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1. Introduction 

Geographical economics has come a long way since the by now classic contribution of  

Krugman (1991) who, by combining new trade theory with factor mobility, was able to 

explain some endogenous aspects of the distribution of economic activity across space in 

a simple model through a tug-of-war of the powers of agglomeration and spreading. 

Shortly afterwards, an alternative explanation of these types of forces based on 

intermediate goods deliveries was provided by Krugman and Venables (1995). The 

similar structure and results promted Neary (2001) to dub this the second core model. The 

most important results and conclusions of these approaches were summarized in Fujita, 

Krugman, and Venables (1999). At the turn of the century yet another core model popped 

up, see Forslid and Ottaviano (2003). The big advantage of their approach, which is based 

on different types of inputs for the fixed and variable costs of production, is the fact that 

it is analytically solvable. This made it most useful to analyze public policy issues, see for 

example Andersson and Forslid (2003), Baldwin and Krugman (2004), and the path-

breaking work of Baldwin et al. (2003). An important problem with the literature is the 

‘bang-bang’ nature of agglomeration. Either economic activity spreads (evenly) across 

space, or it agglomerates in a few (equally sized) large cities. This poses empirical 

problems because there are many cities of different sizes throughout the world. Brakman 

et al. (1996) overcome this discrepancy through a model incorporating congestion costs, 

which ensures that the powers of agglomeration and spreading are more easily balanced, 

allowing for many cities of different sizes. Brakman et al. (1999) use this approach to 

explain the empirically observed city-size distribution across space (rank-size rule/Zipf’s 

Law). This paper provides a brief description and the main derivations of an improved 

and more elegant general geographical economics model with congestion.1 

 

2. Demand 

Spending on food and manufactures 

The economy has two goods sectors, manufactures M and food F. Although 

“manufactures” consist of many different varieties, we can define an exact price index to 

represent them as a group, as will be explained below. We call this price index of 

                                                           
1 An earlier version of this paper is the basis of parts in Brakman, Garretsen, and Van Marrewijk (2001).  
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manufactures I. If a consumer earns an income Y (from working either in the food sector 

or the manufacturing sector) she has to decide how much of this income is spend on food 

and how much on manufactures. The solution to this problem depends on the preferences 

of the consumer, assumed to be of the Cobb-Douglas specification given in equation (1) 

for all consumers, where F represents food consumption and M represents consumption 

of manufactures. 

(1) 10;1 <<= − δδδ MFU   

Obviously, any income spent on food cannot simultaneously be spent on manufactures, 

that is the consumer must satisfy the budget constraint in equation (2). 

(2) YMIF =⋅+  

Note the absence of the price of food in this equation. This is a result of choosing food as 

the numéraire, which implies that income Y is measured in terms of food. Thus, only the 

price index of manufactures I occurs in equation (2). To decide on the optimal allocation 

of income over the purchase of food and manufactures the consumer now has to solve a 

simple optimization problem, namely maximize utility given in equation (1), subject to 

the budget constraint of equation (2). The solution to this problem is: 

(3) YIMYF δδ =−= ;)1(  

As equation (3) shows it is optimal for the consumer to spent a fraction (1-δ) of income 

on food, and a fraction δ of income on manufactures. We will henceforth refer to the 

parameter δ given in equation (1) as the fraction of income spend on manufactures. 

 

Technical Note 1 Derivation of equation (3) 

To maximize equation (1) subject to the budget constraint (2) we define the Lagrangean 

Γ , using the multiplier κ : 

[ ])(1 IMFYMF +−+=Γ − κδδ  

Differentiating Γ  with respect to F and M gives the first order conditions: 

IMFMF κδκδ δδδδ ==− −−− 11;)1(  

Taking the ratio of the first order conditions gives: 

FIMorI
MF

MF
δ

δ
κ
κ

δ
δ

δδ

δδ

−
==

− −
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Substituting the latter in the budget equation gives: 

YForFFIMFY )1(;
1

δ
δ

δ
−=

−
+=+=  

Which indicates that the share (1-δ) of income is spend on food, and thus the share δ on 

manufactures, as given in equation (3). 

 

Spending on manufacturing varieties 

Now that we have determined that the share δ of income is spend on manufactured goods, 

we still have to decide how this spending is allocated among the different varieties of 

manufactures. In essence, we have to optimally allocate spending over the consumption 

of a number of goods which can be consumed. This problem can only be solved if we 

specify how the preferences for the aggregate consumption of manufactures M depends 

on the consumption of particular varieties of manufactures. Let ci be the level of 

consumption of a particular variety i of manufactures, and let N be the total number of 

available varieties. The Dixit-Stiglitz (1977) approach uses: 

(4) 10;
/1

1
<<⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=

ρ
ρ

ρ
N

i
icM   

Note that the consumption of all varieties enter equation (4) symmetrically. This greatly 

simplifies the analysis in the sequel. The parameter ρ represents the love-of-variety effect 

of consumers. If ρ = 1 equation (4) simplifies to M = Σi ci and variety as such does not 

matter for utility (100 units of one variety gives the same utility as 1 unit of 100 

varieties). Products are then perfect substitutes (1 unit less of one variety can exactly be 

compensated by 1 unit more of another variety). We therefore need ρ < 1 to ensure that 

the product varieties are imperfect substitutes. In addition, we need ρ > 0 to ensure that 

the individual varieties are substitutes (and not complements) for each other, which 

enables price setting behavior based on monopoly power. How does the consumer 

allocate spending on manufactures over the various varieties? Let pi be the price of 

variety i for i = 1,…,N. Naturally, funds pici spend on variety i cannot be spend 

simultaneously on variety j, as given in the budget constraint for manufactures: 

(5) Ycp
N

i
ii δ=∑

=1
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In order to derive a consumer’s demand, we must now solve a somewhat more 

complicated optimization problem, namely maximize utility derived from the 

consumption of manufactures given in equation (4), subject to the budget constraint of 

equation (5). The solution to this problem is given in equations (6) and (7): 

(6) [ ] NjforpIwhereYIpc
N

i
ijj ,..,1,

)1/(1

1

11 =⎥
⎦

⎤
⎢
⎣

⎡
≡=

−

=

−−− ∑
ε

εεε δ  

(7) 
ρ

εδ
−

≡=
1

1,/ andIYM  

 

Technical Note 2 Derivation of equations (6) and (7) 

We proceed as in Technical Note 1. To maximize equation (4) subject to the budget 

constraint (5) we define the Lagrangean Γ , using the multiplier κ : 

⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
=Γ ∑∑
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1
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Differentiating Γ  with respect to cj and equating to 0 gives the first order conditions: 

Njforpcc jj

N

i
i ,..,1,1

1)/1(

1
==⎥

⎦

⎤
⎢
⎣

⎡ −
−

=
∑ κρ

ρ
ρ  

Take the ratio of these first order conditions with respect to variety 1, note that the first 

term on the left hand side cancels (as does the term κ  on the right hand side), and define 

)1/(1 ρε −≡  as discussed in the main text. Then: 

Njforcppcor
p
p

c
c
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1
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−

−
εε
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ρ

   

Substituting these relations in the budget equation (5) gives: 

[ ] YIpcorYIcppcpcpppcp
N
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N
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jj δδ εεεεεεεε 1
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−

=

===== ∑∑∑  

Where use has been made of the definition of I defined in equation (6) of the main text. 

This explains the demand for variety 1 as given in equation (6). The demand for the other 

varieties is derived analogously. The question remains why the price index I was defined 

as given in equation (6). To answer this question we have to substitute the derived 



General geographical economics model with congestion © Charles van Marrewijk, 2005 

 5

demand for all varieties in equation (4), and note along the way that εερ −=− 1  and 

)1/(/1 εερ −−= : 
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Using the definition of the price index I from equation (7) this simplifies to: 

IYIYIpYIM
N

i
i /1

)1/(

1

11 δδδ εε
εε

εε ==⎟
⎠

⎞
⎜
⎝

⎛
= −−

−−

=

−− ∑ . 

 

To finish our discussion of the demand structure of the model we want to note that we 

could derive the exact price index for the allocation of income between food and 

manufactures. As the reader may wish to verify, the result would be: δδδ II =−11 , where 

the “1” on the left hand side represents the price of food, which is set equal to 1 as it is 

the numéraire. Thus, the consumer’s utility increases if, and only if, δIY /  rises, that is if 

the income level rises faster than the exact price index δI . We can thus define real 

income y as an exact representation of a consumer’s preferences, see equation (8). 

Similarly, if the wage rate is W, we can define the real wage w also using the exact price 

index, see again equation (8). Moreover, if an individual consumer only has wage 

income, that is if Y = W, then the individual real income y is equal to the real wage w. 

(8) δδ −− == WIwwagerealYIyincomereal :;:  

  

3. Supply 

Production structure 

We start the analysis of the supply side of the model with a description of the production 

structure for food and manufactures. Food production is characterized by constant returns 

to scale and is produced under conditions of perfect competition. Workers in this industry 

are assumed to be immobile. As mentioned above, the food sector is therefore the natural 

candidate to be used as the numéraire. Given the total labor force L, a fraction (1-γ) is 

assumed to work in the food sector. The labor force in the manufacturing industry is 

therefore γL. Production in the food sector, F, equals, by choice of units, food 

employment: 
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(9) 10;)1( <<−= γγ LF  

Since farm workers are paid the value of marginal product this choice of units implies 

that the wage for the farm workers is 1, because food is the numéraire. 

 

Production in the manufacturing sector is characterized by internal economies of scale, 

which means that there is imperfect competition in this sector. The varieties in the 

manufacturing industry are symmetric and are produced with the same technology. Note 

that at this point we already introduce an element of location. Internal economies of scale 

means that each variety is produced by a single firm; the firm with the largest sales can 

always outbid a potential competitor. Once we introduce more locations each firm has to 

decide where to produce. The economies of scale are modeled in the simplest way 

possible, namely through a fixed cost component and a variable cost component. The 

production structure can be easily adapted to introduce congestion costs. The main idea is 

that the congestion costs that each firm faces depend on the overall size of the location of 

production. The size of city r is measured by the total number of manufacturing firms Nr 

in that city. Congestion costs are thus not industry or firm specific, but solely a function 

of the size of the city as a whole. 

(10) ( ) 11;)1/( <<−+= − τβαττ
irrir xNl  

Where lir is the amount of labor required in city r to produce xir units of a variety, and the 

parameter τ represents external economies of scale. There are no location-specific 

external economies of scale if τ = 0. There are positive location-specific external 

economies if –1 < τ < 0. Such a specification could be used to model, for example, 

learning-by-doing spillovers. For our present purposes, the case of negative location-

specific external economies arising from congestion are relevant, in which case 0 < τ < 1.  

 

Price setting and zero profits 

Each manufacturing firm produces a unique variety under internal returns to scale. This 

implies that the firm has monopoly power, which it will use to maximize its profits. We 

will therefore have to determine the price setting behavior of each firm. The Dixit-Stiglitz 

monopolistic competition model makes two assumptions in this respect. First, it is 

assumed that each firm takes the price setting behavior of other firms as given, that is if 
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firm 1 changes its price it will assume that the prices of the other N-1 varieties will 

remain the same. Second, it is assumed that the firm ignores the effect of changing its 

own price on the price index I of manufactures. For ease of notation we will drop the sub 

index i for the firm, retaining a subindex r for the region. Note that a firm which produces 

xr units of output in region r using the production function in equation (10) will earn 

profits πr given in equation (11) if the wage rate it has to pay is Wr. 

(11) )(1/
rrrrrr xNWxp βαπ ττ +−= −  

Naturally, the firm will have to sell the units of output xr it is producing, that is these 

sales must be consistent with the demand for a variety of manufactures derived above. 

Although this demand was derived for an arbitrary consumer, the most important feature 

of the demand for a variety, namely the constant price elasticity of demand ε, also holds 

when we combine the demand from many consumers with the same preference structure. 

If the demand x for a variety has a constant price elasticity of demand ε, maximization of 

the profits given in equation (11) leads to a very simple optimal pricing rule, known as 

mark-up pricing, as given in equation (12) and derived in Technical Note 3. 

(12) )/()/11( )1/()1/( ρββε ττττ −− ==− rrrrrr NWporNWp   

 

Technical Note 3 Derivation of equation (12) 

The demand xr for a variety can be written as ε−⋅= rr px con , where “con” is some 

constant. Substituting this in the profit function gives: 

)con(con )1/(1 εττε βαπ −−− ⋅+−⋅= rrrrr pNWp  

Profits are now a function of the firm’s price only. Differentiating with respect to the 

price p and equating to 0 gives the first order condition: 

 0concon)1( 1)1/( =⋅+⋅− −−−− εττε βεε rrrr pNWp  

Canceling the term ε−⋅ rpcon  and rearranging gives equation (12). 

 

Now that we have determined the optimal price a firm will charge to maximize profits we 

can actually calculate those profits (if we know the constant in Technical Note 3). This is 

where another important feature of monopolistic competition comes in. If profits are 
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positive (sometimes referred to as excess profits) it is apparently very attractive to set up 

shop in the manufacturing sector. One would then expect that new firms enter the market 

and start to produce a different variety. This implies, of course, that the consumer will 

allocate her spending over more varieties of manufactures. Since all varieties are 

substitutes for one another, the entry of new firms in the manufacturing sector implies 

that profits for the existing firms will fall. This process of entry of new firms will 

continue until profits in the manufacturing sector are driven to zero. A reverse process, 

with firms leaving the manufacturing sector, would operate if profits were negative. 

Monopolistic competition in the manufacturing sector therefore imposes as an 

equilibrium condition that profits are zero. If we do that in equation (11) we can calculate 

the scale at which a firm producing a variety in the manufacturing sector will operate, 

equation (13), how much labor is needed to produce this amount of output, equation (14), 

and how many varieties N are produced in the economy as a function of the available 

labor in the manufacturing sector, equation (15). See Technical Note 4. 

 
Technical Note 4 Derivation of equations (13)-(15) 

Put profits in equation (11) equal to zero and use the pricing rule from equation (12): 

xxxNWNW

xNWxpxNWxp

rrrrrr

rrrrrrrrrr

≡
−

=+=
−

+==+−

−−

−−

β
εαβαβ

ε
ε

βαβα

ττττ

ττττ

)1();(
1

)(;0)(

1/)1/(

1/1/

 

This explains equation (13). Now use the production function (10) to calculate the 

amount of labor required to produce this much output: 

( ) αε
β
εαβαβα ττττττ )1/()1/()1/( )1( −−− =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
+=+= rrrir NNxNl  

This explains equation (14). Finally, equation (15), determining the number of varieties N 

produced, simply follows by dividing the total number of manufacturing workers by the 

number of workers needed to produce 1 variety. 

 

(13) 
β
εα )1( −

=x  

(14) αεττ )1/( −= rr Nl  
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(15) ( ) τττ αεγαεγγ −− === 1)1/( /;// rrrrrr LNNLlLN  

 

4. Transport costs and multiple locations 

The parameter T denotes the number of goods that need to be shipped to ensure that 1 

unit of a variety of manufactures arrives per unit of distance, while Trs is defined as the 

number of goods that need to be shipped from region r to ensure that 1 unit arrives in 

region s. We will assume that this is proportional to the distance between regions r and s. 

If we let Drs denote the distance between region r and region s (which is 0 if r = s), we 

therefore assume that: 

(16) 1,, 0 ==== TTandTTnote:TT rrsrrs
D

rs
rs  

 

These definitions ease notation in the equations below and allow us to distinguish 

between changes in the parameter T, that is a general change in (transport) technology 

applying to all regions, and changes in the “distance” Drs between regions, which may 

result from a policy change, such as tariff changes, a cultural treaty, or new infrastructure. 

 

Now that we have introduced transport costs it becomes important to know where the 

economic agents are located. We therefore have to (i) specify a notation to show how 

labor is distributed over the regions, and (ii) investigate what the consequences are for 

some of the demand and supply equations discussed above. To start with point (i), we 

have already introduced the parameter γ to denote the fraction of the labor force in the 

manufacturing sector, such that 1-γ is the fraction of labor in the food sector. We now 

assume that of the laborers in the food sector a fraction φi is located in region i, and of the 

laborers in the manufacturing sector a fraction λi is located in region i.  

 

Point (ii) involves more work. We will concentrate on region 1. Similar remarks hold for 

other regions. It is easiest to start with the producers. Since there are φ1(1-γ)L farm 

workers in region 1 and production is proportional to the labor input, see equation (6), 

food production in region 1 equals φ1(1-γ)L, which is equal to the income generated by 

the food sector in region 1 and the wage income paid to farm workers there. Since we 
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introduced transport costs in the model, the wage rate paid to manufacturing workers in 

region 1 will in general differ from the wage rate paid to manufacturing workers in other 

regions, as identified by the sub-index above, so W1 is the manufacturing wage in region 

1. If we know the wage rate W1 in region 1, we can see from equation (12) that the price 

charged in region 1 by a firm located in region 1 is equal to )/)1/(
111 ρβ ττ −= NWp . The 

price this firm located in region 1 will charge in region 2 will be 12T  times higher than in 

region 1 as a result of the transportation costs, etc. Note that this holds for all N1 firms 

located in region 1. Finally, since there are λ1γL manufacturing workers in region 1, we 

can deduce from equation (15) the number of firms N1 located in region 1: 

( ) τεαλγ −= 1
11 /LN .  

 

We now turn to the demand side of the economy. As discussed above, the price a firm 

charges to a consumer for one unit of the variety it produces depends both on the location 

of the firm (which determines the wage rate the firm will have to pay to its workers) and 

on the location of the consumer (which determines whether or not the consumer will have 

to pay for the transport costs of the good). As a result, the price index of manufactures 

will differ between the regions. Again, we will identify these with a sub index, so I1 is the 

price index in region 1. We can now, however, be more specific since we just derived the 

price a firm will charge in each region, and how many firms there are in each region. All 

we have to do is substitute this information in equation (6), see Technical Note 5: 

(17) 
)1/(1

1

111)1(
)1( ε

εεετε
ετ

λ
αε
γ

ρ
β

−

=

−−−−
−

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

R

s
rsssr TWLI  

 

Technical Note 5 Derivation of equation (17) 

The number of firms in region s equals:     
τ

εα
λγ −

⎥
⎦

⎤
⎢
⎣

⎡
=

1L
N s

s   

The price a firm located in region s charges in region r equals: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
rsss TNW )1/( ττ

ρ
β  

Substituting these two results in the price index for manufactures equation (6), assuming 

that there are R ≥ 2 regions, gives the price index for region r, see equation (17): 
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The impact of location on the consumption decisions of consumers in different locations 

requires us to know the income level of the regions. This brings us to the determination of 

equilibrium in the next section. 

 

5. Short run equilibrium 

The short-run equilibrium relationships determine the economic equilibrium for an 

exogenously given distribution of the manufacturing labor force. It is thus assumed that 

the manufacturing labor force is not mobile between regions in the short-run. The spatial 

distribution of the manufacturing workers and firms is not yet determined by the model 

itself, but simply imposed upon the model. What are the short-run equilibrium 

relationships? Well, we have actually already used a few of these without explicitly 

stating it. For example, we have already assumed that the labor markets clear, that is (i) 

all farm workers have a job, and (ii) all manufacturing workers have a job. Point (i) has 

determined the production level of food in each region, in conjunction with the 

production function for food and perfect competition in the food sector. Point (ii) has 

determined the number of manufacturing varieties produced in each region, in 

conjunction with the production function for manufactures, the price setting behavior of 

firms, and entry or exit of firms in the manufacturing sector until profits are zero. 

Evidently, there are no profits for firms in the manufacturing sector (because of entry and 

exit), nor for the farmers (because of constant returns to scale and perfect competition). 

This implies that all income earned in the economy for consumers to spend derives from 

the wages they earn in their respective sectors. Which brings us to the next equilibrium 

relationship, that is how to determine income in each region. In view of the above, this is 

simple. There are φ1(1-γ)L farm workers in region 1, each earning a farm wage rate of 1 

(food is the numéraire), and there are λ1γL manufacturing workers in region 1, each 
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earning a wage rate W1. As there are no profits or other factors of production, this is the 

only income generated in region 1. If we let Yi denote income generated in region i:  

(18) LLWY iiii )1( γφγλ −+=  

Where the first term on the right hand side represents income for the manufacturing 

workers, and the second term reflects income for the farm workers. The price index is 

already given in equation (17):  
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Demand in region 1 for products from region 1 is based on individual demand by 

summing the demand for all consumers in region 1. It is thus dependent on the aggregate 

income Y1 in region 1, the price index I1 in region 1, and the price charged by a producer 

from region 1 for a locally sold variety in region 1. We simply have to substitute these 

three terms for individual income, price index, and price to get total demand in region 1 

for a variety produced in region 1. We can derive demand in another region for products 

from region 1 in a similar way, by substituting aggregate income, price index, and the 

price charged by a producer from region 1 for a good sold in the other region. Total 

demand for a producer in region 1 is the sum of the demands discussed above. We 

already derived the break-even level of production βεα /)1( −=x  for a producer of 

manufactures. Equating this break-even production level to the total  demand discussed 

above allows us to determine what the price (and thus the wage rate) of a variety should 

be, in order to sell exactly this amount. Solving this equation for the wage rate in region 1 

gives (see Technical Note 6): 
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Technical Note 6 Derivation of equation (20) 

Equation (6) gives the demand for an individual consumer in a region. If we replace in 

that equation the income level W with the income level Yr of region r, the price index I 

with the price index Ir of region r, and the price pj of the manufactured good with the 

price ρβ ττ /)1/( −
srss NTW  which a producer from region s will charge in region r we get the 

demand in region r for a product from region s: 
1)1/(1)1/( )/()/( −−−−−−−−− = εετετεεεεττ ρβδρβδ rrsssrrsrssr ITNWYINTWY  

To fulfill this consumption demand in region r note that Trs units have to be shipped and 

produced. To derive the total demand in all R ≥ 2 regions for a manufactured good 

produced in region s, we must sum production demand over all regions (that is, sum over 

the index r in the above equation and multiply each entry by Trs): 
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In equilibrium this total demand for a manufactured good from region s must be equal to 

its supply βαε /)1( − , see the zero profit condition. Equalizing these two gives 
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Which can be solved for the wage rate Ws in region s: 
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Substituting for the number of varieties produced in region s gives equation (20): 
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6. Discussion 

Together equations (18)-(20), repeated below for convenience, determine the short-run 

equilibrium for an arbitrary number of regions, connected through an arbitrary 

geographic relationship determining the distances Drs between these regions, and thus the 

transport costs Trs. Equation (21) gives the real wage for region s. These equations can 
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very generally be used for empirical estimates, analyzing the impact of parameter 

changes, and simulations of the impact of applied policy changes.  
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Normalization 

First, suppose the labor force L increases by some multiplicative factor, say θ, taking the 

distribution of the labor force as given. Assume that the wage W does not change. From 

equation (18) it then follows that income in each region changes by the same factor θ, 

while equation (19) shows that the price index in each region increases by the factor 
)1/()1( ετεθ −− . Using these two results in equation (20) shows indeed that the wage in each 

region does not change. The real wage in each region therefore changes 

equiproportionally by the factor )1/()1( ετεδθ −−− , see equation (21), such that the distribution 

of relative real wages is not affected. 

 

Second, suppose the fixed cost of production α increase by a multiplicative factor θ for 

all regions. Assume, for the sake of argument, that the wage does not change. From 

equation (18) it follows that income does not change, and from equation (19) that the 

price index increases by the factor )1/()1( ετεθ −−− . Using these two results in equation (20) 

shows that the wage in each region indeed does not change. The real wage in each region 

therefore changes equiproportionally by the factor )1/()1( ετεδθ −− , see equation (21), such 

that the distribution of relative real wages is not affected.  

 

Third, suppose the marginal cost of production β increase by a multiplicative factor θ for 

all regions. Assume, for the sake of argument, that the wage W does not change. From 
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equation (18) it follows that income in each region does not change, and from equation 

(19) that the price index increases by the factor θ . Using these two results in equation 

(20) shows again that the wage in each region indeed does not change. The real wage in 

each region therefore changes equiproportionally by the factor δθ − , see equation (21), 

such that the distribution of relative real wages is not affected.  

 

Proposition 

Suppose that (Yr,Ir,Wr,wr) solves equations (18)-(20). Then a change in the size of the 

population L or the manufacturing cost function parameters α and β by a factor θ 

changes this solution to: 

(θYr, rI)1/()1( ετεθ −− ,Wr, )1/()1( ετεδθ −−− wr), 

 (Yr, )1/()1( ετεθ −−−  Ir, Wr, )1/()1( ετεδθ −− wr), and  

(Yr,θ Ir,Wr, δθ − wr), respectively.  

The equiproportional change in the real wage implies that the parameters L, α and β 

essentially do not influence the dynamics and stability of the model. These parameters do, 

however, influence the real wage (= welfare) level. 

 

Based on the above proposition we can use the following normalization as it does not 

essentially affect the dynamics of the model: 

 

Parameter normalization 

γ = δ L = 1 

β = ρ α = γL/ε  

 

Using this normalization (where it should be noted that the first normalization [upper left 

corner] is for convenience) the equations (18)-(21) simplify to: 
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This is used in Chapter 7 of Brakman et al. (2001; see equations (7.2)-(7.4), page 192). 

 

Absence of congestion 

If there are no externalities in manufactures production, that is if 0=τ , equations (18)-

(21) simplify to: 
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This is used in Chapters 3 and 4 of Brakman et al. (2001; see equations (3.18), (3.19), 

(3.21), and (3.8’) on pages 86-93, and equations (4.1)-(4.4) on pages 101-103). 

 

Absence of congestion and normalization 

If there are no externalities in manufactures production, that is if 0=τ , and the 

normalization is used, equations (18)-(21) simplify to: 
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This is used in Chapter 4 of Brakman et al. (2001; see equations (4.1’)-(4.3’) and (4.4) on 

page 108 and page 103). 
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7. Conclusions 

We have derived and discussed a general, but simple geographical economics model with 

congestion. Negative congestion costs are equivalent to positive externalities. Congestion 

ensures that the balance between agglomerating and spreading forces is more easily 

reached, thus explaining the economic viability of small and large locations. Since the 

model allows for locations of different size, an arbitrary number of locations, and an 

arbitrary geographic structure providing connections between locations, it not only 

generalizes some previous models with a limited number of locations, a restricted 

geographic structure, without congestion, or without positive externalities, but also lends 

itself to analyzing the impact of public policy in terms of infrastructure changes on the 

size and location of economic activity. We show analytically that scale effects (total size 

of the economy) and changes in the cost structure (fixed and marginal costs) are 

important from a welfare perspective, but largely irrelevant from an economic dynamics 

perspective.  
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