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Abstract. 
Railway networks are characterised by variations in demand on different links. Optimal 
strategies therefore call for a differentiated treatment of fares, frequencies and vehicle sizes in 
various links. However, for several reasons, railway operators may apply uniform levels for 
these decision variables. In this paper we investigate the welfare losses implied by uniform 
setting of fares per km, frequencies or vehicle sizes. This is done within the context of a 
model with uniform cost structures, uniform price elasticities, uniform demand levels across 
the day, but with demand levels that vary across segments of the network.  We demonstrate 
that the largest welfare loss results when frequencies are made uniform across links. Welfare 
losses due to making vehicle size and price per km uniform across links are smaller. We 
further find that when capacity, represented by frequency and vehicle size, is set at its optimal 
level at the various network segments, the contribution of price differentiation to social 
welfare is very limited. These results suggest that where differentiated prices are important to 
address issues like congestion and directional asymmetries in demand, differentiated supply in 
terms of vehicle size and in particular frequences are the preferred way of addressing demand 
variations on different segments in a network. 
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1. INTRODUCTION. 
 
Suppliers of public transport services face decision problems with a considerable number of 
dimensions, including network structures, pricing, spacing of lines and stops, frequency of 
service, and vehicle size. In the present paper we will focus on railway operations and pay 
special attention to three of these instruments: choice of frequency of service, vehicle size and 
price. We will investigate the potential contribution of these instruments to achieving a profit 
or welfare maximum.  
 
An important feature of public transport is that on various segments within networks there are 
substantial differences in demand. For example, the closer one gets to a large city, the higher 
traveller volumes become. This calls for a differentiated policy in the supply of transport 
services and its pricing. However, in reality, there are several reasons why such a 
differentiated approach is not adopted, or only adopted to a limited extent.  For example, car 
size is characterised by indivisibilities which makes it impossible to adjust its size to changing 
circumstances. Differentiation in train size may imply costs of coupling and decoupling of 
cars. Indivisibilities may also be present in the case of frequencies. Differentiation in 
frequencies may be difficult to implement within given structures for timetables. For example, 
frequencies are usually set according to fixed rules such as 2 per hour, or 4 per hour. Then a 
frequency of 3 per hour on a certain link may lead to long waiting times for transfer 
passengers when in the rest of the network the frequency equals 4. Further, differentiation in 
prices may confuse or irritate customers (Rietveld and Roson, 2002) and it may stimulate 
travellers to make detours. Also lack of sophisticated software support will influence railway 
operators in their planning practices (Watson, 2001) and this may also lead to a preference for 
simple outcomes.  
 
The question addressed in this paper concerns the potential contribution of variations in 
frequency, vehicle size and fares in order to achieve a profit or welfare optimum for a railway 
network where demand varies between links. More in particular the performance of second 
best strategies will be investigated, i.e., what are the losses in terms of welfare and profits 
when prices, frequencies or vehicle sizes are kept uniform. This is an important theme that has 
received little systematic attention in railway research. One of the questions we will address is 
which of the three instruments -price, frequency or vehicle size- is most detrimental to welfare 
or profits when it is made uniform.  
 
In order to address these questions we will first give a short review of the literature on 
behaviour of public transport operators (section 2). In section 3 we present results for a simple 
model based on inelastic demand. This is followed by section 4 where the case of elastic 
travel demand is considered. Section 5 concludes. 
 
 
2. OPTIMZING THE SUPPLY OF PUBLIC TRANSPORT SERVICES. 
 
The base model of frequency choice by public transport operators has been formulated by 
Mohring (1972). It can be outlined as follows. Consider the demand for trips per time period 
on a certain line (denoted as Q) as given (Q=Q0). Further, let F denote frequency of service 
per time period and let costs of service equal 
 
 Coperator = u.Q+v.F         (1) 
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where u is the marginal cost per passenger and v is the cost of an extra vehicle used to serve 
passengers1. In addition to the costs experienced by the operator there are also costs for the 
passengers related to waiting time, schedule delay, the fare p and other travel cost components 
(cost of vehicle time plus costs of travelling to and from railway station). When the vehicles 
are equally spaced, the interarrival time between vehicles equals 1/F. This implies that the 
average waiting time for a traveller going to a public transport stop without consulting the 
timetable equals 0.5/F. Other factors to be taken into account in the translation of frequencies 
into time related costs of travellers are scheduling costs in the form of “disguised waiting 
time” and inconveniences of waiting at platforms. These factors are summarised in a factor a 
giving the monetary equivalent of the interarrival time. Then the total costs of a 
representatieve traveller are: 
 
 Ctraveller = [p + tc + a/F]Q        (2) 
 
Minimising the sum of total costs of company and travellers 
 
 C = Coperator + Ctraveller =   u.Q + v.F + [p + tc + a/F]Q    (3) 
 
leads to the optimum frequency: 
 
 F* = [a.Q/v]0.5          (4) 
 
This result is known as the ‘square root principle’. It means that an increase of demand Q 
with 10% leads to an increase of frequency of services of 5%. In a similar way optimal 
frequency will respond positively to changes in the cost of waiting time per passenger (factor 
a) and negatively to changes in costs of supply of an additional vehicle (factor v). 
 
One of the limitations of this result is that vehicle size is not considered explicitly: it is 
assumed to be given. This leads to the conclusion that occupancy rates will be higher in 
situations of high demand and one would expect a tendency of introducing larger vehicles in 
this case, as for example indicated by Small (1992) and Quinet and Vickerman (2004). This 
obviously calls for a joint analysis of choice of frequency and vehicle size by operators. 
 
 
INSERT FIG 1 HERE. 
 
Figure 1. The relationship between capacity and travel demand according to the square root 
principle. 
 
 
Another point that deserves attention is the possible response of travellers to higher 
frequencies. In the base line approach demand is inelastic (Q=Q0), but in a more general 
setting one would expect that travellers respond to higher frequencies and that operators take 
this into account in their decision whether or not to increase frequency. 
 
Jansson (1980) introduced the issue of vehicle size by formulating a model where operators 
jointly optimise size and frequency, and where peak and off-peak periods are distinguished. 
Based on the assumption of inelastic demand he derives optimal levels of frequency and size 

                                                           
1 Note that we do not take into account delays related to boarding and alighting in this formulation. 
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of buses. The assumption is that during the peak the occupancy rate is 100%, whereas it may 
be lower at other times. He concludes that at the time of research the structure of bus 
operations in Sweden was clearly sub-optimal since frequencies were too low and bus size 
was too large. The explanation of this gap between the actual and the optimum outcome is the 
neglect of user costs by public transport operators. 
 
Using computer simulation techniques, Glaister (1986) analysed the potential consequences  
of deregulation of public transport in the city of Aberdeen based on the assumption of loss 
minimising operators, and where also bus fares are taken into account. His conclusions are 
comparable to those of Jansson that at that time busses were too large and that frequencies 
were too low. Although deregulated bus companies would not take into account directly the 
user costs of travellers, they may yet benefit from higher frequencies when travellers are 
prepared to pay higher fares. One of the issues he raises is the possible emergence of 
differentiated services for different types of travellers, a point that has been investigated in 
more detail by Gronau (2000) who analyses optimum diversity in terms of service frequencies 
and vehicle size. 
 
Oldfield and Bly (1988) formulate a model with elastic demand where social benefits are 
maximised by using size, service frequency and price as control variables. Based on empirical 
data they find that both size and frequency vary approximately with the square root of 
demand. This underlines that also with much more complex models the square root principle 
seems to make sense. Jansson (1993) formulates a model for a welfare maximising public 
transport authority that considers price and frequency. Two forms of schedule delay are 
distinguished: one where frequencies are so high that customers do not consult timetables 
when they use public transport, and another one where timetables are consulted. The two 
forms have rather different effects on schedule delay costs and hence may lead to local optima 
in the frequency choice problem. 
 
The literature surveyed above focuses on bus transport. It is however equally relevant for rail 
transport. Given the nature of rail operations the number of constraints in the planning of 
network structures, timetables, vehicle capacities and crew and vehicle schedules tend to be 
more complex compared with those of bus companies (Daduna and Wren, 1988, Daduna et 
al., 1995). This may be an explanation why in the rail sector stylised models in terms of 
frequency and vehicle size only are not very common. Nevertheless, it may be argued, that 
although models in the tradition discussed above give a simplified picture of the optimisation 
of rail operations, they are useful to analyse the basic trade-offs faced by the planners of 
transport services. 
 
 
3. DIFFERENT LEVELS OF DEMAND AT DIFFERENT PARTS OF THE RAILWAY 
LINE; INELASTIC DEMAND. 
 
Consider now a simple network where the operator serves a line from A to C with a stop B in 
between. The demand on the three relevant markets is denoted as QAB, QBC, and QAC. These 
demands are assumed to be inelastic at this stage. We consider the case that demand is large 
on the AB market, and smaller at the BC and AC markets. See figure 2 for an example.  
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Figure 2. Railway network with three nodes and varying levels of demand. 
 
We study various regimes for frequencies and vehicle size in terms of whether they are 
uniform across the whole network or not (see Table 1). Clearly, in case 1, the differences in 
demand levels on various parts of the network are not matched by differences in supply. The 
implications of the various capacity strategies for social costs will now be analysed 
subsequently. In the sequel we will use a second best approach, implying that we compute 
optimal values for vehicle size and/or frequency under the relevant uniformity constraints –
cases 1, 2 and 3- after which we compare these with the first best optimum of entirely flexible 
capacity (case 4).  
 
Before describing our model in detail we mention some limitations of the model adopted in 
order to help the reader with understanding the domain within which the conclusions apply. 
In our modelling approaches we assume that frequency and vehicle size can be determined as 
continuous variables. This greatly simplifies the solution of the optimisation problems 
whereas there are no reasons to expect that they will seriously affect the conclusions. We also 
assume that there are no upper limits to frequency and size, for example related to 
infrastructure constraints on route capacities and platform length. Also limitations on rail 
infrastructure use due to the sharing of rail by passenger and freight transport are not 
discussed.  
 
We model flexibility of vehicle size in terms of coupling and uncoupling carriages. This 
means that we do not pay attention to other means sometimes used by railway companies to 
make the capacity of trains flexible. For example, on certain commuter trains in various 
countries the capacity is made flexible by the use of tip-up seats, implying that at the quiet BC 
link passengers can sit, whereas at the busy AB link there is sufficient place for standees. 
Modelling this type of flexibility would make it necessary to take on board issues of valuation 
of comfort, an aspect that falls outside the scope of the present paper. It is certainly an 
interesting option do deal with high demand on short trajectories, but on long trajectories this 
is not a feasible alternative.  
 
Cost elements taken into account concern all costs of operations except infrastructure related 
costs. Another factor we do not address is that of costs of coupling and de-coupling carriages 
of a train. This will to some extent bias the attractiveness of alternatives with flexible train 
sizes. We will return to this point in the concluding section. Unit costs are assumed uniform 
across the network. Another feature of our model is that we assume demand to be equal 
during the day. Hence issues of congestion will not be addressed, implying for example that 

A B 
C 

10000 5000 

7500 



 5

congestion pricing is not an issue. Also back-haul problems are ignored in this paper. Further, 
demand elasticities are uniform across the network. As we will see these uniformity 
assumptions have a clear impact on the potential for price differentiation. 
 
 
Table 1. Various combinations of frequency and vehicle size according to degree of 
uniformity on the links in the network. 
 
                               Frequency 
Size 

Uniform Non-uniform 

Uniform 1 2 
Non-uniform 3 4 
 
 
 
Case 1: Minimisation of social costs; inelastic demand. Uniform frequency, uniform vehicle 
size. 
As the reference case we impose the restriction that the operator applies a uniform service in 
terms of frequency and vehicle size on all market segments and that a uniform price per km is 
charged. The total number of passengers that travel between A and B equals QAB+QAC, and 
between B and C it equals QBC+QAC. We assume again that total capacity should be at least 
sufficient to meet total demand. Hence: 
 
 QAB+QAC ≤ F.S 
             (5) 
 QBC+QAC ≤ F.S 
 
Assume that demand on the AB segment is larger than on the BC segment. Then, it follows 
that F.S = QAB+QAC. We assume that demand is symmetric in both directions. 
 
The costs of the production of transport services consist of various elements. Per passenger 
the costs of ticket counters, cleaning, and other personnel are equal to u. Another part depends 
on frequency; examples are the costs of drivers, and the cost of infrastructure use. These costs 
are assumed to be proportional to distance. Energy costs are proportional to frequency. They 
might be  subject to a certain degree of economies of scale, for example in the case of the use 
of double deck carriages (Gijsen and van den Brink, 2002).. This leads to a formulation of 
energy costs such as Cenergy = wFSb, where b equals 1 or attains a value slightly below it. In 
the present context we confine ourselves to short run scale adjustments by adding carriages to 
a train drawn by a locomotive, which means that b=1. In a similar way the capital costs of the 
driving stock are equal to Cdriving stock = rFSc with a value for c close to or equal to 1. Thus, 
costs of operations on a certain line of length d are equal to: 
 
 Coperator = uQ + vFd + wFSbd + rFScd       (6) 
 
Then, the total cost function of operations on the line between A and C, also including the 
costs of passengers (see equation (2)) is: 
 
 C = u[QAB+ QBC+QAC] + vF(dAB+dBC) + wFSb(dAB+dBC)+ rFSc(dAB+dBC) +  
            (7) 
  [pAB + tcAB + a/F]QAB + [pBC + tcBC + a/F]QBC + [pAC + tcAC + a/F]QAC 
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Since we assume here that demand is inelastic welfare maximisation is equivalent to cost 
minimisation. Another implication of inelastic demand is that price setting may be ignored. 
Thus, the remaining instruments are frequency F and vehicle size S.  We assume that capacity 
F.S is set in such a way that it is just equal to demand in the busiest part of the network: S = 
[QAB+QAC]/F. After substitution2 of this equation in the cost function, minimisation of costs C 
with respect to frequency F leads to: 
  
 F = [a(QAB+ QBC+QAC)]0.5 / [v(dAB+dBC) + w(QAB+QAC)b(1-b)F-b(dAB+dBC)+  
             (8) 
   r(QAB+QAC)c(1-c)F-c(dAB+dBC)]0.5 
 
It can be easily checked that in the case of constant returns to scale in energy use and costs of 
rolling stock (b=c=1) this boils down to a square root result  Thus, this expression also applies 
in the context of more complex networks. In order to explore the consequences of the various 
second best strategies we will consider a network with the following demand levels and 
distances: QAB=10,000; QBC=5,000; QAC=7,500; dAB=10; dBC=30; dAC=40. Further, we use the 
following technical parameters: u=0.65; v=40; w=0.0125; r=0.05; b=1; c=1. These parameters 
are based on studies on costs structures in railway operations (Van den Brink and Gijsen, 
2000, Gijsen and Van den Brink, 2002, Rietveld and Roson, 2002), and on confidential data 
from the National Railways.. 
 
 

Minimisation of social costs; inelastic demand 
   uniform freq 

& size 
varying freq, 
uniform size 

varying size, 
uniform freq 

varying freq & 
size 

F Frequency AB 26.52 33.07 26.52 35.36 
  AC 26.52 23.62 26.52 22.82 
S Size AB 660 529 660 399 
  AC 660 529 471 548 
Ctraveller Costs  202104 201254 202104 201206 
Coperator   100801 90576 91426 90528 
Ctot   302905 291830 293530 291734 
OR Occupancy AB 100% 100% 100% 100% 
 rate BC 71% 100% 100% 100% 
AC AB 0.19 0.20 0.19 0.21 
 BC 0.27 0.16 0.17 0.16 
 

Average 
cost per 
passenger 
km 

AC 0.14 0.15 0.16 0.15 

MC AB 0.41 0.05 0.22 0.20 
 BC 0.05 0.12 0.12 0.12 
 

Marginal 
cost per 
passenger 
km 

AC 0.10 0.09 0.10 0.11 

 
Table 2. Minimisation of social costs under various assumptions of uniform frequency and 
size: effects on frequency, size and costs. 

                                                           
2 By this substitution the costs of energy and rolling stock become dependent on demand at the AB 
part of the network. Travel volumes on the BC segment do not matter as long as they are smaller than 
at the other market. 
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Table 2 (left column) gives the outcomes for the optimal frequency and train size under the 
constraint that these are uniform in the network. The occupancy rate in the busy part AB is 
100%, whereas in the quiet part BC it is 71%. Average costs per passenger tend to be very 
high in the low demand segment (BC), which is of course no surprise given the low degree of 
capacity utilisation. Marginal costs per passengerkm are very different in the three market 
segments: in the busy part AB they are about 8 times as high compared with the quiet part 
BC. Note also the large divergence in BC between average costs (very high) and marginal 
costs (very low).3 These results are obviously caused by the excess supply of capacity implied 
by the restriction that in all segments there should be sufficient capacity, and that capacity 
does not vary between market segments. 
 
The implications of this second best approach for the responsiveness of size and frequency 
with respect to changes in demand are shown in the left column of Table 3. It appears that an 
increase in demand on the busy segment AB of 1% leads to an increase in overall frequency 
and train size on this segment of .22% and .35%, respectively. In Figure 2 we illustrate the 
sensitivity of frequency for changes in passenger demand. The figure demonstrates the rather 
low response of frequency with respect to demand in the busiest part of the line (AB). This 
underlines that in the case with spatial variations in demand, it is optimal that the operator sets 
frequency in a way that departs from the simple Mohring rule.  
 
INSERT FIG 3 ABOUT HERE. 
 
Figure 3. The relationship between travel demand, frequency, and vehicle size with different 
levels of demand at various parts of a railway line. 
 
An increase of demand in the quiet part (BC) leads to a small frequency increase and a small 
size decrease keeping total capacity constant. This means that travellers on the AB segment 
would benefit from an increase of demand in the quiet segment because of the increase in 
frequency. This is an example of a positive consumption externality in a network context. In 
the lower part of Table 3 the effects of demand increases on frequency and size are 
summarised. It appears that an increase in demand such that all market segments grow at the 
same rate leads to a proportional capacity response in terms of frequency and size 
(.50+.50=1.00).  Thus, also in this slightly more complex setting Mohring’s square root 
principle is found to apply.4  

                                                           
3 The low cost per km for the AC passenger relative to the AB and BC passengers follows from the ticketing 
costs that obviously do not depend on distance which is favourable for long distance passengers. 
4 Sensitivity analysis with economy of scale parameters b and c lower than 1 yield a slightly lower 
responsiveness of frequency that is however still very close to the elasticity value of 0.5. 
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Minimisation of social costs; inelastic demand 
Elasticity uniform freq & 

size 
Varying freq, 
uniform size 

 varying size, 
uniform freq 

varying freq & 
size 

FAB - QAB 0.22 0.55 0.22 0.50 
FAC - QAB  -0.01  0.00 
SAB - QAB 0.35 0.01 0.35 0.58 
SAC - QAB   -0.22 0.00 
Coper - QAB 0.40 0.22 0.24 0.22 

     
FAB – QBC 0.11 -0.14 0.11 0.00 
FAC – QBC  0.26  0.20 
SAB – QBC -0.11 0.14 -0.11 -0.64 
SAC – QBC   0.29 0.20 
Coper – QBC 0.08 0.20 0.19 0.20 

     
FAB – QAC 0.17 0.08 0.17 0.00 
FAC – QAC  0.25  0.30 
SAB – QAC 0.26 0.35 0.26 0.55 
SAC – QAC   0.43 0.30 
Coper – QAC 0.30 0.35 0.33 0.35 

     
FAB – skms 0.50 0.50 0.50 0.50 
FAC – skms  0.50  0.50 
SAB – skms 0.50 0.50 0.50 0.50 
SAC – skms   0.50 0.50 
Coper – skms 0.79 0.77 0.77 0.77 

 
Table 3. Minimisation of social costs under various assumptions of uniform frequency and 
size: elasticities of supply with respect to changes in demand. 
 
Another result of our analysis is that it allows us to investigate economies of density in the 
railway sector. Economies of density are usually studied in the context of aggregate cost 
functions where network structures and variations in demand at various segments are ignored 
(see for example Caves et al., 1984, and Small, 1992). The present model allows the 
aggregation of total output (seatkms) and total costs of the operator. Then, the welfare 
maximisation approach adopted here leads to a total cost elasticity of about 0.77. The returns 
to density measure would be 1/(0.77)= 1.27, which is close to estimates usually obtained for 
costs functions based on aggregate data (see for example Pels et al., 2003)5.  
 
 
Case 2. Minimisation of social costs; inelastic demand. Varying frequency, uniform vehicle 
size. 
We now drop the restriction that the operator applies a uniform service in terms of frequency. 
The frequency on the segment AB differs from the frequency on the segments BC and AC. 
Because the demand on AB is larger than on BC, the frequency on the first segment will be 

                                                           
5 It should be noted that our estimate is not directly comparable with these elasticities as reported in the 
literature, since we do not take into account infrastructure related costs.  
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higher than on the latter. This means that trains that arrive at B, not always continue to C, they 
sometimes immediately return to A. Therefore, some changes in the cost function are to be 
applied. The costs of the public transport operator now become: 
 

Coperator = u[QAB+QBC+QAC] + v[FABdAB+FBCdBC] + wSb[FABdAB+FBCdBC] + 
(9) 

rSc[FABdAB+FBCdBC] 
 
The costs of the passengers become: 
 
 Ctraveller = [pAB + tcAB + a/FAB]QAB + [pBC + tcBC + a/FBC]QBC +  

          (10) 
[pAC + tcAC + a/FC]QAC 

 
As Table 2 shows, the result of the relaxation of the condition of equal frequency in all 
segments is clear: on the busy segment frequency increases, whereas on the quiet segment it 
decreases. From a welfare perspective the average traveller will benefit: generalised costs 
decrease with about 0.5%. Note, however, that this does not imply that all travellers benefit: 
travellers on the quiet segment are obviously better off with the high frequencies in the 
reference case. Note that also the costs of the railway operator decrease with about 11%. 
Thus, making frequency flexible has a much larger effect on operator costs than it has on 
traveller costs (but note that traveller costs also depend on fares, and access costs, so that 
indeed a substantial part of these costs cannot be influenced by the operator). Occupancy rates 
are now equal on all market segments, and the variation in the marginal costs of 
passengerkilometres among the market segments is smaller than in the reference case. 
Interesting enough the marginal costs are now highest in the quiet segment BC. The reason is 
given in Table 3 where it appears that frequency in the AC segment has become rather 
responsive to demand on BC.  
 
Table 3 also shows that on the busy market, frequency has become very responsive, whereas 
size has become very unresponsive here. On the other hand, size has become responsive to 
changes in demand on the long distance market. At the overall network level we observe that 
dropping the equal train size constraint has considerable impact on cost levels (a decrease of 
11% mentioned above), but a negligible effect on economies of density estimates. Thus, 
constraints on railway operations may have a substantial impact on inefficiencies, while at the 
same time estimates of economies of density in railway operations remain unaffected. 
 
Case 3. Minimisation of social costs; inelastic demand. Uniform frequency, varying vehicle 
size. 
We return to the base model (uniform frequency and uniform vehicle size), but now drop the 
restriction of uniform vehicle size. We consider the possibility to (un)couple a railway 
carriage at B; in that way the vehicle size on segment AB differs from the size on BC. The 
costs of the public transport operator are: 
 

Coperator = u[QAB+QBC+QAC] + vF[dAB+dBC] + wF[SAB
bdAB+SBC

bdBC] + 
(11) 

rF[SAB
cdAB+SBC

cdBC] 
 
The costs of the passengers become: 
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 Ctraveller = [pAB + tcAB + a/F]QAB + [pBC + tcBC + a/F]QBC +  
          (12) 
[pAC + tcAC + a/F]QAC 

 
This alternative way of introducing flexibility by allowing varying vehicle size leads to better 
outcomes in terms of operator costs compared with the reference case, whereas traveller costs 
remain the same since frequencies do not change (see Table 2). When compared with the case 
of flexible frequency, it is inferior. The effect on operator costs is less attractive and also the 
development of traveller costs is not as good. The latter is a plausible result, since in our 
model formulation, changes in vehicle size do not have a direct effect on traveller’s utility, 
because nuisance due to crowding is ruled out.  With changes in frequencies this is different 
since these have a direct impact on costs of both travellers and operator. Hence, we conclude 
that in this context the welfare gains of making frequency flexible are larger than those of 
making vehicle size flexible. 
 
Case 4. Minimisation of social costs; inelastic demand. Varying frequency, varying vehicle 
size. 
The last extension to this model is making the vehicle size segment-dependent. For example, 
one may allow that the vehicle size on the segment AC is larger than on the segment AB. To 
compose the cost function in this case, we need to define another variable, G. G denotes the 
frequency solely on the segment AB, that is when a train departing from A arriving at B 
continues to C, this train does not contribute to GAB. This train contributes to GAC, because 
this train drives solely on AC. In this way FAB=GAB+GAC. By the introduction of G, we are 
able to determine the capacity restrictions: 
 
QAB+QAC ≤  GABSAB+GACSAC 
            (13) 
QBC+QAC ≤ GACSAC 
 
The last restriction holds because GBC=0. Thus, there are no trains solely on the segment BC, 
passengers that want to travel from B to C, travel with a train that drives between A and C. 
The corresponding cost function is: 
 
 Coperator = u[QAB+QBC+QAC] + v[GACdAC+GABdAB] + wSAB

bGABdAB + 
            (14) 
  wSAC

bGACdAC + rSAB
cGABdAB + rSAC

cGACdAC 
 
 Ctraveller = [pAB+tcAB+a/(GAB+GAC)]QAB + [pBC+tcBC+a/GAC]QBC + 
            (15) 
  [pAC+tcAC+a/GAC]QAC 
 
Table 2 shows that the entirely flexible case has differentiations in size and frequency that are 
indeed more pronounced than the differences in the preceding alternatives. The outcome is a 
high frequency / small train service at the short distance and a low frequency / long train 
service at the long distance market. However, the differences in total costs are very small 
compared with the case that only frequency is flexible. This leads to the conclusion, that 
compared with the reference case of uniform frequency and size, varying frequency is a very 
well performing second best alternative to the first best solution where both size and 
frequency vary. 
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Table 3 finally gives a view on how the planning in terms of size and frequencies in the 
various markets is affected by changes in demand in submarkets. With uniform frequency and 
size, the elasticities are rather small, which is no surprise since frequency and size have been 
optimised in view of all submarkets. In the most flexible alternative, an increase in travellers 
in the busiest segment (AB) has a rather strong effect on size (elasticity equal to 0.58), 
whereas size in this AB market strongly decreases with increasing demand in the other market 
(BC). This table shows that the responsiveness of size and frequency with respect to demand 
shifts in submarkets varies strongly according to the regime of fixed versus flexible size and 
frequency. In the lower part of Table 3 we have introduced the effects of a proportional 
increase in all submarkets. Then it appears again that the elasticities of size and frequency 
with respect to travel demand are both equal to 0.5 This underlines the robustness of 
Mohring’s result derived for a simple one-line network in the context of more complex 
networks as long as constant returns to scale prevail (b=c=1) 
 
Our overall conclusion is that when demand is inelastic the second best strategy of working 
with non-uniform frequencies leads to outcomes for total costs that are very close to the first 
best strategy. Setting the range between the completely uniform service and the first best 
solution equal to 100 (202104-201206) for travellers and 100801-90528 for the operator we 
find that the loss of keeping vehicle size uniform (case 2) is only 1 to 5% of this range. On the 
other hand the loss of keeping frequency uniform and only varying vehicle size is 100% for 
traveller costs and 9% for operator costs. Thus, compared with strategies involving different 
frequencies at different parts of the network, strategies dealing with non-uniform vehicle size 
are performing much worse.  
 
An important question is to what extent this result is also obtained for other network 
configurations. For that purpose we carried out a sensitivity analysis such that the differences 
in the sizes of the various sub-markets become more pronounced. The ensuing results for the 
relative welfare losses are shown in Table 4. 
 
Marketsize   Ctrav    Coper    

QAB QBC QAC Unif 
F,S 

Unif 
F 

Unif 
S 

All 
flex 

Unif 
F, S 

Unif 
F 

Unif 
S 

All 
flex 

5000 5000 3750 *- - - - - - - - 
7500 5000 5625 0 81 0 100 0 98 89 100 
10000 5000 7500 0 95 0 100 0 99 91 100 
15000 5000 11250 0 100 0 100 0 100 93 100 
25000 5000 18750 0 100 0 100 0 100 94 100 

 
* In this specific case of a fully symmetric network the four strategies lead to identical results, implying that the 
relative welfare measures cannot be computed.  
 
Table 4. Relative welfare performance for various combinations of uniform frequency and 
vehicle size: sensitivity analysis for various market sizes. 
 
The table shows that when the AB and BC markets have equal size, frequency and vehicle 
size will be chosen such that they are equal in all markets, implying zero welfare losses when 
equality constraints would be imposed. The third case (with demands equal to 10000, 5000 
and 7500 respectively) was the reference case in the optimisations above. The sensitivity 
analysis shows that also when small differences in demand levels occur in the submarkets, the 
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policy of differentiating frequencies yields a large share of potential welfare gains.6 We 
conclude that the strategy of making frequency flexible while keeping vehicle size equal 
performs very close to the first best strategy of making both frequency and vehicle size 
flexible for a very wide range of market sizes. This underlines the robustness of the results 
above. 
 
A limitation of the present analysis is that due to the assumption of given travel demand, the 
price instrument cannot be considered. Therefore we shift our attention now to the case of 
elastic travel demand. We will address the question whether the above conclusion on the 
superiority of frequency as an instrument above vehicle size is still valid when demand is 
inelastic, and how the efficiency of these capacity oriented measures compare with the 
efficiency of price measures. 
 
 
4. OPTIMISATION OF RAILWAY OPERATIONS UNDER ELASTIC DEMAND. 
 
We now consider the case that demand is elastic, so that it depends on frequency and fares. 
Let demand for trips depend on generalised costs GC, where GC depends on the fare p, 
scheduling costs that are related to frequency F and other travel cost components tc as 
outlined in (2). Demand also depends on other factors such as income, supply of competing 
modes, which are incorporated in a factor A. Thus, the demand for trips on the three segments 
is7: 
 
 QAB = AAB.[pAB + tcAB + a/F]z 

 
QBC = ABC.[pBC + tcBC + a/F]z 
           (16) 
QAC = AAC.[pAC + tcAC + a/F]z 

 
where z is the generalised cost elasticity of demand (z<0). This formulation with elastic 
demand means that in addition to frequency and vehicle size, also fares are considered. We 
consider two cases, one where the objective is the maximisation of profits, the other one is the 
maximisation of social welfare. 
 
Maximisation of social welfare; elastic demand. 
The maximisation of social surplus with elastic demand means that the overall objective can 
no longer be formulated in terms of costs, but that consumer surplus and profits have to be 
considered. The inverse demand function is GC = (Q/A)1/z. Thus, consumer surplus equals  
 

 CS = ∫
ABQ

0

z/1
AB dq]A/q[  + ∫

BCQ

0

z/1
BC dq]A/q[  + ∫

ACQ

0

z/1
AC dq]A/q[  

- [pAB+ tcAB + a/F]QAB -[pBC+ tcBC + a/F]QBC - [pAC+ tcAC + a/F]QAC (17) 
 

                                                           
6 Note that the absolute range of outcomes on which the relative differences in Table 4 are based is small when 
the differences in demand levels remain of limited size.  
7 The parameters in this demand function have been set at the following values: AAB=10,000; ABC=5,000; 
AAC=7,500; tcAB=2.04; tcBC=3.79; tcAC=4.67; a=50, z=-1.5 
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In the case of welfare maximisation the objective is to maximise total surplus TS, that is 
consumer surplus plus profits pABQAB+pACQAC+pBCQBC -C: 
 

TS =  ∫
ABQ

0

z/1
AB dq]A/q[  + ∫

BCQ

0

z/1
BC dq]A/q[  + ∫

ACQ

0

z/1
AC dq]A/q[  - [tcAB + a/F]QAB - 

 
[tcBC + a/F]QBC - [tcAC + a/F]QAC - u[QAB+ QBC+QAC] - vF(dAB+dBC) -  

           (18) 
wFSb(dAB+dBC) - rFSc(dAB+dBC) 

 
Table 5 reports the results for maximisation of social welfare. In order to prevent outcomes 
with negative profits, we impose the constraint that profits should be positive. Depending on 
the institutional setting where subsidies are given to public transport, this might be replaced 
by side conditions, that losses do not exceed a certain maximum level. A major lesson to be 
learnt from Table 5 is that flexibility of prices (column 2) is a rather ineffective way to 
improve welfare compared with flexibility of size or frequency.  
 
 

Maximisation of social welfare; elastic demand 
  uniform 

freq, 
size & 
price 

varying 
price, 
uniform 
freq & 
size 

varying 
freq, 
uniform 
size & 
price 

varying 
freq & 
price, 
uniform 
size 

varying 
size, 
uniform 
freq & 
price 

varying 
size & 
price, 
uniform 
freq 

varying 
freq & 
size, 
uniform 
price 

varying 
freq, 
size & 
price 

F Frequency AB 21.25 25.11 61.38 51.56 26.61 27.32 49.87 49.74 
  AC 21.25 25.11 14.38 17.79 26.61 27.32 17.74 18.36 
S  Size AB 757 546 434 460 792 711 595 506 
  BC 757 546 434 460 279 332   
  AC       384 441 
p Price AB 2.64 5.05 1.97 2.45 1.98 2.71 1.93 2.37 
  BC 7.93 2.35 5.92 4.59 5.94 4.79 5.78 4.82 
  AC 10.57 5.74 7.89 5.69 7.92 5.83 7.70 5.83 
Q Demand AB 13385 9134 23543 19549 17430 14807 22549 19796 
  BC 2840 6466 3132 4003 3790 4462 3440 3928 
  AC 2710 4580 3115 4185 3634 4618 3378 4160 

AB 100% 100% 100% 100% 100% 100% 100% 100% OR Occupancy 
rate BC 34% 81% 100% 100% 100% 100% 100% 100% 

R Revenues  86552 87582 89552 90187 85812 88408 89308 90186 
Coper Costs  86552 87582 89552 90187 85812 88408 89308 90186 
Z Profits  0 0 0 0 0 0 0 0 
CS Consumer 

surplus 
 363776 384687 409981 413688 398978 401759 412092 413795

W Welfare  363776 384687 409981 413688 398978 401759 412092 413795
 
Table 5. Maximisation of social welfare under various assumptions of uniform frequency,  
size and fare. 
 
Compared with the reference case (column 1), flexible prices only lead to an increase of 
potential welfare of  (384687-363776)/(413790-363776)=42%. As illustrated in Figure 4, this 
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figure is 71% for flexible vehicle size, and for flexible frequency it is as high as 92%. Thus, 
flexible prices do help to improve the social surplus in rail transport, but changes in the supply 
of capacity (frequency and train size) appear to be more efficient. Another result is that when 
two instruments are applied in a non-uniform way, most of the potential welfare gains can be 
achieved. Least attractive is the combination of vehicle size and fare with a score of about 
77%, the combinations of F,p and F,S get close to a score of 100%. It is interesting to note 
that the combination F,p performs slightly better than F,S. This reveals that the degree of 
overlap in the effects of F and S is larger than in the effects of F and p.  
 
 
 

Figure 4. Relative efficiency of strategies ranging from undifferentiated frequency, vehicle 
size and price per km (left) to a fully differentiated strategy (right) under welfare 
maximisation. 
 
 
From Table 5 we learn that flexible prices with uniform frequency and size imply that the per 
km price in the busy segment (AB) is about 7 times higher than in the quiet segment (BC) –
note that we assume BC to be three times as long as AB. Thus, optimal fares indeed vary 
strongly in a situation with differences in demand levels, but in spite of this the price 
instrument is not very effective in getting close to the welfare optimum. Comparison of the 
first best case with the case where the price per km is uniform in the network (the two right 
most columns in table 5) reveals that the welfare loss of imposing a uniform price per km is 
very small. 
   
There is an interesting link with the literature on road pricing. It is well known that when the 
degree of congestion varies between different links in the network, important welfare gains 
can be achieved with differentiated prices. However, this result only holds true as long as 
capacity is fixed. As demonstrated by Verhoef and Rouwendal (2004), when capacities are 
optimised there are no welfare gains by using differentiated road prices. This result is 
obtained under the assumption of constant returns to scale for road capacity. In the present 
railway case with slightly different cost structures, we do find a welfare increasing effect of 
the introduction of non-uniform prices. However, this effect is very small, so that the main 
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conclusion still holds, that the additional effect of differentiated fares is close to zero when 
capacities are fixed at the optimal level. 
 
We conclude that the most efficient way to deal with variations in a network with non-
uniform demand is to use differentiated frequencies. Differentiation of vehicle size achieves 
the second position and differentiation of fares is least attractive. Using a similar sensitivity 
analysis with respect to differences in relative market size confirms the robustness of this 
result for variations in market demand. 
 
Maximisation of profits; elastic demand. 
Profits of the monopolist are equal to: 
 

Z = (pAB-u)QAB + (pBC-u)QBC + (pAC-u)QAC - vF(dAB+dBC) - wFSb(dAB+dBC) -  
           (19) 

rFSc(dAB+dBC) 
 
The maximisation of profits appears to lead to higher prices, and lower frequencies and 
vehicle sizes compared with maximisation of welfare. Given the purpose of our paper we 
focus on relative welfare performance of the various strategies, illustrated in Figure 5. 
 

 
 
Figure 5. Relative efficiency of strategies ranging from undifferentiated frequency, vehicle 
size and price per km (left) to a fully differentiated strategy (right) under profit maximisation. 
 
 
The relative efficiency effects of imposing uniformity constraints on fares, frequencies and 
vehicle size in the case of profit maximisation are similar to those of welfare maximisation, as 
can be observed by comparing Figures 5 and 4. In both cases the most efficient instrument to 
cope with variations in demand in various market segments is the use of the frequency 
instrument. As soon as frequencies and vehicle size have been established at their optimal 
levels, only small efficiency gains can be achieved by the introduction of differentiated fares 
per km. 
 
An important proviso that has to be made here is that the results may change when the 
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assumption is removed that demand is the same in both directions. Directional imbalances 
may be substantial in public transport.  Table 6 gives an illustration for a train service between 
A, B and C, where C is a large city. In the morning peak demand for train services is assumed 
to be high for the BC part, 50% lower for AB, and lower again in the opposite direction. As 
demonstrated in the table a policy to accommodate demand at the BC section leads to a rather 
low average occupancy rate of below 50% even during the morning peak.  
 
 Demand during morning 

peak; passenger kms 
Capacity: 
seatkms 
 

Occupancy 
rate (%) 

AB 500 1,000 50 
BC 1,000 1,000 100 
CB 250 1,000 25 
BA 125 1,000 12.5 
Total  1,875 4,000 46.8 
 
Table 6. Directional and spatial asymmetries in travel demand. 
 
The case of directional imbalances -also known as the back-haul problem- is essentially a 
matter of joint production: if services are produced in one direction, there will also be services 
in the opposite direction.  It will appear that opportunities to address the demand imbalances 
by adjustments in capacity –size, frequency- are limited8. It is here that pricing measures –
implying direction dependent pricing- can be shown to be of vital importance to improve 
efficiency (see for example Rietveld and Roson, 2002). Other obvious areas where 
differentiated prices may be expected to perform favourably, are price differentiation by time 
of day to address congestion problems, and price differentiation reflecting differences in unit 
costs in various parts of the network. 
 
 
 
5. CONCLUSIONS. 
 
There are various reasons why railway operators may wish to apply uniform frequencies, 
vehicle size and fares per km. These reasons include indivisibilities in frequencies and in car 
size. It is more convenient for travellers when frequencies are a fixed integer number per 
hour. And given network interdependencies, having a frequency of 3 per hour in a system 
where two per hour is the standard is not very comfortable. For vehicle size, flexibility can be 
achieved by coupling cars, but car size itself is fixed in the short run, and costs of coupling 
and uncoupling may be substantial. Also different prices per km may lead to resistance from 
travellers when these are considered as non-transparent or unfair. In the present paper we 
investigate the welfare consequences of the imposition of such uniformity constraints. 
 
The use of uniform frequencies and vehicle size in railway networks with varying levels of 
demand lead to losses in terms of both operator costs and generalised traveller costs. When 
demand is inelastic the second best strategy of working with non-uniform frequencies and 
keeping vehicle size constant leads to outcomes for total costs that are very close to the first 
best strategies. If we had added costs of coupling and uncoupling in the model, this would 
                                                           
8 We do not go into details here on strategies that are sometimes available such as letting trains wait near the 
work location after the morning peak until the start of the afternoon peak, or using the excess capacity in other 
parts of the network.   
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reinforce our conclusion that allowing flexibility of size is less attractive than allowing 
flexibility of frequency. Sensitivity analysis on the degree of variation of demand between 
segments reveals that this conclusion is robust for a wide range of demand levels. Thus, 
although the results obtained depend to some extent on the chosen parameter values the 
conclusions are probably robust within the limits of the model adopted. 
 
In the variants with elastic demand also the price instrument can be incorporated. We find that 
differentiated prices do help to increase overall efficiency of the railway system, but that the 
effect is small. When supply, measured in terms of vehicle size and frequency has been 
optimised, the potential contribution of differentiated prices is limited. Thus, in the context of 
the present model, only when size and frequency are far from their optimal level –or when the 
costs of having flexible frequencies and vehicle sizes are high- price differentiation becomes 
important. Other examples where price differentiation remains important are the backhaul 
problem, networks where unit costs vary among segments, and demand variations in time of 
day.  
 
An additional result is that the square root formula –derived in simple network models- still 
applies in more complex networks with constant returns to scale in energy and capital costs of 
the running stock. And when economies of scale would prevail it is still a good 
approximation. However, when there are non-uniform changes in demand in various parts of 
the network quite differentiated frequency responses may be called for. 
 
The model formulations employed here are based on detailed cost functions for individual 
links. They can be used to compute aggregate economies of scale in railway operations in 
larger networks. In our numerical example we arrive at economies of scale of about 1.25.  It 
also appears that this parameter hardly depends on specific frequency or size constraints 
imposed on the operator. Thus, uniformity of frequency or vehicle size certainly matters for 
total cost levels, but not for the economies of scale parameter. 
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Figure 3. The relationship between travel demand, frequency, and vehicle size with different 
level of demand at various parts of a railway line. 
 
 
 

 

 


