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Abstract

Risk is at the center of many policy decisions in companies, governments and other

institutions. The risk of road fatalities concerns local governments in planning counter-

measures, the risk and severity of counterparty default concerns bank risk managers on

a daily basis and the risk of infection has actuarial and epidemiological consequences.

However, risk can not be observed directly and it usually varies over time. Measuring

risk is therefore an important exercise. In this paper we introduce a general multivariate

framework for the time series analysis of risk that is modelled as a latent process. The

latent risk time series model extends existing approaches by the simultaneous modelling

of (i) the exposure to an event, (ii) the risk of that event occurring and (iii) the severity

of the event. First, we discuss existing time series approaches for the analysis of risk

which have been applied to road safety, actuarial and epidemiological problems. Second,

we present a general model for the analysis of risk and discuss its statistical treatment

based on linear state space methods. Third, we apply the methodology to time series

of insurance claims, credit card purchases and road safety. It is shown that the general

methodology can be effectively used in the assessment of risk.

Keywords: Actuarial statistics; Dynamic factor analysis; Kalman filter; Maximum likeli-

hood; Road casualties; State space model; Unobserved components.
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1 Introduction

In the literature the term “risk” may take many meanings. In the financial econometrics

literature, realized and implied volatility models treat risk as the standard deviation of returns.

Governments and financial institutions are concerned with other types of risk, where particular

events are studied. “Insurance risk” is modelled by actuaries who wish to measure the risk

of a claim. Epidemiologists study “medical risk”, which is the risk of infection or injury. For

banks, “default risk” is of great importance for regulatory and internal capital management

purposes. Similarly, accident researchers and credit portfolio managers are also concerned with

the risk of certain events occurring, and also their likely severity. These “event risk” analyses

have common elements: there is (i) exposure to risk, (ii) the risk (chance, probability) of the

event occurring and (iii) the severity of the event.

The time series modelling of “event risk” offers new insights into data and can confirm or

reject the validity of constant risk assumptions. There is growing pressure to develop such mod-

els in a range of fields. The Basel Accord (BIS, 2004) requires banks to be able to understand

the present and also forecast the future value-at-risk of their credit portfolios. Greater regula-

tory capital burdens will be placed on banks who cannot demonstrate they have robust models

for default risk and associated losses. Road safety researchers now have considerable pressure

from governments to be able to evaluate past safety measures and forecast future accidents

and injuries (WHO, 2004). The increased availability of data and continuing improvements in

computer power have also opened up a range of new models which can be applied to time series

data.

There is substantial evidence that simple deterministic models fail to adequately explain

the dynamics of actuarial and epidemiological systems. Recently a number of articles have

examined stochastically time-varying structures to model risk in epidemiological applications.

For example, Dominici et al. (2004) find evidence of time varying risk factors within a gen-

eralised additive model framework used to determine the interaction between mortality rates

and air pollution concentrations. The data is from 1987–1994, indicating time variation over

relatively short time frames. In this approach, the natural log of fatality counts is modelled

as a smooth semiparametric function of time and weather variables and a linear function of

pollution levels. Finkenstadt and Grenfell (2000) find evidence of seasonal time variation in the

transmission parameter for a susceptible-exposed-infected-recovered (SEIR) model for measles

epidemics. An illustration of the modelling of disease incidence on the basis of unobserved or

latent processes is provided by Morton and Finkenstadt (2005).

In actuarial research, there is a surprising lack of time series models for the rate and severity

of insurance claims. Among the few articles is de Jong and Boyle (1983), in which Bayesian

methods are applied to a state space model which produces stochastically time-varying mor-
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tality rates. Exposure is measured by the size of the population and is effectively treated as

a covariate. Risk is defined as the time-varying, locally polynomial probability for a binomial

distribution with the number of trials given by the population size. Harvey and Fernandes

(1989) also develop a model for insurance claims using the stochastic unobserved components

(UC) framework (Harvey, 1989), where both the size of claims and the number of claims are

modelled. The focus of the Harvey and Fernandes (1989) paper is on the modelling of Poisson

and normal variables that are combined to form a loss function, which is the dollar value of

all claims. Automobile insurance claims for multiple cohorts are analysed by Ledolter et al.

(1990), who use stochastic UC models to test for common factors (“shrinkage”) across cohorts.

These models provide better fit to the data than static or deterministic models.

In bank risk management there have also been a number of articles examining the use of

time varying parameters to model the risk of counterparty default. Allen and Saunders (2003)

highlight the need for dynamic approaches to modelling company default. Structural financial

risk models have been used successfully in this area. Multivariate approaches are often used to

model observations from different cohorts, rather than separate “dimensions” of risk such as

exposure to default and the number of defaults. A time-varying logistic model estimated via

Kalman filtering is introduced by Fahrmeir and Wagenpfeil (1996) for duration models which

assess the probability of subjects entering or leaving a state of unemployment. In this case the

model is for individuals, and time is the only measure of exposure, so a logistic transform is used

to produce time varying probabilities. The results suggest there is a need for time variation in

model parameters to accurately model unemployment dynamics.

In road safety research, cross-sectional induced exposure methods (Li and Kim, 2000) have

been used to separate the effects of crash risk and exposure in the absence of exposure data.

However, time series methods such as the demande routière, des accidents et leur gravité

(DRAG) framework of Gaudry (1984) and Gaudry and Lassarre (2000) has been applied more

widely. The DRAG framework aims at modelling the dimensions of exposure, risk and severity.

As in most “event risk” models, exposure is a covariate used to explain accident counts. The

DRAG model differs from other structures in that it is usually estimated using ARMA regres-

sion models with many social and economic explanatory variables. The DRAG model’s reliance

on economic and social variables, such as unemployment and alcohol consumption (which are

difficult to forecast in their own right), means that it is of limited value in a forecasting context.

The UC time series framework is adopted in the road safety study of Harvey and Durbin (1986).

Despite the many common features of the data and methods applied, to date there is no

single unified framework for modelling “event risk”. In this paper we introduce a general

multivariate model for “event risk” analysis that can consider exposure, risk and severity si-

multaneously. The latent risk time series (LRT) model can be applied to a range of problems

involving “event risk” and is not specifically limited to either actuarial or epidemiological ap-
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plications. The standard approaches to risk treat exposure as a fixed and known variable and

few models allow for the modelling of severity at all. The LRT model is general and allows for

the stochastic evolution of exposure, risk and severity over time. It extends previous work by

treating exposure and severity as an integral part of the risk problem. The logarithmic trans-

formation is used to model multiplicative, time-varying relationships between exposure, risk

and severity. In existing approaches some or all of these variables (particularly exposure) are

treated as known, when in reality they are often measured under error and subject to stochas-

tic variation. The LRT model has a multivariate structure and therefore correlations between

latent processes and errors can be estimated. Since the model belongs to the class of UC time

series models, the multivariate decomposition can include latent factors for trend, seasonal and

cyclical dynamics. This general framework also allows for the forecasting of future exposures,

events and losses together with prediction confidence bounds, which are of particular interest

to risk managers. The relative simplicity of the model structure means that complex estimation

techniques are usually not required. Bayesian and classical estimation methods can be easily

applied and usually rely on Kalman filter methods. The multivariate framework is sufficiently

general to allow for a study of multiple cohorts with a view to enabling “shrinkage” of the

number of states required, see also Ledolter et al. (1990).

The statistical framework, including state space forms and estimation methods are pre-

sented in Section 2. The exposure-risk motor vehicle insurance model is the first example of a

LRT analysis and is discussed in Section 3. The exposure-risk-severity model for credit card

use is treated in Section 4. The multiple exposure-single risk model for bicycle and moped

road traffic accidents is presented in Section 5. The LRT analysis includes parameter estima-

tion, measurement of exposure, risk and severity (where applicable) based on signal extraction

methods and forecasts. Section 6 concludes.

2 The statistical framework

The latent risk time series (LRT) model includes latent factors for exposure, risk and severity

which are all associated with the observed variables:

• xit, exposure at time t for group i with i = 1, ..., kx

• yit, outcome at time t for group i with i = 1, ..., ky

• zit, loss at time t for group i with i = 1, ..., kz,

for t = 1, . . . , n where n is the number of observations and where kx, ky and kz are the number

of groups for exposure, outcome and loss variables, respectively. There is no need to set
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kx = ky = kz because multiple outcomes for only one exposure variable (such as multiple types

of vehicle accidents per registered vehicle) can exist so that kx < ky.

The exposure variable may take many forms. For example, exposure to traffic crash risk

may be measured in terms of vehicle registrations or by distance travelled. For a bank, the

exposure variable may be either the number of loans or the dollar value of loans. The exposure

is to the risk of a particular event or outcome occurring. The outcome variable yit is typically

the number of times a certain event occurs within group i. In insurance applications this may

be the number of claims. For epidemiologists the outcome variable may be the number of

successful treatments. Indeed, the outcome variable does not have to be undesirable.

In some cases a loss variable is also required to fully describe the risk associated with a

particular outcome. The loss variable measures the severity (or consequences) of the outcomes.

For an insurance company the loss variable may be the dollar value of claims. The severity of

a loss is also important for bank risk managers who wish to know how much money is likely to

be lost in the event of default.

2.1 The LRT model

The multivariate unobserved components time series modelling framework is adopted to for-

mulate a risk system for the observed variables exposure, outcome and loss. The latent risk

model (LRT) model relates these observed variables within a multivariate system of equations:

xit = Eit × U
(x)
it ,

yit = Eit × Rit × U
(y)
it ,

zit = Eit × Rit × Sit × U
(z)
it ,

where Eit, Rit, and Sit are the latent variables exposure, risk and severity for group i at

time t, respectively. A multiplicative system is presented that has the expected outcome as

a proportion (risk) of exposure while loss is a multiple (severity) of the expected outcome.

The multiplicative error terms U
(x)
it , U

(y)
it and U

(z)
it reflect that observed variables are measured

under uncertainty. For example, road-use surveys may not be accurately reported or there may

simply be unexplainable short-term deviations from the trend.

After taking logs, the multiplicative LRT equations can be expressed in additive form:

log xit = µ
(E)
it + ε

(x)
it ,

log yit = µ
(E)
it + µ

(R)
it + ε

(y)
it , (1)

log zit = µ
(E)
it + µ

(R)
it + µ

(S)
it + ε

(z)
it ,

where µ
(E)
it = logEit is log-exposure, µ

(R)
it = logRit is log-risk and µ

(S)
it = log Sit is log-severity for

group i and time t. The additive noise terms ε
(x)
it = logU

(x)
it , ε

(y)
it = logU

(y)
it and ε

(z)
it = logU

(z)
it
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are identically independently distributed (i.i.d.) with mean zero but their distributions do not

necessarily need to be determined. The latent factors of exposure, risk and severity have time

subscripts and the form of time-variation is established below.

Most risk models implicitly assume that the relation between outcome and exposure is time-

invariant. For example, the ratio of outcome and exposure, yit/xit or its log-ratio counterpart

log yit − log xit, is often directly modelled as the observed series. Alternatively, in the volume

edited by Gaudry and Lassarre (2000) (a road accident example) and Ledolter et al. (1990)

(an insurance example), the authors use exposure as an explanatory variable and they find a

negative causal relationship between outcome and exposure. The LRT model treat changes in

outcome as the result of changes in the latent processes of both exposure and risk. Observation

noise is treated separately for each equation and the dynamics of the different factors are

modelled explicitly. The attractive feature of the LRT model is that exposure, risk and severity

factors are treated simultaneously in this multivariate framework where factors are time-varying

and can have common dynamics.

Unobserved components (UC) models provide a flexible framework for allowing both deter-

ministic and stochastic variation in the latent factors. A possible UC model to describe the

evolution of the latent factors is the multivariate local linear trend (LLT) specification, see

Harvey (1989). The LLT model for the log-exposure factor µ
(E)
t is given by

µ
(E)
t = µ

(E)
t−1 + δ

(E)
t−1 + η

(E)
t , η

(E)
t ∼ i.i.d.(0, σ2

η(E)),

δ
(E)
t = δ

(E)
t−1 + ζ

(E)
t , ζ

(E)
t ∼ i.i.d.(0, σ2

ζ(E)),
(2)

for t = 1, . . . , n and with the subscript i suppressed for convenience of notation. When exposure

consists of different groups, the subscript i can be reintroduced. The trend component µ
(E)
t is a

random walk process with stochastic drift δ
(E)
t and trend innovation η

(E)
t where the latter is i.i.d.

with mean zero and variance σ2
η(E) . The drift term is modelled as a random walk process with

i.i.d. innovation ζ
(E)
t that has mean zero and variance σ2

ζ(E). The trend and slope innovations

are mutually uncorrelated at all time points. Some special cases of the LLT model are the

linear trend function (σ2
η(E) = σ2

ζ(E) = 0), the random walk (δ
(E)
t = 0 for all t), the random

walk with fixed drift (σ2
ζ(E) = 0) and the integrated random walk or smooth trend (σ2

η(E) = 0).

An important assumption is that all additive errors in the equations are serially uncorrelated.

The LLT model can also be formulated for log-risk µ
(R)
t and log-severity µ

(S)
t . Further, when

different factors exist for different groups, the trend and drift components are formulated for

different groups and their corresponding errors can be correlated contemporaneously.

In case the observations are subject to seasonal and cyclical fluctuations, associating seasonal

and cyclical components need to be included in the observation equations of the LRT model

(1). The seasonal component can be modelled by a series of trigonometric functions while

the cyclical component can be specified as an autoregressive process with complex roots in

6



its polynomial, see Harvey (1989, §2.3.4) for more details on the dynamic specification of

unobserved components. The seasonal and cyclical processes vary stochastically over time and

are usually assumed to be driven by i.i.d. innovations with mean zero and a finite variance.

Furthermore, regression effects (based on covariates or explanatory variables) can be included

in the model. Such unknown deterministic effects can be added to the model when significant

deviations from the exposure-risk-severity relationships can be captured by specific covariates.

For a bivariate exposure-risk model, seasonal variations in road use often appear as persistent

periodic variations in exposure and risk. In this case, seasonal components for exposure and

risk can be added to the measurement equations for exposure and outcome, that is

log xt = µ
(E)
t + γ

(E)
t + ε

(x)
t ,

log yt = µ
(E)
t + γ

(E)
t + µ

(R)
t + γ

(R)
t + ε

(y)
t ,

(3)

where γ
(E)
t and γ

(R)
t are the seasonal components for exposure and risk, respectively, In this case,

the seasonal factors are an integral part of the exposure-risk system of equations. Alternatively,

the seasonal components can be exclusively attributed to a particular observation equation.

A seasonal component is then added exclusively to an observation equation while the other

observation equations are not affected by this component. The alternative formulation with

seasonal components is then given by

log xt = µ
(E)
t + γ

(x)
t + ε

(x)
t ,

log yt = µ
(E)
t + µ

(R)
t + γ

(y)
t + ε

(y)
t .

(4)

where γ
(x)
t and γ

(y)
t represent seasonal time series processes. The seasonal variation in log yt is

captured by γ
(y)
t rather than γ

(E)
t + γ

(R)
t . The innovations of the seasonal processes γ

(x)
t and

γ
(y)
t may still be correlated contemporaneously. As a consequence, only µ

(E)
it represents log-

exposure in the observation equation for log yt. The same discussion of alternative LRT model

specifications applies to cyclical components and regression effects.

A final concern is the incorporation of intervention effects in the LRT model. Intervention

variables are used to model outlying observations and breaks in the trend and drift components.

An illustration of intervention analysis in the context of unobserved components time series

models is given by Harvey and Durbin (1986). They investigate the effect of seat belt legislation

in the UK on road casualties. Interventions can be incorporated as follows. We adopt this

approach to interventions and apply it to a multivariate LRT model. An outlier at time s in

the outcome variable y can be captured by considering the observation equation

log yt = µ
(E)
t + µ

(R)
t + DO

t (s)β
(y,O)
s + ε

(y)
t , t = 1, . . . , n, (5)

where DO
t (s) takes the zero value at all time points except at t = s where it is unity while

β
(y,O)
s measures the effect of this outlier intervention on the outcome variable y. Similar outlier
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effects can be considered for other time points and for the other observation equations. The

intervention variable DL
t (s) is for a level change or break and takes the zero value for t =

1, . . . , s − 1 while it is unity for t = s, . . . , n. The intervention variable DD
t (s) is for a drift

change or break and is zero for t = 1, . . . , s−1 while it takes the value t−s+1 for t = s, . . . , n.

Their effects are measured by β
(y,L)
s and β

(y,D)
s for level and drift breaks, respectively. In this

specification, it is assumed that the interventions only affect a particular observed variable x,

y or z. Such an approach is useful when an intervention has changed the way the data is

observed rather than affecting the unobserved components. Alternatively, the level and drift

interventions may instead affect a particular unobserved factor (exposure, severity or risk). For

example, in the case of the trend component of exposure, the level and drift interventions can

be incorporated by

µ
(E)
t = µ

(E)
t−1 + δ

(E)
t−1 + DO

t (s)β
(E,L)
s + η

(E)
t , η

(E)
t ∼ i.i.d.(0, σ2

η(E)),

δ
(E)
t = δ

(E)
t−1 + DO

t (r)β
(E,D)
r + ζ

(E)
t , ζ

(E)
t ∼ i.i.d.(0, σ2

ζ(E)),
(6)

for different time points s and r, where DO
t (s) is defined above and β

(E,L)
s and β

(E,D)
s measure the

effect of level and drift interventions for exposure at time s, respectively. Note that the outlier

dummy variable DO
t (s) is correctly used since the level and drift equations are recursive so that

a single non-zero value in DO
t (s) has a permanent effect on the level and drift components.

The model specification determines whether the intervention has an effect on the observation

variable directly or on one of the unobserved trend factors. The appropriate model specification

will vary from case to case and is typically the result of a modelling process. The estimation

and testing of intervention effects are carried out in the same way as for regression effects.

In case exposure, outcome and loss are observed for different groups, the LRT model (1) is

extended to have the unobserved component of severity. When data exists for multiple groups

correlated unobserved components for different groups can be analysed. Different poolings

within groups can take place in a straightforward way. The applications in this paper will

show that the LRT framework is flexible. Further, correlations between the exposure, risk and

severity components can also be specified to examine relationships between components or to

detect and to test for common factors. In particular, for an exposure-risk-severity model we

can define

µt =




µ
(E)
t

µ
(R)
t

µ
(S)
t


 , δt =




δ
(E)
t

δ
(R)
t

δ
(S)
t


 , ηt =




η
(E)
t

η
(R)
t

η
(S)
t


 , ζt =




ζ
(E)
t

ζ
(R)
t

ζ
(S)
t


 , εt =




ε
(x)
t

ε
(y)
t

ε
(z)
t


 ,

(7)
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for t = 1, . . . , n. The LRT model (1) can be expressed as




log xt

log yt

log zt


 =




1 0 0

1 1 0

1 1 1


µt + εt, µt = µt−1 + δt−1 + ηt, δt = δt−1 + ζt, (8)

for t = 1, . . . , n. Correlations within the individual elements of the vector components are

introduced by considering

ηt ∼ i.i.d.(0,Ση), ζt ∼ i.i.d.(0,Σζ), εt ∼ i.i.d.(0,Σε), (9)

for t = 1, . . . , n. The variance matrices Ση (level noise), Σζ (slope noise) and Σε (observation

noise) can be non-diagonal so that correlations can exist within the latent factors µt (level),

δt (slope) and εt, respectively, but not between them. These correlations can produce more

accurate prediction intervals for exposure, outcome and loss variables and this is useful for

risk managers. In the case the LRT model also includes seasonal and cyclical components, a

similar specification applies to the innovations that drive the dynamics of these components.

The innovations are allowed to be mutually and contemporaneously correlated. For example,

seasonal variations in exposure and risk, or in purchases and expenditures, may be highly

correlated. In this case, denote the seasonal innovation by ωt where

ωt =




ω
(E)
t

ω
(R)
t

ω
(S)
t


 , in case of (3), ωt =




ω
(x)
t

ω
(y)
t

ω
(z)
t


 , in case of (4),

that is distributed as

ωt ∼ i.i.d.(0,Σω), t = 1, . . . , n,

where Σω is the variance matrix that is typically non-diagonal.

2.2 State space analysis

The unobserved components equations of the LRT model can be written in state space form.

The general state space form for a vector of observed variables is given by

yt = Ztαt + et, et ∼ i.i.d.(0,Ht), (10)

αt+1 = Ttαt + ut, ut ∼ i.i.d.(0,Qt), (11)

where αt is the state vector, et is the disturbance vector of the observation equation (10) and

ut is the disturbance vector of the state equation (11). The disturbance vectors are mutually

and serially uncorrelated at all time points. The system matrices of the state space form are
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Zt, transition matrix Tt and the variance matrices Ht and Qt. The system matrices can be

time-varying but are usually time invariant and sparse matrices. Some elements of the system

matrices are unknown and are treated as parameters that can be estimated by maximum

likelihood.

As an illustration we show how the LRT model (8) can be represented in the state space

form (10) – (11). The LRT model has k = 1 (the subscript i is suppressed), unobserved factors

for exposure, risk and severity and no seasonal component. The observation vector yt, the state

vector αt and disturbance vectors for the LRT model are given by

yt =




log xt

log yt

log zt


 , αt =

(
µt

δt

)
, et = εt, ut =

(
ηt

ζt

)
,

respectively, where the vector elements of αt and ut are given in (7). The state space form of

the LRT model has the system matrices

Zt = (1 0) ⊗




1 0 0

1 1 0

1 1 1


 , Tt =

[
1 1

0 1

]
⊗ I3, Ht = Σε, Qt =

[
Ση 0

0 Σζ

]
,

where the block elements of Ht and Qt correspond to the variance matrices in (9). In this

representation the state vector αt contains the latent processes for exposure, risk and severity. In

more general settings, the state vector also contains seasonal, cyclical and regression components

when they are included. Matrix Z selects the latent processes from the state vector that relate to

the observation variables. Also it determines whether a component takes part of the exposure-

risk-severity system or whether it is used to capture deviations from the system (see the earlier

discussions). The transition matrix T determines the dynamic properties of the latent factors.

The variance matrix Qt is block diagonal. When the state vector contains other components,

Qt remains block diagonal so that there is no correlation between level, drift and seasonal

components. Correlations only exist between state elements of the same “type” (e.g. between

the drift terms of different groups).

2.3 Measurement and estimation

The state space framework contains two unknown entities, the state vector αt and the parameter

vector ψ that contains all unknown elements in the system matrices. The state vector can be

predicted conditional on observations using so-called state space methods. Filtering refers to

the estimation of αt conditional on y1, . . . ,yt, that is all observations up to and including yt.

Smoothing is similar but the estimation is conditional on all observations y1, . . . ,yn. Filtering

and smoothing methods also compute standard errors of the estimates. The Kalman filter and
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related methods carry out the necessary computations for the linear state space model (10)

– (11). In case the disturbances are normally distributed, we obtain minimum mean squared

estimators. When normality is not assumed, they are minimum mean squared linear estimators.

A more detailed discussion on these matters can be found in Durbin and Koopman (2001).

The Kalman filter carries out the prediction error decomposition for a given state space

model (10) – (11) and a particular value of ψ. This implies that the likelihood function can be

evaluated by the Kalman filter for a given ψ. Maximum likelihood estimation of ψ is therefore

a standard exercise of numerically maximising the likelihood function with respect to ψ and

for which the Kalman filter is used to evaluate the likelihood function for different ψ’s in a

computationally efficient way, see Harvey (1989). In the case of the LRT model (8), parameter

estimation is limited to the variance matrices Σε, Ση and Σζ . To ensure positive semi-definite

variance matrices, a particular variance matrix Σ· is decomposed by Σ· = M ′M where M is

a symmetric matrix. Estimation concentrates on M . Monte Carlo methods are employed to

produce confidence intervals for the parameter estimates. For this purpose, matrices M are

simulated from the multivariate normal distribution with mean vech(M̂ ) and variance matrix

V where M̂ is the maximum likelihood estimate of M and V equals the negative inverse of the

numerical second derivative of the likelihood function with respect to vech(M) and evaluated

at M = M̂ . Elements of M that tend to get very close to zero during the estimation process

are fixed at zero when some benchmark is reached.

3 Case I: a two-dimensional insurance LRT model

A two-dimensional LRT model is considered for the measurement of exposure and risk in

relation to motor vehicle fatality insurance claims. An annual dataset from Victoria, Australia

is analysed for this purpose. Victoria vehicle registrations represent the number of policies

(exposure) for the compulsory third-party insurance body, the Transport Accident Commission

(TAC). The fatality series is the outcome variable and represents the numbers of claims on these

policies for different years. Although the TAC was created in 1986, the data used to fit the

model is from 1950–2001. The earlier observations are valid for parameter estimation as they

represent the same portfolio, which is the state’s entire vehicle population. The LRT model

disentangles exposure and risk effects from observations of vehicle registrations and of motor

vehicle fatalities. This type of data has previously been analysed using the Oppe model (Oppe,

1989), which assumes exposure follows a logistic-S curve and log-risk evolves deterministically

and typically with a downwards drift.

The observed series are presented in Figure 1. The exposure series, registrations, displays an

upwards trend and is generally smooth. This is typical of the evolution of vehicle registrations

in developed economies. The fatal claims series has a “hump” shape, with a peak during the
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Figure 1: Victorian registrations and vehicle crash fatalities 1950–2001.

start of the 1970s, which is also typical of developed economies. Because registrations have

increased monotonically over the past 50 years, the reduction in fatal claims must have been

caused by a decrease in risk. Risk reductions have been driven by gradual improvements in

vehicle and road design together with increased public awareness. Demographic factors may

also be important as a new generation of road users (“baby boomers”) began to start driving.

Public horror at a road toll of 1034 in 1970 led to newspaper declarations of “war on 1034”,

indicative of these changing attitudes towards road safety. The effects on attitude have proved

to be long-term and not only instantaneous. Other important relevant events in the sample

are the introduction of seat belt laws in 1971 and the increased enforcement of mass media

advertising campaigns on road safety and public safety consciousness in the early 1990s.

Because the data is not separated into groups or cohorts, there are only two observed series:

policies xt and claims yt (the group index i is suppressed from the notation). In many insurance

12



examples, separate cohorts for age or gender are used to model risk and exposure for different

policy holders. If cohorts were used to separate male and female policy holders, we would

require four observed series (two for exposure and two for fatalities) to produce estimates of

two exposure and two risk processes. Furthermore, a three-dimensional LRT can be considered

to model the severity of the claims. In this case a third observed variable (the dollar value of

payouts on claims) is needed to explain the expected cost per claim (severity).

In this section we focus on the two-dimensional and single cohort structure described by

policiest = xt = Et × U
(x)
t

claimst = yt = Et × Rt × U
(y)
t ,

(12)

where Et is exposure, Rt is risk and U
(x)
t and U

(y)
t are observation noise terms for policies and

claims, respectively. The observations are subject to the log-transformation and the unobserved

components µ
(E)
t = logEt and µ

(R)
t = logRt are flexibly modelled by the LLT specification (2).

Covariates in the form of dummy variables for special events are introduced in the level (µ
(E)
t

and µ
(R)
t ) and drift (δ

(E)
t and δ

(R)
t ) equations. The following events are considered: (i) in 1970,

publicity started to have a safer attitude in traffic (“war on 1034”); (ii) in 1971, introduction

of seat belt laws; (iii) in 1980, change in data collection on vehicle registrations; (iv) in 1990,

enforcement of advertising initiatives; (v) in 1992, another change in data collection on vehicle

registrations. The changes in data collection should only affect exposure Et while the other

events should have an effect on risk Rt. The change of attitude in traffic is a long-term effect

and therefore captured by a change in the drift term of risk. The effects of seat belt laws and

intensified road safety advertisements are taken as immediate step changes in the level of risk.

Other interventions can also be considered but they have proved to be less important in the

analysis.

Parameter estimates and simulated asymmetric 95% confidence intervals are presented in

Table 1. The estimate of the variance of the observation noise for the registrations equation

(policies) is nearer to zero than for the claims equation. This can be explained by the fact that

data collection of registrations is done more accurately and the time series of claims is subject

to more observation noise, see Figure 1. An interesting result from this analysis is that the level

processes for exposure and risk are perfectly negatively correlated and that the drift processes

are also perfectly negatively correlated. In other words, the latent variables exposure and risk

are driven by two univariate noise sequences for level ηc
t and drift ζc

t . It follows that

µ
(E)
t = µ

(E)
t−1 + δc

t + ηc
t , δc

t = δc
t−1 + ζc

t ,

µ
(R)
t = µ

(R)
t−1 + aδc

t + bηc
t ,

for coefficients a < 0 and b < 0 with common drift term δc
t and common noise terms ηc

t and ζc
t

for level and drift, respectively. The perfect negative correlations mean that both exposure and
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risk components are subject to the same stochastic shocks that determine their time-varying

behaviour. This finding is in agreement with most road crash research which finds a strong

negative relationship between risk and exposure. The perfect correlation of shocks implies that

the components can be interpreted as common factors. Nevertheless, the estimated components

are distinct from each other since they are also subject to a number of interventions that are

captured by dummy variables associated with special events. The interventions allow the

components to have separate shocks or breaks despite the fact that the random shocks are

perfectly correlated. The regression estimates of these intervention coefficients are summarised

in Table 2. The estimated intervention for the anticipated break in the level of exposure due to

a change in the data collection of policies (registrations) is clearly significant for 1992 but less

significant for 1980. The level interventions for risk in 1971 (seat belt laws) and 1990 (advertising

initiatives) are very significant. Finally, the drift intervention for risk in 1970 (change in public

safety consciousness initiated by government and media) is also very significant. All estimated

interventions have negative values.

Figure 2 presents the estimated level and drift components of exposure and risk (in logs).

The estimated components are subject to both random shock and interventions. The salient

features of the analysis are the increasing exposure with a significant drift term throughout

the sample, and the decreasing risk with a significant negative drift term that is mainly caused

by the publicity intervention. Risk displays relatively more stochastic variation in both the

estimated level and drift terms. The level also has a relatively large variance estimate of 0.00130.

It is interesting to detect in Figure 2 that, apart from the intervention shocks, level and drift

components of risk are perfectly and negatively correlated with level and slope components of

exposure, respectively. For example, it means that as the positive slope of exposure becomes

less positive, the negative slope for risk also becomes less negative. It follows that the slopes

of risk and exposure are of opposite sign but both evolve closer towards zero. This suggests

a long-term flattening of risk and exposure which is evident in the data. The level terms are

also perfectly and negatively correlated. As exposure increases around its slope, risk decreases.

Exposure evolves relatively smoothly, with the slope term driving much of the variation.

The slope of risk becomes significantly negative after interventions in the early 1970s. The

advertising and enforcement initiatives of the early 1990s were also highly effective in reducing

risk. Major variations in risk are driven by interventions together with some relatively smooth

stochastic variation. Since the early 1990s, log-risk has settled to a relatively steady level, with

some evidence of a recent increase. Confidence intervals for risk are wider than for exposure.

It indicates that most of the variation in claims is risk-driven. The intervention breaks affect

periods where there is a breakdown in the perfect correlation. A clear example is the estimated

drift terms that are perfectly negatively correlated. The seat belt law shift of 1971 in the

drift equation of risk means that the estimated slope terms appear to evolve quite differently.
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exposure risk

Trend µt exposure 0.00031 −1 .00000

(0.00002, 0.00111) ∗

Σ̂η risk −0.00064 0.00130

(−0.00204,−0.00002) (0.00008, 0.00415)

Slope δt exposure 0.00004 −1 .00000

(0.00001, 0.00009) ∗

Σ̂ζ risk −0.00007 0.00013

(−0.00018,−0.00001) (0.00001, 0.00039)

policies claims

Noise εt policies 0.00016 0

(0, 0.00056) ∗

Σ̂ε claims 0 0.004206

∗ (0.00252, 0.00629)

Table 1: ML estimates of variance matrices for Victorian crash data with asymmetric 95%

confidence intervals in parentheses. Correlations are given in italics on the upper triangular

elements of the variance matrices.

The interventions provide therefore some flexibility in the potentially restrictive assumptions

of common levels and drifts.

Figure 3 shows that the one-step ahead prediction residual series for registrations and claims

are reasonably well-behaved. Normality assumptions may be considered. The residual series

of claims appears to have a significant cyclical autocorrelation pattern. Extended versions of

the LRT using cycles or autoregressive components can be examined to eliminate this autocor-

relation. The cyclical pattern may be related to economic fluctuations in Victorian GDP or

unemployment. The model may account for such effects by the inclusion of a dynamic latent

equation year event estimate t-stat

δ
(R)
t 1970 war on 1034 −0.0785 −3.79

µ
(R)
t 1971 seat belt law −0.1084 −4.66

µ
(E)
t 1980 change in data collection −0.0864 −2.04

µ
(R)
t 1990 advertising initiatives −0.3757 −6.74

µ
(E)
t 1992 change in data collection −0.0662 −8.63

Table 2: Victorian crash data intervention estimates with t-statistics.
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Figure 2: Smoothed output for LRT applied to Victorian insurance data

process or by explanatory variables. In this paper we concentrate on simpler structures in order

to maintain the methodological focus. This application of the LRT shows how it can be effec-

tively used for investigating insurance and road-safety issues. The model-based LRT framework

can further provide point forecasts and prediction intervals for the number of claims which is

useful for insurance portfolio analysis. The test procedures of Harvey (2001) can be applied to

test whether a stochastic trend is required for the modelling of the risk and exposure in fatal

accidents. In this analysis evidence is found to support the hypothesis of a negative relationship

between risk and exposure. Changes in laws, enforcement and advertising are shown to have a

significant impact on risk.

4 Case II: a three-dimensional credit card LRT model

In this section we study the usage of credit cards in Australia. The dataset consists of monthly

observations for three variables: xt, the number of credit card accounts; yt, the number of

purchases made by credit cards; zt, the expenditure via credit cards (the total dollar value of

the purchases). The observations are from May 1994 through to August 2004 (124 observations)

and are presented in Figure 4. Contrary to the insurance and road crash case of the previous
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Figure 3: One-step-ahead residuals for the LRT applied to Victorian insurance data

section, we examine a system where the outcomes (the number and value of purchases) are

clearly not undesirable. These events are important for Australian banks who are aggressively

marketing credit cards. However, there has been recent interest in Australian consumers’

reliance on credit card debt, which may be of concern to bank risk managers. The results show

that the “exposure” to credit card purchases, the “risk” of purchases and the “severity” or size

of purchases are increasing with a rapid growth of the total value of credit card purchases per

month. The data is in nominal terms so that severity includes inflationary effects.

The application of the LRT framework can be described through the relations:

accountst = yt = Et × U
(x)
t ,

purchasest = xt = Et × Rt × U
(y)
t ,

expendituret = zt = Et × Rt × St × U
(z)
t ,

where Et is exposure, Rt is risk or intensity of credit card use, St is severity or the value of a

credit card purchase and U
(i)
t is the multiplicative error for i = x, y, z. The aim is to show how

the latent processes of exposure, risk and severity have developed over time and how they have

influenced the total value of credit card purchases as this is the key variable for bank liquidity

forecasters.

Furthermore, we examine the event of January 2002 when the Reserve Bank of Australia
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Figure 4: Credit cards observations from May 1994 through to August 2004 (monthly data):

(i) xt, number of credit card accounts; (ii) yt, number of purchases made by credit cards; (iii)

zt, total dollar value of the purchases.
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(RBA) started to include credit card accounts from commercial banks and other financial

institutions in the sample. The inclusion of data from other credit card issuers means that

the number of credit cards has increased but the unobserved factors risk and severity may

also change since the new issuers in the sample of credit card users may represent customers

with different spending patterns. The change in the composition of the sample in January

2002 is permanent and therefore level interventions are appropriate. To measure the effect of

the level change in exposure, an intervention in the equation of x is included. Furthermore,

level interventions are considered for the trend processes Rt and St. All interventions are

incorporated in the LRT model as in (6).

The observations are at a monthly frequency. The seasonal variation may not affect the

number of credit cards (exposure) but it may affect the observed number of purchases and

expenditures since these variables are typically subject to seasonal fluctuations caused by, for

example, Christmas and Easter. However we do not expect that the usage (risk) and values

(severity) are affected by seasonal factors and therefore we do not integrate them in the LRT

framework. In other words, we include the seasonal components in the observation equations

of the y and z variables and we consider the model structure of (4) rather than (3). The LRT

model specification for the credit card case with seasonal components and intervention dummies

is then given by

log xt = µ
(E)
t + + ε

(x)
t ,

log yt = µ
(E)
t + µ

(R)
t + γ

(y)
t + ε

(y)
t

log zt = µ
(E)
t + µ

(R)
t + µ

(S)
t + γ

(z)
t + ε

(z)
t ,

(13)

where µ
(E)
t is modelled as the LLT process (2), µ

(i)
t (i = R, S) is modelled as the LLT process

with level and slope breaks (6), γ
(j)
t (j = y, z) is the trigonometric seasonal component and ε

(j)
t

(j = x, y, z) is the observation noise term for t = 1, . . . , n.

The LRT model provides a good fit of the data. The variance matrices estimates are given

in Table 3. The variance matrices for trend and observation noises are treated as diagonal.

This is strongly supported by the fact that the maximised loglikelihood function values have

almost the same values (−934.304 for the unrestricted model and −935.495 for the restricted

model). The estimated variances of the seasonal innovations are relatively large compared to

the observation noise. The variances of the slope innovations are larger than the ones of the

level. These estimation results lead to estimated trend components that are smooth functions

of time and to estimated seasonal components that exhibit strong variations over time, see

Figure 5.

All correlations in the variance matrix of the slope innovations are not significant since the

value zero is part of the simulated 95% confidence bounds for the covariances. The estimate of

the correlation coefficient between the slopes for exposure and severity is 0.947, indicating that
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exposure risk severity

Trend exposure 1.333 × 10−5 0 0

(4.888 × 10−6, 2.200 × 10−5) ∗ ∗

Ση risk 0 8.910 × 10−5 0

∗ (4.022 × 10−7, 3.157 × 10−4) ∗

severity 0 0 1.178 × 10−5

∗ ∗ (1.2631× 10−7, 3.368× 10−5)

Slope exposure 2.605 × 10−7 −0 .0576 −0 .9472

(2.330 × 10−8, 1.016 × 10−6) ∗ ∗

Σζ risk −3.706 × 10−7 1.587 × 10−6 0 .3742

(−1.853× 10−6, 5.009 × 10−7) (4.144 × 10−7, 7.316 × 10−6) ∗

severity −5.774 × 10−8 5.637 × 10−8 1.426 × 10−8

(−2.604× 10−7, 1.512 × 10−7) (−5.613× 10−7, 3.885 × 10−7) (5.190× 10−9, 2.997× 10−7)

accounts purchases expenditure

Seasonal accounts 0 0 0

∗ ∗ ∗

Σξ purchases 0 2.202 × 10−3 0 .9749

∗ (1.578 × 10−3, 3.075 × 10−3) ∗

expenditure 0 1.944 × 10−3 1.806 × 10−3

∗ (1.356 × 10−3, 2.743 × 10−3) (1.235× 10−3, 2.575× 10−3)

Noise accounts 3.125 × 10−6 0 0

(4.927 × 10−7, 9.395 × 10−6) ∗ ∗

Σε purchases 0 1.074 × 10−5 0

∗ (4.449 × 10−9, 3.793 × 10−4) ∗

expenditure 0 0 4.133 × 10−5

∗ ∗ (2.285× 10−7, 1.658× 10−4)

Table 3: Variance hyperparameter estimates for credit card data with 95% confidence intervals in parentheses. Correlations

are given in italics on the upper triangular elements of the variance matrices.
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Figure 5: Smooth estimates of the latent factors in the LRT model for the Australian credit

card data. The exposure, risk and severity factors are presented column-wise. The components

trend, drift and seasonal are presented row-wise.
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equation month event estimate t-stat

log xt 2002 Jan. sample change 0.0615 13.05

log yt — — 0.0662 2.31

log zt — — 0.0833 8.27

Table 4: Intervention estimates for credit cards data with t-statistics

these factors move closely together. However, there is not much certainty about this feature

in the set of monthly time series. The seasonal factors related to outcome (purchases) and

loss (expenditure) variables are almost common since the correlation is 0.975 and its related

covariance is significant with a small confidence interval. This is confirmed in Figure 5 where

it is shown that the two seasonal components are very similar.

Table 4 shows that the three intervention coefficients are significant. Figure 5 illustrates

the effects in the trend components. We should note that all level interventions are part of

the observation equations. Although the risk factor is significantly affected by the change in

survey composition, the severity of credit card purchases increased the most. It can therefore be

concluded that the new account holders in the survey from January 2002 onwards are making

more expensive purchases with their credit cards. The new customers have had a smaller effect

on the risk (intensity) of making a purchase.

5 Case III: a multiple exposure LRT model

The yearly number of persons killed and seriously injured (KSI) in collisions between mopeds

and bicycles in the Netherlands is closely watched by policy makers and the public at large

since these vehicles are widely and intensively used in the Netherlands. To investigate the

risk of a KSI accident, a dataset is constructed with two exposure variables and one outcome

variable. The two exposure variables consist of numbers of kilometres driven by mopeds and

by bicycles. No distinction is made between light mopeds and more classical mopeds. The

outcome variable is the yearly number of accidents for which the primary collision partners are

one moped user and one bicycle user, and for which the victims are either killed or hospitalised.

The exposure variables are obtained from the Dutch national travel survey that also publish

survey error variances. The latter variable is used as a precision variable of the exposure

measurements. The national statistical agency supplies the outcome variable based on police

records. The dataset is available for 1985–2003, at a yearly frequency (19 observations). Given

this limited sample, the model needs to be parsimonious to preserve a sufficient number of

degrees of freedom.

The three time series are presented in Figure 6. For the exposure series, the 95% confidence
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intervals are also presented. These are based on the published survey error variances. The

number of kilometres driven by bicycles are subject to a number of stepwise increases in the

late 1980s and in 1994 while those by mopeds show a gradually decrease over the years. The

increase in 1994 for the bicycle kilometres driven may be explained by the extension of the

sample with persons under 12 years of age. The decrease of the 95% confidence intervals for

the two exposure series from 1994 onwards is due to the increase of the survey sample size by

a factor of two. The yearly number of accidents show stepwise decreases in 1991 and in 2000.

It is anticipated that the decrease in 1991 coincides with the introduction of a free travelpass

for students (typically between 17 and 21 years of age). The travelpass gave free access to the

national and local public transport systems (mainly buses and trains). The usage of the free

travelpass became more and more restricted over the years from 1995 onwards. This may partly

explain the slow increase of KSI accidents in the late 1990s. It is reasonable to argue that the

decrease in 2000 may have been caused in part by the introduction of a law that moved all

mopeds from the special bicycle roads (or tracks) to the main roads in use by other motorized

vehicles (motors, cars, trucks). This law only applies to situations where special bicycle roads

or tracks exist and where the traffic conditions are sufficiently safe. Therefore many exceptions

to this law exist and the “mopeds on the roadway” law can perhaps only partly explain this

drop in 2000.

The LRT model for the number of KSI accidents caused by moped-bicycle collisions ac-

counts for exposure and risk and is not concerned with severity. However, it remains a three-

dimensional latent factor model since we have two volume or exposure variables. The structure

of the LRT model is given by

driver kilometres bicyclet = E1t × U
(x)
1t ,

driver kilometres mopedt = E2t × U
(x)
2t ,

accidentst = E1t × E2t × Rt × U
(z)
t ,

(14)

where E1t is the latent variable for bicycle exposure, E2t is for moped exposure and Rt is the

risk of a KSI accident. The interventions for the sample extension in 1994, to include persons

under 12 years of age, affects only the bicycle exposure E1t since the Dutch law forbids persons

under 16 years of age to use mopeds. The introduction of the free travel pass in 1991 has a

likely effect on moped exposure since the public transport system can offer an alternative to

journeys made by mopeds while the bicycle is typically used for shorter travel distances. The

free travel pass may also have an effect on risk and therefore a level shift in the log-risk equation

at 1991 is included. Finally, the introduction of the law “mopeds on the roadway” in 2000 is

incorporated in the model by a shift intervention in the log-risk equation. In summary, the
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Figure 6: Moped-bicycle accidents in the Netherlands (1985 – 2003). (i) Annual traffic volumes

(billion kilometres) of bicycles; (ii) Annual traffic volumes (billion kilometres) of mopeds; (iii)

Annual counts of accidents (persons killed or hospitalized) between mopeds and bicycles. Note

the increased accuracy o traffic volumes from 1994 onwards.
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LRT model for this case is given by

log x1t = µ
(E)
1t + εx

1t,

log x2t = µ
(E)
2t + εx

2t,

log yt = µ
(E)
1t + µ

(E)
2t + µ

(R)
t + εy

t ,

where the following components are subjected to shift interventions: µ
(E)
1t in 1994 (survey sample

increase), µ
(E)
2t in 1991 (free travelpass), µ

(R)
t in 1991 (free travelpass) and µ

(R)
t in 2000 (law

“mopeds on the roadway”). The variances of εx
it, for i = 1, 2, are set equal to a fixed non-

negative parameter plus a known time-varying value that is implied by the different precisions

of the survey. The variance of εy
t is also decomposed in this way but the time-varying value is

implied by the normal approximation of the Poisson counts of accidents.

This LRT model is estimated by standard maximum likelihood methods and the estimated

parameters are reported in Table 5 together with their standard errors that are computed by

Monte Carlo methods. Given the short time-span of the sample, the time-variations in the

level and slope components are limited. The variance matrix of the level vector, for the two

exposure series and the number of accidents, is estimated as zero. This leads to estimated trend

components that are smooth functions of time since the only sources of trend variations are

drift changes. In the case of kilometres driven by mopeds, the slope variation is also estimated

as zero and therefore we obtain a fixed time trend that is only interrupted by the estimated

intervention in 1991. The covariance between the drift component of kilometres driven by

bicycles and number of accidents is estimated as zero too. The estimates of the non-zero

parameters are reported in Table 5. The constant variance of the observation noise for moped

volume is estimated as zero. This implies that the random noise in the equation for log x2t is

due to the variation in the different sample sizes over the years.

Two significant intervention estimates are obtained and reported in Table 5. The introduc-

tion of the free travel pass in 1991 has a significant effect on the kilometres driven by mopeds,

not on the risk factor. The law of “mopeds on the roadway” has a significant negative effect

on the risk factor. The extension of the sample for bicycle volume with children under 12 years

of age did not affect the analysis. We also have experimented with other possible interventions

but they made little or no improvement to the likelihood function.

The smoothed estimates of the trend factors of exposure and risk are displayed in Figure 5.

All estimated factors turn out to be smooth functions of time and the figures confirm the

estimation results in Table 5. The interventions in the moped volume and risk factors are

clearly visible and their significance is clear. The risk factor also exhibits stochastic variation.

Risk is decreasing until the early 1990s, but has been increasing since 1993, as confirmed by

the slope component of risk. This pattern may be explained by the popularity of light mopeds

for which it is not obligatory to wear a crash helmet. It is commonly believed that many of
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variances equation estimate confidence interval

Drift Σζ exposure bicycle (µ
(E)
1t ) 2.73 × 10−5 (9.70 × 10−8, 0.00016)

risk (µ
(R)
t ) 0.002 (4.94 × 10−5, 0.00709)

Noise Σε bicycle volume (x1t) 0.00097 (0.00024, 0.00220)

accidents (yt) 4.69662 × 10−5 (1.23 × 10−5, 0.06380)

interventions

1991 shift exposure moped (µ
(E)
2t ) −0.18 (−0.29,−0.07)

2000 shift risk (µ
(R)
t ) −0.31 (−0.49,−0.13)

Table 5: Moped versus bicycle accidents in the Netherlands (1985 – 2003). Parameter variances

and interventions with 95% confidence intervals in parentheses.

the light moped vehicles are modified to enable them to drive as fast as mopeds which require

a crash helmet. It is evident that accidents are likely to be more severe when the concerned

moped drivers do not wear helmets. This may explain the increasing underlying trend in the

number of KSI accidents.

6 Conclusions

In this paper we propose a latent risk time series (LRT) model for measuring multivariate “event

risk”. The model framework includes factors for exposure, risk and severity. It is general enough

to have applications in fields ranging from financial risk management to road safety research.

The LRT builds on existing work by providing a fully multivariate structure which allows for

stochastically time-varying latent factors with possibly common dynamic features.

The multivariate nature of the model means that common state components can be identified

through the state correlation structure. The magnitude and sign of correlations between states

can also provide interesting interpretations for researchers. For example, the LRT model for car

insurance claims indicated a strong negative relationship between accident risk and exposure,

which has been supported by theory for many years.

Stochastic LRT specifications allow for time variation in parameters without requiring ar-

bitrary re-calibration of model parameters. This is an advantage inherent in the unobserved

components approach to modeling. The application to credit cards data showed that stochastic

variation is important in measuring the risk and severity of credit card purchases. For the car

insurance data, stochastic variation is less important — the LRT model reveals that structural

breaks explain most of the changes in risk and exposure over the past 50 years.

The illustration of accidents between mopeds and bicycles has shown that the model can

also include multiple categories of exposure variables. When more data is available, the LRT
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slope risk 
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slope bicycle exp. 
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Trend moped exp 
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−0.015

−0.010 slope moped exp. 

Figure 7: Smooth estimates of the latent factors in the LRT model for the moped-bicycle KSI

accident data.
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model can handle more detailed categories of exposure and/or risk. For example, different risk

factors can be included for male/female, different age groups and different regions. Finally,

a useful direction for future research is to develop methods for identifying and interpreting

covariance structures in LRT models.
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