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Abstract

I consider a situation in which heterogenous senders (applicants) compete
in order to be selected by one receiver (employer). Productivity is private
information to the senders, and the receiver processes imperfect signals (appli-
cations) to screen among applicants. The information-processing technology is
imperfect: the accuracy of each signal in predicting the unknown productiv-
ity decreases with the total number of signals processed. I show that, for a
sufficiently large market, information overload occurs as there exist equilibria
in which too many people apply and the receiver neglects some applications.
For any information-processing technology level, information overload equilib-
ria emerge when the cost of sending applications is low relatively to the existing
technology level. The magnitude of information overload is bounded and it is
larger if the receiver cannot neglect applications. As a result, an overloaded
market in which the receiver has to process all applications is less efficient than
an overloaded market where neglecting excessive information is an option.
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tity of information, information overload.
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1 Introduction.

Typically when economic literature deals with information issues it argues that market
inefficiency can be explained in terms of a ”lack” of information (e.g. imperfect
or asymmetric information). An indirect implication of such an argument is that
the more information is available, the better it is for the efficiency of the market.
However in the last years the cost of transmitting information has fallen dramatically
and the scarce resource in communication flows is becoming the human attention
needed to interpret information. Consequently, problems of information overload
may emerge. This consideration naturally leads to question whether the paradigm
"the more information the better" holds true in markets where the cost of generating
information is low and the resources to process information are limited . This paper
addresses this question for the case of a monopsony market.
Consider a situation in which many job candidates compete in order to be hired

by one employer. If productivity is private information to employees it is natural to
define an information item as the imprecise signal (e.g. one application containing
C.V., reference letters and so on) that the employer uses in order to assess the ability
of each worker. Therefore, the amount of information generated by the market is
endogenously determined by the number of applications actually sent. Provided that
information can be processed at no cost, a large monopsony market which generates
a large amount of information performs very efficiently. The are two main effects
behind this conclusion. The first lies on the supply side and it is the beneficial role
of self selection: a larger market means more competition which translates in higher
workers’ productivity. The second lies on the demand side and is a sample size effect :
a larger amount of information means more people applying for a position, thus a
higher probability that a very good worker is available and, eventually, hired. Clearly
these two mechanisms may be not be preserved if, on the contrary, the information-
processing phase is costly. This naturally leads me to analyze a monopsony model in
which the agent in charge of processing information (the monopsonist) bears a cost in
doing so. The cost I consider here is not the monetary cost of the screening process,
but the opportunity cost of the time and resources needed to process and interpret
the available information. Implicit in this assumption is the idea that the resources
available to interpret information are limited.
I analyze a model where one receiver (employer) screens among a number of com-

peting senders (applicants) in order to select the best one. Senders’ abilities are
uniformly distributed. Each sender knows his own ability but does not know the
abilities of other applicants. To compete for the position a sender must send a signal
(application form) that include some proxies about his ability Sending one signal has
a cost, which is equal for all senders. The utility that the sender who obtains the
vacancy gets from the position is also assumed to be the same for all senders. The
receiver, ex ante, only knows the distribution of abilities. However, by processing
signals (reading the applications), the receiver can update the information about the
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ability of each sender and consequently rank them in order to select the best one.
This assessment method is imprecise and imperfect. The imprecision is captured
by the noisy nature of signals. The novel assumption that I make here is that of
imperfect information-processing technology: as the number of applications processed
becomes large, the capability of the receiver to rank applicants according to their true
abilities vanishes. Therefore I assume that the receiver, after observing the number
of applications received, decides first how many of them to read, neglecting, in case,
those in excess. Afterwards applications are processed simultaneously and eventually
one applicant is selected. Thus, the choice of how many applications to read is a
strategic choice of how much attention to allocate to interpret each application. The
focus of the paper is to analyze how market mechanisms (self selection and sample
size mechanisms) shape the way in which information is produced and processed, and
what are the implications in terms of efficiency
The first finding is that, for a sufficiently large market, there exist equilibria

(pooling or partially separating) in which the economic agent in charge of processing
applications neglects some of them. These equilibria arise because the positive sample
size effect is outweighed by the negative decreasing accuracy effect: even though the
chance of getting really good applicants increases with the number of applications re-
ceived, it also decreases the actual capability of the receiver to discriminate between
applications. Thus, neglecting applications is a consequence of maximizing behavior
where the marginal utility of a larger sample size (which is the chance of observing
a better application) is compared to its opportunity cost (which is the marginal de-
crease in the capability of ranking the applicants according to their true abilities).
Neglecting applications corresponds to neglecting some potentially valuable informa-
tion, thus, I refer to this phenomenon as information overload. I also notice that, for
any information-processing technology level, information overload equilibria emerge
when the cost of sending applications is low relatively to the existing technology level.
Second, I find that, provided that sending application is costly, the self selection

mechanism is preserved: in other words, an increase in the number of potential ap-
plicants eventually translates only in higher applicants’ ability. This occurs because
competition discourages low ability employees from applying and thus, in equilibrium,
only the better workers, who have more chances to be hired, are willing to bear the
application cost. A direct consequence of the self selection mechanism is that, for
any positive sending cost, there exists an upper bound on the amount of information
that the market can generate and therefore on the magnitude of information over-
load. The reason is fairly intuitive. As the number of potential senders increases, the
competition becomes stronger and, eventually, separation occurs. When this happens
self-selection comes to play a role: an additional increase in the market size affects
only the ability of the candidates that actually apply, but not their number which, on
the contrary, remains constant. Therefore, a positive cost on the supply side identifies
a hard bound on the amount of information that is produced, while the technology
level identifies a hard bound on the maximum amount of information that the market
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is willing to absorb. When the cost is low relatively to the technology level, the former
bound is larger than the latter and the magnitude of the overload is also bounded.
Third, I compare the efficiency of markets that suffer from information congestion

for two different scenarios: one in which applications can be neglected, and one in
which this is not possible. I show that an overloaded market where excessive infor-
mation is neglected is more efficient than one in which the receiver is constrained to
process all information. In the first scenario the receiver, by ignoring some informa-
tion, protects himself from the decreasing accuracy effect, thus, the inefficiency lies
only on the supply side as there are too high sending costs for the society. In the
second scenario, on the contrary, the side effects of information congestion are present
also on the demand side: the excessive number of applications processed decreases
the utility of the receiver. Moreover, the sending cost are even higher compared to the
situation in which applications can be neglected. Two effects play a role in shaping
this result. First, if some applications are neglected in equilibrium, senders anticipate
that there is a chance that their application might not be taken into account in the
first place. Second, when applications are neglected, the signals’ accuracy is larger
compared to the case in which all excessive applications are processed, and this helps
the receiver to sort out relatively bad candidates. Both effects have a discouraging
impact on senders and, therefore, a market in which neglecting applicants is an option
induces less people to apply.
Finally, I note that, in equilibrium, the total sending costs always decrease in

the technology level. Moreover, if information is neglected in equilibrium, the total
sending cost does not depend on the cost of sending one single application. The
reason for this surprising result is that the elasticity of the number of actual senders
with respect to the cost of sending one single application is always unitary: as the
cost of sending one application increases the number of applicants in equilibrium
decreases in the same proportion and therefore the total cost does not change. If, on
the other hand, neglecting applications is not an option, the total sending costs are
decreasing in the cost of sending one single application. Thus, in this second scenario,
the elasticity of the number of actual senders with respect to the cost of sending one
single application is negative and larger than one in absolute value.
The paper relates to two branches of the economics literature: one that analyzes

the economic consequences of asymmetric information, and one on limited capacity.
Broadly speaking, the former research field was started by Akerlof (1970). More
specifically, a large body of the literature has been devoted to investigate the impli-
cations of asymmetric information in the labour market1. The first contribution in
this direction is the pioneering work of Spence (1973). Large part of the subsequent
literature is game theoretic in nature2 and, typically, it focuses on models where two

1See Weiss (1995) for a survey of the different ways information asymmetries have been used in
studies of the labour market.

2See e.g., Cho and Kreps (1987) for the first complete game theoretic analysis of the Spence
model.
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firms compete for one worker whose ability is unknown. On the contrary, Janssen
(2002) considers a screening model in which N workers compete for one job in one
firm. I stay within the set up of Janssen (2002), given that I also consider a monop-
sony situation3 where the number of potential competitors is exogenous. However,
a wage mechanism is not included here. This simplifying assumption is justified as
the model is intended to describe the problem of a selection decision at the time in
which the decision takes place. Thus, the time horizon within which the model ap-
plies is ”instantaneous” and the wage is assumed to have already been set at some
previous stage 4. Alternatively, the model can represent economic situations (i.e.
beauty contests, prize competitions, grant allocations...) in which the main objective
is that of selecting the candidate with the highest expected ability. Yet, the model
I propose differs substantially form traditional sorting5 models. In sorting models a
worker has complete control on his signalling activity: by choosing an appropriate
investment level (e.g. years of education6) he fully determines his signal outcome. In
a separating equilibrium signals happen to be fully informative because they allow
the employer to sort high ability workers form low ability ones. Separation occurs
because, in traditional sorting models, it is assumed that education is more costly
the lower is a worker’s ability. In my model, on the contrary, a worker does not have
any control on his specific signal level, which is simply the outcome of a statistical
experiment. Moreover the cost of signalling (that is, the cost of sending one applica-
tion) does not depend on the specific worker’s ability. Yet separation may still occur
because better workers produce, on average, better signals and therefore have higher
chances of being selected by the employer.
The concept of limited capacity in processing information has also been exten-

sively exploited in the field of economics. The main motivation for this branch of
the literature is the widely excepted idea that economic agents are not able to deal,
efficiently, with an excessively large amount of information7. Early, as well as more
recent works in marketing (see Jacoby et al. (1974) and Hahn et al. (1992), among
others) provide empirical evidence that supports the adverse effect of excessive infor-
mation on the quality of decision making. Consequently, models of limited capacity
emphasizes the role of cognitive heuristics and simplifying knowledge structures in

3See Boal and Ransom (1997), for a survey of the way monopsony models have been used in
studies of the labour market.

4Alternatively, the model can be restricted to represent certain segments of the labour market in
which the wage is exogenously set by other institutions.

5I use the term ”sort” as meant by Weiss (1995). ”[I] will use the term ”sorting” to refer to
both signalling and screening of workers.[...] Both signalling and screening serve to ”sort” workers
according to their unobservable abilities.[...] In signalling models the informed (students) move first.
In screening models the uninformed (firms) move first. (Weiss, 1995)”.

6See Nöldeke and Van Damme (1990) for dynamic issues concerning signalling and education.
7The idea that the human brain is better equipped for working with relatively small amount of

information has been already pointed out by pshychologists in the middle 1950’s. See e.g. Miller
(1956).
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reducing information-processing demands. Lipman (1995), e.g, provides an exhaus-
tive survey of this literature. In most of these models (see, e.g., Van Zandt (2001))
the computational processing limitation is introduced in the form of an exogenous
hard bound on the information items that can be processed at a time. Therefore the
possibility for the receiver to neglect information is not justified on the ground of an
optimizing behavior, but is assumed to be exogenous. On the contrary, the approach
that I take here is shared with Ficco and Karamychev (2004) where information over-
load also emerges as an endogenous behavior of fully rational agents. Yet, the focus of
that paper differs as it analyzes information overload in the context of a multi-stage
selection of exogenously given alternatives.
The paper is organized as follows. Section 2 describes the model. Section 3 an-

alyzes the problem of the receiver. Section 4 analyzes the problem of the senders.
Section 5 provides the equilibrium analysis. In section 6 the implications of informa-
tion overload in terms of efficiency are discussed. Section 7 concludes the paper. The
appendix contains all the proofs.

2 The model.

In this section I first describe the model and discuss the related economic implications.
I then provide and justify a more specific assumption on the information-processing
technology.
There is a mass N of heterogenous potential senders, where N is a real number

1 ≤ N <∞ and a mass, normalized to one, of homogenous receivers. Each receiver
has a vacancy to offer to a sender. The mass of senders is uniformly distributed on the
[0, 1] segment. Each point on the segment corresponds to the ability of a sender and
is denoted by θ ∈ [0, 1] . The decision variable for a sender is whether to send a costly
application or not. The decision variables for a receiver are: how many applications to
process, and which application to select from the pool of those processed. I denote by
n ≥ 0 the mass of senders who actually apply, and by m the mass of senders actually
processed by the receivers. Clearly 0 ≤ m ≤ n ≤ N . The timing is as follows.
0. Each sender knows where he is located (he knows his own ability), and decides

whether or not to send an application. I denote the sender’s choice variable by s,
where s can take only two values: 0 (do not send) and 1 (send). The cost of sending
one application is the same for all senders and is equal to C. I will call actual senders
those senders who have applied.
1. A random matching function allocates the mass of actual senders n, evenly

to the unitary mass of receivers. Thus, each receiver receives a real number, n, of
applications.
2. Each receiver observes the number of applications at his disposal, n, and decides

how many of them to process, m.
3. Let Θ be a subset of [0, 1] representing the set of possible ability values of

actual senders and X a subset of R representing the set of possible signals about
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θ. The receiver simultaneously processes m applications. When an application is
processed it produces a signal which is drawn form the distribution F (· | θ,m). It is
assumed that the family of distributions {F (· | θ,m)} is such that, for any x2 > x1 the
posterior distribution G (· | x2,m) dominates the posterior distribution G (· | x1,m)
in the sense of strict first-order stochastic dominance. Moreover it is assumed that
for any θ1, θ2 ∈ Θ and x ∈ X

lim
m→∞

F (x | θ2,m)− F (x | θ1,m) = 0 (A.1)

4. The set of signal outcomes, denoted by X̂m ≡ {x̂1, .., x̂m} , becomes private
information to each receiver who compares signal outcomes and selects the one that
maximizes his expected utility.
A strategy for sender θ is denoted by s (θ). A strategy for a receiver is denoted

by {m (n) , x̂} , where x̂ ∈ X̂m is the signal outcome chosen.
The payoffs are as follows. If sender θ does not apply he gets utility zero. If

sender θ applies then the utility he gets equals the value of the vacancy (constant for
all senders and denoted by V, where V > C) weighted by the probability of being
selected minus the cost of signalling. The probability that sender θ assigns to the
event of being selected (denoted by Φ) will generally depend on his own ability, the
total number of applications sent, and the number of applications actually processed.
Therefore, if n senders apply, and m are processed, the payoff of sender θ is

us (θ, n,m) =

½
0 if s (θ) = 0

Φ (θ | n,m)V − C if s (θ) = 1
(1)

The payoff that a receiver gets from selecting the sender whose signal outcome is
x̂ equals the expected ability of that sender. The expected ability of sender θ is
conditional on the value of the corresponding signal outcome, x̂, and the total number
of applications processed m. Thus, the ability of a sender θ, as it is perceived by the
receiver, is

ur (x̂,m) = E [θ | x̂,m] (2)

The assumption of stage 1 is justified by the purpose of this paper which is not
that of explaining the mechanism by which senders are assigned to receivers. Since
receivers are homogenous, a sender does not perceive a receiver per-se more valuable
than another. Therefore I intentionally avoid to model the possibility for a sender
to target a particular receiver. The only crucial choice of a sender is that of sending
an application or not, where sending an application is indeed a choice of whether to
enter the market. When applications are sent, the size of the actual market, (the
mass of actual senders n), is endogenously determined and stage 1 provides a stylized
picture of the way in which the two sides of the market come to meet each other. The
unitary mass of receivers corresponds to a mass of identical information processors,
thus each receiver can be thought as the average representative agent of the receivers’
population. From now on I will use the term Receiver (with capital R) to mean the
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representative receiver. Stage 1 also implies that n is not an integer, thus, it does
not represent the number of applications received but is a measure of the information
produced by the market. This is convenient for the analysis and, with abuse of
terminology I will call n simply the "number" of applications received.
An important feature of the model I propose is that information is revealed to

the Receiver by observing signals that are drawn simultaneously. This assumption
is supported by Moscarini and Smith (2001)8 and describes here economic situations
in which a decision maker decides ex-ante how much to invest in the information-
processing phase and, only after such decision is made, the informative outcome is
revealed.
The assumptions of stage 3 imply that signals are imperfectly informative and

have the monotone likelihood property (MLRP) which implies that higher signal
outcomes are more favorable than9 lower signal outcomes. Moreover, assumption
(A.1) implies that when infinitely many applications are processed theMLRP vanishes
and each signal outcome becomes equivalent and neutral10 to the decision maker. This
assumption is economically justified as one can easily think of situations in which the
agent in charge of processing information has limited resources in order to accomplish
this task. A direct consequence of such constraint is that, if the Receiver processes
infinitely many applications, he actually allocates zero resources to interpret each one
of them and signals turn out to be completely uninformative.
The cost of applying is assumed not to be related to the senders’ ability since

its interpretation is not that of an opportunity cost, but simply the mere cost of
transmitting information (i.e., filling in and sending one application). On the other
hand, in this model, the opportunity cost is captured by the fact that more able
senders have higher probability of being selected.
It is useful to clarify that both asymmetric information and imperfect information-

processing technology are crucial to the model. On one hand, when dealing with the
problem of selecting the ”best” sender, the Receiver can only make an inference
on the senders’ ability by using a noisy signal that imprecisely represents the true
ability. On the other hand, when dealing with the problem of inferring his chance
of being selected, a sender can only use the knowledge about his ability to predict
what signal outcome his application will produce. In the model there is a discrepancy
between the value of a signal outcome and the true ability value that the signal
aims to represent and, moreover, such discrepancy increases with the total number of
applications processed. Therefore the larger is the amount of information processed

8Moscarini and Smith (2001) show that, in a dynamic continuous time world, one shot non
sequential sampling is still optimal given discounting and a constant marginal cost of information.

9The concept of "favorableness" was first introduced by Milgrom (1981) . If Θ is the set repre-
senting the possible values of the random parameter θ, and X is the set of possible signals about θ,
then, a signal x2 is more favorable than a signal x1 iff the posterior distribution G (θ | x2) dominates
in the first-order stochastic sense the distribution G (θ | x1) .
10Two signals x1 and x2 are equivalent if E (θ | x1) = E (θ | x2) . A signal x is neutral if, for any

prior distribution G (·) , G (θ) = G (θ | x) .
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by the market, the less is the efficiency with which agents can use their private
information in order to make a decision.
Finally, the model can also represent a situation in which neglecting applications

is not an option. This can be done by restricting the strategy space of the Receiver to
be simply that of selecting one applications form those received. These two scenarios,
one in which applications can be neglected, and one in which this is not possible, are
compared in section 6.

2.1 The information-processing technology.

In this subsection I propose a more specific information-processing technology which
has two desirable properties. Namely I will impose that the two following requirements
are met:

(i) The information-processing technology implies a trade-off between the quality and
the quantity of information.

(ii) The information-processing is not sensitive to the ability of actual senders.

Referring to property (i), by quality of information I mean the accuracy of each
signal in predicting the unknown parameter. By quantity of information I mean the
total number of signal outcomes drawn simultaneously11. Then the first property
requires that the signals’ accuracy is strictly decreasing in the sample size; the eco-
nomic interpretation is that, the less resources are allocated to interpret each signal,
the smaller is the accuracy of each signal in predicting the unknown parameter.
Property (ii) ensures that the signals’ accuracy depends only on the total number

of signals drawn and not on the specific set of parameter that signals aim to rep-
resent. This property plays an important role as the set of possible ability values
of actual senders may be different for different equilibria. Indeed, notice that the
fact that {F (· | θ,m)} have the MLRP, implies that if a sender with ability, say, θ̄
applies also senders with ability above θ̄ apply. This allows for the existence of a par-
tially separating equilibrium in which the segment of actual senders is [α, 1] , where
α denotes the ability of the sender who is indifferent between sending or not sending
an application. Therefore the senders’ strategic behavior affects the set of possible
ability values, which, in case of a partially separating equilibrium, is Θα = [α, 1].
Consequently, the support of family of distributions from which signal outcomes are
drawn also depends on α, and I will henceforth denote it by {Fα (· | θ,m)} . Property
(ii) ensures that that the only effect that α has on the distribution Fα (· | ·) is that
of rescaling it according to the ability support of actual senders, [α, 1] .
In the following a more specific information-processing technology, which has both

properties (i) and (ii) , is introduced.

11The same definition of quantity of information is provided in Moscarini and Smith (2002) .
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(A.2) Let Θα = [α, 1] be the set of possible ability values, where α ∈ [0, 1). Then, in
stage 3 signal outcomes are drawn from the family of distributions {Fα (· | θ,m)} ,
where

Fα (x | θ,m) = I
[α,1]
(x) (1− π (m))

µ
x− α

1− α

¶
+ I

[θ,1]
(x)π (m) + I

(1,∞)
(x) (3)

and where π (·) is a twice differentiable function such that π (1) ≡ π1 ≤ 1,
π0 (·) < 0, π00 (·) > 0 and limm→∞ π (m) = 0.

In the following pictures the distribution Fα (· | θ,m) and the corresponding prob-
ability fα (· | θ,m) are depicted for the case in which α = 0.

)(mπ

1θ

1

x

),( mxF θ

Figure 1(a)

)(mπ

1θ
x

),( mxf θ

)(1 mπ−

Figure 1(b)

Fα (· | θ,m) is a mixture distribution: the distribution of the signal conditional
on ability θ is, with probability π (m) , a degenerate distribution with all probability
mass at x = θ, and, with probability 1 − π (m) , a uniform distribution on [α, 1] .
Thus, π (·) ∈ (0, π1] is the revealing probability and denotes the accuracy of each
signal in predicting the unknown ability: the higher the value of π (·) the higher the
accuracy, and π (·) → 0 captures the situation in which signals become completely
uninformative. Since π (·) is decreasing inm, eventually approaching zero, the signals’
accuracy, as well as the MLRP, vanishes with the number of signals that the Receiver
processes. To see it, notice that, if m → ∞, then π (m) → 0 and fα (x | θ,m) ∼
I
[α,1]
(x) 1

1−α for any θ. In other words, as m→∞, all signals become equivalent and
neutral to the decision maker. It is the monotonic behavior of π (·) which captures
the trade-off between the quality and the quantity of information. The fact that the
information-processing is not sensitive to the ability of actual senders is captured by
the fact that the only effect of α on the distribution Fα (· | ·) is that of rescaling it
according to the ability support of actual senders, [α, 1] . The implications of such
property will be discussed at the end of section 3 and section 4. In the remaining of
the paper it is assumed that the information-processing technology is the one defined
by (A.2) .
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3 The problem of the Receiver.

Since the payoff of the Receiver depends on the support of actual senders, Θα = [α, 1] ,
henceforth, it will be denoted by urα (x̂,m) ≡ E [θ | x̂,m, θ ≥ α] . The following lemma
characterizes the functional form of the terminal payoff of the Receiver.

Lemma 3.1 The payoff of the Receiver is

urα (x̂,m) = π (m) x̂+ (1− π (m))

µ
α+ 1

2

¶
(4)

The interpretation of (4) is straightforward. The information perspective of the
Receiver is a mirror image of that of the sender, as he observes x but not θ, moreover,
π (·) and 1 − π (·) represent respectively the probability that a signal is fully infor-
mative and the probability that a signal is completely uninformative. Therefore, the
Receiver perceives the ability of a sender as being equal to the corresponding signal
outcome, with probability π (·) , and as being equal to the prior average ability of ac-
tual senders with probability 1−π (·) . Notice also that (4) , considered as a function of
signal x, is a straight line with slope π (m) . Thus, the more signals are processed, the
flatter is ur (x̂,m) ; this behavior captures the fact that the informativeness of each
signal decreases as more signals are simultaneously processed. Finally, the fact that
limm→∞ ur (x̂,m) = (α+ 1) /2 is the feedback on the Receiver’s side of the gradual
degeneration of the MLRP. In the following the optimal strategy of the Receiver is
determined.

Proposition 3.1 The dominant strategy for the Receiver is {m∗ (n) , x̂∗} , where x̂∗ =
max {x̂1, .., x̂m} and m∗ (n) = min {n, m̄}, with m̄ ∈ (1,∞). Moreover, m̄ is unique
and is given by the following condition

|π0 (m̄)|
π (m̄)

=
2

(m̄2 − 1) (5)

I will provide a sketch of the proof of proposition 3.1, and some general remarks.
The Receiver solves the following maximization problem

max
m,x̂

urα (x̂,m)

subject to :

½
m ≤ n

x̂ ∈ X̂m

He chooses the sample size m in stage 2 and selects one out of m signal outcomes in
stage 4. Consider first stage 4. Since urα (x̂,m) is strictly increasing in x̂ (this is a
direct consequence of the MLRP), no matters how many (finite) signals the Receiver
processes, he always selects the sender whose application produced the highest signal
outcome. This proves x̂∗ = max {x̂1, .., x̂m} . Denote by x̄(m) ≡ Ex [max {x1, ..xm}]
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the expected value of the maximum of m signals, and consider now stage 2, when the
receiver chooses m in order to maximize the ex-ante expected utility

Ex [u
r
α (x

∗,m)] = urα
¡
x̄(m),m

¢
= π (m) x̄(m) + (1− π (m))

µ
α+ 1

2

¶
(6)

Notice first that, urα
¡
x̄(1), 1

¢
= urα ((α+ 1) /2, 1) = (α+ 1) /2, that is, processing

only one signal implies selecting one sender randomly and, therefore, getting ex-ante
payoff equal to the prior expected ability of actual senders. Moreover, urα

¡
x̄(m),m

¢
approaches (α+ 1) /2 as m → ∞; this is the case because, when infinitely many
signals are processed, each signal becomes completely uninformative. This implies
that the ideal number of signals to process, namely m̄, is always finite. Moreover,
the well-behavior of function π (·) ensures that such number is unique and I will now
provide the intuition behind its characterization. The function urα

¡
x̄(m),m

¢
captures

the trade-off between quality and quantity of information that the Receiver faces
when he has to choose m. The argument x̄(m) increases inm, that is, the more signals
are processed the higher is the chance of observing a very high signal. This is the
sample size effect which has, ceteris paribus, a positive impact on the terminal payoff.
However, the Receiver can increase the chance of observing a high signal only at the
cost of reducing its quality. This is the detrimental effect of decreasing accuracy
which is captured by the fact that urα (·,m) becomes flatter the larger is m (see fig.
2(a)). Therefore the ideal number of signals to process, m̄, is determined by the
balancement of the two effects. Condition (5), which characterizes m̄, has a clear
cost benefit interpretation since it is obtained by equating the marginal benefit of
processing one additional application to the marginal cost of doing so. Notice from
(6) that

MB (m) = π (m)
d
¡
x̄(m)

¢
dm

MC (m) = |π0 (m)|
µ
x̄(m) − α+ 1

2

¶
that is: the marginal benefit of processing one additional application is the marginal
increase of the expected value of the maximum signal, weighted by the accuracy of
the signal; the marginal cost of processing one additional application is the (posi-
tive) difference between the expected maximum signal and the prior average ability,
weighted by the marginal decrease of the signal’s accuracy. From the discussion above
it follows that urα

¡
x̄(m),m

¢
, considered as a function of m, is bell-shaped and reaches

12



its unique maximum at m̄ ∈ (0,∞) (see figure 2(b)).
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Notice that m̄ denotes the number of applications that the Receiver is, at most, willing
to process. This implies that, if the number of applications received, n, is larger than
m̄ the Receiver is overloaded, as n− m̄ applications are simply neglected as a result
of the maximizing behavior.
Two aspects of proposition 3.1 are worth noticing. First, the optimal behavior of

the Receiver does not depend on α: this is a direct consequence of the fact that the
information-processing technology is not sensitive to the ability of actual senders. Sec-
ond, m̄ is fully determined by condition (5) , which follows directly from assumption
(A.2). However, it is important to stress that, in order to allow for the possibility
of information overload, assumption (A.1) is sufficient. To see it notice that as m
becomes large the Receiver views all signal as equivalent and neutral, and therefore
each signal yields expected utility equal to the prior average ability. Consequently
also under (A.1) the optimal number of signals to process is finite. Therefore the
only convenience of assumption (A.2) is that it allows to have a closed-form solution
to the maximization problem of the Receiver which does not depend on α and which
has a clear cost-benefit interpretation.

4 The problem of the sender.

If Θα = [α, 1], when n senders apply and m applications are processed, the expected
utility of an arbitrary sender θ ∈ [α, 1] is

usα (θ, n,m) = Φα (θ | n,m)V − C

where Φα (θ | n,m) ≡ Φ (θ | n,m, θ ≥ α) . Denote by c = C/V the cost of applying
relative to the value of the vacancy, then sender θ finds it optimal to send if and
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only if Φα (θ | n,m) ≥ c. In order to obtain the vacancy, sender θ must go through
a two-steps procedure. First, the application of θ must be taken into account by
the Receiver, second, provided that this is the case, the signal outcome of θ must be
larger than the outcomes of all other applications processed. It is therefore useful to
express Φα (θ | n,m) in the following way

Φα (θ | n,m) = γ (n,m)φα (θ,m) (7)

where γ (n,m) denotes the probability that one’s application is taken into account
in the first place when n senders apply and m applications are actually processed,
and φα (θ,m) is the probability that the signal outcome of sender θ is larger than the
signal outcomes of the other m− 1 senders processed. Trivially,

γ (n,m) =

½
1 if n ≤ m

m/n if n > m
(8)

while the nature of φα (θ,m) , is made clear by the following lemma

Lemma 4.1 If m ≥ 1 senders are processed by the Receiver, the probability that the
signal outcome of sender θ ∈ [α, 1] is the largest one is

φα (θ,m) = π (m)

µ
θ − α

1− α

¶m−1
+ (1− π (m))

1

m
(9)

Expression (9) has a clear analogy to expression (4) . The first term of (9) says
that, with probability π (·) , the signal is a true representation of ability and, therefore
the probability that sender θ assigns to the event of his signal being larger than that
of the other m− 1 senders is simply the Pr (θ ≥ θ1; ..; θ ≥ θm−1) . The second term of
(9) states that, with probability 1−π (·) , each signal, independently of the underlying
ability, is uniformly distributed on [α, 1] ; thus, each signal has equal chance of being
larger than the other. More importantly, from the expression of φα (θ,m) it is also
clear what is the effect of the decreasing signals’ accuracy on the senders’ side: as
m → ∞, φα (θ,m) converges in probability to 1/m, thus, for large samples, the
probability of having the largest signal outcome is purely determined by chance. It
is important to stress that this phenomenon also holds under the weaker assumption
(A.1) . If the Receiver allocates his finite resources on infinitely many signals, all
signals become equivalent (as the MLRP vanishes). Consequently, the Receiver is not
able to discriminate between different signal outcomes and, thus, he randomly selects
one of them.
One last property of φα (θ,m) is worth noticing. Consider the transformation

g (θ, α) = α+ (1−α)θ whose role is that of mapping any θ ∈ [0, 1] to a new support,
[α, 1] , by keeping the relative location of θ fixed. For example, consider the location
of the sender with the lowest ability on [0, 1] , that is θ = 0; then plugging θ = 0 into
g (·, α) yields the location of the sender with the lowest ability on the new support
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[α, 1] , that is, g (0, α) = α. Similarly, consider the location of the median sender
when the actual ability support is [0, 1] , that is θ = 1/2; then plugging θ = 1/2
into g (·, α) yields g ¡1

2
, α
¢
= (α+ 1) /2, which is the location of the median sender

when the actual ability support is [α, 1] . Notice form (9) that it is always the case
that φα=0 (θ | m) = φα (g (θ, α) | m) . Such property is a direct implication of the fact
that the information-processing technology is not sensitive to the ability of applying
senders and, basically, states that, for a givenm, the probability that a sender assigns
to the event of his signal outcome being larger than that of an arbitrary opponent,
depends only on his relative location on the ability support and not on the particular
support chosen.

5 Equilibrium analysis.

In the first part of this section I will characterize the equilibria that emerge for specific
values of the primitives of the model. In the second part I will provide a comparative
static analysis. In order to be able to compare equilibria for different levels of the
information-processing technology I assume a specific functional form of π (·) which
depends also on a technology parameter k.

Assumption (A.3)

π (m, k) =
k

k +m
, where k ∈ (0,∞) (10)

The parameter k denotes how good is the information-processing technology, and
higher values of k imply a better technology. The main convenience of (10) is that
k can be interpreted as the amount of resources available to process information,
and different values of k allow to capture the entire range of possible information
technology levels. For any m, limk→0 π (m, k) = 0, thus, if no resources are avail-
able, the information-processing technology is completely useless. On the contrary,
limk→∞ π (m, k)→ 1 for any m, thus, if infinitely many resources are at disposal, the
technology is perfect. Moreover, the function (10) is increasing in k, meaning that,
the more resources available, the more is the information that can be extracted from
a fixed number of signals drawn. Now π (·) depends also on k, thus, the maximum
number of applications that the Receiver is willing to process, m̄, will also depend
on k and, henceforth, will be denoted by m̄ (k) . Since a better technology allows to
extract more information from the same number of signals it trivially follows that,
m̄0 (k) > 0.
As already noticed, the fact that signals have the MLRP implies that more able

senders have higher probability of being selected. Then, since the cost of sending
(normalized to the value of the vacancy) c is constant there are two types of equilibria
that can emerge: a pooling equilibrium (PE) and a partially separating equilibrium
(PSE) . The following proposition characterizes the equilibria of the model.
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Proposition 5.1 Let π (·) be given by (10). Let be N > m̄ (k) and define µ (k) ≡
1/ (k + m̄ (k)) and ρ (k,N) ≡ (m̄ (k) /N)µ (k) . Then:

(P.5.1.a) If c ∈ [0, ρ (k,N)), a PE with neglected applications arises.
(P.5.1.b) If c ∈ [ρ (k,N) , µ (k)), a unique PSE with neglected applications arises.
(P.5.1.c) If c ∈ [µ (k) , 1/ (1 + k)), a unique PSE without neglected applications arises.

(P.5.1.e) If c ∈ [1/ (1 + k) , 1] only one sender with expected ability 1− 2/N applies.

First, the inequality N > m̄ (k) ensures that the market size is large enough for
information overload to be a potential problem. If, on the contrary, it was N ≤ m̄ (k)
then, even if the entire mass of senders, N , applies, the information processing tech-
nology would never be at full capacity and an equilibrium with information overload
would never emerge.
The proposition has a clear graphical interpretation. Let α be the ability threshold

level of a PSE. For any PSE, that is, for any threshold level α, it is possible to
calculate (see proof of proposition 5.1) the probability that a sender located at α
assigns to the event of being selected in equilibrium. Such probability depends on
the primitive of the model N and k and is denoted by Ψ (α,N, k) . The qualitative
behavior of Ψ (·, N, k) , where N > m̄ (k) , is shown in figure 3
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The strict monotonicity of Ψ (·, N, k) is crucial as it implies that a PSE for which
the threshold level is α is determined by the conditionΨ (α,N, k) = c, while the PE is
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determined by the condition Ψ (0, N, k) > c. Thus, the function Ψ (·, N, k) defines the
cost regions for which qualitatively different equilibria emerge and, for any threshold
level α, the number of actual senders endogenously determined in equilibrium is given
by n = (1− α)N. Then, notice that ᾱ is the threshold level for which the number
of senders applying in equilibrium equals the maximum number of applications that
the Receiver is willing to process; indeed, (1− ᾱ)N = m̄ (k) . Therefore, µ (k) ≡
1/ (k + m̄ (k)) is the probability that the sender located at ᾱ assigns to the event of
being selected in a PSE for which the threshold level is actually ᾱ. Indeed,

Ψ (ᾱ, N, k) = φᾱ (ᾱ, m̄ (k))

=
1− π (m̄ (k) , k)

m̄ (k)
=

1

k + m̄ (k)

Similarly, ρ (k,N) ≡ (m̄ (k) /N)µ (k) is the probability that the sender located at
α = 0 is selected in a pooling equilibrium as

Ψ (0, N, k) =
m̄ (k)

N
φ0 (0, m̄ (k))

=
m̄ (k)

N

1− π (m̄ (k) , k)

m̄ (k)
= (m̄ (k) /N)µ (k)

Finally, since (1− α1)N = 1, α1 denotes the threshold level for which the mass of
actual senders in equilibrium is unitary. When this is the case the random matching
function ensures that each sender is assigned to one receiver and, therefore, each
sender knows that will be selected for sure. This is the reason why, on the one hand
Ψ (α,N, k) = 1 for any α ≥ α1 and, on the other, the Receiver, by selecting the only
applicant at his disposal, gets expected utility (α1 + 1) /2 = 1− 2/N.
The following corollary follows directly form proposition 5.1.

Corollary 5.1 For any k ∈ (0,∞) and N > m̄ (k) , a market is overloaded iff c <
µ (k) . Moreover µ0 (k) < 0 and limk→∞ µ (k) = 0.

This corollary supports the intuition that market congestion emerges whenever
the cost of transmitting information is low, relatively to available resources needed
to interpret information. The better the technology, the lower the cost must be, in
order for information overload to emerge.
I now study how a marginal change in the market size, N, and in the technology

level, k, affects the threshold level α and the number of senders applying in equilib-
rium, n. To avoid trivialities the attention is restricted to the PSE only. In a PE
the sender located at zero is strictly better-off by sending, thus a marginal change in
the exogenous parameters will not affect his behavior.

Proposition 5.2 Let α and n be the equilibrium threshold level and the number of
senders applying in a PSE. Then,
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(P.5.2.a) ∂α/∂k > 0 and ∂n/∂k < 0.

(P.5.2.b) ∂α/∂N > 0 and ∂n/∂N = 0.

The intuition behind (P.5.2.b) is not surprising: a better technology allows the
Receiver to rank applicants’ quality more precisely, which discourages low-quality
employees from applying. On the contrary, the result of (P.5.2.a) is very interesting.
It states that an increase in the market size does not translate in a larger number
of actual applicants but only in higher applicants’ ability. This is possible because
competition discourages low ability employees from applying and thus, in equilibrium,
only the better workers, who have more chances to be hired, are willing to bear the cost
of sending an application. Therefore, when the market equilibrium implies separation,
the self selection mechanism of applicants competing for a position is fully preserved.
The following pictures show how the cost regions for which different equilibria arise
change in k and N.
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On one hand, when the technology improves all cost regions, except the high-cost
one, shrinks. Thus, for any sending cost c there exists a technology level that allows
the Receiver to screen the best sender. On the other hand, a larger market size
causes the very-low cost area to shrink and the low-cost to get larger. Thus, even for
extremely low (but positive) sending cost, there exists a sufficiently large market size
which ensures that the self selection mechanism plays a role. The reason is that, even
though c lies initially in the very-low-cost area, which implies no separation, it will
eventually lie in the low-cost area and, then, separation will occur.
The self selection mechanism has two very important implications on the function-

ing of the market. The first is that, from the Receiver point of view, a larger market
is always better because the senders applying in equilibrium are of better quality.
The second implication plays a role in determining the amount of information that
the market generates, and it is addressed in the next section.
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6 Market congestion and efficiency

In this section the analysis focuses on markets that suffer from information congestion,
that is, markets where the cost of transmitting information is low relative to the
information-processing technology. Implicit here is the idea that the cost at which
information can be transmitted is not a strategic variable, but is exogenously given
by the environment. If, on the contrary, the Receiver could use the cost as a screening
device (e.g. the Receiver could determine the sending cost by imposing an application
fee) it would put it high enough to ensure that only the best sender finds worthwhile
applying.
So far I have assume that the Receiver can neglect applications. Clearly this

assumption does not capture the reality of many monopsony markets12. However,
the model I propose can be easily accommodated to represent a situation in which
neglecting applications is not an option. This can be done by restricting the strat-
egy space of the Receiver to be simply that of selecting one applications from those
received. The resulting model is much simpler as it implies that the Receiver maxi-
mizes expected utility urα (x̂, n) only with respect to x̂, and that, the probability that
a sender assigns to the event of being selected depends only on the total number of
actual senders, φα (θ, n) . Therefore, in this section, I will define and compare the eco-
nomic cost of market congestion for two different scenarios: one in which applications
can be neglected, and one in which this is not possible.
The first question I address here is how the amount of information generated, n,

depends on the market size, N.

Proposition 6.1 Let be N > m̄ (k) . For any k ∈ (0,∞) and c ∈ (0, µ (k)) the market
is overloaded and

(P.6.1.a) if the Receiver can neglect applications, the excessive amount of information
is

n (N) =

½
N if m̄ (k) < N ≤ 1

c
(1− kµ (k))

1
c
(1− kµ (k)) if 1

c
(1− kµ (k)) < N <∞ (11)

(P.6.1.b) if the Receiver cannot neglect applications, the excessive amount of infor-
mation is

n (N) =

½
N if m̄ (k) < N ≤ 1

c
(1− kc)

1
c
(1− kc) if 1

c
(1− kc) < N <∞ (12)

First of all, the proposition states that, irrespective of the fact that the Receiver
is allowed or not allowed to neglect applications, the information generated is not

12For instance, there are many situations in which the agent in charge of processing applications
is legally constraint to pay attention to all applicants. For example scientific journals read all the
submissions they receive.
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strictly increasing in the market size. On the contrary, it is bounded, and its maxi-
mum level depends on c and k. It is the self selection mechanism that is responsible for
this result. A positive cost on the supply side identifies a hard bound on the amount
of information produced by the market: for N sufficiently large, separation occurs,
consequently the maximum number of applicants in equilibrium is constant and de-
pends only on c and k. Notice also that the technology level identifies a hard bound
(that is m̄ (k)) on the maximum amount of information that the market is willing to
absorb. When c < µ (k) , the former bound is larger than the latter, thus, the market
is structurally subject to information congestion, the extent of which, is also bounded.
Therefore the maximum magnitude of information overload, is 1

c
(1− kµ (k))− m̄ (k)

if the receiver can neglect applications, and 1
c
(1− kc) − m̄ (k) if, on the contrary,

applications cannot be neglected.
Since c < µ (k) , from (11) and (12) it follows that the extent of market con-

gestion is larger when the Receiver cannot neglect applications. Two effects play a
role in shaping this result. First, if some applications are neglected in equilibrium,
senders anticipate that there is a chance that their application might not be taken
into account in the first place. Second, when applications are neglected, the signals’
accuracy is larger compared to the case in which all excessive applications are pro-
cessed, and this helps the Receiver to sort out relatively bad candidates. Both effects
have a discouraging impact on senders and, therefore, a market in which neglecting
applicants is an option induces less people to apply.
I now investigate what are the economic costs of information congestion. In an

overloaded market in which some applications are neglected the inefficiency of infor-
mation congestion arises only on the supply side. The Receiver, by ignoring some
information, protects himself from the decreasing accuracy effect. However, since
sending applications is costly, a market equilibrium with information overload im-
plies too high sending costs for the society. Consider now an overloaded market in
which all information generated must also be processed. Here, the side effects of
information congestion are more severe and affect both the demand and the supply
side. On one hand, the excessive number of applications processed decreases the
utility of the Receiver13. On the other hand, the inefficiency is also present on the
senders side as too many senders bear the cost of applying. Moreover, in a scenario
in which applications cannot be neglected, the magnitude of the overload is larger
compared to the situation in which ignoring applicants is an option. Therefore, here,
the sending cost for the society are even higher. The next lemma is needed to support
what follows.

Lemma 6.1 Let be Π (k) = π (m̄ (k) , k) . Then Π0 (k) > 0.

I now consider the total sending costs for the society. If applications can be
13This is not true if the market size is very large. Indeed, the self-selection mechanism implies

that, if N → ∞, the threshold level α approaches 1, and, thus, irrespectively on the number of
applications processed, the utility of the receiver also approaches 1.
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neglected and the market is overloaded to its maximum extent, the total sending cost
for the society is

TC (c, k) = c

·
1

c
(1− kµ (k))

¸
= (1− kµ (k)) =

µ
1− k

k + m̄ (k)

¶
= 1−Π (k) (13)

If, on the contrary, applications cannot be neglected, the sending cost for the society
is

TC (c, k) = c

·
1

c
(1− kc)

¸
= 1/c− k (14)

From (13) and (14) it follows that a marginal increase in the technology level always
decreases the total sending cost. On one hand, a better technology implies that the
Receiver can assess applicants ability more precisely, thus low ability applicants are
discouraged from applying and the number of actual senders in equilibrium decreases.
On the other hand, it also increases the maximum number of applications that the
Receiver is willing to process. Consequently the extent of the overload decreases and,
with it, also the total sending cost. Interestingly enough, in an equilibrium in which
applications in excess are neglected, the total sending cost does not depend on the
cost of sending one single application. The reason for this surprising result is that
the elasticity of the number of actual senders with respect to the cost of sending one
single application is always unitary: as the cost of sending one application increases
the number of applicants in equilibrium decreases in the same proportion and therefore
the total cost does not change. If, on the other hand, neglecting applications is not
an option, the total sending costs are decreasing in the cost of sending one single
application. Thus, in this second scenario, the elasticity of the number of actual
senders with respect to the cost of sending one single application is negative and
larger than one in absolute value.

7 Conclusion.

The evidence of everyday life shows that there are many situations in which people
receive a too large amount of information compared to the one they are actually
willing to process. In this paper I address the information overload issue in the
specific situation in which many applicants compete to obtain one position and the
employer screens among applications in order to select the best applicant. With this
set up information overload can be defined as an equilibrium outcome in which some
applications are neglected by the economic agent in charge of screening applicants. It
has been shown that a large market is not directly responsible for market congestion.
On the contrary, more competition has a beneficial effect because the self-selection
mechanism is preserved. The results I obtain show that information overload occurs
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when the application cost is low relative to the information-processing technology
level. This supports the intuitive idea that information overload is more likely to
be present in environments in which the cost of transmitting information is low,
while there are few resources to interpret information. I also note that in some
instances neglecting applications is not possible (e.g. because of a legal constraint)
and, therefore, I also consider a scenario in which all the information received must
be processed. It turns out that the possibility of neglecting excessive information, to
some extent, decreases the inefficiency of market congestion.
The general set up of the model is very natural and borrows standard concepts

from the literature on economics of information. The crucial ingredient of the model
is the assumption that when infinitely many applications are processed, then each
application does not provide any information about the ability of the corresponding
applicant. This is modelled by imposing that the family of density functions from
which signal outcomes are drawn has the MLRP and that the MLRP vanishes as the
number of signals drawn becomes large. The more specific information-processing
technology that I use displays a clear trade-off between the quality and the quantity
of information and is convenient for the possibility of obtaining closed form solutions
with straightforward economic interpretations. More specifically, it allows to interpret
neglecting applications as a consequence of maximizing behavior where the marginal
utility of a larger sample size ( which is the higher chance of observing a very good
application) is compared to its opportunity cost (which is the marginal decrease in
the capability of ranking the applicants according to their true abilities). Yet, the
main results are robust and hold for very general information-processing technologies.
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8 Appendix

8.0.1 Proof of lemma 3.1.

For notation simplicity, the subscript α of the distribution (3) will be omitted. I first
show that f (x) = I

[α,1]
(x) 1

1−α . Since F (· | θ,m) has a discrete jump at x = θ, the
difference F (θ | θ,m)− limx→θ− F (x | θ,m) = π (m) is the probability mass assigned
to the event x = θ, thus

f (x | θ,m) = I{θ} (x)π (m) +
d

dx
F (x | θ,m)

= π (m) I{θ} (x) + (1− π (m)) I{[α,1]\{θ}} (x)
1

1− α

Now

f (x | m) =

Z +∞

−∞
f (x | θ,m) f (θ) dθ,

=
1

1− α

Z +∞

−∞
f (x | θ,m) dθ

=
1

1− α

·
π (m)

Z +∞

−∞
I{θ} (x) dθ + (1− π (m))

Z +∞

−∞
I{[α,1]\{θ}} (x)

1

1− α
dθ

¸
=

π (m)

1− α

Z +∞

−∞
I{θ} (x) dθ +

1− π (m)

1− α

Z 1

α

1

1− α
dθ

=
π (m)

1− α

Z +∞

−∞
I{θ} (x) dθ +

1− π (m)

1− α

Since I{θ} (x) = 1 when θ = x, and since θ is uniformly distributed on [α, 1] ,R +∞
−∞ I{θ} (x) dθ =

R 1
α

1
1−αdθ = 1. It then follows that f (x | m) = f (x) = I

[α,1]
(x) 1

1−α .

Now, f (θ | x,m) = f(θ)f(x|θ,m)
f(x)

and, since f (x) = f (θ) , we have f (θ | x,m) =
f (x | θ,m) and therefore

f (θ | x,m) = π (m) I{x} (θ) + (1− π (m)) I{[α,1]\{x}} (θ)
1

1− α

It then trivially follows that

Eα [θ | x,m] = π (m)x+ (1− π (m))

Z +∞

−∞
I{[α,1]\{x}} (θ)

θ

1− α
dθ

= π (m)x+ (1− π (m))

Z 1

α

θ

1− α
dθ

= π (m)x+ (1− π (m))

µ
α+ 1

2

¶
¥
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8.0.2 Proof of proposition 3.1.

I will use the following notation.

x(m) ≡ max {x1, ..., xm}
x̄(m) ≡ Ex [max {x1, ..., xm}]

First, the fact that x∗ = x(m) is trivial given that Eα [θ | x,m] is strictly increasing in
x. Then, the reduced form payoff in stage 2 is

Ex

£
ur
¡
x(m),m

¢¤
= π (m)Ex [max {x1, ..., xm}] + (1− π (m))

µ
α+ 1

2

¶
= π (m) x̄(m) + (1− π (m))

µ
α+ 1

2

¶
I now show that x̄(m) = α+m

m+1
. Fx(m) (z) = Pr (x1 ≤ z, .., xm ≤ z) = Πm

i=1 [Fxi (z)] . Since
signal outcomes are i.i.d. with f (x) = I

[α,1]
(x) 1

1−α , it follows that Fx(m) (z) =
¡
z−α
1−a
¢m

and fx(m) (z) =
m
1−α

¡
z−α
1−a
¢m−1

. Thus

x̄(m) =

Z 1

α

fx(m) (z) zdz =

Z 1

α

m

1− α

µ
z − α

1− a

¶m−1
zdz

=
α+m

m+ 1

Then, the reduced form pay-off is

Ex

£
ur
¡
x(m),m

¢¤
= Eα

£
θ | x̄(m),m

¤
= π (m)

µ
α+m

m+ 1

¶
+ (1− π (m))

µ
α+ 1

2

¶
=

µ
α+ 1

2

¶
+ π (m)

µ
α+m

m+ 1
− α+ 1

2

¶
=

µ
α+ 1

2

¶
+ π (m)

(1− α) (m− 1)
2 (m+ 1)

Notice that Ex

£
ur
¡
x(1), 1

¢¤
= limm→∞Ex

£
ur
¡
x(m),m

¢¤
= (α+ 1) /2, thus m̄ ∈

(1,∞) . Let be γ (m) = π (m) (1−α)(m−1)
2(m+1)

, then

γ0 (m) =
µ
1− α

2

¶µ
π0 (m) (m− 1)
(m+ 1)

+
π (m) 2

(m+ 1)2

¶
which yields the f.o.c.

|π0 (m̄)|
π (m̄)

=
2

m̄2 − 1 (15)
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The LHS of (15) captures the marginal cost of a larger sample size, while the RHS
captures its marginal benefit. To show that m̄ is unique, notice that, around m̄,
condition (15) can be approximated as follows

|π0 (m̄)|
π (m̄) + π0 (m̄) (m− m̄)

=
2

m̄2 − 1
|π0 (m̄)|
π (m̄)

=
2

(m̄2 − 1) + 2 (m− m̄)

The ratio |π0 (m)| /π (m) decreases inm at the rate of 1/m, therefore, for anym > m̄,
the RHS of (13) is always larger then the LHS of (13) and the uniqueness of m̄ follows.
¥

8.0.3 Proof of lemma 4.1.

For notation simplicity, the subscript α of the distribution (3) will be omitted. Let
y be the signal of sender θ, and {x1, .., xm−1} the set of signals of the others m − 1
senders. Let be x(m−1) ≡ max {x1, .., xm−1} . Recall from proof lemma 3.1 that the
signal of an arbitrary sender is uniformly distributed on [α, 1] , that is,

Fx (z) =
z − α

1− α

In the prof I will make use of the distribution of signals conditional on ability,

Fx (z | θ,m) = I
[α,1]
(x) (1− π (m))Fx (z) + I

[θ,1]
(x)π (m) + I

(1,∞)
(x)

and the distribution of the maximum between m − 1 signals coming from arbitrary
senders

Fx(m−1) (z) = [Fx (z)]
m−1

Then,

φα (θ | m) ≡ Pr
¡
x(m−1) ≤ x | m, θ ≥ α

¢
=

Z +∞

−∞
(1− Fx (z | θ,m)) fx(m−1) (z) dz

= 1−
Z +∞

−∞
Fx (z | θ,m) fx(m−1) (z) dz

= 1−
µ
(1− π (m))

Z 1

α

Fx (z) fx(m−1) (z) dz + π (m)

Z 1

θ

fx(m−1) (z) dz

¶
= 1−

µ
(1− π (m)) (m− 1)

(1− α)m

Z 1

α

(z − α)m−1 dz +
π (m) (m− 1)
(1− α)m−1

Z 1

θ

(z − α)m−2 dz
¶

= 1−
Ã
(1− π (m))

µ
m− 1
m

¶
+ π (m)

Ã
1−

µ
θ − α

1− α

¶m−1!!

= π (m)

µ
z − α

1− α

¶m−1
+ (1− π (m))

1

m
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¥

8.0.4 Proof of proposition 5.1.

Let α be the threshold level of a PSE, let n = (1− α)N be the number of senders
applying in equilibrium. letΨ (α,N, k) be the probability that the sender located at α
assigns to the event of being selected in equilibrium. Notice first that, in equilibrium,
it must be n ≥ 1. If n < 1, then the mass of applying senders is smaller than
the mass of receivers, and some receivers do not receive any application. Therefore
provided n < 1, some senders have an incentive to apply because they know they
will be selected for sure. Recalling that N > m̄ (k) and noticing that, by definition,
Ψ (α,N, k) ≡ Φα (α | n,m∗ (n)) , it follows that

Ψ (α,N, k) =


1 if 1 = n
φα (α, n) if 1 < n ≤ m̄ (k)
m(k)
n

φα (θ, m̄ (k)) if m̄ (k) < n < N

=


1 if α = N−1

N
1

k+(1−α)N if N−m̄(k)
N

≤ α < N−1
N

m̄(k)
(1−α)N

1
k+m̄(k)

if 0 ≤ α < N−m̄(k)
m̄(k)

(16)

Since µ (k) ≡ 1/ (k + m̄ (k)) and ρ (k,N) ≡ (m (k) /N)µ (k) , the functional form
(16) proves the proposition. ¥

8.0.5 Proof of corollary 5.1.

The fact that a market is overloaded when c < µ (k) is trivial and follows directly
from (16) . I then show that µ0 (k) < 0.

µ (k) = 1/ (k + m̄ (k))

m̄ (k) is given by the f.o.c. (15)

|π0 (m̄, k)|
π (m̄, k)

=
2

m̄2 − 1
1

k + m̄
=

2

m̄2 − 1
=⇒ m̄ (k) = 1 + (2(k + 1))1/2 (17)

therefore, µ0 (k) and limk→∞ µ (k) = 0. ¥

8.0.6 Proof of proposition 5.2.

Two cases are considered.
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Case 1: n ≤ m̄ (k) . The equilibrium condition is

1

k + (1− α)N
− c = 0 (18)

and implicit differentiations on (18) yield ∂α/∂k = 1/N > 0 and ∂α/∂N = (1− α) /N >
0. It then follows that

∂n/∂k = − (∂α/∂k)N = −1 < 0
∂n/∂N = (1− α)−N (∂α/∂N) = (1− α)−N

µ
1− α

N

¶
= 0

Case 2: n > m̄ (k) . The equilibrium condition is

m̄ (k)

(1− α)N (k + m̄ (k))
− c = 0

m̄ (k)µ (k)

(1− α)N
− c = 0 (19)

Recalling (17), and applying implicit differentiations on (19) , yields

∂α/∂k = − (1− α)N

Nm̄ (k)µ (k)
[m̄0 (k)µ (k) + m̄ (k)µ0 (k)]

=
(1− α)N

Nm̄ (k)µ (k)

"
2 + k + (2(k + 1))1/2

(2(k + 1))1/2 (1 + k + (2(k + 1))1/2)
2

#
> 0

∂α/∂N =
1− α

N
> 0

It then follows

∂n/∂k = − (∂α/∂k)N < 0

∂n/∂N = (1− α)−N (∂α/∂N) = (1− α)−N

µ
1− α

N

¶
= 0

¥

8.0.7 Proof of proposition 6.1.

If the receiver can neglect applications, then Ψ (α,N, k) is given by (16) . Since c <
µ (k) , and m̄ (k) > N, if

0 < c < ρ (k,N) ≡ m̄ (k)

N (k + m̄ (k))

N <
m̄ (k)

c (k + m̄ (k))
=
1

c

µ
1− k

k +m (k)

¶
=
1

c
(1− kµ (k))
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the PE arises and n = N. If,

c ≥ ρ (k,N) ≡ m̄ (k)

N (k + m̄ (k))
> 0

N ≥ m̄ (k)

c (k + m̄ (k))
=
1

c

µ
1− k

k +m (k)

¶
=
1

c
(1− kµ (k))

a PSE arises and, from (P.5.2.b) , n is constant for any marginal increases in N.
Therefore the (bounded) amount of information is given by the number of senders
applying in the PSE for which the threshold level is α = 0, that is, n such that

c =
m̄ (k)

n (k + m̄ (k))

n =
m̄ (k)

c (k + m̄ (k))
=
1

c
(1− kµ (k))

If, on the other hand, the Receiver cannot neglect applications, then Ψ (α,N, k) is
simply

Ψ (α,N, k) =

½
1 if 1 = n
φα (α, n) if 1 < n ≤ N

=

½
1 if α = N−1

N
1

k+(1−α)N if 0 ≤ α < N−1
N

Thus, if

0 < c <
1

k +N

N <
1

c
(1− kc)

the PE arises and n = N. If, on the contrary,

1

k +N
≤ c

N ≥ 1

c
(1− kc)

a PSE arises and n is constant for any marginal increases in N. Therefore the
(bounded) amount of information is given by the number of senders applying in
the PSE for which the threshold level is α = 0, that is, n such that

c =
1

k + n

n =
1

c
(1− kc)

¥
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8.0.8 Lemma 6.1.

Π (k) ≡ k

k + m̄ (k)

=
k

k + 1 + (2(k + 1))1/2

Thus,

Π0 (k) =
2 + k + (2(k + 1))1/2

(2(k + 1))1/2 (1 + k + (2(k + 1))1/2)
2 > 0

¥
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