabil-

ity of yields has been reported. Whereas Duffee (2002) shows that more flexible affine

specifications3 can beat the random walk, Krippner (2005) and Diebold and Li (2006)

show that a dynamic Nelson-Siegel factor model forecasts particularly well. Results are

even more promising with models that incorporate macroeconomic information. Ang and

Piazzesi (2003) and Mönch (2006a) report improved forecasts for U.S. zero-coupon yields

at various horizons using affine models augmented with principal component-extracted

macrofactors. Hordahl et al. (2006) report similar results for German zero-coupon yields.

In spite of the powerful advances in term structure modelling and forecasting, the latter

being the main topic studied here, we feel that a number of issues regarding estimation

and forecasting have sofar been left nearly unaddressed. This paper tries to fill in some

of these gaps by investigating the relevance of parameter uncertainty and, in particular,

model uncertainty. Especially for VAR and affine models, which are highly parameterized

if we attempt to model the whole of the term structure, parameter uncertainty is likely to

be substantial and needs to be accounted for. Regarding model uncertainty, when looking

at the historical time series of (U.S.) interest rates we can easily identify subperiods

across which yield dynamics are quite different. Likely reasons are for example the reigns

of different Fed Chairmen, most notably that of Paul Volcker, or the strong decline in

interest rate levels accompanied by a pronounced widening of spreads in the early 90’s

and after the burst of the Internet bubble. It will be unlikely that any individual model

is capable of consistently producing accurate forecasts in each of these subperiods. As we

demonstrate below, the forecasting performance of the models we consider in this study

does indeed vary substantially across subperiods. In these situations, combining forecasts

yields diversification gains and can therefore be an attractive alternative to relying on

forecasts from a single model. Moreover, even if it would be possible to identify the

2Macrovariables mainly seem to help in capturing the dynamics of short rates. Modelling long-term
bonds remains, however. Dai and Philippon (2006) show that fiscal policy can account for some of
the unexplained long rate dynamics whereas DeWachter and Lyrio (2006) show that long-run inflation
expectations are important for modelling long-term bond yields.

3Duffee (2002) denotes his preferred class of models “essentially affine” by allowing risk premia to
depend on the entire state vector instead of being a multiple of volatility which is the assumption in
standard affine models. Ang and Piazzesi (2003) remark that the essentially affine risk premia are not
linear in the state vector and that using linear risk premia results in better forecasts.
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best individual model, creating forecast combinations can be useful to scale down the

magnitude of forecast errors.

In addition to these two focal points, we also further examine the use of macroeconomic

diffusion indices in term structure models. Mönch (2006a,b) documents that using factors,

which have been extracted from a large panel of macroseries instead of individual series

works well, in both affine models and the Nelson-Siegel model. We complete the picture by

also examining the use of diffusion indices in simpler AR and VAR models. Summarizing,

the aim of this paper is threefold and consists of examining (i) parameter uncertainty, (ii)

model uncertainty and (iii) the use of macro diffusion indices.

We analyze these objectives in the following manner. Using a relatively long time-

series of U.S. zero-coupon bond yields, we examine the forecasting performance of a range

of models that have been proposed in the literature to predict the term structure. We

estimate each model and generate forecasts by applying frequentist maximum likelihood

techniques as well as Bayesian techniques to gauge the effects of explicitly taking into ac-

count parameter uncertainty. Furthermore, we analyze each model both with and without

macrofactors to assess the benefits of adding macroeconomic information. Finally, after

showing the instability of the forecasting performance of the different models through

subsample analysis, we consider several forecast combination approaches.

Our results can be summarized as follows. Using an out-of-sample period of 1994-2003

we show that the predictive ability of individual models varies considerably over time with

a prime example being the Nelson and Siegel (1987) model which predicts interest rates

accurately in the 90s but rather poorly in the early 2000s. We find that models which

incorporate macroeconomic variables seem more accurate in subperiods during which the

uncertainty about the future path of interest rates is substantial. This is especially the

case for the early 2000s with the pronounced drop in interest rates and the widening

of spreads. Models without macro information do particularly well in subperiods where

the term structure has a more stable pattern such as in the early 90s with such models

outperforming the random walk RMSPE by sometimes well over 30%.

That different models forecast well in different subperiods confirms ex-post that dif-

ferent model specifications play a complementary role in approximating the data gener-

ating process, which provides a strong claim for using forecast combination techniques

as opposed to believing in a single model. Our forecast combination results confirm this

conjecture. We show that combined forecasts, in particular when using Bayesian model

averaging techniques, consistently outperform the random walk benchmark across indi-

vidual models, maturities and subperiods.

The remainder of the paper is organized as follows. In Section 2 we discuss the set of

U.S Treasury yields that we model and forecast, and we provide details about the panel

of macro series that we employ to construct our macrofactors. We devote Section 3 to
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present the different models we use to produce forecasts. In Section 4 we discuss results

of the individual models across maturities and forecast horizons whereas in Section 5

we outline and discuss results of several forecasting combination approaches. Finally, in

Section 6 we conclude.

2 Data

2.1 Yield Data

The term structure data we use in this study consists of end-of-month continuously com-

pounded yields on U.S zero-coupon bonds. These have been constructed from average

bid-ask price quotes on U.S. Treasuries from the CRSP government bond files. CRSP

filters the available quotes by taking out illiquid bonds and bonds with option features.

The remaining quotes are used to construct forward rates using the Fama and Bliss (1987)

bootstrap method as outlined in Bliss (1997). The forward rates are averaged to construct

constant maturity spot rates4. Similar to Diebold and Li (2006) and Mönch (2006a), our

dataset consists of unsmoothed Fama-Bliss yields. These unsmoothed yields exactly price

the included US Treasury securities. Smoothed yields on the other hand, which can be

obtained by fitting a Nelson-Siegel curve on the unsmoothed yields (see Bliss, 1997 for

details), do not have this property, and, moreover, using these may give the Nelson-Siegel

model an unfair advantage over the other models in terms of fitting and forecasting the

term structure.

Throughout our analysis we use N = 13 maturities: 1, 3 and 6 months and 1, 2,...,

10 years. To estimate the Nelson-Siegel models we follow Diebold and Li (2006) and

Diebold et al. (2006) by including additional maturities of 9, 15, 18, 21 and 30 months

to increase the number of observations at the short end of the curve. Our sample period

covers January 1970 till December 2003 for a total of 408 monthly observations. Similar

to Duffee (2002) and Ang and Piazzesi (2003) we include data from well before the Volcker

period, despite the reservations expressed in Rudebusch and Wu (2003) that the pricing

of interest rate risk and the relationship between yields and macroeconomic variables are

likely to have changed during such a long time span. We do so for two main reasons: (i) to

have enough observations to sufficiently accurately identify the parameters of the models

we consider some of which are highly parameterized, and (ii) to assess the forecasting

performance of each model over (sub-)periods with strikingly different characteristics.

Figure 1 shows time-series plots for a subsample of the included yields whereas Table

1 reports summary statistics. The stylized facts common to yield curve data are clearly

4We kindly thank Robert Bliss for providing us with the unsmoothed Fama-Bliss forward rates and
the programs to construct the spot rates.
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present: the sample average curve is upward sloping and concave, volatility is decreasing

with maturity, autocorrelations are very high and increasing with maturity and the null

of normality for the full sample is rejected due to positive skewness and excess kurtosis.

Correlations between yields of different maturities are high, especially for yields with

maturities that are close to each other. The lowest correlation of 86% is that between the

1-month and 10-year maturities.

2.2 Macroeconomic Data

Our macro dataset originates from Stock and Watson (2005) and consists of 116 series5.

The macrovariables are classified in the following 15 categories: (1) output and income, (2)

employment and hours, (3) retail, (4) manufacturing and trade sales, (5) consumption, (6)

housing starts and sales, (7) inventories, (8) orders, (9) stock prices, (10) exchange rates,

(11) federal funds rate, (12) money and credit quantity aggregates, (13) price indexes,

(14) average hourly earnings and (15) miscellaneous. Table 2 lists the series included in

the macro dataset and their designated category.

We transform the monthly recorded macroseries, whenever appropriate, to ensure

stationarity by using log levels, annual differences or annual log differences. Column 2

of Table 2 lists the applied transformation. We follow Ang and Piazzesi (2003), Mönch

(2006a) and Diebold et al. (2006) in our use of annual growth rates. Monthly growth

rates series turn out to be very noisy and are therefore expected to add little information

when included in the various term structure models. Outliers in each individual series

are replaced by the median value of the previous five observations, see Stock and Watson

(2005) for details.

We need to be careful about the timing of the macroseries relative to the interest

rate series to prevent the use of information that has not been released yet at the time

when a forecast is being made. The interest rates we use are recorded at the end of the

month. Although macro figures tend to be released at the beginning or in the middle of

the month, they are usually released with a lag of one to sometimes several months. We

accommodate for a potential look-ahead bias6 by lagging all macroseries by one month,

except for S&P variables, exchange rates and the federal funds rate which are all monthly

averages.

We extract a (small) number of factors from our dataset, similar to Mönch (2006a)

5We exclude all interest and spread related series (16 series in total), except for the federal funds rate,
from the original 132 series in the panel dataset. The federal funds rate closely follows the federal fund
target rate, which is the key monetary policy instrument for the US Federal Reserve, and should therefore
be important for capturing the movements of especially the short end of the term structure.

6Note that Ang and Piazzesi (2003) and Mönch (2006a) use contemporaneous macro information to
construct their term structure forecasts which may lead to the added value of including macro economic
series being misperceived as too beneficial.
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who, based on the work of Bernanke et al. (2005) builds a no-arbitrage Factor-Augmented

VAR by four common factors from a large panel of macroeconomic variables. To this end

we apply static principal component analysis, see Stock and Watson (2002a,b), to the full

panel of macroseries, standardized to have zero mean, a variance of one and an Euclidean

length of one. The use of common factors instead of individual macroseries allows us to

incorporate information beyond that contained in commonly used variables such as CPI,

PPI, employment, output gap or manufacturing capacity utilization, while at the same

time ensuring that the number of model parameters remains manageable.

For the full sample period, the first common factor explains 35% of the variation in the

macro panel. The second and third factors explain an additional 19% and 8%, whereas

the first 10 factors together explain an impressive 85%. Figure 2 shows the R2 when

regressing each individual macroseries on each of three separate factors, which allows us

to attach economic labels to the first three factors. The first factor closely resembles

the series in the real output and employment categories (categories 1 and 2) and can

therefore be labelled business cycle or real activity factor. The second factor loads mostly

on inflation measures (category 13) which allows for the designation inflation factor. The

third factor, although the correlations are much lower than for factors one and two, is

mostly related to money stock and reserves (category 12) and could thus be labelled a

monetary aggregates or money stock factor. Figure 3 corroborates these interpretations

graphically through timeseries plots of the three macro factors with Industrial Production

(total), Consumer Price Index (all items) and Money Stock (M1) respectively.

Since the first three factors explain over 60% of the variation in the macro panel, we

have chosen to include these three factors as additional explanatory variables in the term

structure models. In Section 3 we explain in detail how we model the macroeconomic

factors.

3 Models

We assess the individual and combined forecasting performance of a range of models

that are commonly used in the literature and in practice to forecast yields. Since previous

studies have shown that more parsimonious models often outperform sophisticated models

we consider models with different levels of complexity in our analysis. Our models range

from unrestricted linear specifications for yield levels (AR and VAR models), models that

impose a specific structure on factor loadings (the Nelson-Siegel class of models) to models

that impose cross-sectional restrictions to rule out arbitrage opportunities (affine models).

In this section we specify and discuss the different models. We defer all specific details

regarding the frequentist and Bayesian techniques that we employ for drawing inference

on model parameters and for generating (multi-step ahead) forecasts to the appendix.
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3.1 Adding macrofactors

The approach we use to incorporate the first three macrofactors is the following. Denote

Mt as the 3 × 1 vector containing the values of the macrofactors a time t, which have

been extracted from the full panel of macroseries. We then add the factors to each of the

term structure models contemporaneously7 as well as lagged by one month to capture any

delayed effects of macroeconomic news on the term structure. The exogenous explanatory

macro information that is added to the models, denoted by Xt, is therefore given by

Xt = (M ′
t M

′
t−1)

′ which is a 6 × 1 vector.

Our approach implies that when we forecast yields, we also need to model and forecast

the macrofactors. We tackle this issue by following Ang and Piazzesi (2003) in only

allowing for a unidirectional link from macrovariables to yields. Although this can be

argued to be a restrictive assumption as it does not allow for a potentially rich bidirectional

feedback8, it enables us to model the time-series behavior of the macrofactors separately,

which considerably facilitates estimation. In particular, information criteria suggest to

model and forecast Mt separately using a VAR(3) model:

Mt = c+ Φ1Mt−1 + Φ2Mt−2 + Φ3Mt−3 +Hξt, εt ∼ N (0, I) (1)

where c is a 3×1 vector, Φi for i = 1, ..., 3 is a 3×3 matrix and H a 3×3 lower triangular

Cholesky matrix. We estimate the VAR using both frequentist and Bayesian techniques

as we also use both types of inference for the term structure models.

3.2 Models

Random walk

The first model that we consider is a random walk for maturity τi, i = 1, . . . , N ,

y
(τi)
t = y

(τi)
t−1 + σ(τi)ε

(τi)
t , ε

(τi)
t ∼ N (0, 1) (2)

In this model any h-step ahead forecast ŷ
(τi)
T+h is equal to the most recently observed value

y
(τi)
T . It is natural to qualify this no-change model as the benchmark against which to judge

the predictive power of all other models. Duffee (2002), Ang and Piazzesi (2003), Mönch

7Contemporaneous in the sense of same-month values for stock prices, exchange rates and the federal
funds but one-month lagged values for the remaining macro series.

8In a forecasting exercise using German zero-coupon yields, Hordahl et al. (2006) show that term-
structure information helps little in forecasting macro-economic variables (more specifically (i) inflation
and (ii) the output gap) which is a justification for forecasting macro-variables outside the term structure
models. The authors note, however, that this might be due to the fact that their proposed macroeconomic
model has an imperfect ability to describe the joint dynamics of German macro economic variables.
Diebold et al. (2006) and Ang et al. (2006a) allow for bi-directional effects between macro and latent
yield factors but both studies find that the causality from macro to yields is much higher than from yields
to macro.
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(2006a) and Diebold and Li (2006) all show, using different models and different forecast

periods, that beating the random walk is quite an arduous task. Table 1 confirms that

yields are potentially non-stationary by means of the reported first order autocorrelation

coefficients which are all very close to unity.

AR model

Although unreported results show that the null of a unit root for yield levels cannot be

rejected statistically, the assumption of a random walk is difficult to interpret from an

economic point of view. The random walk assumption implies that interest rates can roam

around freely and do not revert back to a long-term mean, something which contradicts the

Federal Reserve’s monetary policy targets. The second model that we therefore consider

is a first-order univariate autoregressive model that allows for mean-reversion

y
(τi)
t = c(τi) + φ(τi)y

(τi)
t−1 + ψ(τi)

′
Xt + σ(τi)ε

(τi)
t , ε

(τi)
t ∼ N (0, 1) (3)

where c(τi), φ(τi) and σ(τi) are scalar parameters and ψ(τi) is a 6 × 1 vector containing the

coefficients on the macrofactors. We construct forecasts both with and without by setting

ψ(τi) = 0. We denote the yield-only model by AR whereas the model with macrofactors

is denoted by AR-X. For this and all other models we construct iterated9 forecasts.

VAR model

Vector autoregressive (VAR) models create the possibility to use the history of other

maturities on top of any maturity’s own history as additional explanatory information.

We use the following first-order VAR specification10,

Yt = c+ ΦYt−1 + ΨXt +Hεt, εt ∼ N (0, I) (4)

where Yt contains the yield observations for all 13 maturies; Yt = [y
(1m)
t , ..., y

(10y)
t ]′, c is a

13×1 vector, Φ a 13×13 matrix, Ψ is a 13×6 matrix andH is the lower triangular Cholesky

decomposition of the (unrestricted) residual variance matrix S = HH ′ containing 1
2
N(N−

1) = 78 free parameters. As noted in the introduction, our approach is similar in spirit as

9Another approach would be to construct direct forecasts by regressing y
(τi)
t directly on its h-month

lagged value y
(τi)
t−h as in Diebold and Li (2006). For the State Space form of Nelson-Siegel model and

the affine model, such an approach is, however, infeasible. Therefore, and for matters of consistency, we
choose to construct iterated forecasts for all the models. Whether using direct forecasts is better than
iterated forecasts is a matter of ongoing debate, see the discussion in e.g. Marcellino et al. (2004).

10For both the AR and VAR models we examined the benefits of including more lags by using AR(p)
and VAR(p) models with p = 2, . . . , 12. We found that using multiple lags resulted in nearly identical
forecasts compared to the AR(1) and VAR(1) models and these results are therefore not reported nor
were they included in the forecasting combination procedures in Section 4 and 5.
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the VARs used in Evans and Marshall (1998, 2001) and also Ang and Piazzesi (2003) in

the sense that we impose exogeneity of macroeconomic variables with respect to yields.

A well-known drawback of using unrestricted VAR model for yields is that forecasts

can only be constructed for maturities that are used in the estimation of the model. As

we want to construct forecasts for 13 maturities, this results in a considerable number

of parameters that need to be estimated. As an attempt to mitigate estimation error,

and subsequently, to reduce the forecasting error variance, we summarize the information

contained in the explanatory vector Yt−1 by replacing it with a small number of common

factors that drive yield curve dynamics. Similar to Litterman and Scheinkman (1991) and

many other studies, we find that the first 3 principal components explain almost all the

variation in yields (over 99%). We replace Yt−1 in (4) accordingly with the 13 × 3 factor

matrix Ft−1
11 giving,

Yt = c+ ΦFt−1 + ΨXt +Hεt, εt ∼ N (0, I) (5)

where Φ is now a 13 × 3 matrix. The VAR model without and with macroeconomic

variables is denoted by VAR and VAR-X respectively.

Nelson-Siegel model

Diebold and Li (2006) show that a reinterpretation of the in essence one-period Nelson

and Siegel (1987) functional form as a dynamic factor model produces interest rates

forecasts which are highly accurate. The Nelson-Siegel, compared to the unrestricted VAR

model (5), imposes structure on the factor loadings Φ by specifying these as exponential

functions governed by a single parameter. Following Diebold et al. (2006) the State-Space

representation of the three-factor model, with a first-order autoregressive representation

for the dynamics of the state vector, is given by

y
(τi)
t = β1,t + β2,t

(
1−exp(−τi/λ)

τi/λ

)
+ β3,t

(
1−exp(−τi/λ)

τi/λ
−exp(−τi/λ)

)
+ ε

(τi)
t (6)

βt = a+ Γβt−1 + ut (7)

where βt is the state vector of latent factors at time t, βt = (β1,t, β2,t, β3,t)
′, λ the parameter

that governs the exponential decay towards zero of the factor loadings on β2,t and β3,t (see

Diebold and Li, 2006 for details), a a 3 × 1 vector of parameters and Γ a 3 × 3 matrix of

parameters. The measurement equation errors in (6) and the state equation errors in (7)

are assumed to be normally distributed and orthogonal to each other
[
εt

ut

]
∼ N

([
018×1

03×1

]
,

[
H 0
0 Q

])
(8)

11The time subscript ’t − 1’ indicates that we extract the common factors using the history of yields
up until t− 1, the vector of observations for time t is not used.
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where H is a diagonal 18 × 18 matrix and Q a full 3 × 3 matrix.

We follow Diebold and Li (2006) by adding five maturities (9, 15, 18, 21 and 30 months)

to the short end of the yield curve to estimate the Nelson-Siegel model in (6)-(8). We use

two different estimation procedures: a two-step approach and a one-step approach.

The two-step approach is discussed in Diebold and Li (2006) and involves fixing λ and

estimating the factors βt in a first step using the cross-section of yields for each month t.

Given the estimated time-series for the factors from the first step, the second step consists

of modelling the factors in (7) by fitting either separate AR(1) models, thereby assuming

that both Γ and Q are diagonal, or a single VAR(1) model. We denote these approaches

by NS2-AR and NS2-VAR respectively.

The one-step approach follows from Diebold et al. (2006) and involves jointly estimat-

ing (6)-(8) as a State-Space model using the Kalman filter. In this approach we assume

that Γ and Q are both full matrices and that λ now needs to be estimated alongside the

other parameters. We denote the 1-step model by NS1.

With the frequentist approach we apply both the 2-step and 1-step estimation proce-

dure whereas with Bayesian analysis we consider only the 1-step procedure.

Diebold et al. (2006) show how to extend the Nelson-Siegel model to incorporate

macroeconomic variables by adding these as observable factors to the state vector and

writing the model in companion form as:

y
(τi)
t = β1,t + β2,t

(
1−exp(−τi/λ)

τi/λ

)
+ β3,t

(
1−exp(−τi/λ)

τi/λ
−exp(−τi/λ)

)
+ ε

(τi)
t (9)

ft = a+ Γft−1 + ηt (10)[
εt

ηt

]
∼ N

([
018×1

012×1

]
,

[
H 0
0 Q

])
(11)

where now ft = (β1,t, β2,t, β3,t,Mt,Mt−1,Mt−2) with the dimensions of a, Γ andQ increased

as appropriate12 and where ηt is given by ηt = (u′t, ξ
′
t, 0, ..., 0)′. The companion form

enables us to incorporate the VAR(3) specification for the macrofactors. We impose

structure on Γ and Q to accommodate for the effects of macrofactors while maintaining

the unidirectional causality from macrofactors to yields. In particular, the lower left (9×3)

part of Γ consists of zeros whereas Q is block diagonal with a non-zero (3×3) block Q1 for

the yield factors and a non-zero (3×3) block Q2 for the macrofactors. All other blocks on

the diagonal contain only zeros. The Nelson-Siegel model with macrofactors can again be

estimated using either a 2-step approach with AR or VAR dynamics for the yield factors,

denoted by NS2-AR-X and NS2-VAR-X, or a 1-step approach, denoted by NS1-X.

12Note that the macrofactors are prevented from entering the yield equations directly by only allowing
the factor loadings of βt to be non-zero. Diebold et al. (2006) impose this restriction to maintain the
assumption that three factors are sufficient for describing interest rate behavior. Relaxing this restriction
would result in a substantial number of additional parameters.
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Affine model

Models that impose no-arbitrage restrictions have been examined for their forecast ac-

curacy in for example Duffee (2002), Ang and Piazzesi (2003) and Mönch (2006a). The

attractive property of the class of no-arbitrage models is that sound theoretical cross-

sectional restrictions are imposed on factor loadings to rule out arbitrage opportunities.

In this study we consider a Gaussian-type discrete time affine no-arbitrage model using

the set-up from Ang and Piazzesi (2003).

In particular, we assume that the vector of K underlying latent factors, or state

variables, Zt, which are assumed to drive movements in the yield curve, follow a Gaussian

VAR(1) process

Zt = µ+ ΨZt−1 + ut (12)

where ut ∼ N (0,ΣΣ′) with Σ being a lower triangular Choleski matrix, µ a K × 1 vector

and Ψ a K ×K matrix. The short interest rate is assumed to be an affine function of the

factors

rt = δ0 + δ′1Zt (13)

where δ0 is a scalar and δ1 a K × 1 vector. Furthermore, we adopt a standard form for

the pricing kernel, which is assumed to price all assets in the economy,

mt+1 = exp
(
−rt −

1

2
λ′tλt − λ′tut+1

)

and we specify market prices of risk to be time-varying and affine in the state variables

λt = λ0 + λ1Zt (14)

with λ0 a K×1 vector and λ1 a K×K matrix13. Under the assumption that bond prices

are an exponentially affine function of the state variables,

P
(τ)
t = exp[A(τ) +B(τ)′Zt] (15)

we can recursively estimate the price of a τ−period bond using

P
(τ)
t = Et[mt+1P

(τ−1)
t+1 ] (16)

where the expectation is taken under the risk-neutral measure. Ang and Piazzesi (2003)

show that doing so results in the following recursive formulas for the bond pricing coeffi-

cients:

A(τ+1) = A(τ) +B(τ)′[µ− Σλ0] +
1

2
B(τ)′ΣΣ′B(τ) − δ0 (17)

13With λ1 equal to 0, risk premia are constant over time and if also λ0 equals zero then risk premia
are non-existent altogether.
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B(τ+1)′ = B(τ)′[Ψ − Σλ1] − δ′1 (18)

starting from A(0) = 0 and B(0) = 0. If bond prices are exponentially affine in the state

variables then yields are affine in the state variables since P
(τ)
t = exp[−y(τ)

t τ ]. Conse-

quently, it follows that y
(τ)
t = a(τ) + b(τ)′Zt with a(τ) = −A(τ)/τ and b(τ) = −B(τ)/τ . To

estimate the model we deviate from the popular Chen and Scott (1993) approach and

assume that every yield is contaminated with measurement error.

Summarizing, we specify the following affine model

y
(τi)
t = a(τi) + b(τi)Zt + ε

(τi)
t (19)

Zt = µ+ ΨZt−1 + ut (20)[
εt

ut

]
∼ N

([
013×1

03×1

]
,

[
H 0
0 Q

])
(21)

with Q = ΣΣ′ and a(τi) and b(τi) being recursive functions of the parameters that govern

the dynamics of the state variables and of the risk premia parameters. We denote this

model by ATSM.

Extending the model to include observable macroeconomic factors can be done in a

similar way as for the Nelson-Siegel model

y
(τi)
t = a(τi) + b(τi)ft + ε

(τi)
t (22)

ft = µ+ Ψft−1 + ηt (23)[
εt

ηt

]
∼ N

([
013×1

012×1

]
,

[
H 0
0 Q

])
(24)

where ft = (Zt,Mt,Mt−1,Mt−2). The dimensions of a(τi), b(τi), µ, Ψ and Q are again

increased as appropriate and (23) is written in companion form. As in the Nelson-Siegel

model, Q is block diagonal with only two non-zero blocks, Q1 and Q2. The affine model

with macroeconomic factors is denoted by ATSM-X.

Adding macroeconomic variables to affine models can cause problems as it further

increase the number of parameters in these already highly parameterized models14. To

speed up and facilitate the estimation procedure, we therefore use the two-step approach

of Ang et al. (2006b) by making the latent yield factors observable. Contrary to Ang

et al. (2006b) who directly use the observed short rate and the term-spread as measures

of the level and slope of the yield curve, we use principal component analysis to extract

the first three common factors from the full set of yields and use these as our observable

state variables.

14Contrary to the reduced form affine model of Ang and Piazzesi (2003), Hordahl et al. (2006) use a
structural affine model with macroeconomic variables in which the number of parameters can be kept
down. They show that their model leads to better longer horizon forecasts compared to the Ang-Piazzesi
model, which indicates that instead of only imposing no-arbitrage restrictions, which is the case in
affine models, imposing also structural equations seems to mitigate overparameterization problems due
to adding macro economic variables.
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4 Forecasting

In this section we examine the forecasting performance of each individual model over

different (sub)samples. This section more or less serves as a prelude to Section 5 where

we investigate forecast combinations.

4.1 Forecast procedure

We divide our dataset in an initial estimation period which covers the sample 1970:1 -

1988:12 (228 observations) and a forecasting period which is comprised of the remaining

sample 1989:1 - 2003:12 (180 observations). The forecasting sample is further divided

in three 60-month subperiods; 1989:1 - 1993:12, 1994:1 - 1998:12 and 1999:1 - 2003:12.

The initial subperiod is primarily used as a training sample to start up the forecast

combinations. Consequently, we report forecast results for the sample 1994:1 - 2003:12

(120 observations) and the last two subsamples (60 observations each). The vertical lines

in Figure 1 enclose the subperiods.

We recursively estimate all models using an expanding window of all data from 1970:1.

We construct point forecasts for four different horizons equal to h = 1, 3, 6 and 12 months

ahead. As mentioned in the previous section, for horizons beyond h = 1 month we com-

pute iterated forecasts when using frequentist techniques whereas for Bayesian inference

we compute the mean of each model’s predictive density.

4.2 Forecast evaluation

To evaluate out-of-sample forecasts we use a number of different popular error metrics.

We compute the Root Mean Squared Prediction Error (RMSPE) and the Mean Prediction

Error (MPE) per maturity and forecast horizon. Similar to Hordahl et al. (2006) we also

summarize the forecasting performance for each model over all maturities by comput-

ing the Trace Root Mean Squared Prediction Error (TRMSPE), see Christoffersen and

Diebold (1998) for details. The final metric we consider15 is the Hit Rate (HR) which is

computed as the percentage of the correctly predicted signs of changes in interest rates.

As a benchmark for the HR we use 0.50.

The reason behind using the Hit Rate is that it provides us with a metric to judge

forecasts from a more economic point view, which may in particular be of interest to

for example bond investors who take directional bets in the bond market. The RMSPE,

which is widely used to assess forecast accuracy, takes into account the magnitude of

15Other forecast performance statistics, in particular the Mean Absolute Prediction Error (MAPE) and
the R2 when regressing observed h-month ahead yields on the corresponding forecasts are not reported
but are available upon request.
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forecast errors but does not distinguish between positive and negative errors. The Hit

Rate does the opposite and it is interesting to see if, and to what extent, the two metrics

lead to conflicting conclusions16.

To test the statistical accuracy of (combined) forecasts of all models relative to our

benchmark model, the random walk, we apply, like Hordahl et al. (2006) and Mönch

(2006a), the White (2000) “reality check” test with the stationary bootstrap approach

of Politis and Romano (1994). We carry out the test using 1000 block-bootstraps of the

forecast error series with an average block-length of 12 months17.

4.3 Forecasting results: individual models

Tables 3-6 report out-of-sample results for the sample 1994:1-2003:12 for each of the four

selected forecast horizons. Panels A and B of each table contain the results when using

the frequentist approach for the models with and without macrofactors. Panels D and E

show the results using Bayesian inference. Subsample results are reported in Tables 7-10

for the sample 1994:1-1999:12 and Tables 11-14 for the sample 1999:1-2003:12.

The first row in each table shows the value of the different forecast evaluation metrics

for the random walk (reported in basis point errors) whereas all other rows show values

relative to the random walk. Relative values for any forecast that are below one are

highlighted in bold to indicate that these forecasts are on average more accurate than those

of the random walk. Lower relative values for the (T)RMSPE indicate progressively more

accurate forecasts relative to the random walk. Stars indicate statistically significant

outperformance according to White’s test. A Hit Rate above 0.50 indicates a model’s

ability to forecast directional changes in yields.

4.3.1 Full sample results

Sample 1994:1 - 2003:12

The results for the 1-month horizon are not very encouraging. For nearly all maturities

the random walk shows better statistics than any of the models based on yields only, even

when parameter uncertainty is incorporated. The results are in line, however, with other

studies showing that it is very difficult to outperform the RW for short term forecasts.

Especially for short horizons the near unit root behavior of yields seems to dominate, such

that model-based yield forecasts add little.

16It would be interesting to evaluate the different forecasting models from a truly economic point of
view by gauging the performance of bond portfolios but such an analysis is beyond the scope of this paper
and is therefore left for further research.

17An alternative approach would be to use the Diebold and Mariano (1995) test, either directly as used
in Diebold and Li (2006), or with the small sample correction proposed by Harvey et al. (1997). However,
West (2006) shows that using Diebold-Mariano type tests can be problematic in the case of comparing
nested models, which holds true for at least a subset of our models, so we do not apply these tests here.
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Incorporating macroeconomic information as an additional source of information im-

proves forecasts for the AR and VAR models. The (T)RMSPE statistics are now very

close and often marginally better than those of the RW. The largest improvements are

shown for the shortest maturities, in particular the 3-month maturity where the relative

RMPSE is now 0.95. From the MPE we see that macroeconomic information helps to

reduce the forecast bias. However, the improvements do not appear substantial enough

for the AR-X model to produce significantly better forecasts, as judged by the White

test. The evidence for more complex model specifications is mixed but, in general, adding

macroeconomic information worsens accuracy. Especially when Bayesian inference is used,

the forecasts that are produced with the Nelson-Siegel and affine models now suffer from

a severe bias. For example, for the 6-month maturity the relative RMSPE increases from

1.10 to 1.71 for the Nelson-Siegel model when adding macrofactors.

The results for the 3-month forecast horizon are very similar to those for the 1-month

horizon, although the RMSPE is now higher in absolute terms. The latter is expected since

the yield curve is subject to more new information when the forecast horizon lengthens.

It still proves to be very difficult for any of the models to provide forecasts that are

more accurate than the random walk forecast. The AR-X model is again the only model

that shows promising results, which can again be attributed to the macrofactors, and

it gives a TRMSPE statistic lower than that of the random walk. The improvement is,

however, again not statistically significant. What is striking though is that whereas with

the frequentist approach without macrofactors the RMSPE goes up and the MPE even

more so for h = 3 compared to h = 1, with the Bayesian approach the RMSPE actually

goes down for some models, in particular the Nelson-Siegel model.

For a 6-month horizon more models start to outperform the random walk for more

maturities, as indicated by the increase in relative RMSPEs below 1, although the results

are still by no means impressive, and, in general, the best model only improves the

random walk by a few basis points. Taking into account macro-economic information as

well as parameter uncertainty results in reasonably accurate forecasts although there is

still no significant outperformance according to the White reality check. Incorporating

parameter uncertainty is very beneficial for the Nelson-Siegel model. Estimating the

State-Space form of the model with Bayesian analysis substantially reduces the relative

RMSPE compared to their frequentist counterparts. The same conclusion holds for the

MPE if macrofactors are not taken into account. With macrofactors, the forecast bias is

actually larger for the Bayesian NS-X specification. Models that keep struggling are the

VAR and affine models. In both cases this is most likely due to the large number of yields

(compared to for example Duffee (2002) and Ang and Piazzesi (2003)) that we use in

16



estimation, resulting in a large number of parameters18. Note that the VAR model with

Bayesian inference does worse than when estimated using maximum likelihood. This can

be explained by realizing that Bayesian analysis entails drawing inference on the variance

parameters of each of the 13 maturities in addition to all the other parameters, which is

not necessary with maximum likelihood as we are only generating point forecasts.

The longest horizon that we consider is h = 12. Two models produce forecasts that

consistently outperform the random walk across all separate maturities: the frequentist

VAR-X model and the Bayesian NS1-X model. For both models, the TRMSPEs are

lower compared to the random walk. RMSPEs are on average five basis points lower,

although for the NS1-X the differences are not significant. For all other models, the ben-

efits of adding macrofactors are evident with all relative MSPE going down considerably.

Compared to the frequentist results, the Bayesian VAR model still struggles.

It is interesting to compare our results with those of Mönch (2006a) since he uses an

almost identical forecasting sample (1994:1 - 2003:9) but a much shorter estimation period

for the VAR, NS2-AR and NS2-VAR model (1983:1 - 1993:12). Our results for the RW

are all but identical, as they should be, which is a convenient check on our results. The

RMSPEs we find for the VAR(1) on yields and a 1-month horizon are somewhat higher

for shorter maturities (below 5 years) whereas for longer maturities they are very similar.

For a 12-month horizon the differences are larger with Mönch who reports RMPSEs

which are roughly 20% lower than ours. The differences will partly be due to using a

slightly different set of maturities and our use of yield-factors when estimating the VAR

instead of using lagged yields directly. The main reason for the different sets of results

will, however, be due to our much longer estimation sample. It seems that including the

1970s and beginning of 1980s leads to poorer yield forecasts compared to those obtained

when starting the sample after the Volcker period. For the NS2-AR and NS2-VAR the

1-month ahead results are again very similar. However, whereas Mönch finds that the

NS2-AR outperforms the NS2-VAR for a 6- and 12-month horizon we find that NS2-VAR

is usually more accurate. Our affine model without macrovariables provides similar results

as for the A0(3) model that Mönch considers for h = 1 but less accurate results for h = 6

and h = 1219. It is interesting to note that none of the models we consider here have an

out-of-sample performance which is as good as that of the FAVAR model advocated by

Mönch. It would therefore be worthwhile to add this model to the model consideration

18An obvious solution to this problem would be to estimate the affine models using a smaller set of
yields. The reason we do not follow this strategy here is because we want to use a similar number of
yields as in Mönch (2006a).

19However, we forecast the 1-month maturity (not reported in the tables but available upon request)
much more accurately which is most likely due to the fact that we estimate the short rate parameters δ0
and δ1 using only data on the 1-month yield instead of estimating simultaneously with the other model
parameters.
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set but we leave this for further research.

As we mentioned earlier, it is interesting to see whether the Hit Rate provides different

results than the commonly applied RMSPE and MPE. Judging from the results for the

Hit Rate in Tables 15 and 16 we can draw a number of conclusions. Adding macrofactors

and taking into account parameter uncertainty adds little to improve the Hit Rate across

maturities and across forecast horizons. Only for the 1-month horizon macrofactors seem

to lead to more correctly predicted yield change signs. For example, the Hit Rate for the

6-month yield using a 1-month horizon, when moving from the AR to the AR-X model,

improves from 0.54 to 0.57 with the frequentist approach and from 0.54 to 0.58 with the

Bayesian approach.

For a 1-month horizon sign predictability is in general higher for longer maturities

although the sign of yield changes for the 10-year maturity seems harder to predict than

for the 5-year and 7-year maturities.

For the remaining horizons, sign predictability is better for the short end of the curve

and macrofactors do little to improve the Hit Rate. Results for a 3-month horizon seem

to be the most promising with Hit Rates that are well above 0.50 and sometimes as

high as 0.70, although the Hit Rates for 6-months out are still very reasonable as well.

From the point of view of an investor who is attempting to make money using slope

investments these results are very encouraging. For a one-year horizon the Hit Rate

results are somewhat problematic. The only model that seems to provide directional

guidance is the VAR-X model when parameter uncertainty is incorporated. However,

also for the 10-year maturity the Hit Rate falls below 0.5.

As an overall summary for the 1994:1-2003:12 period we can remark that our results

for the individual models are not very encouraging as interest rate predictability appears

to be rather low. This may be attributed to a number of possible causes with one main

reason, being the out-of-sample period we select. Except for Mönch (2006a) who reports

very promising out-of-sample results for his FAVAR model for nearly the same period as

we use, Duffee (2002), Ang and Piazzesi (2003), Diebold and Li (2006) and Hordahl et al.

(2006) all use an out-of-sample period that ranges from roughly the mid 1990s till 2000.

As we also include the period from 2000 onwards, a possible explanation for our poor

forecasting results seems to be locked up in that period. Figure 1 surely indicates that

the interest rate behaviour during that period with its pronounced widening of spreads is

rather different from the stable second half of the 1990s. The subsample results reported

in Mönch (2006a) for the 2000:1-2003:9 indicate the VAR, NS2-AR and NS2-VAR models

perform poorly compared to the RW which is evidence that model forecastability is indeed

low during that period. Through analyzing the subsamples 1994:1-1998:12 and 1999:1-

2003:12 we hope get insights.
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4.3.2 Subsample results

Sample 1994:1 - 1998:12

The five years that this subsample consists of are the years that have been most heavily

investigated in other forecasting studies, with positive results found for different models.

For example, Duffee (2002) reports forecast results for essentially affine models that hold

up favorably against the random walk for the sample 1995:1-1998:12. Similarly, Ang

and Piazzesi (2003) show that a no-arbitrage Gaussian VAR model predicts well 1-month

ahead for the sample 1996:1-2000:12 while Diebold and Li (2006) report outperforming

forecasts for the Nelson-Siegel model for the sample 1994:1-2000:1220. These studies

suggest that there should be a high degree of predictability for this subperiod. Tables

7-10 confirm this claim. Compared to the corresponding tables for the first subperiod the

level of the RMSPEs are (often) lower. Even for a 1-month horizon it is already possible

to outperform the random walk. The AR-X model in particular performs well across

all maturities with results for the frequentist approach being slightly better than for the

Bayesian approach. The latter is most likely due to the fact that the prior information

based solely on the initial sample does not fit well with this period of smooth interest

rates. The TRMSPEs are lower than that of the random walk but the White test does

not indicate that the forecasts are significantly better. The NS2-AR and VAR-X models

also do well although the 2-year and 10-year maturities still seem difficult to forecast.

The affine models render poor forecasts so in this subsample, except for the 5- and 7-year

maturities. This differs from Ang and Piazzesi (2003) who show that an affine model

augmented with inflation and real activity factors forecasts better than the random walk

for maturities up to and including five years. This difference in results could be due to

the substantially larger number of yields that we use in estimation. Furthermore, Ang

and Piazzesi (2003) do not forecast beyond a 1-month horizon.

Moving to the 3-month horizon, other models also start to predict well, but especially

for 6- and 12-months ahead predictability is evident. The VAR-X model but and the

NS2-AR model in particular now produce forecasts that are significantly better than the

no-change forecast with relative RMSPE being lower by sometimes as much as 30-40%.

Adding macrofactors seems to lower forecast accuracy, in particular by introducing a neg-

ative forecast bias. Except for the VAR-X model, incorporating parameter uncertainty

does not seem to help either. The performance of the affine models also improves. In-

terestingly, for shorter maturities simple affine models do better than their counterparts

with macro information, but the evidence is just the opposite for longer forecast horizons.

20Hordahl et al. (2006) construct one through 12 months ahead forecasts for the period 1995:1-1998:12
but these authors apply their structural model to German zero-coupon data and their results might
therefore not be directly comparable to the results for the U.S data that we report here.
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However, the affine models are never the best performing models for any maturity, which

is a result also found by Diebold and Li (2006).

Comparing our results to those of Diebold and Li (2006) makes sense, since that study

has the largest overlap in the set of models considered21 Results for h = 1 for the RW,

AR, VAR and NS2-AR models are nearly identical in terms of RMSPE although we find

slightly different MPEs (in our case the MPE is positive in general whereas Diebold and Li

report mainly negative values). For h = 6 we find lower RMSPEs for the short and middle

end of the curve (maturities below 5 years) whereas for the AR and VAR models results

are very similar, despite the different way we estimate the VAR model. The differences in

the reported MPEs are more pronounced now as well. Still we find MPEs that are positive,

as opposed to negative values in Diebold and Li. A detailed analysis of the prediction

errors reveals that for the sample period 1999:1-2000:12, during the yield hike, all the

models are consistently producing forecasts that are too low resulting in substantially

negative forecasting errors, which explains why Diebold and Li find negative MPEs. For

the 12-month horizon we also find that the NS2-AR model substantially outperforms the

RW, AR and VAR model. Whereas for the NS2-VAR model Diebold and Li find that this

specification performs the worst, we find that although it performs indeed worse than the

NS2-AR, its forecast accuracy is comparable to, and is sometimes even better than that

of the AR and VAR models. Overall, our findings corroborate the superior performance

of the NS2-AR model for this subsample.

Given the favorable RSMPE results it is curious to see that Hit Rates for this sub-

sample are disappointingly low for the longer horizons. For the 6-month but especially

for the 12-month horizon the Hit Rate is seldom higher than 0.5, see Table 18. A possi-

ble explanation for this phenomenon could be that interest rates are fairly stable during

this subperiod, making it hard for the model to determine a clear long-term up or down

movement.

Sample 1999:1 - 2003:12

During this subperiod, interest rates initially go up until the end of 2000 after which

they decline sharply by roughly 5% from 6% to 1% for the short rate accompanied by a

substantial widening of spreads between long and short rates. Forecasts results are shown

in Table 11 - 14. Although adding macrofactors again improves forecasts, the only model

that seems to be able to compete with the RW is the Bayesian NS1-X model and only

consistently for the longest horizons. The frequentist AR-X model does well for shorter

maturities. The VAR model shows a strikingly poor performance with very large positive

21Although the forecast period of Diebold and Li contains 24 more months, a comparison still seems
interesting to conduct.
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MPEs indicating that the VAR model cannot cope with the downward sloping trend

of interest rates. The Bayesian ATSM-X model does better than the Bayesian VAR and

predicts the short end of the curve reasonably well. This shows that imposing no-arbitrage

restrictions helps but not enough to beat simple univariate models.

Since the downward trend in yields is so persistent throughout this subsample it should

not be surprising that Hit Rates are very high, especially for the 6-month and 12-month

horizons. Long rates are more volatile than short rates which results in higher Hit Rates

for the short and medium end of the curve as compared to the long end. Bayesian analysis

and macrofactors again do hardly anything to improve sign predictability.

4.3.3 Rolling TRMSPE

The subsample results clearly show that different models perform well during different

subsamples. A obvious example is the NS2-AR model which comfortably outperforms all

other models for the first subsample but produces disappointing forecasts the second sub-

sample. Similar conclusions can be drawn for other models as well. To further illustrate

how the forecasting performance of different models varies over time we compute TRM-

SPEs using a 60-month rolling window. Figures 4-7 show these results for all forecast

horizons considered and for a subset of models22. Each graph shows the rolling TRM-

SPE of the RW, AR, VAR, NS1 and ATSM models, either with (left panels) or without

macrofactors (right panels)

The patterns for the two five year subsamples reappear. TRMSPEs are fairly stable

until 1997 after which a decreasing trend sets in lasting until mid 2000. The high degree of

interest rate predictability during the 1994-1998 subperiod is the cause of the decreasingly

low TRMSPEs for 1998-2001. From 2001 onwards a sharp increase is visible in TRMSPEs

indicating large forecasting errors due the sharp decline in interest rate levels and widening

of spreads during this period.

Zooming in on the performance of individual models, we notice that the random walk

is one of the best models at the beginning and at the end of the forecasting period.

During the 1998-2001 period the random walk tends to outperformed by the AR-X, VAR-

X and NS1-X models. An opposite pattern is visible for the ATSM model which performs

well only in the middle of the out-of-sample period. The main point to take from these

graphs is that the performance of individual models varies substantially over time and

establishing a clear-cut ordering of the models which holds across the entire 1994-2003

seems infeasible. Therefore, believing in a single model may be dangerous. In the next

section, we discuss several forecast combination techniques.

22Note that the graphs only depict model specifications that were estimated using both frequentist
and Bayesian inference. As a result, the NS2-AR and NS2-VAR are not included but these results are
available on request.
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5 Forecast combination

Our subsample and rolling TRMPSE analysis reveals that there does not seem to be a

single model that consistently outperforms the random walk across all subperiods. The

forecasting ability of individual models differs considerably over time. It seems that each

model may play a complementary role in approximating the data generating process, at

least during subperiods. Model uncertainty is troublesome if one has hopes of believing

in a single model for forecasting or investment purposes. A worthwhile endeavor for cush-

ioning the effects of model uncertainty is to combine forecasts that have been generated

with different models. In this section we examine several forecast combination schemes.

Two combination methods are standard approaches and can be applied to combine fre-

quentist as well as Bayesian forecasts. The third combination method we investigate is a

truly Bayesian approach which can only be applied to Bayesian forecasts. We first discuss

the different methods before moving on to examining the forecast combination results in

comparison to the results of the individual models.

5.1 Forecast combination: schemes

Scheme 1: Equally weighted forecasts

The first forecast combination method assigns an equal weight to the forecast from all

individual models. Assuming we are combining forecasts from M different models, each

weight is the same and equal to w
(τi)
T+h,m = 1/M for m = 1, . . . ,M . The equally weighted

combined forecast for a h-month horizon for any maturity τi is therefore given by ŷ
(τi)
T+h =

∑M
m=1w

(τi)
T+h,mŷ

(τi)
T+h,m which we denote as the Forecast Combination - Equally Weighted

forecast (FC-EW). As explained in Timmermann (2006) this method is likely to work

well if forecasts from different models are highly correlated, which certainly holds for the

models we consider in this study.

Scheme 2: Inverted MSPE-weighted forecasts

The second forecast combination scheme we examine uses weights that take into account

historical relative performance. Model weights are based on each model’s (inverted) MSPE

relative to those of all other models, computed over a window of the previous υ months23.

The weight for model m is computed as w
(τi)
T+h,m =

1/MSPE
(τi)

T+h,m
∑M

m=1(1/MSPE
(τi)

T+h,m
)
where MSPE

(τi)
T+h,m =

1
υ

∑υ
r=1(ŷ

(τi)
T+h−r|T−r,m − y

(τi)
T+h−r)

2. A model with a lower MSPE will get a relatively larger

weight than a worse performing model, see Timmermann (2006) for discussion and Stock

23Note that whereas in the tables we report results for the Root MSPE we use the MSPE to construct
weights since MSPE is a direct measure of forecast accuracy.
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and Watson (2004) for an application to forecasting GDP growth24. We use a window of

υ = 60 months when computing MSPEs and denote the resulting forecasts by Forecast

Combination - MSPE (FC-MSPE).

Scheme 3: Bayesian predictive likelihood

The third and final combination scheme we consider is a purely Bayesian model averaging

approach, which we denote by BMA25, and which is based on the idea that any model

is as good as its predictions, as proposed by Geweke and Whiteman (2006). The idea

behind this method is to consider the out-of-sample, or predictive in Bayesian language,

performance of individual models. The probability of the realized value at time T + h is

evaluated under the Bayesian predictive density for T + h conditional on the information

at time T and the specific model m. If the predictive density is accurate the realized value

will fall near the center of the density and will be assigned a large value relative to the

case where the realization ends up being far out in the tail of the density.

Averaging over the predictive likelihood is an alternative approach to the most common

BMA method based on the marginal likelihood which was (re-)introduced in an empirical

application by Madigan and Raftery (1994). We choose the predictive likelihood BMA for

three reasons. First, the predictive likelihood is an out-of-sample performance measure.

Second, the marginal likelihood of highly nonlinear models, such as the Nelson-Siegel

and affine models, cannot be derived analytically and may be very difficult to compute by

Monte Carlo simulation. Third, Eklund and Karlsson (2005) show, in a simulation setting

and in an empirical application to forecast the Swedish inflation rate, that model weights

based on the predictive likelihood have better small sample properties and result in bet-

ter out-of-sample performance than weights based on the traditional marginal likelihood

measure.

Whereas we refer to the appendix for specific details, we do want to briefly discuss

a major difference between our forecast combination approach and that of Eklund and

Karlsson (2005). Unlike in their study, we do not apply the system of updating and prob-

ability forecasting prequential, as defined by Dawid (1984). We compute the predictive

density for month T +h using information up until month T and we evaluate the realized

value for time T + h using the same density. The resulting probability is then used to

24The weights applied in this and the previous forecast combination scheme will always be bounded
between 0 and 1. Other approaches for which this does not necessarily need to be the case, in particular
OLS-based and Kalman Filter-based weights, see again Timmermann (2006), proved to be problematic
here due to multicollinearity problems between the different forecasts. This resulted in often extreme
(offsetting) weights and was therefore not pursued further.

25In the remainder of the text, we often refer to case 3, BMA, as forecast combination. With a slight
abuse of denotation we share BMA in the class of forecast combination methods which, strictly speaking,
is incorrect since BMA averages models instead of combining models.
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compute the weight for model m in constructing the forecast for T + 2h made at time

T + h. Eklund and Karlsson (2005) on the other hand evaluate the fit of the predictive

density over more observations, by means of the predictive likelihood, and then update

the probability density for the forecasts. The latter approach results in weights which

are based more on the fit of the model, even when using out-of-sample data, than on the

probability of out-of-sample realized values. In an unreported simulation exercise we find

that our approach reacts faster to out-of-sample uncertainty since it is not constrained

to give more probability to the model which fits ex-post predicted values best. Our ap-

proach incorporates the uncertainty that future out-of-sample values may also differ from

historical out-of-sample realizations.

5.2 Forecast combination results

Before setting the weights in the combination forecast, he question which models to in-

clude in the combination should be answered. Here we combine forecasts from two differ-

ent sets of models. First we include only these specifications that incorporate macrofactors

(M = 7 for the models estimated with frequentist methods and M = 5 for the Bayesian

counterpart) and second, we simply combine all specifications (M = 13 andM = 9 respec-

tively)26. This allows us to assess the added value of including macro information also in

the combined forecasts. We always include the random walk in the forecast combinations.

5.2.1 Full sample 1994:1 - 2003:12

The results of forecast combinations for the 1994-2003 period are reported in Panels C and

F of Tables 3-6. The first point to notice is that for all horizons combining forecasts seems

to be a valuable alternative compared to selecting a single model, especially when Bayesian

forecasts are combined. The reported TRMSPE values show that the forecast combination

methods perform as well as the best individual model and nearly always outperform the

random walk. Panel F of Tables 3-6 show that combining forecasts works increasingly

well for longer forecast horizons, in particular when using BMA. Indeed, for a 6- and

12-month horizons, BMA outperforms the random walk by several percentage points

in terms of relative RMSPEs and results are often very similar to the best performing

individual model. Judging from the MPE, which are of a similar order of magnitude as

26Many other subsets can of course be selected. Aiolfi and Timmermann (2005) suggest filtering out
the worst performing model(s) in an initial step. Preliminary analysis suggests that doing so does not
lead to much improvement in forecasting performance in our case. However, a more thorough selection
procedure than simply including all available models as applied here, will most likely lead to better results
for the forecast combination methods. Although this is a very interesting issue to examine in more detail,
here we merely strive to show the benefits of combining forecasts as an alternative to putting all one’s
eggs in a single model basket.
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for the macrofactor-augmented models, the improvement in RMSPE is due to a decrease

in forecast error volatility thereby leading to more stable forecast series.

When comparing the different forecast combination methods amongst each other, it is

apparent that equally weighted and MSPE-based weighted forecasts nearly always give re-

sults that are very similar. In some cases, using MSPE-based weights works slightly better,

but overall the benefits of weights that are based on relative historical performance seem

limited. Bayesian model averaging often provides the most accurate forecasts. Bayesian

model averaging incorporates two sources of uncertainty: parameter uncertainty as well

as model uncertainty. Contrary to the equally weighted and MSPE weighted approaches,

Bayesian model averaging tends to assign near-zero weights to the worst performing mod-

els and thereby effectively eliminating the worst performing models, as these models often

have higher levels of parameter uncertainty. For the first two approaches models can ef-

fectively only be eliminated manually.

It is ambiguous whether forecasts should be combined using the smaller or the larger set

of models. Combining models that only incorporate macrofactors seems the best strategy

for the 1-month and 3-month horizons, whereas combining all the models provides more

accurate forecasts for longer horizons but only with the frequentist approach, not with

Bayesian inference. This finding is not surprising ex-post, because for shorter horizon

forecasts it is mostly the AR-X model that has predictive power, and for longer horizons

the Bayesian NS1-X model does particularly well.

In term of Hit Ratios, reported in Panels C and F of Table 15 and 16, conclusions

are partially similar. Forecast combinations render high hit rates, often close to the

best individual models. However, it is less clear which combination method should be

preferred, and in particular Bayesian model averaging is no longer the dominant combi-

nation approach. It is still evident though that only combining models that incorporate

macro variables is better for shorter horizons whereas combining all models provides more

accurate forecasts for the 6- and 12-month horizons.

Subsample 1994:1 - 1998:12

For this period, which is characterized by a high level of predictability, forecast combi-

nations are attractive although single models, mainly the NS2-AR, give better results.

Applying equal weights provides the most accurate forecasts which can be explained by

the high correlations (not reported) between forecast series. Forecast combinations from

models estimated with frequentist methods do better than when taking into account pa-

rameter uncertainty, mainly due to the NS2-AR model which is only included in the former

case. As we noticed in Section 4.3.2, macroeconomic information decreases the perfor-

mance of single models which translated into better relative results for the combination

methods that include all model specifications.
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Subample 1999:1 - 2003:12

The results for this subsample are almost the complete opposite from those reported for

1994-1998. Combined forecasts are at least very similar, but in most cases more accu-

rate than those produced by individual models. Bayesian model averaging in particular

performs well. Ex-post, these results can be explained by the forecast accuracy of the

Bayesian NS1-X and AR-X models, and, most likely also because of the ability of this

approach to assign near-zero weights to the worst performing models.

Hit Rates for this subsample remain high also for the forecast combination methods,

especially when combining the forecasts from all model specifications.

6 Conclusion

This paper addresses the task of forecasting the term structure of interest rates. Several

recent studies have shown that significant steps forward are being made in this area.

We contribute to the existing literature by assessing the importance of incorporating

macroeconomic information, parameter uncertainty, and, in particular, model uncertainty.

Our results show that these issues are worth addressing since each improves interest rate

forecasts.

We examine the forecast accuracy of a range of models with varying degrees levels

of complexity. We assess model forecasts over a ten-year out-of-sample period, using the

entire period as well as several subperiod to show that the predictive ability of individual

models varies over time considerably. Models that incorporate macroeconomic variables

seem more accurate in subperiods during which the uncertainty about the future path

of interest rates is substantial. As an example we mention the period 2000-2003 when

spreads were high. Models without macro information do particularly well in subperiods

where the term structure has a more stable pattern such as in the early 1990s.

The fact that different models forecast well in different subperiods confirms ex-post

that different model specifications play a complementary role in approximating the data

generating process. Furthermore, our subsample results provide a strong claim for using

forecast combination techniques as opposed to believing in a single model. Our model

combination results, in particular when using Bayesian model averaging techniques, show

that recognizing model uncertainty and mitigating the likely effects, leads to substantial

gains in interest rate forecastability. In particular, we show that combined forecasts are

superior to those generated using individual models and the random walk benchmark.

We feel that our results open up exciting avenues for further research. In this study

we have only considered very generic models, in particular in our use of a three-factor

Gaussian affine model. It would therefore be interesting to expand the model considera-

tion set with more sophisticated models such as the FAVAR models of Mönch (2006a) or

26



the structural model by Hordahl et al. (2006) both of which have been found to forecast

well. More sophisticated ways of combining forecasts are worth addressing as well, see

e.g. Guidolin and Timmermann (2007) who use a combination scheme with time-varying

weights where weights have regime switching dynamics. In terms of incorporating pa-

rameter uncertainty, much more work can be done on the use on sensible priors. As

an example we mention the use of adaptive priors that could take into account likely

changes in yield dynamics due to clear political or economic reasons. Other, technical

issues that could be addressed are more specifically related to estimation and forecasting

procedures. For example, changes in yield dynamics could also be accounted for by using

rolling estimation windows instead of expanding windows as we have used here.
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Appendix

A Individual models

In this appendix we provide details on how we perform inference on the parameters of the models in Section
3. We discuss each model separately and we distinguish between frequentist and Bayesian inference.

A.1 AR model

Frequentist Inference

We estimate the parameters c, φ and ψ using standard OLS. Given the parameter estimates we construct
iterated forecasts as

ŷ
(τi)
T+h = ĉ(τi) + φ̂(τi)ŷ

(τi)
T+h−1 + ψ̂(τi)

′

X̂T+h (A-1)

with ŷ
(τi)
T = y

(τi)
T . We construct forecast both with and without the macroeconomic factors. The forecasts

X̂T+h are iterated forecasts constructed from the VAR(3) model for the macrofactors.

Bayesian Inference

For the Bayesian inference, we use a Normal-Gamma conjugate prior for the parameters
(c(τi), φ(τi), ψ(τi), σ(τi)),

(c(τi), φ(τi), ψ(τi))′, σ2,(τi) ∼ NG(b, v, s2, ν) (A-2)

The marginal posterior densities for parameters (c(τi), φ(τi), ψ(τi), σ(τi)) and the predictive density of y
(τi)
T+h

conditional on y
(τi)
T and XT+h to draw inference on parameters and to forecast y

(τi)
T+h can be derived using

standard Bayesian results, see for example Koop (2006).

A.2 VAR model

Frequentist Inference

We estimate the equation parameters in (5) using equation-by-equation OLS. Forecasts are constructed
as

ŶT+h = ĉ+ Φ̂F̂T+h−1 + Ψ̂X̂T+h (A-3)

We construct yield factor forecasts, F̂T+h−1, by applying the factor loadings obtained using data up until
month T to the iterated yields forecasts.

Bayesian Inference

We apply direct simulation to infer the VAR model in equation (5) differing from other literature which
often uses MCMC algorithms. Direct simulation gains in time and in precision, in particular when the
forecast horizon is very long, since it applies independent draws. Our derivation is based on Zellner
(1971), who provides all the necessary computations with diffuse priors, and we extend the analysis with
informative priors27.

Prior Specification We apply informative prior densities for the parameter matrices Π = [c Φ Ψ]
and S in (5). For computational tractability we select the following conjugate priors:

Π|S ∼MN(B,S ⊗ V ) (A-4)

and
S ∼ IW (S, µ) (A-5)

where MN indicates the mactrivariate normal distribution with mean B and variance matrix S ⊗ V and
where IW indicates the Inverted Wishart distribution.

27We present the main results. Details of the derivations are available upon request.
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Posterior Simulation The likelihood function of YT for the model in (5) is given by

p(YT |FT−1,XT ,Π, S) = (2π)−TN/2|S|−T/2 exp[−
1

2
tr(S−1(YT − ZT Π)′(YT − ZT Π))] (A-6)

where T is the number of in-sample observations, ZT = (eN , FT−1,XT ), and eN is a (N × 1) vector of
ones. If we combine (A-6) together with the prior densities in (A-4)–(A-5) the joint posterior density for
(Π, S) is

p(Π, S|YT , FT−1,XT ) = p(YT |FT−1,XT ,Π, S)p(Π|S)p(S)

∝ |S|−(T+N+ν+1)/2 exp(− 1
2 tr(S

−1(S + (YT − ZT Π)′(YT − ZT Π) + (Π −B)′V −1(Π −B))))
(A-7)

where ν = K + ν with K the number of columns of Π. If we define WT = (YT , V
−1/2B)′ and VT =

(ZT , V
−1/2), applying the decomposition rule and the Inverted Wishart integration step, the posterior

density for Π conditional on (YT , FT−1,XT ) is a generalized t-distribution with location parameter Π̂ =

(V ′V )−1V ′W , scale parameters S + (WT − VT Π̂)′(WT − VT Π̂) and (Z
′

TZT + V −1), and T + ν degrees of
freedom. That is,

Π|YT , FT−1,XT ∼ |S + (WT − VT Π̂)′(WT − VT Π̂) + (Π − Π̂)′(Z
′

TZT + V −1)(Π − Π̂)|−(T+ν)/2 (A-8)

The posterior density of S conditional on (YT , FT−1,XT ) is:

S|YT , FT−1,XT ∼ IW (S + (WT − VT Π̂)′(WT − VT Π̂), T + ν) (A-9)

Forecasting The predictive density conditional on (YT ,XT ) and (FT+h−1,XT+h) is defined as:

p(YT+h|YT ,XT , FT+h−1,XT+h) =
∫ ∫

p(YT+h,Π, S|YT ,XT , FT+h−1,XT+h)dΠdS

=
∫ ∫

p(YT+h|FT+h−1,XT+h,Π, S)p(Π, S|YT ,XT )dΠdS
(A-10)

If we apply the inverted Wishart step to (A-10), and integrate with respect to Π, we have:

p(YT+h|YT ,XT , FT+h−1,XT+h) ∝ [S + (WT − VT Π̂)′(WT − VT Π̂)+

(YT+h − ZT+hΠ̂)′(I − ZT+hL
−1Z ′

T+h)(YT+h − ZT+hΠ̂)]−(T+ν+h)/2

(A-11)

where ZT+h = (Ih, FT+h−1,XT ) with Ih is a (h × h) identity matrix, and where L = (Z
′

T+hZT+h +

Z
′

TZT + V −1).
The predictive density of YT+h conditional on (YT ,XT , FT+h−1,XT+h) is thus a generalized t-

distribution with location parameter ZT+hΠ̂, scale parameters S + (WT − VT Π̂)′(WT − VT Π̂) and (IN −
ZT+hL

−1Z ′
T+h), and T + ν degrees of freedom.

Following Zellner (1971) we can express equation (A-11) as:

p(YT+h|YT ,XT , FT+h−1,XT+h) = p(YT+1|FT ,XT+1)...p(YT+h|FT ,XT+1, ..., FT+H−1,XT+h) (A-12)

We apply direct simulation. FT+h−1 and XT+h are generated from their densities conditional on their
previous values, and then substituted in equation (A-12) to derive the density for YT+h conditional on
YT and XT :

p(YT+h|YT ,XT ) =

∫∫
p(YT+h|YT ,XT , FT+h−1,XT+h)p(FT+h|FT+h−1)p(XT+h|XT+h−1)dFT+h−1dXT+h

(A-13)
Note that we integrate with respect to the forecast distribution of the macroeconomic variables XT+h

given XT .
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A.3 Nelson-Siegel model

Frequentist Inference

With the frequentist approach we estimate the Nelson-Siegel model using the two-step approach of Diebold
and Li (2006) and the one-step approach of Diebold et al. (2006).

In the two-step approach we fix λ to 16.42, which, as shown in Diebold and Li (2006), maximizes the
curvature factor loading at a 30-month maturity. Per t the vector of β’s is then estimated by applying
OLS on the cross-section of 18 maturities. From this first step we obtain time-series for the three factors,
{βt}

T
t=1. The second step consists of modelling the factors in (7) by fitting either separate AR(1) models

or a single VAR(1) model.
In the one-step approach we estimate the unknown parameters and latent factors by means of the

Kalman Filter using the prediction error decomposition for the State-Space model in (6)-(7). For each
sample in the recursive estimation procedure, we first run the two-step approach with a VAR(1) specifi-
cation for the state vector to obtain starting values. The unconditional mean and covariance matrix of
{βt}

T
t=1 are used to start the Kalman Filter. We discard the first 12 observations when evaluating the

likelihood. All variance parameters of the diagonal matrix H and the full matrix Q are initialized to 1.
The covariance terms in Q are initialized to 0. In the optimization, we maximize the likelihood using the
standard deviations as parameters to ensure positivity for all variances. Finally, λ is initialized to 16.42.

Iterated forecasts for the factors are obtained from (7) as

f̂T+h = â+ Γ̂f̂T+h−1 (A-14)

where f̂T+h = (β̂1,T+h, β̂2,T+h, β̂3,T+h, M̂T+h, M̂T+h−1, M̂T+h−2). These are then be inserted in (7) to
give interest rate forecasts

ŷ
(τi)
T+h = β̂1,T+h + β̂2,T+h

(
1−exp(−τi/λ̂)

τi/λ̂

)
+ β̂3,T+h

(
1−exp(−τi/λ̂)

τi/λ̂
−exp(−τi/λ̂)

)
(A-15)

Bayesian Inference

The joint posterior density for parameters of the Nelson-Siegel and affine models does not have a known
closed-form expression as in the AR and VAR models. Therefore, marginal densities for model parameters
as well as marginal predictive densities cannot be computed analytically and we need to use Monte Carlo
methods. We discuss our simulation approach below.

Prior Specification The model parameters are summarized by θ = (λ, σ, a,Γ, Q), where σ =
(σ(τ1), ..., σ(τN )) is the (N×1) vector of diagonal elements of H in (8). For the ease of posterior simulation
we take independent conjugate priors for the model parameters. For the variance parameters σ(τi) we
take the Inverted Gamma-2 prior

σ(τi) ∼ IG-2(ν(τi), δ(τi)) (A-16)

For the matrix of covariance-variance Q1 and Q2 we assume the Inverted Wishart distributions,

Q1 ∼ IW(µ
1
,∆1) (A-17)

Q2 ∼ IW(µ
2
,∆2) (A-18)

For the linear regression parameters we take matricvariate Normal distribution,

[a,Γ] ∼MN(Γ, Q⊗ V Γ) (A-19)

Finally for λ we assume an uniform distribution,

λ ∼ U(aλ, bλ) (A-20)

The parameters aλ and bλ cqn be chosen to reflect the prior belief about the shape of the loading factors.
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Posterior Simulation Posterior results are obtained using the Gibbs sampler of Geman and Ge-
man (1984) with the technique of data augmentation of Tanner and Wong (1987). The latent variables
BT = {β1,t, β2,t, β3,t}T

t=1 are simulated alongside the model parameters θ.
The complete data likelihood function is given by

p(YT , FT |θ) =

T∏

t=1

N∏

i=1

p(y
(τi)
t |ft, λ, σ

(τi))p(ft|ft−1, a,Γ, Q) (A-21)

where YT = {y
(τ1)
t , . . . , y

(τN )
t }T

t=1 and where FT = {β1,t, β2,t, β3,t,Mt,Mt−1,Mt−2}
T
t=1. The terms

p(y
(τi)
t |ft, λ, σ

(τi)), and p(ft|ft−1, a,Γ, Q) are Normal density functions which follow directly from (6)–
(7). If we combine (A-21) together with the prior density p(θ) implied by (A-16)–(A-20) we obtain the
posterior density

p(θ,BT |YT ,MT ,MT−1,MT−2) ∝ p(YT , FT |θ)p(θ) (A-22)

The full conditional posterior density for the latent regression parameters BT is computed using the
simulation smoother as in Carter and Kohn (1994, Section 3). The Kalman smoother is applied to derive
the conditional mean and variance of the latent factors; for the initial value β0 a multivariate normal
prior with mean 0 is chosen.

To sample the θ parameters, excluding λ, we can use standard results. Hence, the variance parameters
σ(τi) are sampled from inverted Gamma-2 distributions, the matrix Q1 is sampled from an Inverted
Wishart distribution, and the parameters a1, Γ1 are sampled from matricvariate Normal distributions,
where (a1,Γ1) are the appropriate elements of a and Γ respectively. In our framework the macro variables
have a VAR(3) structure independent from the latent factors. Therefore, we simulate a2, Γ2, and Q2 from
their marginal densities, respectively generalized t-distributions and an Inverted Wishart distribution to
improve the speed of convergence.

Finally, the posterior density for λ conditional on YT , FT ,H is:

p(λ|YT , FT ,H) ∝
T∏

t=1

N∏

i=1

p(y
(τi)
t |ft, λ, σ

τi)p(λ) (A-23)

Equation (A-23) is not proportional to a known density. Therefore, λ may be drawn by applying MCMC
methods. We use the Griddy Gibbs algorithm. The Griddy Gibbs sampler was developed by Ritter
and Tanner (1992) and is based on the idea to form a simple approximation of the inverse cumulative
distribution function of the target density on a grid of points28. More formally and refering to equation
(A-23), we perform the following steps:

• We evaluate p(λ|YT , FT ,H) at points Vi = v1, ..., vn to obtain w1, ..., wn;

• We use w1, ..., wn to obtain an approximation to the inverse cdf of p(λ|YT , FT ,H);

• We sample a uniform (0,1) deviate and we transform the observation via the approximate inverse
cdf.

Forecasting The h-step ahead predictive density of YT+h conditional on YT and FT is given by

p(YT+h|YT , FT ) =

∫∫
p(y

(τi)
T+h|fT+h, λ, σ

(τi))p(fT+h|fT+h−1, a,Γ, Q)

p(θ,BT |YT ,MT ,MT−1,MT−2)dfT+h dθ (A-24)

where p(y
(τi)
T+h|fT+h, λ, σ

(τi)) and p(fT+h|fT+h−1, a,Γ, Q) follow directly from (6)–(7) and where
p(θ,BT |YT ,MT ,MT−1,MT−2) is the posterior density.

Simulating YT+h from the h-step ahead distribution (A-24) is straightforward. In each step of the
Gibbs sampler, we use the simulated values of (a,Γ, Q) to draw the out-of-sample values of fT+h. Then,

fT+h in combination with the current Gibbs draws of H and λ provide a simulated value for y
(τi)
T+h.

28Mönch (2006b) applies a random walk Metropolis Hastings algorithm to draw λ. We choose the
Griddy-Gibbs since the space of λ is well defined and only the cdf must be estimated in these points.
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A.4 Affine model

Frequentist Inference

To estimate the affine model we assume that yields of every maturity are contaminated with measurement
error. We estimate the parameters in the resulting State-Space model by applying the two-step approach
used in Ang et al. (2006b). We make the latent factors Zt observable by extracting the first three
principal components from the panel of yield for different maturities. The first step of the estimation
procedure consists of estimating the equation and variance parameters of the state equations (23). In the
second step we estimate the remaining parameters (δ0, δ1, λ0, λ1). We first estimate (δ0, δ1) by applying
OLS to the short rate equation (13) where we use the 1-month yield as the observable short rate. We
then estimate the risk premia parameters (λ0, λ1) by minimizing the sum of squared yields errors in

the measurement equations (22), giving the parameter estimates from the first step, (µ̂, Ψ̂, Σ̂) and the

short rate parameters (δ̂0, δ̂1). In the second step we initialize all risk premia parameters to 0. Common
approaches for obtaining starting values for the risk premia parameters by first estimating either λ0 or
λ1 in a separate step yielded unsatisfactory results.

Yield forecasts are generated by iterating forward the state-equations (23)

f̂T+h = µ̂+ Ψ̂f̂T+h−1 (A-25)

where f̂T+h = (Ẑ1,T+h, M̂T+h−1, M̂T+h−2). With the estimated parameters substituted in a(τi) and b(τi)

we then construct interest rate forecasts as

ŷ
(τi)
T+h = â(τi) + b̂(τi)f̂T+h (A-26)

Bayesian Inference

Bayesian inference on model (22)-(23) is very complex due to the high nonlinearity of the structure of
the parameters and, above all, the large set of yields we forecast. In particular, it may be difficult to
define the space of the parameters δ0 and δ1. The likelihood is very sensitive to those parameters and
small perturbations may give very different and unrealistic results. Therefore, a Bayesian approach as
in Ang et al. (2006a) may not be the optimal solution. We opt for a normal approximation of the full
posterior density around frequentist parameter estimates. The aforementioned choice implies that it is
not necessary to derive posterior densities based on the full likelihood function for the parameters in
(22)-(23) in order to compute the predictive density of YT+h conditional on YT and Ft = {ft}

T
t=1.

Forecasting The h-step ahead predictive density of y
(τi)
T+h made at time T conditional on YT and FT

is given by

p(y
(τi)
T+h|YT , FT ) =

∫∫
p(y

(τi)
T+h|fT+h, a

(τi), b(τi), σ(τi))p(fT+h|fT+h−1, µ,Ψ, Q)p(θ|YT , FT )dfT+h dθ

(A-27)

where p(y
(τi)
T+h|xT+h, a

(τi), b(τi), σ(τi)), and p(fT+h|fT+h−1, µ,Ψ, Q) are the conditional predictive densities
given model (22)-(23) and where p(θ|YT ,XT ) is the posterior density for parameters θ = (µ,Ψ, Q, a, b, λ0, λ1).
As we discussed in the previous paragraph we approximate p(θ|YT ,XT ) in (A-27), with a normal dis-

tribution around frequentist estimates q(θ̂|YT ,XT ). Direct simulation is then applied to computed the
following predictive density of YT+h conditional on (YT , FT ) given by

p(yτi

T+h|YT ,XT ) =

∫∫
p(yτi

T+h|fT+h, â
(τi), b̂(τi), σ(τi))p(fT+h|fT+h−1, µ̂, Ψ̂, Q̂)dfT+hdθ (A-28)

B Bayesian Model Averaging

The predictive density of y
(τi)
T+h conditional on YT and information at time T , which is denoted in this

section by DT , given M individual models is:

p(y
(τi)
T+h|YT ,DT ) =

M∑

i=1

P (m
(τi)
j |YT ,DT )p(y

(τi)
T+h|YT ,DT ,m

(τi)
j ) (B-1)
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where j = 1, ...,M where P (m
(τi)
j |YT ,DT ) is the posterior probability of model mj for maturity τi

conditional on data at time T , where p(y
(τi)
T+h|YT ,DT ,m

τi

j ) is the predictive density of y
(τi)
T+h conditional

on YT andDT given modelmj . p(y
(τi)
T+h|YT ,DT ,m

(τi)
j ) is computed separately for each model j as outlined

in the way in Appendix A. The posterior probability of model mj for maturity τi is computed as:

P (m
(τi)
j |YT ,DT ) =

p(y
(τi)
T,o |YT ,DT ,m

(τi)
j )P (m

(τi)
j )

∑k
s=1 p(y

(τi)
T,o |YT ,DT ,m

(τi)
s )P (m

(τi)
s )

(B-2)

where P (mτi

j ) is the prior probability of model mj for maturity τi. p(y
τi

T,o|YT ,DT ,m
(τi)
j ) is the predictive

likelihood given model mj which is the number derived by substituting the realized value y
(τi)
T,o in the

predictive density p(y
(τi)
T |YT ,DT ,m

(τi)
j ) given model mj .

As the notation indicates, individual models are averaged independently for any maturity.

C Prior specification

In the literature uninformative priors or diffuse informative priors are often chosen to derive posterior
densities that depend only on data information (the likelihood). We do not follow this approach as we
apply informative priors in our estimation and forecasting procedures. There are several motivations to
do so. Firstly, for models which have non-linear structures in the parameters, such as the NS1 or ATSM
models, it is very difficult to define what is non-informative. Secondly, the simulation algorithm might
get stuck in some (nonsensical) regions of the parameter space and it may require a substantial number of
simulations to converge, thereby enormously increasing estimation time. Thirdly, we think that market
operators have priors in their minds and apply these when forecasting interest rates. Finally, we want to
study and underline differences between frequentist and Bayesian inference in forecasting yields, and the
use of priors is one of the main differences if not the major difference.

We briefly discuss the specification of the prior densities for the parameters of the models presented in
Appendix A. We start with the AR model and the Normal-Gamma conjugate prior in (A-2) for parameters
(c(τi), φ(τi), ψ(τi), σ(τi)). We choose v = 0.01 to have a prior density for the vector (c(τi), φ(τi), ψ(τi))
concentrated around the mean value. The mean vector value b is chosen by calibration with the initial
in-sample data (1970:1-1993:12) and to prevent unit root type behavior. The prior for σ(τi) is less
informative. ν is fixed equal to 20 and s2 is calibrated with in-sample data.

The calibration of the prior for the VAR model is more complex due to the high dimensionality of Π
and S. Therefore, we relax our prior assumption and we choose a wider region for V and ν in (A-4)–(A-5).
B is again calibrated with initial in-sample data and values imply plausible factor loadings of the PCA
factors.

The order of prior information in the NS1 model is comparable to the VAR model. What it is new
is the parameter λ. We choose the following prior density:

λ ∼ U(3.34, 33.45) (C-1)

By restricting λ in the interval [3.34, 33.45] the curvature factor loading on β3t is at its maximum for a
maturity between 6 months and 5 years.

For the ATSM model we do not apply prior densities. We use a normal approximation of the
conditional predictive density around maximum likelihood parameter estimates. Indeed, due to the large
number of yields that we consider and the resulting large number of parameters that need to be estimated,
the speed of convergence of MCMC algorithms such as the Gibbs sampler is very slow. Moreover,
some parameters do not converge at all, and unrealistic values are simulated. However, we believe the
approximation is rational and satisfactory; therefore parameter uncertainty is still implemented in the
ATSM model.

Finally, in BMA uninformative priors are applied, and each model has a prior probability of 1/M .
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Table 1: Summary Statistics

maturity mean stdev skew kurt min max JB ρ1 ρ12 ρ24

1-month 6.049 2.797 0.913 4.336 0.794 16.162 85.671 0.968 0.690 0.402
3-month 6.334 2.896 0.871 4.237 0.876 16.020 76.380 0.974 0.708 0.415
6-month 6.543 2.927 0.788 4.016 0.958 16.481 58.796 0.976 0.723 0.444

1-year 6.755 2.860 0.661 3.763 1.040 15.822 38.907 0.975 0.733 0.474
2-year 7.032 2.724 0.644 3.672 1.299 15.650 35.240 0.978 0.748 0.526
3-year 7.233 2.594 0.685 3.663 1.618 15.765 38.796 0.979 0.763 0.560
4-year 7.392 2.510 0.728 3.607 1.999 15.821 41.640 0.980 0.771 0.582
5-year 7.483 2.449 0.759 3.478 2.351 15.005 42.454 0.982 0.786 0.607
6-year 7.611 2.406 0.791 3.437 2.663 14.979 45.236 0.983 0.797 0.626
7-year 7.659 2.344 0.841 3.488 3.003 14.975 51.562 0.983 0.787 0.623
8-year 7.728 2.320 0.841 3.365 3.221 14.936 49.798 0.984 0.809 0.651
9-year 7.767 2.317 0.877 3.427 3.389 15.018 54.765 0.985 0.813 0.656

10-year 7.745 2.266 0.888 3.496 3.483 14.925 57.117 0.985 0.796 0.647

Notes: The table shows summary statistics for end-of-month unsmoothed continuously compounded US zero-
coupon yields. The results shown are for annualized yields. The sample period is January 1970 - December
2003 (408 observations). Reported are the mean, standard deviation, skewness, kurtosis, minimum, maximum,
the Jarque-Bera test statistic for normality and the 1st, 12th and 24th sample autocorrelation.
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Table 2: Macro-economic series

group code description group code description
1 7 Personal Income (AR, Bil. Chain 2000 $) (TCB) 6 4 Houses Authorized By Build. Permits:South(Thou.U.)S.A.
1 7 Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB) 6 4 Houses Authorized By Build. Permits:West(Thou.U.)S.A.
1 7 Industrial Production Index - Total Index 7 1 Napm Inventories Index (Percent)
1 7 Industrial Production Index - Products, Total 7 7 Manufacturing And Trade Inventories (Bil. Chain 2000 $) (TCB)
1 7 Industrial Production Index - Final Products 7 8 Ratio, Mfg. And Trade Inventories To Sales (Based On Chain 2000 $) (TCB)
1 7 Industrial Production Index - Consumer Goods 8 1 Purchasing Managers’ Index (Sa)
1 7 Industrial Production Index - Durable Consumer Goods 8 1 Napm New Orders Index (Percent)
1 7 Industrial Production Index - Nondurable Consumer Goods 8 1 Napm Vendor Deliveries Index (Percent)
1 7 Industrial Production Index - Business Equipment 8 7 Mfrs’ New Orders, Consumer Goods And Materials (Bil. Chain 1982 $) (TCB)
1 7 Industrial Production Index - Materials 8 7 Mfrs’ New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB)
1 7 Industrial Production Index - Durable Goods Materials 8 7 Mfrs’ New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB)
1 7 Industrial Production Index - Nondurable Goods Materials 8 7 Mfrs’ Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB)
1 7 Industrial Production Index - Manufacturing (Sic) 9 7 S&P’s Common Stock Price Index: Composite (1941-43=10)
1 7 Industrial Production Index - Residential Utilities 9 7 S&P’s Common Stock Price Index: Industrials (1941-43=10)
1 7 Industrial Production Index - Fuels 9 8 S&P’s Composite Common Stock: Dividend Yield (% Per Annum)
1 1 Napm Production Index (Percent) 9 7 S&P’s Composite Common Stock: Price-Earnings Ratio (%,Nsa)
1 8 Capacity Utilization (Mfg) (TCB) 10 7 United States;Effective Exchange Rate(Merm)(Index No.)
2 1 Index Of Help-Wanted Advertising In Newspapers (1967=100;Sa) 10 7 Foreign Exchange Rate: Switzerland (Swiss Franc Per U.S.$)
2 1 Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf 10 7 Foreign Exchange Rate: Japan (Yen Per U.S.$)
2 7 Civilian Labor Force: Employed, Total (Thous.,Sa) 10 7 Foreign Exchange Rate: United Kingdom (Cents Per Pound)
2 7 Civilian Labor Force: Employed, Nonagric.Industries (Thous.,Sa) 10 7 Foreign Exchange Rate: Canada (Canadian $ Per U.S.$)
2 1 Unemployment Rate: All Workers, 16 Years & Over (%,Sa) 11 1 Interest Rate: Federal Funds (Effective) (% Per Annum,Nsa)
2 8 Unemploy.By Duration: Average(Mean)Duration In Weeks (Sa) 12 7 Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ck’able Dep)(Bil$,Sa)
2 7 Unemploy.By Duration: Persons Unempl.Less Than 5 Wks (Thous.,Sa) 12 7 Money Stock:M2(M1+O’nite Rps,Euro$,G/P&B/D Mmmfs&Sav&Sm Time Dep(Bil$,Sa)
2 7 Unemploy.By Duration: Persons Unempl.5 To 14 Wks (Thous.,Sa) 12 7 Money Stock: M3(M2+Lg Time Dep,Term Rp’s&Inst Only Mmmfs)(Bil$,Sa)
2 7 Unemploy.By Duration: Persons Unempl.15 Wks + (Thous.,Sa) 12 7 Money Supply - M2 In 1996 Dollars (Bci)
2 7 Unemploy.By Duration: Persons Unempl.15 To 26 Wks (Thous.,Sa) 12 7 Monetary Base, Adj For Reserve Requirement Changes(Mil$,Sa)
2 7 Unemploy.By Duration: Persons Unempl.27 Wks + (Thous,Sa) 12 7 Depository Inst Reserves:Total, Adj For Reserve Req Chgs(Mil$,Sa)
2 7 Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB) 12 7 Depository Inst Reserves:Nonborrowed,Adj Res Req Chgs(Mil$,Sa)
2 7 Employees On Nonfarm Payrolls: Total Private 12 7 Commercial & Industrial Loans Oustanding In 1996 Dollars (Bci)
2 7 Employees On Nonfarm Payrolls - Goods-Producing 12 1 Wkly Rp Lg Com’l Banks:Net Change Com’l & Indus Loans(Bil$,Saar)
2 7 Employees On Nonfarm Payrolls - Mining 12 7 Consumer Credit Outstanding - Nonrevolving(G19)
2 7 Employees On Nonfarm Payrolls - Construction 12 8 Ratio, Consumer Installment Credit To Personal Income (Pct.) (TCB)
2 7 Employees On Nonfarm Payrolls - Manufacturing 13 7 Producer Price Index: Finished Goods (82=100,Sa)
2 7 Employees On Nonfarm Payrolls - Durable Goods 13 7 Producer Price Index: Finished Consumer Goods (82=100,Sa)
2 7 Employees On Nonfarm Payrolls - Nondurable Goods 13 7 Producer Price Index:I ntermed Mat.Supplies & Components(82=100,Sa)
2 7 Employees On Nonfarm Payrolls - Service-Providing 13 7 Producer Price Index: Crude Materials (82=100,Sa)
2 7 Employees On Nonfarm Payrolls - Trade, Transportation, And Utilities 13 7 Spot market price index: bls & crb: all commodities(1967=100)
2 7 Employees On Nonfarm Payrolls - Wholesale Trade 13 7 Index Of Sensitive Materials Prices (1990=100)(Bci-99a)
2 7 Employees On Nonfarm Payrolls - Retail Trade 13 1 Napm Commodity Prices Index (Percent)
2 7 Employees On Nonfarm Payrolls - Financial Activities 13 7 Cpi-U: All Items (82-84=100,Sa)
2 7 Employees On Nonfarm Payrolls - Government 13 7 Cpi-U: Apparel & Upkeep (82-84=100,Sa)
2 7 Employee Hours In Nonag. Establishments (AR, Bil. Hours) (TCB) 13 7 Cpi-U: Transportation (82-84=100,Sa)
2 1 Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls - Goods-Producing 13 7 Cpi-U: Medical Care (82-84=100,Sa)
2 8 Avg Weekly Hrs of Prod or Nonsup Workers On Private Nonfarm Payrolls - Mfg Overtime Hours 13 7 Cpi-U: Commodities (82-84=100,Sa)
2 1 Average Weekly Hours, Mfg. (Hours) (TCB) 13 7 Cpi-U: Durables (82-84=100,Sa)
2 1 Napm Employment Index (Percent) 13 7 Cpi-U: Services (82-84=100,Sa)
3 7 Sales Of Retail Stores (Mil. Chain 2000 $) (TCB) 13 7 Cpi-U: All Items Less Food (82-84=100,Sa)
4 7 Manufacturing And Trade Sales (Mil. Chain 1996 $) (TCB) 13 7 Cpi-U: All Items Less Shelter (82-84=100,Sa)
5 7 Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB) 13 7 Cpi-U: All Items Less Midical Care (82-84=100,Sa)
6 4 Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-)(Thous.,Saar) 13 7 Pce, Impl Pr Defl:Pce (1987=100)
6 4 Housing Starts:Northeast (Thous.U.)S.A. 13 7 Pce, Impl Pr Defl:Pce; Durables (1987=100)
6 4 Housing Starts:Midwest(Thous.U.)S.A. 13 7 Pce, Impl Pr Defl:Pce; Nondurables (1996=100)
6 4 Housing Starts:South (Thous.U.)S.A. 13 7 Pce, Impl Pr Defl:Pce; Services (1987=100)
6 4 Housing Starts:West (Thous.U.)S.A. 14 7 Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm Payrolls - Goods-Producing
6 4 Housing Authorized: Total New Priv Housing Units (Thous.,Saar) 14 7 Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm Payrolls - Construction
6 4 Houses Authorized By Build. Permits:Northeast(Thou.U.)S.A 14 7 Avg Hourly Earnings of Prod or Nonsup Workers On Private Nonfarm Payrolls - Manufacturing
6 4 Houses Authorized By Build. Permits:Midwest(Thou.U.)S.A. 15 8 U. Of Mich. Index Of Consumer Expectations(Bcd-83)

Notes: The table lists the individual macro series used in the macro PCA. These are categorized in groups using: (1) real output and income, (2)
employment and hours, (3) real retail, (4) manufacturing and trade sales, (5) consumption, (6) housing starts and sales, (7) real inventories, (8) orders, (9)
stock prices, (10) exchange rates, (11) federal funds rate, (12) money and credit quantity aggregates, (13) prices indexes, (14) average hourly earnings and
(15) miscellaneous. The transformations applied to original series are coded as: 1:=no transformation (levels are used), 4:=logarithm of the level, 7:=annual
first differences of the log levels and 8:=annual first differences of the levels. The sample period is January 1970 - December 2003 (408 observations).
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Table 3: 1994:1 - 2003:12, h = 1
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 101.59 21.18 21.82 25.71 29.12 30.48 29.30 27.95 1.78 1.88 2.01 1.97 1.62 1.41 1.35

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.02 1.07 1.06 1.05 1.03 1.01 1.01 1.01 8.17 8.05 8.56 7.35 5.52 5.27 4.78
VAR 1.06 1.03 1.23 1.14 1.13 1.04 1.05 1.11 8.23 13.28 11.41 7.04 6.95 6.70 9.52
NS2-AR 1.10 1.13 1.27 1.24 1.19 1.11 1.06 1.07 5.29 6.91 7.72 12.81 13.90 6.90 8.10
NS2-VAR 1.04 0.96∗ 1.10 1.10 1.11 1.06 1.03 1.06 5.46 5.93 5.15 8.83 10.23 3.91 5.82
NS1 1.06 1.09 1.08 1.05 1.10 1.07 1.04 1.06 11.83 9.39 5.43 7.66 9.44 2.47 3.37
ATSM 1.07 0.93 1.15 1.23 1.18 1.04 1.08 1.07 4.80 12.24 16.46 11.29 -2.87 10.17 9.72

Panel B: Models with macrofactors

AR-X 0.99 0.95 0.96 0.98 0.98 0.99 1.00 0.99 2.10 2.26 2.82 1.98 0.71 0.66 0.07
VAR-X 1.02 0.99 1.03 1.01 1.12 1.02 1.02 1.03 -1.61 -2.31 -0.79 -3.27 -1.04 -0.80 2.46
NS2-AR-X 1.09 1.22 1.31 1.28 1.17 1.05 1.06 1.06 -8.90 -7.36 -6.42 -0.46 3.66 -2.03 0.36
NS2-VAR-X 1.05 1.05 1.17 1.20 1.13 1.03 1.05 1.05 -7.91 -7.44 -7.95 -3.12 1.89 -2.92 0.34
NS1-X 1.05 1.01 1.04 1.08 1.10 1.04 1.05 1.06 0.25 -1.83 -4.99 -1.19 3.54 -2.50 -0.87
ATSM-X 1.13 1.13 1.18 1.29 1.42 1.04 0.99 1.06 -12.35 -8.83 -6.32 -10.75 1.57 4.40 1.95

Panel C: Forecast combinations

FC-EW-X 1.01 0.97 1.03 1.06 1.09 1.00 1.01 1.01 1.36 -3.38 -3.09 -2.12 1.71 -0.25 0.81
FC-MSPE-X 1.00 0.96 1.01 1.04 1.07 1.00 1.01 1.01 -3.80 -2.61 -2.20 -1.48 1.69 -0.35 0.86

FC-EW-ALL 1.00 0.94 1.02 1.05 1.08 1.01 1.01 1.02 1.32 2.47 2.55 3.09 4.24 2.59 3.61
FC-MSPE-ALL 1.00 0.94 1.01 1.04 1.07 1.01 1.01 1.02 1.36 2.29 2.51 3.09 3.90 2.40 3.61

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.02 1.05 1.05 1.04 1.02 1.01 1.01 1.01 7.18 7.00 7.43 6.10 4.05 3.72 3.17
VAR 1.04 1.10 1.30 1.15 1.11 1.01 1.02 1.03 8.33 12.95 10.89 5.45 3.03 1.94 3.52
NS1 1.08 1.05 1.10 1.07 1.15 1.10 1.04 1.08 9.54 7.61 5.87 11.36 11.75 3.10 2.60
ATSM 1.08 0.93 1.15 1.23 1.19 1.05 1.09 1.07 4.75 12.22 16.30 11.20 -2.88 10.17 9.68

Panel E: Models with macrofactors

AR-X 0.99 0.95 0.96 0.98 0.98 0.99 1.00 0.99 1.44 1.45 1.68 0.88 0.21 0.14 -0.17
VAR-X 1.02 1.00 1.04 1.01 1.12 1.02 1.03 1.04 -2.01 -2.64 -0.98 -3.22 -1.21 -1.38 1.40
NS1-X 1.28 1.66 1.71 1.58 1.31 1.11 1.22 1.21 -29.48 -32.17 -33.28 -24.12 -14.52 -19.88 -17.41
ATSM-X 1.12 1.15 1.16 1.26 1.39 1.03 1.01 1.11 -11.64 -9.5 -7.53 -11.41 1.26 4.96 2.43

Panel F: Forecast Combinations

FC-EW-X 1.00 0.98 1.00 1.02 1.08 0.99 0.99 0.99 -7.98 -8.20 -7.62 -7.18 -2.53 -2.95 -2.48
FC-MSPE-X 0.99 0.95 0.97 1.00 1.05 0.99 1.00 0.99 -4.14 -4.26 -4.02 -5.23 -2.22 -2.36 -1.75
BMA-X 1.01 0.98 1.00 1.04 1.10 0.99 0.99 1.00 -7.47 -7.00 -5.94 -6.42 -1.17 0.24 -0.36

FC-EW-ALL 0.98 0.91 0.95 0.99 1.05 0.99 1.00 1.00 -1.12 -0.13 0.27 -0.20 0.37 0.46 0.73
FC-MSPE-ALL 0.99 0.93 0.97 1.00 1.04 0.99 1.00 1.00 1.01 1.44 1.83 0.67 0.37 0.73 1.22
BMA-ALL 0.99 0.91 0.95 1.00 1.06 1.00 1.01 1.02 -0.06 1.41 2.13 1.78 1.54 3.19 2.99

Notes: The table reports the [Trace] Root Mean Squared Prediction Error ([T]RMPSE) and the Mean Prediction Error (MPE) for individual yield
models, with and without macrofactors, estimated using the frequentist approach (Panels A and B) and using Bayesian inference (Panels D and
E). Panels C and F show results for different forecast combination methods for the frequentist and Bayesian estimated models. All results are for
a 1-month horizon for the out-of-sample period 1994:1 - 2003:12. The following model abbreviations are used: RW stands for the Random Walk,
(V)AR for the first-order (Vector) Autoregressive Model, NS2-(V)AR for two-step Nelson-Siegel model with a (V)AR specification for the factors,
NS1 for the one-step Nelson-Siegel model, ATSM for the affine model, FC-EW and FC-MSPE for the forecast combination based on equal weights
and MSPE-based weights respectively, BMA for the Bayesian Model Averaging forecast. The affix ’X’ indicates that macrofactors have been added as
additional variables. The first line lists the value of the forecast accuracy metrics, reported in basis points, for the Random Walk model (RW) while
all other lines reports statistics relative to those of the RW. Bold numbers indicate outperformance relative to the RW whereas ∗, ∗∗ and ∗∗∗ indicate
significant outperformance at the 90%, 95% and 99% level respectively according to the White (2000) reality check using 1000 block-bootstraps and
an average block-length of 12.
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Table 4: 1994:1 - 2003:12, h = 3
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 195.81 48.24 50.71 55.36 59.86 57.25 53.47 49.72 5.45 5.66 5.68 5.52 4.36 3.89 3.63

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.05 1.10 1.09 1.08 1.04 1.02 1.03 1.03 24.26 23.86 24.99 21.44 15.94 15.37 13.84
VAR 1.10 1.08 1.21 1.20 1.16 1.09 1.08 1.13 29.77 35.64 33.70 28.22 25.00 23.36 24.92
NS2-AR 1.13 1.16 1.24 1.26 1.23 1.13 1.07 1.06 18.75 22.00 24.90 31.29 29.75 20.85 20.23
NS2-VAR 1.05 0.99 1.08 1.11 1.11 1.06 1.03 1.05 20.68 21.03 19.86 22.52 21.30 13.94 14.94
NS1 1.06 1.09 1.11 1.10 1.10 1.06 1.02 1.03 30.07 26.59 20.94 20.81 19.30 11.39 11.52
ATSM 1.06 0.96 1.11 1.18 1.14 1.02 1.07 1.06 20.35 28.19 32.42 26.36 9.35 20.92 18.77

Panel B: Models with macrofactors

AR-X 0.98 0.95 0.96 0.98 0.98 0.99 0.99 0.99 5.05 5.33 6.66 4.49 0.87 0.98 -0.92
VAR-X 0.99 0.98 1.00 1.00 1.03 0.99 0.99 1.00 3.92 3.35 4.98 2.41 4.08 3.85 6.70
NS2-AR-X 1.13 1.24 1.27 1.28 1.20 1.08 1.07 1.04 -22.02 -18.80 -15.27 -6.22 0.62 -4.73 -2.20
NS2-VAR-X 1.07 1.04 1.13 1.19 1.16 1.05 1.05 1.03 -19.00 -18.28 -18.11 -11.69 -2.76 -6.04 -1.44
NS1-X 1.03 0.96 1.04 1.10 1.10 1.04 1.03 1.03 -3.68 -5.98 -9.16 -4.70 2.00 -3.41 -1.29
ATSM-X 1.04 0.94 1.04 1.14 1.20 1.03 1.00 1.01 -15.91 -12.73 -9.90 -13.32 1.31 5.06 3.20

Panel C: Forecast combinations

FC-EW-X 1.00 0.96 1.01 1.05 1.06 1.00 1.00 0.99 6.41 -5.92 -5.02 -3.36 1.50 -0.06 1.10
FC-MSPE-X 0.99 0.94 1.00 1.03 1.05 1.00 1.00 0.99 -6.60 -4.11 -2.99 -2.35 1.62 0.12 1.30

FC-EW-ALL 1.00 0.93 1.01 1.05 1.06 1.01 1.00 1.00 7.51 8.91 9.36 9.78 10.09 8.11 8.61
FC-MSPE-ALL 0.99 0.93 1.00 1.04 1.05 1.01 1.00 1.00 6.41 7.61 8.47 8.87 9.29 7.62 8.35

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.04 1.08 1.07 1.05 1.03 1.03 1.03 1.01 22.16 20.88 21.37 18.14 12.11 9.91 8.44
VAR 1.10 1.22 1.31 1.23 1.14 1.04 1.03 1.03 28.92 34.29 31.26 23.12 15.36 12.32 12.33
NS1 1.01 0.99 1.03 1.02 1.04 1.01 1.00 1.02 13.01 11.24 9.55 14.78 14.45 5.52 4.74
ATSM 1.06 0.96 1.11 1.19 1.15 1.03 1.08 1.06 20.38 28.22 32.39 26.34 9.31 20.88 18.74

Panel E: Models with macrofactors

AR-X 0.98 0.95 0.95 0.98 0.98 0.99 1.00 1.00 0.56 0.34 1.43 -0.68 -1.78 -1.91 -2.54
VAR-X 1.02 0.96 1.03 1.07 1.11 1.03 1.01 1.01 -3.73 -4.41 -2.29 -2.87 1.58 2.15 5.52
NS1-X 1.02 1.01 1.06 1.09 1.04 0.99 1.04 1.05 -26.61 -29.13 -30.22 -21.20 -12.03 -17.67 -15.39
ATSM-X 1.04 0.95 1.02 1.14 1.19 1.03 1.00 1.02 -15.23 -13.20 -10.87 -14.06 0.98 5.23 3.46

Panel F: Forecast Combinations

FC-EW-X 0.97 0.91 0.96 1.00 1.02 0.98 0.98 0.98 -7.91 -8.15 -7.25 -6.66 -1.38 -1.66 -1.07
FC-MSPE-X 0.97 0.92 0.96 1.00 1.02 0.98 0.98 0.98 -7.34 -7.42 -6.59 -6.31 -1.54 -1.76 -0.96
BMA-X 0.97 0.92 0.96 1.00 1.01 0.98 0.97 0.97 -6.94 -6.90 -5.96 -5.48 -0.80 -0.05 0.21

FC-EW-ALL 0.98 0.92 0.97 1.00 1.02 0.99 0.99 0.98 4.99 5.99 6.48 5.46 4.93 4.48 4.32
FC-MSPE-ALL 0.97 0.92 0.97 1.00 1.01 0.99 0.99 0.98 3.28 3.86 5.24 5.03 4.77 4.02 4.14
BMA-ALL 0.96 0.89 0.94 0.98 1.00 0.97 0.98 0.98 3.53 3.94 4.45 4.54 4.29 4.72 4.65

Notes: The table reports forecast results for a 3-month horizon for the out-of-sample period 1994:1 - 2003:12. See Table 3 for further details.
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Table 5: 1994:1 - 2003:12, h = 6
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 300.94 82.31 85.20 89.24 92.74 86.36 79.23 72.50 10.65 11.00 11.23 11.03 8.51 7.46 6.94

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.07 1.12 1.10 1.10 1.06 1.03 1.04 1.04 47.22 46.56 48.88 42.28 31.41 30.14 27.17
VAR 1.20 1.22 1.31 1.31 1.24 1.14 1.15 1.21 69.27 76.19 73.78 66.58 58.78 55.14 54.93
NS2-AR 1.12 1.12 1.18 1.22 1.20 1.11 1.06 1.06 36.29 41.06 45.85 53.30 48.84 37.99 35.49
NS2-VAR 1.05 1.03 1.09 1.11 1.10 1.04 1.02 1.06 43.61 43.72 41.92 43.02 37.89 29.00 28.65
NS1 1.06 1.12 1.13 1.11 1.08 1.02 1.00 1.03 56.81 52.17 44.51 41.30 35.00 25.65 24.61
ATSM 1.06 1.02 1.12 1.17 1.12 1.01 1.07 1.07 44.01 52.03 55.91 48.34 27.22 36.70 32.16

Panel B: Models with macrofactors

AR-X 1.00 0.96 0.97 0.99 1.00 1.01 1.00 1.01 7.82 8.15 11.00 7.23 0.26 0.43 -3.35
VAR-X 0.98 0.98 1.00 1.01 1.00 0.97 0.97 0.99 12.59 12.25 14.12 11.27 11.93 10.82 12.97
NS2-AR-X 1.13 1.22 1.24 1.26 1.18 1.06 1.05 1.04 -40.75 -35.62 -29.10 -16.33 -5.76 -10.47 -7.53
NS2-VAR-X 1.07 1.07 1.14 1.19 1.15 1.04 1.03 1.03 -34.82 -33.31 -31.66 -22.68 -9.06 -10.74 -4.78
NS1-X 1.02 0.96 1.03 1.09 1.08 1.01 1.00 1.01 -7.93 -10.18 -13.01 -7.59 0.98 -3.91 -1.40
ATSM-X 1.02 0.95 1.04 1.11 1.12 0.99 0.98 1.01 -20.74 -17.54 -13.99 -16.01 1.35 5.90 4.58

Panel C: Forecast combinations

FC-EW-X 0.99 0.96 1.01 1.04 1.04 0.99 0.98 0.99 12.94 -9.32 -7.35 -4.73 1.17 -0.07 1.06
FC-MSPE-X 0.99 0.95 1.00 1.03 1.03 0.99 0.98 0.99 -10.45 -6.25 -3.94 -2.70 1.64 0.41 1.51

FC-EW-ALL 0.99 0.95 1.00 1.04 1.03 0.98 0.98 0.99 17.23 18.96 19.96 20.13 19.03 16.47 16.19
FC-MSPE-ALL 0.99 0.95 1.00 1.03 1.03 0.98 0.98 0.99 12.94 14.64 16.57 17.24 17.02 15.00 15.14

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.06 1.10 1.09 1.08 1.05 1.06 1.05 1.08 43.11 42.73 42.73 37.02 23.16 21.58 18.40
VAR 1.24 1.43 1.47 1.38 1.23 1.10 1.13 1.22 83.78 84.30 73.68 59.39 46.56 43.69 44.29
NS1 1.00 0.99 1.02 1.02 1.01 0.99 0.99 1.02 18.60 17.02 15.39 20.25 18.53 9.24 8.19
ATSM 1.07 1.02 1.13 1.18 1.13 1.02 1.07 1.08 43.85 51.95 55.91 48.39 27.26 36.65 32.19

Panel E: Models with macrofactors

AR-X 0.98 0.96 0.96 0.99 0.99 1.00 1.00 0.99 -2.59 -2.47 -0.41 -3.48 -5.79 -5.24 -6.87
VAR-X 1.03 0.99 1.06 1.11 1.11 1.01 0.99 1.00 5.97 5.69 8.74 9.97 16.49 17.20 20.52
NS1-X 0.97 0.93 0.97 1.00 0.98 0.96 0.99 1.01 -22.14 -24.31 -25.13 -16.39 -8.20 -13.89 -12.20
ATSM-X 1.02 0.96 1.04 1.11 1.12 0.99 0.98 1.01 -19.57 -17.27 -14.55 -16.56 1.12 6.34 5.08

Panel F: Forecast Combinations

FC-EW-X 0.97 0.93 0.97 1.00 1.00 0.97 0.96 0.97 -5.54 -5.47 -4.03 -3.09 2.42 2.37 2.69
FC-MSPE-X 0.97 0.93 0.97 1.00 1.00 0.97 0.97 0.97 -6.45 -5.92 -4.46 -3.48 1.88 2.07 2.76
BMA-X 0.96 0.95 0.97 0.99 0.99 0.96 0.96 0.96 -3.07 -3.06 -2.49 -1.86 1.98 2.44 2.56

FC-EW-ALL 0.98 0.95 0.99 1.02 1.01 0.97 0.98 1.00 17.96 18.74 18.62 16.63 14.18 13.67 12.95
FC-MSPE-ALL 0.98 0.94 0.98 1.01 1.00 0.98 0.98 1.00 11.49 11.91 12.69 13.03 12.87 12.44 12.08
BMA-ALL 0.96 0.95 0.97 0.98 0.98 0.96 0.96 0.97 13.39 13.62 13.87 14.40 11.25 10.56 10.39

Notes: The table reports forecast results for a 6-month horizon for the out-of-sample period 1994:1 - 2003:12. See Table 3 for further details.
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Table 6: 1994:1 - 2003:12, h = 12
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 452.51 140.61 145.03 146.89 141.77 121.21 108.58 98.96 20.19 21.12 22.31 23.63 21.28 19.89 19.46

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.10 1.11 1.09 1.10 1.09 1.07 1.09 1.10 89.35 88.94 93.87 83.71 65.93 63.88 58.80
VAR 1.43 1.41 1.44 1.42 1.40 1.41 1.46 1.55 155.02 163.93 161.27 153.28 140.45 134.11 131.37
NS2-AR 1.10 1.04 1.06 1.10 1.14 1.13 1.12 1.13 68.58 74.76 81.40 90.09 83.69 71.35 67.40
NS2-VAR 1.08 1.07 1.08 1.08 1.09 1.07 1.07 1.12 86.90 87.04 84.89 84.54 74.75 63.89 61.78
NS1 1.09 1.15 1.13 1.10 1.09 1.05 1.04 1.08 107.50 101.82 92.12 85.39 72.84 61.54 58.92
ATSM 1.10 1.07 1.11 1.14 1.12 1.04 1.12 1.13 89.05 97.48 101.13 91.91 65.84 72.52 64.33

Panel B: Models with macrofactors

AR-X 1.02 0.95 0.98 1.00 1.03 1.06 1.05 1.06 11.07 11.61 17.73 12.34 1.92 3.15 -3.65
VAR-X 0.98 0.97 0.98 0.99 0.99 0.96 0.97 0.99 28.96 29.34 32.20 30.36 31.29 29.39 30.70
NS2-AR-X 1.14 1.19 1.18 1.19 1.16 1.09 1.09 1.08 -67.91 -60.28 -49.68 -31.37 -13.85 -16.83 -12.59
NS2-VAR-X 1.11 1.13 1.14 1.17 1.15 1.07 1.06 1.05 -59.80 -56.35 -51.31 -37.22 -15.69 -14.98 -7.08
NS1-X 1.01 0.96 1.00 1.05 1.06 1.01 1.00 1.01 -11.20 -12.66 -13.99 -6.11 6.09 2.14 5.35
ATSM-X 1.02 0.99 1.04 1.07 1.08 0.99 1.00 1.02 -26.24 -21.77 -16.85 -16.25 6.08 12.33 11.92

Panel C: Forecast combinations

FC-EW-X 1.00 0.97 0.99 1.02 1.03 1.00 1.00 1.00 26.49 -12.71 -8.51 -3.52 5.30 5.01 6.30
FC-MSPE-X 1.00 0.97 0.99 1.01 1.02 1.00 1.00 1.00 -14.99 -8.97 -4.50 -0.89 5.79 5.70 6.88

FC-EW-ALL 0.99 0.95 0.97 1.00 1.01 0.99 1.00 1.01 37.80 40.38 42.70 43.41 41.59 38.64 37.44
FC-MSPE-ALL 0.99 0.95 0.98 1.00 1.01 0.99 0.99 1.01 26.49 29.52 33.62 35.52 35.30 33.10 32.60

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.07 1.10 1.08 1.08 1.06 1.06 1.06 1.10 81.12 79.70 82.42 70.27 48.86 48.59 42.00
VAR 1.64 1.77 1.76 1.68 1.58 1.52 1.57 1.65 215.49 220.22 208.07 186.39 155.81 145.11 138.65
NS1 0.99 0.99 1.00 1.00 1.00 0.97 0.98 1.01 28.14 27.49 27.08 32.77 31.35 21.92 20.64
ATSM 1.10 1.08 1.12 1.14 1.12 1.05 1.13 1.13 89.24 97.67 101.21 91.96 65.83 72.47 64.27

Panel E: Models with macrofactors

AR-X 1.01 0.96 0.98 1.01 1.03 1.04 1.03 1.02 -9.81 -10.10 -5.55 -9.29 -10.46 -7.79 -9.99
VAR-X 1.14 1.09 1.10 1.13 1.14 1.13 1.15 1.20 74.36 75.14 79.24 81.04 85.27 83.28 84.07
NS1-X 0.96 0.94 0.96 0.97 0.97 0.95 0.96 0.98 -13.08 -14.32 -13.86 -4.09 4.45 -1.39 0.38
ATSM-X 1.02 0.99 1.03 1.07 1.07 0.99 1.00 1.04 -25.79 -22.52 -17.99 -17.20 5.53 12.55 12.22

Panel F: Forecast Combinations

FC-EW-X 0.96 0.93 0.96 0.98 0.99 0.96 0.97 0.98 9.17 9.86 12.83 14.82 21.21 21.31 21.23
FC-MSPE-X 0.97 0.95 0.97 0.99 1.00 0.97 0.97 0.98 3.90 5.45 8.86 11.15 18.31 19.66 20.80
BMA-X 0.96 0.96 0.97 0.98 0.97 0.96 0.96 0.96 7.93 8.17 9.29 11.69 15.55 15.70 15.99

FC-EW-ALL 1.00 0.98 1.00 1.01 1.01 0.99 1.01 1.03 51.10 52.71 53.66 50.61 45.32 43.85 41.30
FC-MSPE-ALL 0.98 0.96 0.98 1.00 1.00 0.99 0.99 1.01 30.92 32.05 34.84 35.61 35.81 35.55 35.14
BMA-ALL 0.97 0.97 0.98 0.98 0.97 0.96 0.96 0.97 27.95 28.82 29.86 32.83 30.63 28.43 27.64

Notes: The table reports forecast results for a 12-month horizon for the out-of-sample period 1994:1 - 2003:12. See Table 3 for further details.
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Table 7: 1994:1 - 1998:12, h=1
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 95.45 17.79 19.05 25.15 28.18 28.70 27.53 26.60 -2.28 -2.05 -1.56 -0.52 1.04 1.47 2.40

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.00 0.97 0.98 0.99 1.00 1.01 1.01 1.02 3.63 3.75 4.53 4.62 5.03 5.45 6.00
VAR 1.02 1.02 1.31 1.05 1.03 1.02 1.05 1.15 5.94 12.98 6.29 -0.69 5.96 6.94 8.06
NS2-AR 0.96 0.90 0.98 0.92 0.97 1.03 0.98 0.98 -0.67 -1.23 -3.46 4.29 12.15 5.64 2.60
NS2-VAR 1.02 0.97 1.06 0.98 1.03 1.06 1.02 1.04 4.36 2.21 -2.30 3.14 10.33 4.30 1.82
NS1 1.02 1.08 1.04 0.95 1.01 1.02 1.01 1.05 10.63 6.46 -0.92 1.61 7.30 1.42 -0.77
ATSM 1.05 0.87 1.04 1.00 1.08 1.05 1.12 1.06 2.33 9.31 9.78 4.37 -2.19 12.14 7.17

Panel B: Models with macrofactors

AR-X 0.96 0.88 0.88 0.93 0.95∗ 0.97 0.97 0.97 -1.31 -1.15 -0.67 -1.08 -0.65 -0.33 0.18
VAR-X 0.97 0.94 0.98 0.93 1.05 0.96 0.98 1.03 -6.24 -7.13 -7.59 -13.72 -5.89 -3.10 -0.28
NS2-AR-X 1.02 1.32 1.33 1.20 1.03 0.94 0.99 1.02 -18.04 -18.91 -21.30 -12.86 -1.58 -6.51 -8.11
NS2-VAR-X 1.03 1.17 1.27 1.22 1.08 0.97 1.01 1.04 -14.27 -16.61 -21.01 -14.28 -2.27 -6.18 -6.75
NS1-X 1.01 0.87 0.99 1.09 1.05 0.97 1.03 1.08 -5.30 -9.14 -15.68 -11.30 -1.89 -6.60 -7.84
ATSM-X 1.16 1.38 1.37 1.31 1.52 0.93 0.91 1.05 -17.50 -17.33 -21.54 -29.50 -3.74 2.78 -4.08

Panel C: Forecast combinations

FC-EW-X 0.98 0.98 1.04 1.03 1.05 0.95 0.96 1.00 -2.94 -10.33 -12.76 -11.89 -2.14 -2.64 -3.50
FC-MSPE-X 0.97 0.96 1.01 1.00 1.03 0.95 0.97 1.00 -9.28 -9.09 -10.90 -10.29 -1.94 -2.73 -3.16

FC-EW-ALL 0.96 0.87 0.94 0.95 1.00 0.97 0.98 1.00 -2.98 -2.99 -5.80 -5.07 1.81 1.34 0.03
FC-MSPE-ALL 0.96 0.87 0.94 0.95 1.00 0.97 0.98 1.00 -2.94 -3.03 -5.29 -4.52 1.56 1.11 0.26

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.00 0.97 0.98 0.99 1.00 1.00 1.01 1.01 2.67 2.74 3.46 3.42 3.55 3.87 4.34
VAR 1.02 1.19 1.45 1.14 1.07 0.98 0.99 1.03 6.24 12.71 6.33 -1.64 1.17 0.43 -0.82
NS1 1.03 0.99 1.06 0.97 1.03 1.05 1.03 1.09 7.07 4.77 0.01 4.95 10.02 3.21 0.20
ATSM 1.05 0.87 1.04 1.01 1.08 1.06 1.12 1.07 2.37 9.36 9.76 4.35 -2.18 12.05 6.99

Panel E: Models with macrofactors

AR-X 0.97 0.90 0.91 0.95 0.97 0.98 0.98 0.98 -2.07 -2.15 -2.20 -2.54 -1.35 -1.07 -0.32
VAR-X 0.97 0.97 1.01 0.95 1.05 0.97 0.98 1.03 -6.75 -7.53 -7.72 -13.35 -5.98 -3.93 -2.00
NS1-X 1.30 1.82 1.89 1.71 1.39 1.09 1.20 1.23 -28.64 -32.11 -36.70 -28.48 -14.50 -18.19 -18.43
ATSM-X 1.16 1.41 1.40 1.31 1.52 0.94 0.94 1.03 -17.17 -17.90 -22.16 -29.46 -4.18 3.01 -4.47

Panel F: Forecast Combinations

FC-EW-X 1.00 1.06 1.10 1.07 1.10 0.96 0.97 0.99 -11.38 -12.35 -14.07 -14.87 -5.00 -3.74 -4.56
FC-MSPE-X 0.99 0.99 1.02 1.00 1.06 0.96 0.97 0.99 -8.17 -8.81 -10.27 -12.15 -4.60 -3.40 -3.56
BMA-X 1.00 1.08 1.10 1.06 1.11 0.94 0.94 0.98 -11.30 -11.95 -13.78 -15.61 -4.34 -0.70 -4.35

FC-EW-ALL 0.97 0.91 0.96 0.97 1.02 0.97 0.98 1.00 -4.29 -3.57 -5.64 -7.03 -1.38 0.09 -1.35
FC-MSPE-ALL 0.97 0.91 0.96 0.96 1.02 0.97 0.98 1.00 -2.57 -2.38 -3.95 -5.69 -1.32 0.20 -0.61
BMA-ALL 0.97 0.91 0.95 0.95 1.01 0.97 0.99 1.00 -3.20 -2.17 -4.24 -5.51 -0.18 3.03 -0.14

Notes: The table reports forecast results for a 1-month horizon for the out-of-sample period 1994:1 - 1998:12. See Table 3 for further details.
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Table 8: 1994:1 - 1998:12, h=3
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 194.55 37.86 44.46 54.74 61.30 58.86 56.01 51.56 -6.52 -5.76 -4.81 -1.41 2.58 4.46 6.32

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.00 0.95 0.96 0.97 0.99 1.01 1.02 1.03 11.15 11.56 13.33 13.83 14.41 16.25 16.97
VAR 1.02 1.02 1.14 1.00 0.97 1.02 1.05 1.17 20.60 25.99 17.60 11.06 19.38 21.35 23.09
NS2-AR 0.88 0.74 0.82 0.81 0.86 0.93 0.91∗∗ 0.95 2.00 2.22 1.32 10.97 21.57 15.83 13.41
NS2-VAR 0.99 0.97 1.01 0.95 0.98 1.02 1.00 1.06 14.33 10.86 4.62 8.83 17.64 12.92 11.73
NS1 0.98 1.06 1.02 0.93 0.95 0.97 0.97 1.04 23.81 16.93 6.11 6.12 12.71 7.75 6.38
ATSM 1.01 0.89 1.01 0.98 1.01 1.02 1.07 1.08 12.86 18.56 18.05 12.47 6.88 21.61 16.71

Panel B: Models with macrofactors

AR-X 0.96 0.89 0.90∗∗ 0.93∗∗∗ 0.96∗∗ 0.98 0.97 0.98 -6.89 -6.54 -5.41 -5.44 -4.02 -2.19 -1.67
VAR-X 0.95 0.90 0.96 0.95∗ 0.97 0.95 0.95 1.02 -10.26 -10.65 -10.53 -14.51 -2.98 0.71 4.44
NS2-AR-X 1.01 1.39 1.28 1.16 1.01 0.90 0.93 0.97 -47.03 -47.28 -48.12 -36.14 -16.35 -18.00 -16.74
NS2-VAR-X 1.04 1.24 1.24 1.19 1.08 0.96 0.98 1.02 -38.65 -42.07 -47.22 -38.78 -17.04 -16.35 -12.72
NS1-X 0.97 0.88 1.00 1.04 1.01 0.94 0.97 1.04 -21.26 -27.01 -35.22 -29.95 -13.42 -15.29 -14.20
ATSM-X 1.01 1.12 1.13 1.10 1.16 0.92 0.90 0.98 -32.94 -35.02 -38.60 -44.01 -11.02 -2.14 -6.62

Panel C: Forecast combinations

FC-EW-X 0.95 0.96 1.00 0.99 0.99 0.94 0.94 0.98 -7.44 -24.91 -27.13 -24.32 -8.89 -6.97 -5.88
FC-MSPE-X 0.95 0.94 0.98 0.97 0.98 0.94 0.94 0.98 -23.36 -22.23 -23.57 -21.95 -8.28 -6.51 -5.33

FC-EW-ALL 0.92 0.80 0.88 0.90 0.93 0.94 0.94 0.99 -6.06 -6.79 -9.91 -8.23 2.33 3.61 3.62
FC-MSPE-ALL 0.92 0.82 0.90 0.91 0.94 0.94 0.95 0.99 -7.44 -8.15 -10.29 -8.55 1.73 3.16 3.63

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.00 0.93 0.94 0.96 0.99 1.01 1.04 1.02 9.45 7.54 9.43 10.49 10.50 9.65 10.25
VAR 1.05 1.33 1.37 1.16 1.05 1.00 0.99 1.04 19.40 25.17 16.52 6.93 8.01 7.10 5.87
NS1 0.98 0.92 1.00 0.97 0.98 0.99 0.99 1.05 3.22 1.31 -2.44 4.07 11.77 5.81 3.23
ATSM 1.01 0.88 1.00 0.97 1.00 1.02 1.07 1.08 12.71 18.43 17.90 12.31 6.76 21.61 16.77

Panel E: Models with macrofactors

AR-X 0.98 0.96 0.95∗ 0.97 0.98 0.99 0.99 0.99 -11.03 -12.06 -11.31 -11.63 -6.56 -5.58 -4.11
VAR-X 0.94 0.90 0.97 0.96 0.99 0.93 0.93 1.01 -19.37 -22.63 -24.83 -27.75 -12.66 -6.93 -1.77
NS1-X 1.05 1.21 1.23 1.18 1.07 0.98 1.01 1.06 -34.42 -37.60 -41.44 -31.16 -13.45 -16.20 -15.53
ATSM-X 1.00 1.12 1.13 1.09 1.15 0.91 0.89 0.93 -32.50 -35.62 -39.25 -44.26 -11.56 -2.33 -7.09

Panel F: Forecast Combinations

FC-EW-X 0.96 0.96 1.00 1.00 1.00 0.95 0.95 0.98 -20.77 -22.73 -24.33 -23.24 -8.33 -5.32 -4.44
FC-MSPE-X 0.96 0.96 1.00 0.99 1.00 0.95 0.95 0.98 -20.34 -21.85 -23.04 -21.89 -8.15 -5.40 -4.27
BMA-X 0.94 0.96 0.99 0.98 0.98 0.93 0.93 0.95 -19.87 -21.27 -22.46 -21.02 -7.62 -3.84 -4.07

FC-EW-ALL 0.95 0.87 0.93 0.94 0.96 0.96 0.96 0.99 -6.56 -6.80 -8.91 -9.16 -0.51 1.95 1.55
FC-MSPE-ALL 0.95 0.88 0.94 0.95 0.97 0.96 0.97 0.99 -8.63 -9.18 -9.89 -9.05 -0.48 1.46 1.45
BMA-ALL 0.93 0.85 0.91∗ 0.92∗∗ 0.94 0.93 0.94 0.97 -7.11 -7.70 -9.66 -9.14 -1.20 2.32 1.18s

Notes: The table reports forecast results for a 3-month horizon for the out-of-sample period 1994:1 - 1998:12. See Table 3 for further details.
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Table 9: 1994:1 - 1998:12, h=6
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 293.03 62.98 70.70 82.43 91.58 88.63 83.33 78.96 -15.03 -13.94 -12.81 -5.97 2.67 6.41 10.27

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.99 0.90 0.92 0.93 0.96 1.00 1.02 1.04 20.43 20.80 23.43 24.26 26.04 29.64 31.25
VAR 1.03 1.03 1.08 0.97 0.93 1.03 1.09 1.19 44.27 49.17 40.33 35.27 45.62 48.15 50.05
NS2-AR 0.82 0.64∗ 0.70∗∗ 0.72∗∗∗ 0.77∗∗∗ 0.87∗∗∗ 0.88∗∗∗ 0.93 7.61 8.80 9.54 21.55 35.47 30.65 28.98
NS2-VAR 0.98 0.95 0.96 0.92 0.93 0.99 1.01 1.07 25.31 21.24 14.32 18.45 29.46 25.95 25.90
NS1 0.95 1.03 0.97 0.89 0.88 0.93 0.95 1.01 39.84 30.64 16.95 15.12 23.24 19.33 18.85
ATSM 1.00 0.90 0.97 0.96 0.96 1.00 1.07 1.08 24.90 30.14 29.44 24.24 20.10 35.30 30.37

Panel B: Models with macrofactors

AR-X 0.99 0.93 0.96 0.96 0.99 1.01 1.00 1.01 -19.76 -19.83 -17.68 -16.80 -12.36 -8.53 -7.34
VAR-X 0.94 0.90∗∗ 0.95∗∗ 0.95∗∗ 0.94∗∗ 0.93∗ 0.95∗∗ 1.00 -15.47 -15.83 -15.17 -16.26 0.79 5.56 10.43
NS2-AR-X 1.04 1.44 1.33 1.20 1.02 0.90∗ 0.92∗ 0.95 -84.24 -83.13 -81.22 -64.07 -33.80 -31.69 -27.20
NS2-VAR-X 1.08 1.35 1.32 1.26 1.12 0.97 0.98 1.01 -74.23 -77.25 -80.87 -68.03 -34.23 -28.67 -20.73
NS1-X 0.94 0.92 1.00 1.04 0.99 0.91 0.93 0.98 -41.63 -48.76 -57.80 -50.48 -25.39 -24.08 -20.37
ATSM-X 1.00 1.11 1.14 1.09 1.09 0.90 0.90 0.98 -56.03 -59.29 -61.34 -61.86 -19.17 -6.95 -8.89

Panel C: Forecast combinations

FC-EW-X 0.96 1.00 1.02 1.01 0.98 0.93 0.93∗ 0.97 -16.92 -45.43 -46.70 -40.50 -17.36 -12.56 -9.12
FC-MSPE-X 0.95 0.98 1.01 0.99 0.97 0.93∗ 0.94∗ 0.97 -43.77 -41.71 -41.86 -36.87 -16.23 -11.66 -8.13

FC-EW-ALL 0.88 0.76∗∗ 0.83∗∗∗ 0.85∗∗∗ 0.87∗∗∗ 0.90∗ 0.92 0.97 -11.08 -12.10 -14.84 -11.12 4.49 7.77 9.35
FC-MSPE-ALL 0.90 0.81∗∗ 0.87∗∗∗ 0.89∗∗∗ 0.90∗∗∗ 0.91 0.93∗ 0.97 -16.92 -17.58 -18.64 -13.98 2.52 6.28 8.75

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.00 0.88 0.90 0.94 0.98 1.02 1.04 1.07 16.34 16.71 16.84 19.82 15.95 20.62 20.59
VAR 1.09 1.49 1.39 1.10 0.92 0.96 1.05 1.18 58.24 55.78 37.80 24.25 27.97 31.20 34.02
NS1 0.97 0.93 0.99 0.99 0.97 0.97 0.99 1.03 -5.47 -7.20 -10.05 -0.74 11.97 7.56 6.33
ATSM 1.01 0.91 0.98 0.96 0.97 1.00 1.07 1.08 24.68 30.04 29.43 24.32 20.26 35.35 30.44

Panel E: Models with macrofactors

AR-X 1.01 1.02 1.01 1.02 1.01 1.02 1.00 1.00 -30.40 -31.23 -30.11 -28.82 -19.10 -15.34 -12.35
VAR-X 0.88 0.81 0.88 0.90 0.90 0.86 0.89 0.97 -28.56 -32.77 -35.02 -33.27 -8.86 -0.31 7.14
NS1-X 1.01 1.11 1.14 1.12 1.02 0.96 0.98 1.01 -46.42 -49.24 -51.76 -38.20 -14.64 -15.19 -13.50
ATSM-X 0.99 1.11 1.13 1.09 1.08 0.90 0.90 0.96 -54.90 -58.93 -60.91 -61.54 -19.10 -6.87 -8.07

Panel F: Forecast Combinations

FC-EW-X 0.95 0.96 1.00 0.99 0.98 0.93 0.94 0.97 -35.06 -37.22 -38.12 -33.56 -11.81 -6.26 -3.30
FC-MSPE-X 0.96 0.98 1.01 1.00 0.98 0.94 0.95 0.97 -36.14 -37.27 -37.68 -32.83 -12.04 -6.57 -3.16
BMA-X 0.95 0.97 0.99 0.99 0.97∗ 0.93∗ 0.93∗ 0.95 -31.44 -32.47 -32.96 -27.66 -9.85 -4.58 -2.53

FC-EW-ALL 0.93 0.85 0.90∗ 0.91 0.92∗ 0.94 0.96 1.00 -9.06 -10.09 -12.95 -11.13 1.90 7.05 8.32
FC-MSPE-ALL 0.94 0.88∗ 0.93∗∗ 0.94 0.94∗ 0.94 0.96 1.00 -15.85 -17.20 -18.86 -14.34 0.77 5.88 7.90
BMA-ALL 0.94 0.89∗∗ 0.92∗∗ 0.92∗∗∗ 0.93∗∗∗ 0.95 0.95 0.97 -11.13 -10.78 -11.76 -6.81 2.56 6.55 7.93

Notes: The table reports forecast results for a 6-month horizon for the out-of-sample period 1994:1 - 1998:12. See Table 3 for further details.
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Table 10: 1994:1 - 1998:12, h=12
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 423.60 104.32 113.44 126.05 133.67 124.01 114.05 109.81 -35.86 -34.57 -32.03 -20.50 0.76 9.15 18.70

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.96 0.82 0.83 0.85 0.91 1.00 1.04 1.07 36.64 36.42 41.40 40.36 46.74 54.33 59.05
VAR 1.14 1.15 1.13 1.00 0.97 1.13 1.24 1.31 104.26 110.56 102.73 100.03 110.86 112.49 113.02
NS2-AR 0.82 0.66∗∗∗ 0.67∗∗∗ 0.66∗∗∗ 0.73∗∗∗ 0.89∗∗∗ 0.93∗∗ 0.97 26.82 29.65 33.05 48.71 67.32 63.70 62.93
NS2-VAR 0.94 0.87 0.86 0.82 0.85 0.97 1.01 1.08 40.75 37.52 32.09 38.54 53.34 51.02 51.95
NS1 0.93 0.98 0.91 0.82 0.83∗ 0.92 0.96 1.02 66.46 56.37 41.92 40.54 51.80 49.07 49.57
ATSM 0.96 0.86 0.89 0.87 0.89 0.97 1.07 1.08 42.83 49.07 49.65 45.95 44.40 60.22 54.94

Panel B: Models with macrofactors

AR-X 1.01 0.93∗∗∗ 0.97∗∗∗ 0.96∗∗∗ 1.00 1.05 1.02 1.04 -50.63 -52.23 -46.08 -44.37 -30.34 -20.44 -17.28
VAR-X 0.90 0.86∗∗∗ 0.89∗∗∗ 0.89∗∗∗ 0.89∗∗∗ 0.90∗∗∗ 0.93∗∗∗ 0.97 -27.07 -27.80 -26.37 -20.80 8.36 15.69 22.54
NS2-AR-X 1.09 1.50 1.38 1.23 1.06 0.92∗∗ 0.94∗∗ 0.94∗∗ -134.84 -130.74 -123.38 -97.34 -51.69 -44.56 -35.86
NS2-VAR-X 1.15 1.49 1.42 1.31 1.16 1.00∗ 1.00∗∗ 1.00 -133.10 -133.27 -131.46 -109.16 -57.64 -45.99 -32.89
NS1-X 0.91 0.96 0.99 0.99 0.93∗∗ 0.85∗∗∗ 0.87∗∗∗ 0.90∗∗ -71.77 -78.77 -86.03 -72.93 -34.35 -28.61 -21.35
ATSM-X 0.98 1.13 1.13 1.06 1.02 0.87∗∗∗ 0.88∗∗∗ 0.94∗∗ -94.59 -96.24 -94.20 -87.62 -30.65 -13.17 -11.33

Panel C: Forecast combinations

FC-EW-X 0.95 1.04 1.04 1.00 0.96∗∗ 0.91∗∗∗ 0.92∗∗∗ 0.94∗∗ -33.44 -79.09 -77.08 -64.67 -27.93 -18.28 -11.07
FC-MSPE-X 0.96 1.03 1.03 0.99 0.96∗∗ 0.92∗∗∗ 0.92∗∗∗ 0.95∗∗ -78.27 -76.29 -73.40 -61.88 -27.49 -17.52 -10.34

FC-EW-ALL 0.93 0.71∗∗∗ 0.75∗∗∗ 0.76∗∗∗ 0.79∗∗∗ 0.85∗∗∗ 0.89∗∗∗ 0.94 -17.70 -18.00 -18.36 -10.66 13.76 20.22 24.15
FC-MSPE-ALL 0.86 0.80∗∗∗ 0.82∗∗∗ 0.82∗∗∗ 0.83∗∗∗ 0.87∗∗∗ 0.90∗∗∗ 0.94∗ -33.44 -32.78 -30.50 -20.69 6.74 14.57 20.19

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 0.96 0.80 0.85 0.86 0.93 0.99 1.02 1.10 27.54 26.81 29.36 26.60 26.53 39.01 42.58
VAR 1.32 1.69 1.58 1.30 1.13 1.19 1.29 1.36 161.27 163.47 146.45 129.57 120.95 117.37 113.38
NS1 0.95 0.94∗∗ 0.98 0.96∗∗∗ 0.94∗∗ 0.95∗∗∗ 0.97∗∗∗ 1.00 -25.97 -27.82 -28.51 -13.14 11.98 11.35 13.26
ATSM 0.96 0.86 0.90 0.87 0.89 0.97 1.07 1.08 43.14 49.41 49.77 46.04 44.26 59.98 54.65

Panel E: Models with macrofactors

AR-X 1.05 1.09 1.10 1.07 1.06 1.06∗ 1.03∗∗ 1.02∗ -73.04 -75.62 -73.14 -67.84 -44.11 -33.73 -26.11
VAR-X 0.74 0.59∗∗∗ 0.58∗∗∗ 0.58∗∗∗ 0.62∗∗∗ 0.77∗∗∗ 0.86∗ 0.95 16.50 12.81 11.45 16.71 45.69 52.38 58.44
NS1-X 0.99 1.07 1.08 1.06 1.00 0.94∗∗∗ 0.96∗∗∗ 0.97∗ -69.71 -72.66 -73.03 -53.26 -16.30 -12.64 -7.04
ATSM-X 0.98 1.13 1.13 1.06 1.02 0.87∗∗∗ 0.88∗∗∗ 0.96∗∗ -94.29 -96.06 -94.25 -87.45 -31.13 -13.65 -10.12

Panel F: Forecast Combinations

FC-EW-X 0.89 0.87∗∗∗ 0.90∗∗∗ 0.89∗∗∗ 0.89∗∗∗ 0.88∗∗∗ 0.90∗∗∗ 0.93∗∗ -51.28 -53.22 -52.20 -42.47 -9.02 0.30 6.77
FC-MSPE-X 0.92 0.94∗∗∗ 0.96∗∗∗ 0.94∗∗∗ 0.93∗∗∗ 0.91∗∗∗ 0.91∗∗∗ 0.93∗∗ -58.90 -59.51 -57.57 -47.24 -12.64 -1.42 7.58
BMA-X 0.93 0.96∗∗∗ 0.97∗∗∗ 0.96∗∗∗ 0.94∗∗∗ 0.92∗∗∗ 0.92∗∗∗ 0.94∗∗∗ -51.23 -51.79 -50.77 -38.94 -9.99 -0.93 6.01

FC-EW-ALL 0.85 0.72∗∗∗ 0.76∗∗∗ 0.77∗∗∗ 0.81∗∗∗ 0.88∗∗∗ 0.92∗∗ 0.97 -5.60 -6.02 -7.10 -2.58 17.63 25.47 28.64
FC-MSPE-ALL 0.89 0.81∗∗∗ 0.85∗∗∗ 0.86∗∗∗ 0.87∗∗∗ 0.91∗∗∗ 0.93∗∗∗ 0.97 -28.23 -29.21 -28.13 -19.19 7.94 17.81 24.74
BMA-ALL 0.91 0.88∗∗∗ 0.89∗∗∗ 0.89∗∗∗ 0.90∗∗∗ 0.92∗∗∗ 0.94∗∗∗ 0.95 -27.78 -27.01 -26.38 -13.88 7.95 14.76 20.32

Notes: The table reports forecast results for a 12-month horizon for the out-of-sample period 1994:1 - 1998:12. See Table 3 for further details.
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Table 11: 1999:1 - 2003:12, h=1
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 107.37 24.09 24.29 26.26 30.02 32.17 30.97 29.24 5.85 5.81 5.59 4.47 2.21 1.36 0.30

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.04 1.12 1.11 1.10 1.05 1.01 1.01 1.01 12.71 12.34 12.59 10.08 6.01 5.09 3.56
VAR 1.08 1.04 1.18 1.22 1.22 1.05 1.04 1.07 10.53 13.57 16.53 14.77 7.95 6.46 10.98
NS2-AR 1.19 1.24 1.42 1.48 1.36 1.16 1.11 1.14 11.24 15.04 18.90 21.34 15.65 8.16 13.61
NS2-VAR 1.06 0.96 1.13 1.20 1.18 1.06 1.04 1.07 6.56 9.64 12.59 14.51 10.12 3.52 9.82
NS1 1.09 1.10 1.11 1.13 1.17 1.10 1.05 1.06 13.02 12.31 11.79 13.71 11.57 3.53 7.51
ATSM 1.09 0.96 1.21 1.41 1.27 1.03 1.05 1.07 7.27 15.18 23.14 18.21 -3.55 8.20 12.28

Panel B: Models with macrofactors

AR-X 1.01 0.99 1.00 1.02 1.00 1.01 1.01 1.01 5.51 5.67 6.30 5.04 2.06 1.66 -0.04
VAR-X 1.06 1.02 1.06 1.07 1.18 1.06 1.06 1.04 3.02 2.50 6.02 7.18 3.80 1.50 5.19
NS2-AR-X 1.14 1.17 1.29 1.34 1.28 1.13 1.12 1.10 0.25 4.19 8.46 11.95 8.91 2.46 8.82
NS2-VAR-X 1.07 0.98 1.10 1.18 1.17 1.07 1.07 1.06 -1.55 1.72 5.12 8.04 6.04 0.34 7.44
NS1-X 1.07 1.08 1.06 1.08 1.14 1.10 1.06 1.05 5.80 5.48 5.70 8.92 8.97 1.59 6.09
ATSM-X 1.10 0.96 1.04 1.26 1.33 1.12 1.05 1.07 -7.19 -0.33 8.91 8.00 6.87 6.02 7.97

Panel C: Forecast combinations

FC-EW-X 1.03 0.96 1.03 1.09 1.13 1.05 1.04 1.03 5.66 3.58 6.58 7.66 5.55 2.13 5.11
FC-MSPE-X 1.03 0.96 1.02 1.07 1.11 1.04 1.04 1.02 1.67 3.87 6.50 7.33 5.31 2.04 4.87

FC-EW-ALL 1.04 0.97 1.06 1.14 1.15 1.04 1.04 1.03 5.62 7.93 10.89 11.25 6.66 3.84 7.19
FC-MSPE-ALL 1.03 0.97 1.05 1.11 1.13 1.04 1.03 1.03 5.66 7.61 10.31 10.70 6.23 3.69 6.95

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.03 1.10 1.08 1.08 1.03 1.01 1.01 1.00 11.69 11.26 11.40 8.78 4.54 3.58 2.00
VAR 1.05 1.05 1.19 1.16 1.14 1.03 1.04 1.04 10.43 13.19 15.45 12.54 4.89 3.46 7.86
NS1 1.11 1.08 1.12 1.14 1.25 1.13 1.05 1.08 12.02 10.46 11.73 17.77 13.49 2.98 5.00
ATSM 1.09 0.96 1.20 1.41 1.27 1.03 1.06 1.08 7.12 15.08 22.84 18.05 -3.57 8.29 12.37

Panel E: Models with macrofactors

AR-X 1.00 0.97 0.99 1.01 1.00 1.00 1.01 1.01 4.95 5.05 5.57 4.31 1.77 1.34 -0.02
VAR-X 1.06 1.01 1.05 1.06 1.17 1.06 1.07 1.04 2.73 2.25 5.75 6.90 3.57 1.17 4.81
NS1-X 1.25 1.57 1.58 1.46 1.23 1.12 1.23 1.18 -30.33 -32.23 -29.85 -19.76 -14.54 -21.58 -16.39
ATSM-X 1.08 0.98 0.98 1.22 1.27 1.10 1.05 1.18 -6.11 -1.11 7.10 6.64 6.71 6.91 9.34

Panel F: Forecast Combinations

FC-EW-X 0.99 0.93 0.93 0.99 1.05 1.00 1.01 0.99 -4.58 -4.05 -1.17 0.51 -0.06 -2.16 -0.39
FC-MSPE-X 0.99 0.92 0.94 0.99 1.04 1.00 1.01 0.99 -0.11 0.29 2.23 1.69 0.16 -1.33 0.07
BMA-X 1.01 0.92 0.93 1.02 1.10 1.03 1.03 1.02 -3.64 -2.04 1.91 2.77 2.00 1.18 3.63

FC-EW-ALL 0.99 0.91 0.95 1.01 1.07 1.01 1.01 1.00 2.04 3.31 6.18 6.63 2.12 0.83 2.81
FC-MSPE-ALL 1.00 0.94 0.97 1.03 1.07 1.00 1.01 1.00 4.59 5.26 7.60 7.03 2.06 1.26 3.04
BMA-ALL 1.01 0.90 0.95 1.05 1.11 1.02 1.03 1.03 3.08 4.99 8.50 9.07 3.26 3.36 6.13

Notes: The table reports forecast results for a 1-month horizon for the out-of-sample period 1999:1 - 2003:12. See Table 3 for further details.
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Table 12: 1999:1 - 2003:12, h=3
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 197.06 56.75 56.26 55.97 58.38 55.60 50.80 47.81 17.43 17.08 16.16 12.45 6.14 3.32 0.94

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.09 1.17 1.16 1.17 1.10 1.04 1.03 1.02 37.37 36.16 36.65 29.06 17.48 14.48 10.72
VAR 1.18 1.10 1.25 1.37 1.35 1.16 1.11 1.08 38.94 45.28 49.80 45.38 30.61 25.36 26.76
NS2-AR 1.34 1.30 1.45 1.58 1.53 1.32 1.23 1.17 35.49 41.77 48.48 51.62 37.92 25.87 27.04
NS2-VAR 1.10 1.00 1.13 1.24 1.24 1.11 1.06 1.03 27.04 31.19 35.09 36.21 24.97 14.96 18.15
NS1 1.13 1.09 1.17 1.24 1.25 1.14 1.07 1.02 36.32 36.25 35.78 35.51 25.88 15.02 16.65
ATSM 1.10 0.98 1.17 1.35 1.28 1.03 1.08 1.04 27.83 37.81 46.79 40.26 11.82 20.22 20.84

Panel B: Models with macrofactors

AR-X 1.01 0.98 0.99 1.02 1.00 1.01 1.02 1.01 16.98 17.20 18.72 14.42 5.75 4.15 -0.17
VAR-X 1.02 1.01 1.03 1.05 1.09 1.03 1.02 0.96 18.09 17.36 20.49 19.33 11.14 7.00 8.97
NS2-AR-X 1.23 1.16 1.27 1.39 1.38 1.24 1.21 1.12 3.00 9.69 17.58 23.70 17.59 8.54 12.33
NS2-VAR-X 1.10 0.94 1.06 1.19 1.23 1.14 1.12 1.04 0.65 5.51 10.99 15.41 11.52 4.27 9.84
NS1-X 1.09 0.99 1.06 1.15 1.20 1.15 1.11 1.03 13.91 15.05 16.89 20.55 17.43 8.47 11.62
ATSM-X 1.07 0.85 0.98 1.18 1.23 1.14 1.10 1.04 1.11 9.55 18.80 17.38 13.63 12.26 13.03

Panel C: Forecast combinations

FC-EW-X 1.05 0.96 1.02 1.10 1.13 1.07 1.06 1.01 20.26 13.06 17.09 17.61 11.89 6.86 8.08
FC-MSPE-X 1.04 0.95 1.01 1.08 1.11 1.07 1.06 1.01 10.17 14.01 17.59 17.26 11.53 6.76 7.92

FC-EW-ALL 1.07 0.99 1.08 1.18 1.18 1.08 1.06 1.01 21.09 24.61 28.63 27.79 17.84 12.61 13.59
FC-MSPE-ALL 1.06 0.98 1.06 1.15 1.16 1.07 1.06 1.01 20.26 23.37 27.22 26.30 16.85 12.08 13.07

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.07 1.14 1.14 1.14 1.07 1.05 1.02 1.00 34.87 34.23 33.30 25.79 13.71 10.18 6.63
VAR 1.14 1.17 1.27 1.29 1.24 1.09 1.06 1.02 38.44 43.42 45.99 39.31 22.71 17.54 18.78
NS1 1.04 1.02 1.05 1.07 1.10 1.03 1.01 0.99∗∗ 22.79 21.16 21.54 25.49 17.12 5.23 6.25
ATSM 1.10 0.99 1.18 1.36 1.29 1.04 1.09 1.04 28.04 38.01 46.88 40.37 11.86 20.15 20.71

Panel E: Models with macrofactors

AR-X 0.98 0.95 0.95 0.98 0.99 0.99 1.01 1.00 12.15 12.75 14.17 10.28 3.00 1.76 -0.97
VAR-X 1.10 0.98 1.07 1.16 1.23 1.14 1.09 0.99 11.91 13.81 20.24 22.02 15.82 11.24 12.80
NS1-X 0.99 0.90 0.94 0.98 1.00 1.00 1.06 1.03 -18.81 -20.66 -19.00 -11.23 -10.61 -19.13 -15.26
ATSM-X 1.08 0.86 0.95 1.18 1.24 1.15 1.11 1.12 2.04 9.23 17.51 16.14 13.53 12.80 14.02

Panel F: Forecast Combinations

FC-EW-X 0.98 0.89 0.93 1.00 1.05 1.02 1.01 0.98 4.94 6.44 9.82 9.93 5.58 2.00 2.31
FC-MSPE-X 0.98 0.89 0.93 1.00 1.03 1.01 1.01 0.98 5.66 7.01 9.87 9.27 5.07 1.87 2.35
BMA-X 0.99 0.90 0.94 1.02 1.05 1.03 1.03 0.99 5.98 7.47 10.54 10.05 6.03 3.73 4.50

FC-EW-ALL 1.00 0.94 0.99 1.06 1.08 1.02 1.01 0.98 16.54 18.78 21.87 20.07 10.37 7.01 7.10
FC-MSPE-ALL 1.00 0.93 0.98 1.04 1.06 1.02 1.01 0.98 15.19 16.89 20.36 19.12 10.01 6.59 6.83
BMA-ALL 0.99 0.91 0.95 1.03 1.06 1.02 1.02 0.98 14.17 15.59 18.56 18.22 9.78 7.11 8.13

Notes: The table reports forecast results for a 3-month horizon for the out-of-sample period 1999:1 - 2003:12. See Table 3 for further details.
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Table 13: 1999:1 - 2003:12, h=6
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 308.65 97.90 97.58 95.57 93.89 84.04 74.90 65.40 36.33 35.95 35.26 28.03 14.35 8.52 3.61

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.13 1.19 1.18 1.21 1.14 1.06 1.06 1.04 74.01 72.32 74.33 60.30 36.77 30.64 23.08
VAR 1.33 1.30 1.41 1.51 1.47 1.26 1.22 1.25 94.27 103.20 107.23 97.88 71.94 62.14 59.81
NS2-AR 1.34 1.27 1.37 1.49 1.50 1.33 1.25 1.23 64.98 73.31 82.17 85.06 62.21 45.32 42.00
NS2-VAR 1.11 1.07 1.15 1.23 1.24 1.09 1.04 1.06 61.92 66.21 69.51 67.59 46.32 32.04 31.40
NS1 1.15 1.16 1.21 1.25 1.24 1.11 1.05 1.05 73.77 73.71 72.07 67.49 46.75 31.97 30.37
ATSM 1.11 1.06 1.19 1.31 1.26 1.02 1.07 1.06 63.13 73.92 82.38 72.44 34.34 38.10 33.94

Panel B: Models with macrofactors

AR-X 1.00 0.98 0.98 1.01 1.01 1.00 1.02 1.01 35.39 36.13 39.69 31.27 12.88 9.38 0.63
VAR-X 1.02 1.02 1.02 1.05 1.06 1.01 0.99 0.98 40.65 40.33 43.41 38.80 23.07 16.09 15.51
NS2-AR-X 1.20 1.11 1.19 1.29 1.32 1.22 1.20 1.17 2.74 11.90 23.02 31.42 22.27 10.75 12.14
NS2-VAR-X 1.07 0.93 1.02 1.14 1.18 1.11 1.09 1.07 4.60 10.63 17.55 22.66 16.12 7.19 11.17
NS1-X 1.08 0.97 1.04 1.12 1.17 1.11 1.08 1.06 25.76 28.40 31.77 35.30 27.36 16.26 17.56
ATSM-X 1.04 0.88 0.99 1.12 1.15 1.08 1.07 1.06 14.55 24.21 33.36 29.84 21.87 18.76 18.04

Panel C: Forecast combinations

FC-EW-X 1.03 0.95 1.00 1.07 1.10 1.05 1.04 1.03 42.80 26.79 32.01 31.04 19.70 12.42 11.24
FC-MSPE-X 1.02 0.94 0.99 1.05 1.08 1.04 1.04 1.03 22.86 29.21 33.98 31.47 19.52 12.47 11.15

FC-EW-ALL 1.07 1.01 1.08 1.16 1.16 1.06 1.04 1.03 45.55 50.02 54.75 51.39 33.56 25.17 23.02
FC-MSPE-ALL 1.05 1.00 1.06 1.13 1.14 1.05 1.04 1.03 42.80 46.87 51.79 48.46 31.52 23.71 21.53

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.12 1.18 1.18 1.17 1.12 1.10 1.05 1.10 69.87 68.75 68.63 54.22 30.37 22.54 16.20
VAR 1.36 1.41 1.51 1.55 1.46 1.24 1.21 1.28 109.31 112.83 109.56 94.53 65.14 56.17 54.56
NS1 1.02 1.02 1.03 1.04 1.06 1.00 0.99 1.02 42.66 41.24 40.83 41.25 25.09 10.91 10.06
ATSM 1.12 1.07 1.20 1.32 1.27 1.03 1.08 1.07 63.02 73.87 82.40 72.45 34.26 37.95 33.94

Panel E: Models with macrofactors

AR-X 0.96 0.93 0.93 0.96 0.96 0.97 1.00 0.98 25.23 26.29 29.29 21.87 7.52 4.85 -1.39
VAR-X 1.14 1.06 1.14 1.24 1.28 1.16 1.09 1.04 40.50 44.15 52.49 53.22 41.83 34.71 33.90
NS1-X 0.93 0.85 0.87 0.91 0.94 0.96 1.00 1.02 2.14 0.63 1.49 5.42 -1.77 -12.59 -10.89
ATSM-X 1.04 0.89 0.99 1.12 1.15 1.08 1.07 1.07 15.76 24.39 31.80 28.41 21.34 19.54 18.23

Panel F: Forecast Combinations

FC-EW-X 0.98 0.92 0.95 1.01 1.03 1.00 0.99 0.97 23.99 26.28 30.06 27.39 16.65 11.01 8.69
FC-MSPE-X 0.97 0.91 0.95 1.00 1.02 1.00 0.99 0.97 23.24 25.43 28.75 25.86 15.81 10.71 8.68
BMA-X 0.97 0.94 0.96 1.00 1.00 0.99 0.99 0.98 25.31 26.35 27.98 23.95 13.82 9.46 7.65

FC-EW-ALL 1.02 0.99 1.04 1.09 1.09 1.01 1.00 1.00 44.98 47.56 50.19 44.38 26.46 20.29 17.58
FC-MSPE-ALL 1.01 0.97 1.01 1.06 1.06 1.01 1.00 0.99 38.84 41.03 44.24 40.40 24.98 18.99 16.27
BMA-ALL 0.99 0.98 1.00 1.03 1.02 0.98 0.98 0.97 37.92 38.03 39.50 35.61 19.94 14.57 12.85

Notes: The table reports forecast results for a 6-month horizon for the out-of-sample period 1999:1 - 2003:12. See Table 3 for further details.
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Table 14: 1999:1 - 2003:12, h=12
TRMSPE RMSPE MPE

Maturity all 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

RW 479.67 169.29 170.87 165.13 149.43 118.35 102.82 86.76 76.24 76.82 76.64 67.75 41.79 30.62 20.22

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 1.20 1.20 1.19 1.23 1.21 1.15 1.16 1.15 142.06 141.45 146.34 127.06 85.12 73.44 58.54
VAR 1.62 1.49 1.55 1.62 1.67 1.65 1.70 1.86 205.78 217.30 219.81 206.53 170.05 155.74 149.72
NS2-AR 1.28 1.15 1.20 1.29 1.38 1.36 1.31 1.34 110.34 119.88 129.74 131.47 100.07 79.01 71.87
NS2-VAR 1.18 1.14 1.16 1.21 1.25 1.18 1.14 1.20 133.05 136.55 137.70 130.53 96.17 76.75 71.62
NS1 1.21 1.21 1.21 1.23 1.25 1.18 1.13 1.17 135.27 145.89 152.60 137.86 87.28 84.81 73.72
ATSM 1.19 1.14 1.20 1.27 1.28 1.12 1.19 1.21 135.27 145.89 152.60 137.86 87.28 84.81 73.72

Panel B: Models with macrofactors

AR-X 1.03 0.96 0.98 1.02 1.05 1.06 1.09 1.10 72.77 75.45 81.53 69.05 34.19 26.74 9.98
VAR-X 1.03 1.01 1.02 1.04 1.06 1.02 1.02 1.04 84.98 86.47 90.77 81.53 54.22 43.08 38.86
NS2-AR-X 1.17 1.05 1.08 1.16 1.24 1.25 1.26 1.26 -0.98 10.19 24.03 34.61 23.99 10.89 10.69
NS2-VAR-X 1.07 0.95 0.99 1.07 1.15 1.14 1.14 1.13 13.50 20.58 28.83 34.71 26.25 16.02 18.74
NS1-X 1.08 0.96 1.00 1.08 1.15 1.16 1.15 1.16 49.38 53.45 58.04 60.71 46.54 32.89 32.06
ATSM-X 1.05 0.94 1.00 1.07 1.12 1.11 1.13 1.13 42.10 52.69 60.51 55.12 42.80 37.83 35.17

Panel C: Forecast combinations

FC-EW-X 1.03 0.94 0.97 1.03 1.08 1.08 1.09 1.09 86.41 53.67 60.05 57.64 38.54 28.30 23.67
FC-MSPE-X 1.03 0.94 0.97 1.02 1.07 1.08 1.09 1.09 48.28 58.35 64.39 60.09 39.07 28.91 24.09

FC-EW-ALL 1.10 1.03 1.06 1.12 1.16 1.12 1.11 1.12 93.31 98.77 103.76 97.47 69.41 57.06 50.73
FC-MSPE-ALL 1.07 1.01 1.04 1.10 1.13 1.10 1.10 1.10 86.41 91.81 97.74 91.73 63.86 51.64 45.02

BAYESIAN INFERENCE

Panel D: Models without macrofactors

AR 1.15 1.19 1.17 1.19 1.15 1.14 1.10 1.10 134.71 132.59 135.48 113.94 71.18 58.16 41.43
VAR 1.85 1.80 1.83 1.86 1.87 1.82 1.86 2.03 269.72 276.96 269.69 243.22 190.66 172.85 163.91
NS1 1.02 1.01 1.01 1.02 1.03 1.01 0.99 1.02 82.24 82.79 82.67 78.68 50.72 32.49 28.02
ATSM 1.20 1.15 1.20 1.28 1.28 1.13 1.19 1.21 135.34 145.94 152.65 137.87 87.39 84.96 73.90

Panel E: Models with macrofactors

AR-X 0.97 0.90 0.93 0.97 1.00 1.01 1.04 1.03 53.42 55.41 62.04 49.26 23.18 18.15 6.12
VAR-X 1.37 1.23 1.27 1.35 1.43 1.43 1.44 1.51 132.22 137.47 147.04 145.37 124.85 114.18 109.69
NS1-X 0.93 0.89 0.90 0.92 0.94 0.95 0.97 0.99 43.54 44.02 45.32 45.07 25.19 9.85 7.80
ATSM-X 1.05 0.94 0.99 1.07 1.12 1.11 1.13 1.17 42.71 51.02 58.27 53.05 42.20 38.76 34.57

Panel F: Forecast Combinations

FC-EW-X 1.02 0.96 0.98 1.02 1.06 1.05 1.05 1.05 69.63 72.95 77.86 72.10 51.44 42.31 35.68
FC-MSPE-X 1.01 0.95 0.97 1.01 1.04 1.04 1.04 1.04 66.70 70.41 75.29 69.55 49.27 40.74 34.01
BMA-X 0.98 0.96 0.97 0.99 1.00 1.00 1.00 1.00 67.08 68.13 69.34 62.31 41.08 32.33 25.98

FC-EW-ALL 1.10 1.06 1.08 1.13 1.14 1.10 1.10 1.11 107.79 111.45 114.42 103.80 73.02 62.23 53.96
FC-MSPE-ALL 1.05 1.01 1.03 1.07 1.09 1.07 1.06 1.07 90.06 93.32 97.82 90.42 63.68 53.29 45.54
BMA-ALL 1.01 1.01 1.01 1.02 1.03 1.00 0.99 0.99 83.69 84.65 86.10 79.53 53.30 42.11 34.96

Notes: The table reports forecast results for a 12-month horizon for the out-of-sample period 1999:1 - 2003:12. See Table 3 for further details.
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Table 15: Hit Rate, 1994:1 - 2003:12
h=1 h=3

Maturity 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.55 0.54 0.51 0.61 0.59 0.64 0.54 0.69 0.70 0.68 0.68 0.59 0.59 0.61
VAR 0.51 0.55 0.51 0.62 0.61 0.62 0.58 0.70 0.69 0.68 0.69 0.64 0.61 0.60
NS2-AR 0.49 0.57 0.53 0.60 0.59 0.61 0.58 0.66 0.69 0.69 0.70 0.62 0.61 0.60
NS2-VAR 0.51 0.56 0.53 0.61 0.60 0.61 0.58 0.68 0.69 0.69 0.70 0.63 0.61 0.58
NS1 0.53 0.53 0.53 0.61 0.60 0.59 0.57 0.63 0.68 0.70 0.69 0.64 0.62 0.59
ATSM 0.53 0.59 0.50 0.62 0.62 0.63 0.58 0.69 0.68 0.69 0.69 0.63 0.60 0.60

Panel B: Models with macrofactors

AR-X 0.57 0.57 0.53 0.64 0.59 0.64 0.55 0.64 0.64 0.63 0.64 0.59 0.57 0.59
VAR-X 0.53 0.57 0.53 0.61 0.62 0.62 0.58 0.67 0.70 0.71 0.65 0.62 0.60 0.59
NS2-AR-X 0.52 0.59 0.54 0.59 0.62 0.62 0.59 0.62 0.65 0.68 0.66 0.62 0.60 0.59
NS2-VAR-X 0.52 0.59 0.54 0.60 0.62 0.62 0.58 0.64 0.67 0.66 0.66 0.58 0.58 0.59
NS1-X 0.55 0.56 0.55 0.63 0.61 0.62 0.58 0.65 0.65 0.66 0.63 0.62 0.58 0.59
ATSM-X 0.49 0.59 0.54 0.59 0.62 0.66 0.57 0.62 0.64 0.68 0.65 0.61 0.59 0.57

Panel C: Forecast combinations

FC-EW-X 0.54 0.56 0.53 0.63 0.62 0.63 0.59 0.67 0.68 0.68 0.67 0.59 0.58 0.58
FC-MSPE-X 0.54 0.56 0.51 0.63 0.62 0.63 0.59 0.65 0.69 0.68 0.67 0.60 0.58 0.58

FC-EW-ALL 0.53 0.56 0.50 0.63 0.61 0.63 0.59 0.67 0.70 0.69 0.71 0.64 0.59 0.59
FC-MSPE-ALL 0.51 0.56 0.50 0.63 0.61 0.63 0.59 0.67 0.70 0.68 0.71 0.64 0.59 0.59

BAYESIAN INFERENCE

Panel D: Model without macrofactors

AR 0.55 0.54 0.51 0.61 0.59 0.64 0.54 0.67 0.68 0.64 0.66 0.58 0.56 0.58
VAR 0.53 0.53 0.51 0.62 0.59 0.62 0.58 0.59 0.58 0.62 0.61 0.58 0.56 0.56
NS1 0.55 0.57 0.51 0.60 0.60 0.60 0.59 0.67 0.69 0.69 0.70 0.62 0.60 0.58
ATSM 0.54 0.58 0.53 0.59 0.61 0.63 0.61 0.71 0.68 0.69 0.69 0.64 0.61 0.60

Panel E: Models with macrofactors

AR-X 0.60 0.58 0.53 0.64 0.59 0.62 0.55 0.64 0.65 0.64 0.65 0.58 0.58 0.58
VAR-X 0.53 0.59 0.53 0.62 0.61 0.62 0.58 0.64 0.67 0.69 0.66 0.62 0.61 0.58
NS1-X 0.56 0.58 0.53 0.64 0.61 0.63 0.60 0.62 0.67 0.69 0.65 0.60 0.58 0.57
ATSM-X 0.54 0.61 0.55 0.59 0.63 0.64 0.53 0.64 0.68 0.66 0.66 0.58 0.59 0.60

Panel F: Forecast Combinations

FC-EW-X 0.57 0.58 0.53 0.64 0.63 0.64 0.58 0.65 0.67 0.68 0.66 0.61 0.58 0.58
FC-MSPE-X 0.57 0.57 0.54 0.64 0.63 0.64 0.58 0.65 0.66 0.69 0.67 0.61 0.58 0.58
BMA-X 0.56 0.57 0.53 0.64 0.61 0.64 0.57 0.66 0.65 0.64 0.64 0.58 0.58 0.57

FC-EW-ALL 0.55 0.56 0.51 0.63 0.61 0.63 0.60 0.67 0.70 0.67 0.69 0.61 0.59 0.58
FC-MSPE-ALL 0.53 0.57 0.52 0.64 0.59 0.63 0.59 0.66 0.72 0.69 0.68 0.61 0.58 0.58
BMA-ALL 0.54 0.57 0.53 0.60 0.62 0.60 0.59 0.67 0.68 0.69 0.68 0.60 0.59 0.58

Notes: The table reports the Hit Rate (HR) for individual yield models, with and without macrofactors, estimated
using the frequentist approach (Panels A and B) and using Bayesian inference (Panels D and E). Panels C and F show
results for different forecast combination methods for the frequentist and Bayesian estimated models. Results are
for 1-month and 3-month horizons for the out-of-sample period 1994:1 - 2003:12. The following model abbreviations
are used: RW stands for the Random Walk, (V)AR for the first-order (Vector) Autoregressive Model, NS2-(V)AR
for two-step Nelson-Siegel model with a (V)AR specification for the factors, NS1 for the one-step Nelson-Siegel
model, ATSM for the affine model, FC-EW and FC-MSPE for the forecast combination based on equal weights and
MSPE-based weights respectively, BMA for the Bayesian Model Averaging forecast. The affix ’X’ indicates that
macrofactors have been added as additional variables.
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Table 16: Hit Rate, 1994:1 - 2003:12
h=6 h=12

Maturity 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.66 0.67 0.53 0.57 0.54 0.54 0.50 0.52 0.53 0.52 0.43 0.39 0.40 0.34
VAR 0.68 0.65 0.57 0.56 0.55 0.56 0.51 0.56 0.53 0.56 0.50 0.42 0.43 0.39
NS2-AR 0.69 0.69 0.56 0.59 0.56 0.56 0.55 0.60 0.59 0.56 0.47 0.41 0.41 0.34
NS2-VAR 0.68 0.64 0.56 0.57 0.53 0.54 0.50 0.51 0.52 0.57 0.49 0.43 0.44 0.43
NS1 0.66 0.65 0.57 0.55 0.50 0.52 0.49 0.48 0.50 0.55 0.50 0.45 0.46 0.42
ATSM 0.68 0.64 0.57 0.57 0.52 0.53 0.50 0.55 0.53 0.56 0.49 0.45 0.42 0.43

Panel B: Models with macrofactors

AR-X 0.59 0.58 0.58 0.56 0.50 0.50 0.49 0.51 0.50 0.53 0.47 0.40 0.43 0.38
VAR-X 0.68 0.67 0.57 0.56 0.53 0.51 0.48 0.54 0.54 0.53 0.50 0.44 0.44 0.42
NS2-AR-X 0.66 0.63 0.58 0.57 0.55 0.53 0.50 0.59 0.57 0.51 0.48 0.42 0.40 0.35
NS2-VAR-X 0.64 0.59 0.53 0.54 0.51 0.52 0.48 0.56 0.53 0.48 0.45 0.36 0.37 0.32
NS1-X 0.65 0.61 0.55 0.56 0.53 0.50 0.50 0.61 0.57 0.48 0.47 0.38 0.39 0.37
ATSM-X 0.63 0.62 0.56 0.53 0.51 0.52 0.49 0.57 0.52 0.49 0.46 0.40 0.39 0.37

Panel C: Forecast combinations

FC-EW-X 0.64 0.65 0.53 0.53 0.51 0.52 0.49 0.61 0.52 0.49 0.46 0.39 0.42 0.38
FC-MSPE-X 0.63 0.63 0.53 0.53 0.51 0.52 0.49 0.56 0.52 0.48 0.46 0.39 0.42 0.38

FC-EW-ALL 0.68 0.68 0.56 0.57 0.54 0.53 0.50 0.61 0.59 0.54 0.51 0.43 0.43 0.40
FC-MSPE-ALL 0.69 0.66 0.56 0.57 0.54 0.52 0.50 0.61 0.58 0.54 0.50 0.42 0.42 0.40

BAYESIAN INFERENCE

Panel D: Model without macrofactors

AR 0.65 0.69 0.54 0.61 0.50 0.53 0.50 0.53 0.51 0.51 0.46 0.41 0.39 0.37
VAR 0.59 0.56 0.52 0.53 0.55 0.54 0.49 0.44 0.48 0.52 0.55 0.40 0.42 0.36
NS1 0.70 0.64 0.53 0.56 0.54 0.51 0.46 0.52 0.52 0.50 0.49 0.41 0.43 0.38
ATSM 0.69 0.65 0.57 0.54 0.52 0.54 0.50 0.52 0.51 0.55 0.50 0.45 0.44 0.42

Panel E: Models with macrofactors

AR-X 0.60 0.55 0.57 0.55 0.50 0.51 0.50 0.45 0.45 0.50 0.48 0.41 0.43 0.37
VAR-X 0.65 0.63 0.57 0.57 0.51 0.51 0.48 0.58 0.60 0.59 0.55 0.50 0.50 0.46
NS1-X 0.59 0.56 0.51 0.51 0.50 0.49 0.47 0.38 0.40 0.47 0.45 0.41 0.41 0.38
ATSM-X 0.62 0.62 0.57 0.53 0.52 0.52 0.53 0.57 0.55 0.47 0.46 0.40 0.39 0.34

Panel F: Forecast Combinations

FC-EW-X 0.63 0.59 0.56 0.54 0.51 0.50 0.50 0.61 0.53 0.53 0.48 0.40 0.45 0.39
FC-MSPE-X 0.61 0.58 0.55 0.54 0.51 0.50 0.50 0.57 0.52 0.53 0.47 0.39 0.44 0.40
BMA-X 0.63 0.60 0.54 0.54 0.50 0.50 0.48 0.44 0.46 0.51 0.47 0.46 0.45 0.39

FC-EW-ALL 0.68 0.65 0.55 0.57 0.53 0.51 0.50 0.53 0.55 0.55 0.50 0.44 0.44 0.43
FC-MSPE-ALL 0.69 0.64 0.56 0.56 0.53 0.51 0.50 0.57 0.59 0.54 0.50 0.43 0.46 0.44
BMA-ALL 0.67 0.64 0.53 0.55 0.50 0.50 0.49 0.52 0.51 0.53 0.52 0.49 0.47 0.41

Notes: The table reports Hit Rate results for 6-month and 12-month horizons for the out-of-sample period 1994:1
- 2003:12. See Table 15 for further details.
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Table 17: Hit Rate, 1994:1 - 1998:12
h=1 h=3

Maturity 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.58 0.58 0.55 0.60 0.60 0.63 0.58 0.59 0.64 0.59 0.66 0.66 0.66 0.69
VAR 0.47 0.52 0.52 0.63 0.62 0.63 0.62 0.64 0.64 0.62 0.64 0.67 0.67 0.71
NS2-AR 0.48 0.57 0.58 0.62 0.60 0.63 0.63 0.59 0.67 0.64 0.66 0.69 0.69 0.71
NS2-VAR 0.52 0.55 0.57 0.62 0.62 0.63 0.65 0.64 0.66 0.64 0.66 0.67 0.67 0.67
NS1 0.57 0.60 0.53 0.62 0.62 0.62 0.63 0.55 0.60 0.66 0.66 0.71 0.69 0.67
ATSM 0.52 0.55 0.50 0.63 0.65 0.63 0.62 0.67 0.62 0.62 0.64 0.66 0.67 0.71

Panel B: Models with macrofactors

AR-X 0.55 0.58 0.57 0.63 0.62 0.65 0.60 0.62 0.62 0.59 0.60 0.62 0.62 0.67
VAR-X 0.50 0.53 0.53 0.62 0.67 0.65 0.63 0.60 0.67 0.67 0.62 0.69 0.67 0.69
NS2-AR-X 0.50 0.60 0.60 0.62 0.62 0.63 0.65 0.57 0.62 0.64 0.66 0.71 0.69 0.67
NS2-VAR-X 0.50 0.60 0.60 0.63 0.62 0.63 0.65 0.55 0.62 0.60 0.62 0.64 0.66 0.67
NS1-X 0.57 0.60 0.55 0.63 0.63 0.63 0.63 0.57 0.64 0.62 0.59 0.67 0.64 0.67
ATSM-X 0.45 0.55 0.58 0.62 0.65 0.65 0.55 0.55 0.62 0.60 0.60 0.67 0.67 0.64

Panel C: Forecast combinations

FC-EW-X 0.53 0.55 0.57 0.63 0.63 0.63 0.63 0.62 0.67 0.60 0.62 0.66 0.66 0.67
FC-MSPE-X 0.53 0.55 0.55 0.63 0.63 0.63 0.63 0.59 0.67 0.62 0.62 0.66 0.66 0.67

FC-EW-ALL 0.53 0.55 0.52 0.62 0.62 0.65 0.63 0.60 0.67 0.66 0.67 0.71 0.67 0.69
FC-MSPE-ALL 0.50 0.55 0.52 0.62 0.62 0.65 0.63 0.62 0.67 0.66 0.67 0.71 0.67 0.69

BAYESIAN INFERENCE

Panel D: Model without macrofactors

AR 0.58 0.58 0.55 0.60 0.60 0.63 0.58 0.55 0.59 0.55 0.62 0.64 0.62 0.67
VAR 0.50 0.52 0.52 0.62 0.60 0.63 0.63 0.48 0.53 0.57 0.57 0.60 0.60 0.64
NS1 0.58 0.62 0.53 0.58 0.63 0.63 0.65 0.60 0.62 0.64 0.66 0.69 0.67 0.66
ATSM 0.53 0.57 0.55 0.60 0.65 0.65 0.65 0.67 0.60 0.62 0.64 0.67 0.67 0.71

Panel E: Models with macrofactors

AR-X 0.58 0.58 0.58 0.63 0.62 0.62 0.60 0.62 0.62 0.60 0.62 0.62 0.62 0.64
VAR-X 0.50 0.58 0.55 0.63 0.65 0.65 0.63 0.64 0.67 0.67 0.66 0.71 0.71 0.71
NS1-X 0.60 0.60 0.55 0.65 0.63 0.67 0.63 0.57 0.62 0.60 0.60 0.64 0.60 0.62
ATSM-X 0.52 0.58 0.62 0.62 0.70 0.65 0.55 0.60 0.66 0.60 0.60 0.66 0.67 0.69

Panel F: Forecast Combinations

FC-EW-X 0.52 0.57 0.57 0.65 0.67 0.67 0.63 0.62 0.64 0.60 0.62 0.66 0.62 0.66
FC-MSPE-X 0.52 0.55 0.57 0.65 0.67 0.67 0.63 0.62 0.62 0.60 0.62 0.66 0.62 0.66
BMA-X 0.52 0.57 0.57 0.65 0.63 0.65 0.63 0.57 0.55 0.55 0.59 0.64 0.66 0.66

FC-EW-ALL 0.52 0.55 0.53 0.63 0.65 0.65 0.65 0.64 0.66 0.62 0.64 0.67 0.66 0.67
FC-MSPE-ALL 0.48 0.57 0.55 0.65 0.62 0.65 0.65 0.64 0.67 0.66 0.62 0.67 0.64 0.67
BMA-ALL 0.57 0.60 0.53 0.58 0.63 0.63 0.65 0.60 0.62 0.64 0.66 0.67 0.66 0.66

Notes: The table reports Hit Rate results for 1-month and 3-month horizons for the out-of-sample period 1994:1 -
1998:12. See Table 15 for further details.
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Table 18: Hit Rate, 1994:1 - 1998:12
h=6 h=12

Maturity 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.53 0.58 0.44 0.55 0.55 0.55 0.56 0.45 0.45 0.45 0.27 0.29 0.27 0.29
VAR 0.56 0.58 0.51 0.53 0.53 0.53 0.51 0.49 0.45 0.53 0.47 0.45 0.45 0.43
NS2-AR 0.60 0.60 0.49 0.56 0.55 0.58 0.58 0.55 0.53 0.47 0.33 0.35 0.35 0.33
NS2-VAR 0.56 0.56 0.51 0.53 0.49 0.49 0.49 0.45 0.43 0.55 0.45 0.45 0.43 0.49
NS1 0.56 0.58 0.51 0.55 0.49 0.49 0.49 0.41 0.41 0.51 0.47 0.47 0.47 0.47
ATSM 0.58 0.58 0.51 0.53 0.47 0.47 0.49 0.47 0.45 0.53 0.45 0.49 0.39 0.49

Panel B: Models with macrofactors

AR-X 0.45 0.45 0.47 0.47 0.44 0.44 0.47 0.45 0.41 0.41 0.35 0.35 0.35 0.37
VAR-X 0.55 0.58 0.47 0.51 0.51 0.47 0.45 0.47 0.47 0.45 0.41 0.41 0.37 0.41
NS2-AR-X 0.62 0.56 0.49 0.53 0.51 0.51 0.49 0.53 0.47 0.33 0.35 0.35 0.37 0.39
NS2-VAR-X 0.58 0.49 0.44 0.49 0.45 0.45 0.45 0.47 0.41 0.29 0.33 0.33 0.33 0.35
NS1-X 0.58 0.55 0.47 0.51 0.47 0.45 0.45 0.61 0.49 0.31 0.35 0.33 0.33 0.35
ATSM-X 0.51 0.45 0.44 0.47 0.47 0.49 0.47 0.49 0.43 0.31 0.33 0.37 0.33 0.35

Panel C: Forecast combinations

FC-EW-X 0.53 0.56 0.44 0.45 0.44 0.45 0.47 0.55 0.39 0.31 0.33 0.33 0.35 0.37
FC-MSPE-X 0.51 0.51 0.42 0.45 0.44 0.45 0.47 0.45 0.39 0.29 0.33 0.33 0.35 0.37

FC-EW-ALL 0.58 0.64 0.47 0.51 0.51 0.49 0.47 0.55 0.53 0.45 0.45 0.41 0.41 0.41
FC-MSPE-ALL 0.60 0.58 0.47 0.51 0.51 0.47 0.47 0.55 0.51 0.45 0.43 0.41 0.39 0.41

BAYESIAN INFERENCE

Panel D: Model without macrofactors

AR 0.55 0.60 0.47 0.58 0.53 0.51 0.53 0.47 0.45 0.43 0.31 0.33 0.29 0.31
VAR 0.51 0.47 0.51 0.51 0.55 0.53 0.53 0.43 0.49 0.57 0.55 0.33 0.33 0.27
NS1 0.60 0.56 0.44 0.51 0.53 0.47 0.44 0.47 0.43 0.41 0.41 0.37 0.35 0.33
ATSM 0.60 0.58 0.51 0.51 0.47 0.49 0.49 0.43 0.41 0.51 0.47 0.49 0.45 0.45

Panel E: Models with macrofactors

AR-X 0.47 0.42 0.45 0.45 0.42 0.44 0.47 0.31 0.31 0.35 0.37 0.35 0.35 0.35
VAR-X 0.56 0.51 0.44 0.49 0.47 0.47 0.45 0.53 0.59 0.55 0.55 0.59 0.55 0.55
NS1-X 0.45 0.40 0.36 0.42 0.44 0.44 0.45 0.16 0.20 0.33 0.31 0.33 0.33 0.35
ATSM-X 0.47 0.53 0.51 0.47 0.47 0.47 0.49 0.49 0.45 0.29 0.33 0.37 0.33 0.33

Panel F: Forecast Combinations

FC-EW-X 0.47 0.44 0.42 0.45 0.45 0.44 0.47 0.55 0.41 0.43 0.37 0.37 0.39 0.37
FC-MSPE-X 0.44 0.42 0.40 0.45 0.45 0.44 0.47 0.49 0.39 0.41 0.35 0.35 0.37 0.37
BMA-X 0.49 0.44 0.38 0.45 0.44 0.44 0.45 0.27 0.29 0.37 0.35 0.41 0.37 0.37

FC-EW-ALL 0.58 0.55 0.45 0.51 0.49 0.47 0.45 0.49 0.49 0.49 0.43 0.43 0.39 0.45
FC-MSPE-ALL 0.60 0.55 0.45 0.49 0.49 0.47 0.45 0.49 0.53 0.45 0.43 0.41 0.43 0.45
BMA-ALL 0.60 0.53 0.40 0.47 0.44 0.44 0.47 0.45 0.41 0.43 0.47 0.47 0.41 0.43

Notes: The table reports Hit Rate results for 6-month and 12-month horizons for the out-of-sample period 1994:1
- 1998:12. See Table 15 for further details.
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Table 19: Hit Rate, 1999:1 - 2003:12
h=1 h=3

Maturity 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.53 0.48 0.45 0.62 0.58 0.65 0.52 0.81 0.79 0.79 0.72 0.55 0.55 0.55
VAR 0.57 0.57 0.50 0.60 0.58 0.62 0.57 0.79 0.76 0.76 0.76 0.62 0.57 0.50
NS2-AR 0.50 0.58 0.48 0.58 0.57 0.60 0.55 0.74 0.74 0.76 0.78 0.57 0.53 0.52
NS2-VAR 0.52 0.55 0.50 0.60 0.57 0.60 0.53 0.74 0.74 0.78 0.78 0.60 0.57 0.48
NS1 0.52 0.45 0.52 0.60 0.57 0.58 0.53 0.72 0.78 0.78 0.76 0.60 0.57 0.53
ATSM 0.57 0.62 0.50 0.60 0.57 0.63 0.57 0.74 0.76 0.78 0.76 0.62 0.55 0.50

Panel B: Models with macrofactors

AR-X 0.60 0.55 0.47 0.63 0.58 0.62 0.50 0.71 0.67 0.67 0.67 0.53 0.48 0.47
VAR-X 0.57 0.60 0.52 0.60 0.57 0.58 0.55 0.74 0.74 0.74 0.66 0.55 0.50 0.50
NS2-AR-X 0.53 0.58 0.48 0.57 0.62 0.60 0.53 0.67 0.69 0.69 0.64 0.50 0.48 0.48
NS2-VAR-X 0.53 0.58 0.48 0.55 0.62 0.60 0.53 0.72 0.72 0.69 0.67 0.50 0.48 0.47
NS1-X 0.53 0.52 0.55 0.60 0.57 0.60 0.55 0.72 0.67 0.67 0.64 0.53 0.50 0.48
ATSM-X 0.53 0.63 0.50 0.57 0.60 0.67 0.60 0.69 0.67 0.72 0.67 0.53 0.50 0.50

Panel C: Forecast combinations

FC-EW-X 0.55 0.57 0.48 0.60 0.60 0.62 0.57 0.72 0.69 0.72 0.69 0.50 0.48 0.45
FC-MSPE-X 0.55 0.57 0.47 0.62 0.60 0.62 0.57 0.72 0.71 0.71 0.69 0.52 0.48 0.45

FC-EW-ALL 0.52 0.57 0.48 0.63 0.58 0.62 0.57 0.74 0.74 0.71 0.72 0.57 0.52 0.50
FC-MSPE-ALL 0.52 0.57 0.48 0.63 0.58 0.60 0.57 0.72 0.74 0.67 0.72 0.57 0.52 0.50

BAYESIAN INFERENCE

Panel D: Model without macrofactors

AR 0.53 0.48 0.45 0.62 0.58 0.65 0.52 0.79 0.81 0.78 0.72 0.52 0.50 0.48
VAR 0.58 0.53 0.50 0.62 0.57 0.60 0.55 0.71 0.66 0.69 0.67 0.57 0.53 0.48
NS1 0.53 0.52 0.47 0.62 0.55 0.58 0.55 0.76 0.78 0.76 0.78 0.57 0.53 0.52
ATSM 0.57 0.58 0.48 0.58 0.55 0.62 0.58 0.78 0.78 0.78 0.78 0.62 0.57 0.50

Panel E: Models with macrofactors

AR-X 0.62 0.58 0.45 0.63 0.58 0.60 0.50 0.69 0.69 0.69 0.66 0.52 0.50 0.48
VAR-X 0.57 0.60 0.52 0.60 0.57 0.58 0.55 0.64 0.67 0.67 0.64 0.52 0.50 0.47
NS1-X 0.52 0.57 0.53 0.62 0.60 0.58 0.55 0.67 0.72 0.74 0.67 0.53 0.52 0.47
ATSM-X 0.57 0.63 0.48 0.57 0.58 0.63 0.53 0.69 0.69 0.69 0.69 0.48 0.50 0.52

Panel F: Forecast Combinations

FC-EW-X 0.62 0.60 0.50 0.62 0.62 0.62 0.55 0.69 0.71 0.72 0.67 0.53 0.50 0.50
FC-MSPE-X 0.62 0.58 0.50 0.60 0.62 0.62 0.55 0.69 0.71 0.74 0.67 0.53 0.50 0.52
BMA-X 0.60 0.57 0.50 0.62 0.60 0.62 0.52 0.76 0.76 0.72 0.67 0.50 0.48 0.47

FC-EW-ALL 0.58 0.57 0.48 0.62 0.58 0.62 0.57 0.71 0.79 0.72 0.72 0.53 0.52 0.50
FC-MSPE-ALL 0.60 0.57 0.48 0.62 0.58 0.62 0.55 0.69 0.79 0.74 0.72 0.53 0.52 0.50
BMA-ALL 0.53 0.53 0.50 0.62 0.58 0.58 0.55 0.76 0.78 0.76 0.69 0.52 0.50 0.50

Notes: The table reports Hit Rate results for 1-month and 3-month horizons for the out-of-sample period 1999:1 -
2003:12. See Table 15 for further details.
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Table 20: Hit Rate, 1999:1 - 2003:12
h=6 h=12

Maturity 3m 6m 1y 2y 5y 7y 10y 3m 6m 1y 2y 5y 7y 10y

FREQUENTIST INFERENCE

Panel A: Model without macrofactors

AR 0.87 0.84 0.71 0.69 0.62 0.62 0.51 0.76 0.76 0.73 0.71 0.61 0.65 0.49
VAR 0.87 0.82 0.71 0.67 0.64 0.65 0.58 0.78 0.76 0.73 0.69 0.57 0.59 0.51
NS2-AR 0.78 0.80 0.67 0.67 0.64 0.58 0.58 0.67 0.65 0.63 0.71 0.61 0.61 0.45
NS2-VAR 0.87 0.80 0.67 0.67 0.64 0.65 0.58 0.76 0.76 0.73 0.69 0.57 0.59 0.51
NS1 0.87 0.82 0.69 0.64 0.56 0.58 0.55 0.76 0.73 0.73 0.69 0.57 0.57 0.51
ATSM 0.87 0.80 0.71 0.67 0.64 0.65 0.56 0.78 0.76 0.73 0.69 0.57 0.59 0.51

Panel B: Models with macrofactors

AR-X 0.73 0.73 0.71 0.62 0.51 0.53 0.45 0.55 0.55 0.57 0.53 0.51 0.57 0.43
VAR-X 0.80 0.75 0.71 0.58 0.56 0.56 0.56 0.63 0.65 0.65 0.55 0.61 0.65 0.55
NS2-AR-X 0.67 0.64 0.62 0.58 0.55 0.51 0.45 0.47 0.49 0.51 0.49 0.51 0.45 0.31
NS2-VAR-X 0.67 0.64 0.56 0.55 0.53 0.55 0.45 0.49 0.49 0.49 0.47 0.41 0.43 0.31
NS1-X 0.69 0.64 0.58 0.56 0.55 0.51 0.51 0.51 0.53 0.49 0.51 0.47 0.49 0.43
ATSM-X 0.71 0.73 0.62 0.55 0.53 0.53 0.55 0.55 0.53 0.51 0.51 0.49 0.51 0.49

Panel C: Forecast combinations

FC-EW-X 0.73 0.71 0.58 0.56 0.55 0.55 0.45 0.63 0.51 0.51 0.51 0.47 0.53 0.43
FC-MSPE-X 0.73 0.71 0.60 0.56 0.55 0.55 0.45 0.53 0.53 0.51 0.51 0.47 0.53 0.43

FC-EW-ALL 0.75 0.73 0.65 0.60 0.58 0.58 0.58 0.71 0.65 0.61 0.61 0.63 0.61 0.51
FC-MSPE-ALL 0.75 0.73 0.64 0.58 0.58 0.58 0.58 0.63 0.61 0.59 0.59 0.57 0.61 0.51

BAYESIAN INFERENCE

Panel D: Model without macrofactors

AR 0.85 0.85 0.71 0.71 0.53 0.62 0.55 0.76 0.73 0.73 0.73 0.59 0.63 0.53
VAR 0.80 0.76 0.62 0.64 0.64 0.64 0.53 0.76 0.73 0.71 0.71 0.59 0.63 0.55
NS1 0.87 0.80 0.69 0.69 0.62 0.56 0.55 0.73 0.71 0.63 0.67 0.57 0.59 0.53
ATSM 0.87 0.82 0.71 0.67 0.64 0.65 0.56 0.78 0.76 0.73 0.69 0.57 0.59 0.51

Panel E: Models with macrofactors

AR-X 0.71 0.65 0.67 0.60 0.53 0.55 0.49 0.53 0.51 0.53 0.53 0.51 0.55 0.43
VAR-X 0.71 0.69 0.64 0.60 0.58 0.58 0.56 0.69 0.67 0.67 0.69 0.55 0.59 0.51
NS1-X 0.73 0.67 0.58 0.55 0.55 0.55 0.60 0.51 0.51 0.49 0.51 0.53 0.53 0.43
ATSM-X 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.55 0.49 0.51 0.49 0.51 0.47

Panel F: Forecast Combinations

FC-EW-X 0.75 0.71 0.64 0.58 0.55 0.53 0.55 0.55 0.53 0.49 0.51 0.51 0.59 0.55
FC-MSPE-X 0.75 0.71 0.64 0.58 0.55 0.53 0.55 0.55 0.53 0.49 0.51 0.51 0.59 0.57
BMA-X 0.76 0.73 0.65 0.60 0.53 0.51 0.45 0.55 0.53 0.53 0.53 0.55 0.57 0.51

FC-EW-ALL 0.82 0.82 0.71 0.62 0.62 0.56 0.60 0.76 0.76 0.71 0.69 0.57 0.61 0.53
FC-MSPE-ALL 0.75 0.75 0.64 0.62 0.60 0.56 0.60 0.69 0.71 0.65 0.67 0.59 0.65 0.55
BMA-ALL 0.82 0.82 0.69 0.64 0.53 0.51 0.45 0.67 0.59 0.53 0.53 0.55 0.59 0.45

Notes: The table reports Hit Rate results for 6-month and 12-month horizons for the out-of-sample period 1999:1
- 2003:12. See Table 15 for further details.
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Figure 1: US zero-coupon yields
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Notes: The figure shows time series plots for a subset of maturities of end-of-month unsmoothed US zero
coupon yields constructed using the Fama and Bliss (1987) bootstrap method. Sample period is January
1970 - December 2003 (408 observations). The vertical lines bound the three forecasting subsamples.
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Figure 2: R2 in regressions of PCA factors on individual macro series
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(b) PCA factor #2
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(c) PCA factor #3

Notes: The figure shows the R2 when regressing the first three macro factors on each individual series
in the macro panel. Panel (a), (b) and (c) show the results, grouped by each of the 15 macro categories,
as indicated on the horizontal axis, for the first, second and third macro factor resp. The macro dataset
consists of 116 (transformed to ensure stationarity) series and the sample period used is is January
1970 - December 2003 (408 monthly observations). The group categories are 1:=real output and
income, 2:=employment and hours, 3:=real retail, 4:=manufacturing and trade sales, 5:=consumption,
6:=housing starts and sales, 7:=real inventories, 8:=orders, 9:=stock prices, 10:=exchange rates,
11:=federal funds rate, 12:=money and credit quantity aggregates, 13:=prices indexes, 14:=average
hourly earnings and 15:=miscellaneous.
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Figure 3: Macro factors and individual macroseries
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(b) PCA factor #2 - CPI-U:total
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Notes: The figure shows timeseries plots of the first three common macro factors and the main individual
(transformed) macroseries from the category with which the factor is most related to. The first factor
is plotted together with Industrial Production Index: Total Index (R2 is 0.88%), the second factor is
plotted with the Consumer Price Index: All Items (R2 is 0.77) and the third factor is plotted with
Money Stock: M1 (R2 is 0.44). The macro dataset consists of 116 (transformed to ensure stationarity)
series and the sample period used is is January 1970 - December 2003 (408 monthly observations).
The group categories are 1:=real output and income, 2:=employment and hours, 3:=real retail,
4:=manufacturing and trade sales, 5:=consumption, 6:=housing starts and sales, 7:=real inventories,
8:=orders, 9:=stock prices, 10:=exchange rates, 11:=federal funds rate, 12:=money and credit quantity
aggregates, 13:=prices indexes, 14:=average hourly earnings and 15:=miscellaneous.
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Figure 4: h=1
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(a) Classical inference
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(b) Bayesian inference

Figure 5: h=3
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(a) Classical inference
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(b) Bayesian inference

Notes: The figure presents the 60-month moving average TRMSPE for individual models in the left

panel and for individual models augmented with macrofactors in the right panel. The TRMSPE is shown

for the out-of-sample period 1994:1-2003:12 for a 1-month horizon in Figure 4 and a 3-month horizon in

Figure 5. The models depicted are the Random Walk [RW], first order (Vector) Autoregressive [(V)AR],

State-Space Nelson-Siegel [NS1] and the affine [ATSM] model. The affix ’X’ indicates that macrofactors

have been added as additional variables.
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Figure 6: h=6
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(a) Classical inference
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(b) Bayesian inference

Figure 7: h=12
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(a) Classical inference
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(b) Bayesian inference

Notes: The figure presents the 60-month moving average TRMSPE for individual models in the left

panel and for individual models augmented with macrofactors in the right panel. The TRMSPE is shown

for the out-of-sample period 1994:1-2003:12 for a 6-month horizon in Figure 6 and a 12-month horizon in

Figure 7. The models depicted are the Random Walk [RW], first order (Vector) Autoregressive [(V)AR],

State-Space Nelson-Siegel [NS1] and the affine [ATSM] model. The affix ’X’ indicates that macrofactors

have been added as additional variables.
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