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DEMAND ADJUSTMENT IN COALITIONAL GAMES
G. VAN DER LAAN AND V. PRUZHANSKY

ABSTRACT. The paper associates a strategic n-person game with
a given transferable utility game and studies its Nash equilibria.
Strict equilibria in this model characterize those divisions of social
surplus that can become conventions in the sense of Young [16]. It
is shown that even in relatively simple games various inefficiencies
can arise.

1. INTRODUCTION

Imagine a set N = {1,...,n} of n players that simultaneously and
non-cooperatively submit their claims to divide some worth. Specifi-
cally, any group (coalition) S C N of players can share the worth of S,
which is given by v (S) € R, and no player cares which particular coali-
tion satisfies his demand. The notion of worth is typical for cooperative
game theory, whereas the notion of simultaneity and independence in
submitting claims comes from non-cooperative theory. Such situations
represent an interesting mix of both cooperative and non-cooperative
aspects of bargaining.

A word of caution is needed. The bargaining process just described is
different from the traditional view held by cooperative or non-coopera-
tive game theory. While conventional cooperative bargaining concepts
are defined either on the space of aspirations (aspiration bargaining set
or partnered aspirations, eg. Bennett [7]) or imputations (eg. bargain-
ing set of Aumann and Maschler [2], kernel, eg. Davis and Maschler
[11], etc.), we will show that there exist demand vectors that are stable
(in the sense to be defined precisely below), but are neither aspira-
tions, nor imputations. Non-cooperative theory usually models the
process of bargaining as an extensive game (eg. Rubinstein [15], Krish-
na and Serrano [12]), in which players’ preferences depend on the time
an agreement is reached. In contrast, we will analyze this process
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Key words and phrases. Aspirations, bargaining set, core, von Neumann-
Morgenstern vector, stable set.
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2 G. VAN DER LAAN AND V. PRUZHANSKY

as a strategic game. Finally, both cooperative and non-cooperative
approaches presuppose that players make proposals to each other re-
garding the distribution of gains, that is some sort of communication is
possible among the agents. We take a more primitive position here. In
our model agents cannot communicate directly with each other. One
reason for this might be that there are too many agents'. Hence they
just submit their demands to some central authority, who then deter-
mines which coalitions will be formed according to some reasonable
criterion (again, to be defined precisely below). It will be shown that
the set of Nash equilibria in this game can vastly differ from the set of
competitive equilibria; moreover, various inefficiencies can arise.

One of the central questions of cooperative game theory is what
coalitions are most reasonable to form. In light of the present paper, it
appears that this question is only secondary to a more primitive one.
Namely, which claims for the division of the surplus are most reason-
able. The following analogy with non-cooperative game theory can be
helpful in understanding this. In non-cooperative games the primary
focus is on the strategies that players select. Only after reasonable
strategies have been singled out, we look for the outcomes that are
consistent with the selected strategies. Likewise, in cooperative games
we suggests that one first focuses on demands that players find stable
(according to some reasonable criterion), and only after that wonders
what coalitions can possibly form. That is, demands are the main,
while coalition formation is a side issue of the process.

The paper is structured as follows. Section 2 introduces a basic
model of demand adjustment and Section 3 discusses related literature.
Section 4 presents our key results and Section 5 deals with the case of
three-player games. Section 6 considers some further examples, such
as market games and apex games.

2. THE MODEL

Denote by N = {1,...,n} the set of players and by 2V the power
set of N, excluding the empty coalition &. We study transferable util-
ity games (TU-games), in which the possibilities for cooperation by
any subset of players S C N are described by means of a character-
istic function v : 2¥ U@ — R. The TU-game with player set N and
characteristic function v is denoted by (N, v).

We assume that for any S € 2V, v (S) > 0 with strict inequality for
at least one S. Moreover, v is commonly known to all n players. One
interpretation of v (S) is that this is the largest monetary gain that

1See Section 6 for other interpretations.
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coalition S can achieve without the cooperation of N\S. By normal-
ization, v ({i}) = v (@) = 0 for all i € N. There is no loss of generality
in doing so, since we are interested only in pure gains from cooperation.
Two players i and j are said to be symmetric if for any S € 2V, such
that i,7 ¢ S, we have

v(SU{i}) =v(SU{s}).

The game (N, v) is convex if for any two coalitions S, T € 2% it holds
that

v(S)+v(T)<v(SUT)+v(SNT).

If the above holds for any two disjoint coalitions S and T, then the
game (NN, v) is said to be superadditive. Clearly, any convex game is
also superadditive.

A payoft vector of an n-person game (N, v) is an n-dimensional vector
x € RY yielding a payoff z; to each player ¢ € N. For any S C N, let
z(S) =Y ;g ®i- A vector x € R™ is called an imputation iff x (N) =
v(N) and x; > v ({i}) =0 for all i € N. The set of imputations of the
game (NN, v) will be denoted by I (V,v). A vector x € R" is said to be
an aspiration if and only if it satisfies the following two conditions:

i) 2 (S) > v (S) for all S C N (maximality).

ii) for each i € N there exists a coalition S > i, such that x (S) <

v (S) (feasibility).

We will denote the set of aspirations by A (N,v). Observe that for
any x € A(N,v) the conditions (i) and (ii) imply that for each i € N
there exists a coalition S containing ¢ such that x(S) = v(S). Typi-
cally A (N,v) is very large. However, not all aspirations are reasonable.
With the purpose of further narrowing down this set many 'refinements’
of A(N,v) have been proposed in the literature, eg. partnered aspira-
tions (Bennett [3]) or bargaining aspirations (Bennett and Zame [7]).
For precise definitions we refer to the original papers.

A well-known solution for transferable utility games is the core. The
core is the subset of imputations, defined by

C(N,v)={z € R"| 2(N)=v(N) and z (S) > v(S) for all S € 2"},

In the sequel we will also use the notion of strict core, defined by

C(N,v) = {ze€C(N,v)| z >v({i}) foralie N}
= {xe€C(N,v)|x;>0foralli e N},

where the second equality follows from the normalization.
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In the following we will introduce a non-cooperative normal form
game (N, {X;}ien, {ui}ien) induced by the cooperative game (N, v),
where X is the pure strategy space and u; the (expected) utility func-
tion of player i € N. A strategy of player ¢ is a particular monetary
claim x; € R, . The strategy space of i is a convex and compact subset
X; = [0,z;] of Ry, where 7; > max{v(S), S C N}. Correspondingly,
the strategy space of the game is

X = XieN Xz

Within the non-cooperative framework any n-dimensional vector z € X
is, thus, a vector of demands?, in which the i-th coordinate stands for
the demand of player i.> Given a vector of demands z € X, we say that
coalition S is feasible if and only if z (S) < v (9). Let # = {S1, ..., 5™}
be a partition* of IV, that is the sets S, ..., S™ are non-empty, pairwise
disjoint and satisfy |J7,S* = N. Given a demand vector x, we say
that a partition 7 (z) = {S',...,S™} is compatible with z if for each
k =1,...,m it holds that

either [S*| =1 or both [S*| > 2 and z (S*) < v (S*).

So, if the partition 7 (x) is compatible with z, any coalition S € 7 (x)
containing at least two players must be feasible given x. A compatible
partition 7 (x) = {S*,... ,S™} is called minimal if and only if

T(Upex %) > v(Upex S¥) for all K C {1,... ,m} with |K| > 2.

Thus, for given x, a compatible partition is minimal if the union of any
tuple of elements of the partition is not feasible at x. In what follows
we restrict attention only to minimal partitions. This requirement says
that each resulting partition exhausts the gains of coalition formation
in the sense that if the union of a tuple of elements of a compatible
partition is feasible, then these elements should be joined together.

Example 1. Let N = {1,2,3,4} and let the characteristic function v
of the game be given by

20, if S ={i,j}, wherei € {1,2} and j € {3,4},
20, if [S| =3,

40, if S =N,

0, otherwise.

v(S) =

2In the sequel of the paper, both words ‘demand’ and ‘claim’ are used.

3Notice the difference in interpretation: within the cooperative framework x; is
a payoff, in the non-cooperative framework x; is a demand.

4Superscripts will refer to coalition indexing and subscripts to player indexing.
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Take © = (5,10,15,10). Then there are four feasible coalitions, namely
{1,3}, {1,4}, {2,4} and N, resulting in siz compatible partitions, namely

m(x) = {{1}, {2}, {3}, {4}},

() = {{L3}, {2}, {4}},
() = {{L4}, {2}, {3}},
() = {{2,4}, {1}, {3}},
() = {{1,3}, {2,4}},

() = {N}.

Clearly, 7°(z) is the unique minimal partition. In case v(N) = 39 and
thus N 1is not feasible anymore at x, only the first five partitions are
compatible at x, while both 7(x) and 7°(x) are minimal.

It should be noticed that there always exists at least one minimal
partition. Clearly, this is so when there is at least one feasible coalition
at z. If no coalition is feasible at all, the unique minimal partition
is the collection of all n singleton coalitions, i.e. 7 (z) = {{i}ien}-
For instance, this is the case for the game (V,v) of Example 1 when
r = (11,11,11,11). Further observe that when z(N) < v(N), the
unique minimal partition is the partition in which the grand coalition
N forms. The next two lemmas appear to be useful in the sequel of
the paper. The first one says that when (N, v) is superadditive, any
minimal partition contains at most one non-singleton coalition. The
second one is crucial for the main result in Section 4.

Lemma 1. Let x € R™ be a vector of demands. If the game (N,v) is
superadditive, then any minimal partition at x 1s either the partition
consisting of all singletons, or it has the form w(x) = {{j}jems,S}
for some S € 2N with |S| > 2.

Proof. Clearly, when x(S) > v(S), for all S with |S| > 2, then 7 () =
{{i}ien} is the unique minimal partition at z. Otherwise, suppose 7(z)
is a partition containing at least two feasible coalitions S and T, each
containing at least two players. Because of the superadditivity, then
also S UT is feasible, and this 7(x) is not minimal. §

Lemma 2. Let (N,v) be a superadditive game and x € X a demand
vector. If S (with |S| > 2) is a feasible coalition satisfying that also
S UT is feasible for any other feasible coalition T', then any minimal
partition at x has the form m (z) = {{j}jenms,S'} for some S" € 2N
such that S C S'.

Proof. For given x, suppose S is a coalition satisfying the above prop-
erty, thus S is feasible and for any 7' € 2V it holds that S U T is
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feasible when 7' is feasible. Let m(z) be a minimal partition. Since
z(S) < v(S), m(z) can not be the partition consisting of all singleton
coalitions. When (N, v) is superadditive, we know from Lemma 1 that
m(z) is of the form {{j}jen s, S’} for some S’ € 2V with |S'| > 2. By
definition of minimal partition, for such a coalition S’ it holds that S’
is feasible. Now, suppose that there is a player j € S\ S’. Then {j} is
a singleton coalition in 7(z). However, this contradicts the minimality
of (x), since SUS" is also feasible according to the property stated for
S. Hence, for any minimal partition {{j}en\ s, 5"} for some S’ € 2V
with |S’| > 2, we have that S C S'.

We denote by II(x) the set of all minimal partitions at x and let
IT; () C TI(z) denote the set of those minimal partitions, in which
player ¢ is in a coalition with at least one other player. If such a
partition forms, then player 7 is in a feasible coalition and his demand
will be satisfied. When a partition not in II;(x) forms, then player i
forms a coalition on its own and he will receive v({:}). When z; > 0,
then the number

L () |

yields the probability that this positive demand will be satisfied, if
we assume that all minimal partitions are equiprobable. Of course,
a zero demand will always be satisfied, either within a coalition with
other players or when staying alone. The function p : X — R", whose
i’s coordinate is given by (2.1), will be called the probability function.
It summarizes the possibilities of the players satisfying their (positive)
demands, given a specific vector of claims x € X. Observe that p; (z) =
0 for all ¢ when 7 (z) = {{i}ien} is the unique minimal partition at z.

Example 2. For the game of Example 1 with v(N) = 40 and z =
(5,10,15,10) we have that 7®(z) = {N} is the unique minimal par-
tition and p;(z) = 1 for all i € N. When v(N) = 39, then II(z) =
{m3(z), 7°(x)}. Then Iy(z) = Iy(z) = () and [y(x) = 3(z) =
{7°(x)}. So, pi(z) = pa(x) = 1 and ps(z) = ps(x) = 5. When
x = (11,11,11,11), then II(z) = {x'(z)} and p;(z) =0 for all j € N.

We are now ready to define the expected utility functions. Given a
vector z € X of demands, an admissible partition 7(z) € II;(z) will
be realized with probability p;(x), consequently player i receives his
demand z;. If a partition not in II;(x) is formed, then player i receives
v({i}) = 0. So, the expected utility (payoff) of player i € N given the
vector of claims x is equal to

ui(z) = pi(x)z; + (1 — pi(x))v({i}) = pi(2)z;.
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This completes the description of the non-cooperative normal form
game induced by (N, v).

As standard within the non-cooperative framework, each player max-
imizes his expected utility given the claims (strategies) of the others.
So, given the demands z; of all players j other than 7, denoted by z_;,
the task of player i is to find a demand z such that

(2.2) x] € arggea% pi (Ti, x_;) x;.

Solving this problem simultaneously for all players yields a Nash equi-
librium z* € X C R?, satisfying the property that any deviation from
x} to y; by player i, assuming that the other players do not change their
demands, triggers a change in the probability of receiving y;, such that
1’s expected utility does not increase, i.e. z* is such that for each player
1 € N and all y; € X; it holds that

*

pilyi, )y < piaf, ™)l

where p;(y;, *;) denotes the probability when player ¢ demands y; and
the others stick to x}, j € N\{i}. It is straightforward to see that
whenever a player can increase its demand not reducing the probability
with which the latter is satisfied, he will certainly do so.

Formally, define the map 3, : R} — R, by

Bi(z) = {551 € Ry |z; € arg mgé( pi (i, v—;) yz} .

Yi

Thus 3, (z) gives the set of best replies of player i to some vector of
demands x_;. Although the probability functions are not continuous,
it is not hard to see that (3, (x) # @ for all z. First, observe that
pi(0,z_;) = 0 if and only if z(S) > v(S U {i}) for all non-empty S C
N\{:}. In this case p;(y;,xz_;) = 0 for all y; > 0 and thus §,(x) =
X;. When, for given z_;, it holds that p;(0,z_;) > 0 then p; (y;, x_;)
becomes a downwards step function of y; only, see Figure 1 for an
example with p;(0,z_;) = 1.
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pi(yhx—i) A

Figure 1: The probability function.

In this figure any optimal = maximizes the area p; (y;, z_;) y;- Thus,
player i compares p; (z},z_;) z; = z, with p; (z],x_;) . So, although
the function p; (y;, x_;) is not continuous in y; given x_;, the maximiza-
tion problem (2.2) always has a solution and thus (,(z) is not empty
for all z € X.

Next, let 8 : R — R’ be the Cartesian product of 3;, i € N, for
each x € X i.e.

B(x) = Xien B;(x), for all x € X.

The set of Nash equilibria of the normal form game (N, { X, }ien, {ui }ien)
induced by (N, v) is given by the set of fixed points of 5 and will be
denoted by B (N,v), i.e.

B(N,v) ={z € X|z € 5 (x)}.

Hence, any vector z € B (N,v) describes a stable social situation (or
a mode of behavior). Such vectors will be called stable demands and
correspondingly B(N,v) will be called the stable demand set. 1t is
convenient to think of any vector x € B (NN,v) as being a convention
in the spirit of Young [16]. That is, an arrangement such that no
player can individually gain by not following the convention. This
interpretation of the set B (N, v) is close to the notion of von Neumann-
Morgenstern (henceforth vNM) stable set. For convex games we will
show that this interpretation is indeed correct. However, in general
the two concepts may be quite different as will be demonstrated by the
Examples 4 and 5 in Section 6.1.

Applying the notion of strict Nash equilibria (in which each player
i has a unique best reply to the profile of strategies z_;) for the above
set B (IV,v) leads to the following definition

B(N,v) ={z € X[ {z} = (2)}.



DEMAND ADJUSTMENT 9

The set B(N,v) is called the strict stable demand set. Obviously,

B (N,v) C B(N,v) for any game (N,v). We remark that although it
is not easy to find all stable demands in arbitrary games, it is relatively
simple to check if a specific vector of claims is (strict) stable. Most
of the applications discussed below will evolve around checking this
condition.

Before we consider the properties of the (strict) stable demand set,
we first shortly discuss the related literature on demand adjustment.

3. RELATED LITERATURE

One of the earliest papers dealing with demand adjustment is Cross
[10]. It models a competitive process, in which players set their prices
for participation in different coalitions. The process develops in such a
way that the payoff of scarce players (whose participation is needed in
at least two coalitions) is driven up, which, in turn, reduces the surplus
available to the others. The set of stable prices can be shown to be
identical to the set of balanced aspirations, see Bennett [3].

Bennett et al. [6] considers a game, in which players adjust their
demands based on the availability of coalitions that support these de-
mands. Specifically, it is assumed that

i) only one player adjusts at a time.
ii) a player will increase his demand if some coalition can support
the larger demand, given the demands of others.
iii) a player will decrease his demand if no coalition can support his
current demand, given the demands of others.

Theorem 1 in [6] characterizes conditions, under which the above ad-
justment process converges to an aspiration regardless of the initial
vector of demands. Observe that while adjusting their demands, the
players are governed exclusively by maximality and feasibility of their
aspirations. They do not take into account the probability of their
demands being satisfied.

The current paper is much in the spirit of Agastya [1]. Theorem
1 in [1] shows that if the underlying game (N,v) is convex then an
allocation x can become a convention in the language of Young [16] (in
our terminology strict stable demand) if and only if x belongs to the
discrete core of (N, v) , where discretization comes from the assumption
that there is a smallest money unit € by which players can adjust their
demands. This result was obtained for any probability function p,
satisfying the following two properties

i) if for a given demand vector z, there is no feasible coalition con-
taining ¢, then p;(z) = 0.
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ii) if S (with |S| > 2) is a feasible coalition at demand vector = and
also S U T is feasible at x for any other feasible coalition 7', then
pi(z) =1foralli e S.

In case the game (N,v) is superadditive, our probability function
as defined in equation (2.1) satisfies both conditions. First, when no
feasible coalition contains player ¢, then player i is a singleton coalition
in any minimal partition and thus p;(z) = 0 (property (i)). Second, let
S be a coalition satisfying property (ii), then S satisfies the property
of Lemma 2 and thus it follows from that lemma that any minimal
partition is of the form {{j};eng, S’} for some S’ € 2V such that
S C S, implying that p;(z) = 1 for all « € S. This yields that for
superadditive games our probability function is a specific choice within
the class of functions allowed by Agastya. In this light our approach is
more restrictive. On the other hand, in the sequel of this paper we will
also consider non-convex and even not superadditive games. Moreover,
the specific form of the probability function we employ appears to be
quite natural for certain classes of games, like market games, and also
enables us to derive a number of explicit results. These results show
that the solutions induced by the probabilities as defined by (2.1) may
highlight interesting conventions that have not been captured by ex-
isting solution concepts. The further important difference between our
setup and that of Agastya [1] is that we do not introduce the small-
est money unit by which demands can be changed. This assumption
may lead to the non-existence of conventions, see Example 3 in [1]. In
Section 5.1 we will reconsider this example and show that strict stable
demands do exist when applying our probability function.

4. PROPERTIES OF STABLE DEMANDS

We will be mainly interested in the properties of the stable demand
set B (N, v), and specifically in the conditions, under which the strict
stable demand set is non-empty. In order to establish non-emptiness,
however, one cannot apply usual fixed point theorems. The reason is
that (3, (z) is not continuous in x because of the discontinuity of the
probability functions. Small changes in x may change the cardinality of
the sets I1(z) and II;(x) and therefore cause jumps in the probabilities.
Nevertheless, a little reflection shows that B (NN,v) is non-empty for
any game by the following argument. Take x € R™ such that x; = 7;
for all i. Then I (z) = {{i}ien}, since T, > v (9) for all S € 2V,
Consequently I1; () = @, so that p; (z) = 0 and §;(z) = X; for all
i € N. Hence z € (3(x), so the vector of demands x = T is trivially
stable. This holds for any vector x such that x(S) > v(S) for all §
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satisfying | S| > 2. Of course such stable demands are degenerate and
naturally one would be interested whether there are 'more sensible’
demand vectors that are stable. The following proposition shows that
this is indeed the case.

Proposition 1. For any game (N, v) it holds that C (N,v) C B (N, v)
and C (N,v) C B(N,v).

Proof. Take a vector of demands z € C (N,v). Then z(N) < v(N)
and 7(z) = {N} is the unique minimal partition compatible with z, so
that all players’ demands are satisfied with probability one. Clearly for
any player i € N it is not profitable to decrease demand, since this will
not improve i’s expected utility under any circumstances. Moreover,
increasing demand will leave no coalition that satisfies ¢’s claim because
of the condition x (S) > v (S) for all S € 2V. Hence, no player i € N
has a profitable deviation from z € C (N,v) and since z; > 0 for all
i € N, the vector x is strict stable. For any x € C (N,v)\C (N,v),
by the above reasoning no player, © € N has a profitable deviation
either, however strict stability is violated, since for at least one i we
have z; = 0. g

Proposition 1 implies that the sufficient condition for the non-emptiness
of B(N,v) is the non-emptiness of C'(N,v). The latter set may be
empty even if C' (N, v) is not, since the core may consist only of alloca-
tions 2 with z; = 0 for some i € N. However, C (N, v) is always non-
empty for convex games satisfying the mild condition that the game
(N,v) does not have null players.® To see why this is so, let ¥ (N)
be the set of permutations o : N — N. For a permutation o € X(N)
denote by m¢ the marginal contribution of player i € N as

m] =v({j e Nlo(j) <o(i)})—v{jeNlo(j) <o(@)}).
It is well-known that the core of a convex game is the convex hull of the
marginal vectors. If for every ¢ € N there is at least one o, such that
m¢ > 0, i.e. no player is null, then there exists a vector of demands
z € C'(N,v), such that z; > 0.

We now present three useful lemmas that characterize the set B (N, v)
for the class of convex TU-games. The first lemma holds for any game
and states that for every stable demand vector x the total demand
z (N) is at least equal to the worth of the grand coalition.

Lemma 3. Let z € B (N,v) be a stable demand vector. Then x (N) >
v (N).

®A player i € N is a null player if for all S C N it holds that v (S U {i}) = v (S).



12 G. VAN DER LAAN AND V. PRUZHANSKY

Proof. Suppose z (N) < v (N). Then the unique minimal partition is
m(x) = {N} and thus p; () = 1 for all ¢ € N. Hence, any player ¢ can
increase his demand to y; = v (N) = 3_c v\ gy 7 and still get it satisfied
with probability one. This contradicts that x is stable. B

The next two lemmas hold for convex games. Their proofs are similar
to the corresponding proofs in Agastya [1]. For the proof of the next
lemma, in Agastya’s model it is essential that the probability function
satisfies property (ii) as discussed in the previous section. For our
specific choice of the probability function, we can use Lemma 2 directly.

Lemma 4. Let (N,v) be a convex game and x € B (N,v). Then
z(S) > v(S) for all S € 2V.

Proof. Suppose there is a coalition, say S!, such that x(S') < v(S1).
We show that then there is a player ¢ € S', who can increase his
demand and get this increased demand with probability one; hence
such a vector of claims = cannot be stable. Take some ¢ € S and
vector y! € X given by

yi = v(S") - > jesnit i > Tis
y; = w;forall j € N\{i}.

If coalition S* is feasible at y and satisfies the property of Lemma 2,
then that lemma immediately implies the desired result that p;(y') = 1.
Next, consider the case that there is a feasible coalition T at y!, but that
STUT is not feasible at y*, thus y! (S* UT) > v (ST UT). Observe that
S N T is non-empty, since S* and T are both feasible and the game
is convex and thus superadditive, and that |S* N T| < |S!| because
otherwise S C T, which contradicts that S* U T is not feasible. Using
the identity y* (S'UT) = y* (SY)+y* (T) —y' (S*NT), that S* and T
are feasible at y' and that S U T is not, it follows from the convexity
of (N,v) that y' (S*NT) <v(S'NT). Then define S? := S'NT and
repeat the same reasoning as for S*. If needed, subsequently define S3,
S* etc. In k < |SY — 2 steps a set S* with |S*| > 2 is reached and a
vector y* with respect to some i € S¥ C S!, such that S* is feasible at
y* and satisfies the property of Lemma 2. This is so, because otherwise
in m < |S!| — 1 steps the procedure would result in a single player set
S™ = {j} for some j € S*, and y;* < v({j}), which contradicts that
Yy > x; > 0 = v({j}). So, in a finite number of steps we obtain
a player in S! that can increase his demand and get this increased
demand with probability one. §

Lemma 5. Let (N,v) be a convex game and let x € B(N,v). Then
z(N)=v(N).
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Proof. A necessary condition for x to be in the strict stable demand
set is that for all i € N we have both x; > 0 and p;(z) > 0. From
the latter condition it follows that for each i there exists a coalition S*
such that z (S*) < v (S?). Take a vector of claims z and consider two
different players ¢ and j with corresponding coalitions S* and S7. Using
the convexity of (N, v) and Lemma 4, it follows straightforward that
r(S'UST) < v (S"US). Generalizing this reasoning for all players
i € N we obtain that z(N) < v (). Together with Lemma 3 it
follows that = (N) =v (N). &

We are now ready to state the main result of this section, which is
the modification of Theorem 1 in Agastya [1] adapted to our specific
form of the probability function and choice of the strategy space.

Theorem 1. Let (N, v) be a convex game. Then B(N,v) = C (N, v).

Proof. The inclusion C (N,v) C B (N, v) follows from Proposition 1.
The other inclusion C'(N,v) 2 B (N, v) is a consequence of Lemmas 4
and 5, combined with the fact that B (N,v) C B (N,v). 1

It is well-known that a convex game has a unique vINM stable set
which coincides with the core. Thus the above theorem shows that for
convex games the set of strict best replies B (N, v) coincides with the
set of allocations in the vNM stable set, satisfying x; > 0 for all i € N.
If the underlying game is not convex, this relation between B (N, v) and
the stable set is lost. The equivalence between C (N,v) and B (N, v)
also implies the convexity of B (N,v) when (N,v) is convex. Thus for
the class of convex games the set of extreme points of the closure of
B (N,v) can be easily characterized. Consequently one can find how
large (in the limit) the demand z; of a particular player i € N can be,
so that z is a convention. In general, the set B (N,v) does not have to
be convex, see Section 6.2 for an example.

We conclude this section with the interesting question under what
conditions strict stable demands are efficient, i.e. the demands sum
up to the worth of the grand coalition. From the above theorem it
is clear that for convex games this is always the case. Moreover, we
then have that the unique minimal partition is the partition in which
the grand coalition forms and thus p;(x) = 1 for all ¢ € N, implying
that any player gets his demand with certainty and thus also the total
(expected) payoff is equal to v(N).

For non-convex games the demands sum up to at least v(N), as
shown in Proposition 1. In such cases it makes sense to see whether a
given strict stable demand vector x is efficient in its expected form, i.e.
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whether ).\ zip; (r) = v (N) holds. For arbitrary games this ques-
tion is hard to answer. However if (IV,v) is superadditive, the charac-
terization can be stated in a rather simple way, as the following propo-
sition demonstrates. In what follows we denote E [z] = ).\ zip; () .

Proposition 2. Let (N,v) be a superadditive game. Then for any

z € B(N,v) we have E[z] < v (N). Moreover this holds with equality
if and only if for any feasible coalition S at x, which belongs to some
minimal partition w € 11 (x), it holds that x (S) = v (N).

Proof. Take € B(N,v). As (N,v) is superadditive, each 7% € I (z)
contains exactly one feasible coalition S* by Lemma 1 (it cannot con-
tain only singletons, since then = € B (N,v) is violated). Thus the
total number of all such coalitions is |II(x)|. Let |II (z) | = m, then

D ien Z{Sk\iesk}xi B dha T (Sk) o mu (N)
m B m o m
since by superadditivity v (S) < v (N) for all S € 2. Furthermore, if
for each S*, where k = 1,...,m one has (Sk) = v (N), then the above
condition holds with equality, as required.
Note also that if there is no any feasible coalition at x, then the
unique minimal partitionis 7 (z) = {{j};en} and clearly = ¢ B(N,v). 1

Elz] =

Proposition 2 tells us that for superadditive games inefficiencies may
easily arise, namely when a minimal partition is realized for which
the worth of the unique feasible coalition S in the partition is below
the worth of the grand coalition. The latter naturally arises in such
superadditive games as market games, see Section 6.1. Unfortunately,
Proposition 2 does not extend to games that are not superadditive, as
is easy to show by an example.

5. THREE-PLAYER GAMES WITH EMPTY CORES

Our focus in this section is to find non-trivial demand vectors that
are (strict) stable. For games with non-empty cores such demands
are described in Proposition 1. Here we consider three-player games
with empty cores and, in particular, investigate the stability of a pop-
ular solution concept for this class of games - the vNM vector. Again,
throughout this section it is assumed that the game is zero-normalized
and thus v({i}) = 0 for all i € N. For ease of notation, in the follow-
ing we will write the characteristic function values of any two-player
coalition as v({j,k}) = v(jk). Moreover, for i € {1,2,3}, we denote
the two other players by j and k, thus {j, k} = {1,2,3}\{i}.
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We start with defining the vINM vector for this class of three-player
games. Consider the following system of equations

x|+ X2 :U(IQ),
x1 + x3 = v (13),
To + x3 = v (23).

Clearly, it has a unique solution, say z = (21, 22, 23), given by

L= (1) + v (ik) — v (jk)
t 2
Observe that by definition, 2y + 22 + 23 = 3[v(12) +v(13) +v(23)]. So,
when v(12) +v(13) +v(23) < 2v(V), then z; + 25 + 23 < v(N). In this
case, the game is balanced and thus has a non-empty core, but the vNM
vector is not defined. When v(12) 4+ v(13) 4+ v(23) > 2v(N) and thus
21 + 22 + 23 > v(IN), then according to Binmore [8], z is defined to be
the vINM vector, provided z;, zj, 2z, > 0. Note that if z; +20+25 = v(V),
the game is balanced and it follows straightforward that z is the unique
element in the core and thus, according to Proposition 1, a stable
demand vector (and strict stable when z; > 0 for all i € N).

L i=1,2,3.

5.1. Superadditive games. Suppose we are given a superadditive
three-player game with empty core, thus v(N) > v(j, k) for any two-
player coalition {j,k} C {1,2,3} and 21 + 2o + 23 = 3[v(12) 4+ v(13) +
v(23)] > v(N). It then follows that z; > v(N)—z;—z, = v(N)—v(jk) >
0 for all « = 1,2,3 and thus z is defined as the vVINM vector. The
following result says that z is a stable demand vector when the value
of each two-player coalition is high enough.

Proposition 3. Let (N,v) be a superadditive three-player game with
an empty core and let z be its vNM vector. Then z € B (N,v) if and

only if
(5.1) v(12) +v(13) +v(23) + v(jk) > 3v (N), for each pair {j, k},

with z € B(N,v) when this condition holds with strict inequality.

Proof. Since z + 2z + 23 = $[v(12) + v(13) + v(23)] > v(N) because
the assumption that the core is empty, and z; + 2, = v(jk), the set of
minimal partitions at the demand vector z is given by

II(z) = {n(2) | m(z) = {{i}, {4, k}}},
thus only two-player coalitions can form given z. Consequently, p; (z) =
% for all i« € N. Now, suppose that i has a profitable deviation from z;.
Such a deviation necessarily involves a reduce of the demand, since an
increase will leave no coalition in which player ¢ can participate because
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of z;+2z; = v(ij) for j # i. Furthermore, reducing demand is profitable
only when ¢ reduces it to z; = v (V) —wv (jk), so that the unique minimal
partition will be the grand coalition and thus p;(z;, 2;, 2;) = 1. Hence,
z; is a best reply of player ¢ to z; and #z; if and only if

22> w(N) ~ 0 (k).

while it is the unique best reply when this holds with strict inequality.
Using z; = w, this yields the condition

v(ig) + v(ik) — v(jk) > 3v(N) — 3v(jk).
So, z is a stable demand vector iff
v(ij) + v(ik) + 2v(jk) > 3v(N), for all i = 1,2, 3,

which yields the condition (5.1). Further, for every player i, z; is the
unique best reply and thus z is strict stable when this holds with strict
inequality for all i = 1,2,3 1

If the vINM vector z is stable but not strict, there may exist other
stable demands that are strict. See Example 3 below for an illustration.

In what follows we will characterize some other (strict) stable de-
mand vectors in three-player superadditive games. First, note that
Proposition 3 does not cover all cases with z; + 22+ 23 > v(IV). For ex-
ample, when v(12) = v(13) = v(23), then z; + 2, + 23 = 3v(12) > v(N)
holds if v(12) > 2v(N), while the condition (5.1) in Proposition 3 re-
duces to v(12) > 3y(N). So, in case all two-player coalitions have
equal value v(12), neither Proposition 1 nor Proposition 3 provides the
existence of a stable demand vector when

%v(N) < 0(12) < ZU(N).

Similarly, when v(N) = v(12) = v(13) > v(23), then z; + 25 + 23 =
$[v(12) + v(13) + v(23)] = v(N) + 2v(23) > v(N) is satisfied for any
v(23) > 0, while condition (5.1) in Proposition 3 reduces to v(23) >
1

50(N). So, in this case neither Proposition 1 nor Proposition 3 provides

the existence of a stable demand vector when
1
0<wv(23) < 511(]\7).

The proposition below gives a set of stable demand vectors for any
set of values satisfying neither the condition of Proposition 1 (non-
emptiness of the core) nor condition (5.1) of Proposition 3. To state
this result, define M; = v(N) — v(jk), i = 1,2,3. Clearly, M; > 0
because of the superadditivity of (N, v). Further, when C(N,v) = @ it
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follows v(12) +v(13) +v(23) > 2v(N). Moreover, for all i € N it holds
that
1
M; = v(N) = v(jk) < 5[v(ij) + v(ik) — v(jk)] = 2.
Finally, observe that when the condition (5.1) of Proposition 3 does not

hold, then there exists at least one i such that v(ij) + v(ik) + 2v(jk) <
3v(N) and thus z; < 2[v(N) — v(jk)] = 2M;. Define

3
and let W (N, v) be given by
W(N,v) = Conv{y' | i € K(N,v)},

where Conv denotes the convex hull and where y* € R" is given by
y; = M; and y! = z;, j # i. As shown above, W(N,v) is non-empty
when condition (5.1) of Proposition 3 is not satisfied. We now have the
following result.

Proposition 4. Let (N,v) be a superadditive three-player game with
empty core, such that

(5.2) v(ig) + v(ik) 4+ 2v(jk) < 3v(N), for at least one i € N.

Then W (N,v) C B(N,v), with W(N,v) C B(N,v) when v(jk) < v(N)
for any pair {j, k}.

Proof. We consider three cases, namely K (INV,v) contains one, two or
three players. Observe that i € K(N,v) implies that M; > 0 and thus
v(jk) < v(N).

Case (i). |K (N, v)| = 1. Without loss of generality we take K (N, v) =
{1}, so that we have to show that y' is stable. First, since > . y; =
My + 23 + 23 = My + v(23) = v(N), we have that p;(y*) = 1 for all
7 =1,2,3 and thus the expected utility is equal to y]1 for all j. Clearly
any deviation in which a player decreases his demand yields a lower ex-
pected utility, so only those deviations in which players increase their
demands have to be considered.

Suppose that j = 1 deviates by demanding xz; > M;. Then the
grand coalition can not be formed any more and player 1 will receive
any demand z; with M; < x1 < z; with probability % and any demand
xr1 > z; with probability zero. However, since 1 € K(N,v), we have
that %zl < M; and thus such a deviation x; > M; is not profitable.
Hence M is the unique best reply of player 1. For player j # 1, observe
that v(1j) — M; > v(1j) — 21, since M; < z; because of the fact that
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the core is empty. So, when a player j # 1 deviates from 3! and states
a demand z; such that yj = z; < z; < v(1j) — My, we have that

zj+yr = 5+ M <o(ly),
Tity = T+ a>o(k),
i +yr = M+ 2z < o(lk),
y%—i—azj—l—y,i = M1+CCj+Zk >’U(N),
and thus player j receives this demand with probability % Moreover, j

will receive his demand x; with probability zero when x; > v(15) — M;.
Therefore y; = z; is a best reply of j if

[0(17) = Mi] < z;,

N —

thus if

v(17) = (v(N) — v(5K)) < v(1y) +v(jk) — v(1k)

2 2

Clearly this reduces to v(1k) < v(N) for k # 1, j, which holds because
of the superadditivity. So, y; = z; € B;(y") and it is the unique
best reply when v(1k) < w(N). This proves the proposition when
|K (N,v)| = 1.

Case (ii). |K(N,v)| = 2. Without loss of generality we take K (N, v) =
{1,2}, so that W(N,v) = Conv{y',y?}. Let y € W(N,v). When
y = y' or y = 2, the proof that y is stable is identical to case (i). For
any other y, we have that

y =Myt + (1 — \)gy?, for some 0 < \ < 1.
So,

M, <y = )\M1+(1—)\)Zl <z,
My < Yo = Azo + (1 — )\)MQ < Z9,
ys = Azg+ (1 —N)z3 = z3.

Further Y.y = A3 yj+>0.(1-A)y: = A(N)+(1—Nv(N) = v(N).
Thus p;(y) = 1 and each player gets his demand y; with certainty, so
that only deviations in which a player increases his demand have to be
considered.
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We first show that y; € (,(y). When player 1 increases his demand
to z1, then

ztytys > v(N),
214ty < 21+ 2 =v(12),
zi+ys = 21+ 23=0(13),
Yo +ys < 22+ 23 =v(23),

so that player 1 will receive demand z; with probability % However,
since 1 € K(N,v), %zl < My <y, so that any demand z; satisfying
y1 < 1 < 27 is not a best reply of player 1 to y. When player 1 further
increases his demand to z; = v(12) — y», then

Z+ytys > v(N),

Zitya = v(12),

Zit+ys > z1+ 23 =0v(13),
Yo+ys < 2+ 23 =0(23),

so that player 1 will receive z; with probability % So, y; is at least as
good as z; if

1
54 = 5[“(12) —y2] <y,
thus if

Observe that both the left-hand side and the right-hand side are linear
in \. Define, for A € [0, 1],

F) =0v(12) = Azg — (1 = A)My and g(A\) = 2[AM; + (1 — N)z].

Then f(1) = v(12)— 2y = 2z and g(1) = 2M, so that f(1) < g(1), since
z1 < £M;. On the other hand f(0) = v(12)— M, = v(12)+v(13)—v(N)
and ¢(0) = 2z = v(12) +v(13) —v(23). So, f(0) < g(0) because of the
superadditivity. Because of the linearity it follows that f(A) < g()\)
for all 0 < A < 1 and thus y; gives higher expected utility than any
demand z; satisfying z; < x; < z;. Further, player 1 can not form any
coalition when he demands x; > z;. So, for any 0 < A < 1, y; is the
unique element of 3, (y). Analogously it follows that y, is the unique
best reply of player 2.
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It remains to prove that y3 € 35(y). Recall that

y1+ys = y1+ 23 <v(13),
Yo +ys = Yo+ 23 <v(23),
ity < 21+ 2 =10v(12).

Further, recall that y = A\y*+(1—\)y?. Therefore v(13)—y; = v(23)—ys
when

v(13) — [AMy + (1 — N)z1] = v(23) — [Azo + (1 — \)My).

Solving for X yields A = 1, with v(13) —y1 < v(23) — yo iff XA < L.
First, consider A < % and suppose that player 3 increases his demand
to z3 = min{v(13) — y1, v(23) —y2} = v(13) — y;. Then any two-player
coalition can still fulfill their demands, so that player 3 receives this
demand with probability % So, y3 = 23 is at least as good as z3 if
%”53 _ %[0(13) ] < 2

Since y1 = AM; + (1 — N)z1 > (M + z) for all A < L (with strict
inequality when A < %), it follows that %’z} < zgif

% ’0(13) — %Ml — %Zl S 23,
which again reduces to v(12) < v(V) and therefore holds because of
the superadditivity. So, z3 is at least as good as z3 and strictly better
if v(12) < v(N) or if A < 3. Analogously the case A > 3 and 23 =
min{v(13) — y1, v(23) — y2} = v(23) — yo follows.

Next, consider A < % and suppose that player 3 increases his demand
to z3 = max{v(13) — y1, v(23) — 2} = v(23) — yo > v(13) — y;. Then,
only the coalitions {2,3} and {1,2} can fulfill their demands, so that
player 3 gets this demand with probability % So, y3 = 23 is at least as
good as z3 if

1. 1
573 = 5[“(23) — o] < 23.

Since y, > M, this is true (with strict inequality) if

1

5['1)(23) - Mg] S z3,
which again reduces to v(12) < v(N) and therefore holds because of
the superadditivity. So, z3 is strictly better than z3. Analogously the
case A > 1 and Z3 = max{v(13) — y1, v(23) — yo} = v(13) —y; follows.
Clearly, player 3 can not form any coalition when he demands z3 > Z3.
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So, for any 0 < A < 1, y3 € f5(y) and it is the unique best reply when
v(12) < v(N) (or A # 3). This proves case (ii).

Case (iii). K(N,v) = {1,2,3}. First recall that in this case 0 <
M; < z < 3M; for all i and thus v(jk) < v(N) and v(12) + v(13) +
v(23) + v(jk) < 3v(N) for any pair {j,k}. Let y € W(N,v). When
y = y° for some i, the proof that y is stable is identical to case (i).
Also, when y is a convex combination of y* and 3’ for some i and j,
the proof is identical to case (ii). Otherwise,

y =My + Ay’ + A3y°

with A; > 0 for all j and } ; A; = 1. We show that y3 € S33(y).
Without loss of generality we suppose that v(13) — y; < v(23) — yo.
Clearly, y; + yo + y3 = v(IN) because y is a convex combination of
y', y? and y3. Hence p;(y) = 1 and each player gets his demand vy,
with certainty, so that only deviations in which a player increases his
demand has to be considered. Since y; < z; for all 7, we have that
y; +yr < v(jk) for any pair j, k. Suppose that player 3 increases his
demand to z3 = v(13) —y;. Since v(13) —y; < v(23) —ys, then any two-
player coalition can still fulfill the demands, so that player 3 receives
this demand with probability % Hence y3 is at least as good as z3 if
2 2

553 = g[”(m) — ) < ys.

Since Ms < z3 and thus Y3 = ()\1 + )\2)23 + )\3M3 > )\123 + (1 — )\1)M3,
by applymg Y1 = )\1M1 + ()\2 + )\3)2’1 = )\Ml + (1 — )\1)2’1, it follows
that this holds (with strict inequality) if

2[?}(13) — )\1M1 — (1 — )\1)21] S 3[)\12’3 + (1 — )\1)M3]
Define, for \; € [0, 1],
f()\l) = 2['1)(13) — )\1M1 — (1 — )\1)21],
g(>\1) = 3[)\12’3 + (1 — )\1)M3]

Then f(0) = 2[v(13) — 21] = 223 < 3M3 = ¢(0). Further, f(1) < g(1)
if

2[v(13) — My)] = 2[v(13) — v(N) + v(23)]
< 3 3v(13) + 0(33) — v(12).

This reduces to v(13)+v(23)+3v(12) < 4v(N), which is true with strict
inequality because v(13) + v(23) + 2v(12) < 3v(V) and v(12) < v(N).
Because of the linearity of the functions f and g in Ay, it follows that
f(A1) < g(A) forall 0 < A\; <1, showing that ys is strictly better than

z3.
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Next, if player 3 increases his demand to z3 = v(23) —y2 > v(13) —yy,
then coalition {1,3} can not form when v(23) — yo > v(13) — 3, and
player 3 gets z3 with probability % We have to show that %%}, < ys.
Since y3 > Aoz3 + (1 — A\o) M3 and yo = AaMy + (1 — A3) 29, this holds
(with strict inequality) if

v(23) — AaMy — (1 — A2)za < 2[Agz3 + (1 — Ag) M.
Now, define for A, € [0, 1],
f(A2) = v(23) — AaMy — (1 — Ag) 2o,
g(X2) = 2[Aez3+ (1 — Ag)Ms).
Then f(0) = v(23) — 23 = 23 < 2M3 = g(0). Further, f(1) < g(1) if

v(23) — My = v(23) — v(N) 4+ v(13) < 223 = v(13) + v(23) — v(12),

which is true with strict inequality because v(12) < v(N). Since the
functions f and g are linear in Ay, it follows that f(A2) < g(Ag) for all
0 < A3 < 1, showing that ys is strictly better than z3. Hence ys is the
unique element of 35(y). Analogously it follows that y; is the unique
element of 3;(y) for j = 1,2, showing that y is a strict stable demand
vector. This proves case (iii) and the proposition. i

Observe that the proof shows that any vector z € W(N,v) is a
strict stable demand vector in case |K (N, v)| = 3, irrespective whether
or not the condition v(ij) < v(N) for each pair 4,j holds with strict
inequality. When |K(N,v)| = 1, say K(N,v) = {i}, then y' is strict
stable when v(ij) < v(NN) for j # i. Finally, in case |K(N,v)| = 2, say
K(N,v) = {i,j}, then x € W(N,v) is strict stable when x is not an
extreme point or the average 1(y’+y?) of the two extreme points. When
x is one of these three points, then x strict stableness also requires that
v(ig) < v(N).

The results of Propositions 1, 3 and 4 can be summarized as follows.

Theorem 2. Let (N,v) be a superadditive three-player game. If the
core is not empty, then C(N,v) C B(N,v). If the core is empty and

v(12) +v(13) +v(23) + v(jk) > 3v(N), for each pair {j, k},

then the vINM wvector z is a stable demand vector. Finally, if the core
is empty and this condition does not hold, then W(N,v) C B(N,v).

We conclude this discussion on superadditive three-player games
with Example 3 from Agastya [1]. Its purpose is twofold. First it
shows that some stable demands may not be aspirations. Secondly, it
demonstrates how relaxing the assumption of the smallest money unit
results in the existence of (a) strict stable demand vector(s).
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Example 3. Let N = {1,2,3} and let the characteristic function of
the game be given by

4, if S =N,
() =14 3, IS =2,

0, otherwise.

If the smallest money unit is 6 = 1, i.e. X; ={1,2,3,4} for alli € N,
then, as is shown in [1], the strict stable demand set is empty. Suppose
now that there is no smallest money unit. The vNM vector z is given
by (%, %, %) By Proposition 3, z is stable, but not strict. It can be
checked that the vector z* = (%, %, %) is strict stable. Observe that x*

is not an aspiration, since x*(S) < v (S) for all S, such that |S| = 2.

5.2. Three-player/three-cake problems. For the problems of this
type the characteristic function is given by v (S) > 0 if and only if |S| =
2, and zero otherwise (and thus also v(N) = 0). Thus the conditions
of Proposition 3 are satisfied, implying that the vINM vector z is a
strict stable demand vector, provided z;, z;, z; > 0. In the following we
consider the question of what other vectors are strict stable. Clearly,
demand vectors x of the form x; < z; for all 7 or x; > z; for all 7 can not
be strictly stable. Neither can the ones of the type (z; # 2, z; = z;,
x = z). A little reflection shows that the ones of the type (z; # z;,
x; # zj, T = 2,) are not strict stable either. Thus, whenever one of
the players, say player i, credibly demands z;, he enforces players j
and k to demand their z; and z;,. Hence, the solution (z;, 2;, z) seems
particularly attractive.

The only two remaining possibilities for stable demand vectors are
(i > zi, x5 > zj, 2 < 2) and (z; < 2, ; < 2, T, > z). In the first
case, we have that

Ti+Tj> 2+ 2= U(ij),
while stableness requires that

x; + xp = v (ik),
:vj+:vk:v(jk:).

Similarly, the second case results in

xi+xj<v(ij),
x; + xp = v (ik),
z; + x = v (jk).

Consequently for both these cases stableness requires that

v (ik) — z; = v (Jk) — x;
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or equivalently (using the definition of z; and z;)
Zi—l‘i:Zj—l’j.

Thus both players i and j gain (lose) by the same amount as compared
to z; and z;. Consequently, player k loses (gains) by the same amount.
Let « = z; — z; = x; — z; = 2, — %}, and suppose that ¢ and j are
such that they gain (lose) simultaneously. Then we have the following
result.

Theorem 3. Let (N,v) be a three-player/three-cake problem such that
2,25,z > 0. Then all strict stable demand vectors have the form
(zi+ 0, zj +a, 2z, — ), where

1 1
a € (—? mln{zuz]}70:| U (? maX{Zi,Zj},Zk) .

Proof. 1t has been shown already above that any strict stable demand
vector must be of the form (z; +a, 2z; +a, 2z —«a). It remains to
show that such a vector is indeed a stable demand vector iff a €
(=% min{z;, z;},0] U (% max{z;, 2}, 1) -

First observe that regardless of whether « is positive or negative,
player k£ has no profitable deviations from z*. Thus we have to check
only for possible deviations of the players ¢ and j. If @ > 0, then
pi(z) = pj(z) = % Consider player ¢. Clearly, the only profitable
adjustment for player i involves a decrease of his demand z; to y; =
v(ij) — x;, which he then will receive with probability 2. Since v(ij) —
z; = v(ij) — [v(jk) — zx] = v(ig) —v(jk) + 2 — @ = z; — o, x; is the
unique best reply of player i to x if and only if

1 2
2(zl+oz) > 3(2Z a),
which yields o > %zi. Analogously we have the restriction o > %zj for
player j, which gives the lower bound o > 1 max{z;, z;}. On the other
hand we should have that o < z;, since z;, = 0 when o = z;, and then
any demand of player k is a best reply to z. In case z;, < 1 min{z;, z;},
conclude that there are no strict stable demand vectors with o > 0.

If o < 0, then p; (x) = p; (x) = 2. Tt is easily checked that the only
possible profitable adjustment of player ¢ involves an increase in his
demand from z; to y; = v(ij) — z; = v(ij) — [v(jk) — zx] = v(ij) —
v(jk) + zx — a@ = z; — «, which he then will receive with probability %
Hence z; is the unique best reply of player ¢ to z if and only if

2

1
g(zi+a)>§(zi—a),
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or equivalently o > —%zi. Analogously we have the restriction o >

—1z; for player j, which gives the lower bound o > —1 min{z;, z;} on
a < 0. Finally, note that the upper bound on « in this case equals zero,
since z is strict stable by Proposition 3. 1

Observe that all strict stable demands with o > 0 are aspirations,
whereas those with a < 0 are not, since z; + z; < v (ij). Moreover no
strict stable demand vector is an imputation (even not in its expected
form), since v (V) = 0.5

6. FURTHER EXAMPLES

6.1. Market games. Consider the following model of a market. The
set of players NN is partitioned in two classes: sellers L and buyers M.
Each seller ¢ € L has one unit of an indivisible good, to which he at-
taches a reservation price w”. Every buyer j € M wants to buy exactly
one unit of the good and has a reservation price of wj»” . Suppose that
all players submit their buying or selling prices xj, where k € N, to the
central authority, who then matches the players according to some min-
imal partition. From Proposition 1 it follows that any core allocation is
stable. On the other hand, it is well known that any competitive equi-
librium is in the core of the corresponding transferable utility game.
Therefore, all competitive equilibria of a market satisfy the stability
requirements imposed by B (N,v). The converse of Proposition 1 is
not always true, as examples below will show. That is, there can be
many allocations that are, in fact, stable demands, but do not belong
to the core of the corresponding market game.

In this section we show that many interesting conventions in the
above market game can be captured with the help of the framework
developed in Section 2. Let us start with the simplest case, i.e. a one
seller /two-buyer model. Specifically, let L = {1} and M = {2,3}, that
is player 1 is a seller and players 2 and 3 are buyers. Suppose that
wy; = 0 and wsy, w3 > 0 (for simplicity we suppress the superscripts L
and M). We will consider two instances: when buyers’ valuations are
identical and when they are not.

6There seems to be no consensus as how to define v (N) in three-player/three-
cake problems. One can assume (as we did) v (N) = 0; the other possibility would
be to define v (N) = max|gj—p v (S) , see van der Laan and Houba [13]. In that case
the stable solutions derived in Theorem 3 in their expected form can possibly be
imputations. However, the theorem itself may be invalidated, since one also has
to account for the possibility that the grand coalition forms and all demands are
satisfied with probability one.
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Example 4. Let wy = w3z = w. The characteristic function of the
game becomes

o) ={ b G U SN

1 0, otherwise.

It is easy to see that no demand vector x, such that xo # x3 can be strict
stable. Moreover, no x >> 0, such that x (N) = w is strict stable ei-
ther, since player 1 has a profitable increase in demand that is satisfied
with probability one. Thus, the grand coalition is never ’‘strict stable’
and the game is essentially a three-player/three-cake problem. Anal-
ogously to Theorem 3, it follows that all strict stable demand vectors
have the form x* = (w — o, a, a) , where a € (0,w). For any x* it holds
that 11 (2) = {{12,3}, {13.2}} and py (2*) = L, p» (") = po (a") = L.

In contrast, the core, kernel and nucleolus of the game consist of the
single imputation z = (w, 0,0) . The latter is not a strict stable demand
vector and, hence, cannot arise as a convention in the sense of Young
[16]. The Shapley value of the game, which is given by (%w, % %), is
not stable either. It can be checked that every (strict) stable demand
vector is an aspiration. However, for no @ > 0 does a stable demand
x* belong to the aspiration bargaining set, or the bargaining set of
Aumann and Maschler, or the vINM stable set. The reason being that
all these solution concepts ignore the nature of random matching among
players. By applying Proposition 2, it can be seen that all (strict) stable
solutions are efficient in their expected form. Graphically the set of all
expected payoff vectors corresponding to strict stable demands (also
including demands (w,0,0) and (0, w,w)) is shown by a solid line in
the figure below.

(0,0,w)

(w,0,0) (0,w,0)
Figure 2: The set of strict stable demand vectors in expected form
when wy; = w3 = w.
Interestingly in its expected form, each vector z* is a member of a
vNM stable set, but not of the (aspiration) bargaining set (the latter
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w

is singleton point {(w,0,0)}). For a = ¥ we have that the vector of
expected payoffs corresponds to the Shapley value of the game.

Note how the standard theory of general equilibrium approaches the
same problem. It is shown that both buyers will compete for the seller
and hence undercut each other. Correspondingly, the seller will ob-
tain the whole surplus from trade. The above example shows how the
impossibility of communication and ’discussing’ prices may lead to an
outcome, in which not all surplus goes to the seller. This situation
can easily be generalized for the case of n identical buyers. Specif-
ically, let L = {1}, M = {2,...,n} and assume, as before, w; = 0,
wy = ... = w, = w. Then any strict stable demand has the form
r=(w—a,aq,..,a), where a € (0,w).

Our next example shows that if buyers’ valuations are different strict
stable demand vectors can be inefficient in two distinct ways: (i) with
positive probability the buyer with the highest valuation does not ob-
tain the good, and (ii) players’ expected utilities do not sum to the
worth of the grand coalition.

Example 5. Let wy, < ws. The characteristic function of the game
becomes

Wa, ZfS = {12},
U(S) = ws, ZfS € {{13}7N}7
0, otherwise.

Since in this case zo < 0, one cannot apply Theorem 3, as in the pre-
vtous example. However, it is clear that at any strict stable demand
x, each buyer enters the coalition with the seller. Moreover, players’
demands must exhaust all gains from coalition formation. A little re-
flection shows that there is only one type of demand vectors that enjoy
these conditions. They have the form z* = (wy — o, v, w3 — wy + @, ),
where a € (0,ws). For any z*, it holds that 11 (z*) = {{12, 3}, {13,2}}
and py (z*) =1, p2 (2*) = p3 (2*) = %

Observe that no allocation in the core of the above game is strict
stable, since in any such allocation player 2 obtains zero. Moreover, for
any « > 0 a stable demand vector z* is not an imputation any longer,
even not in its expected form. Correspondingly, it is not a member of
either core, or stable, or bargaining set and does not equal the Shapley
value of the game. Nevertheless, all vectors z* can be interpreted as
conventions, in which the coalition of buyers gains 'market power’ and
thus imposes losses on the single seller”. In its extreme form (when

"Typically, a related question - whether the seller can benefit from the presence
of a 'weak’ buyer (player 2 in our case) - is considered in the literature. There are
models that answer it affirmatively, see Montero [14].
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a = wsq) coalition {23} keeps the price at zero. In this way, each of
the buyers obtains the highest possible surplus with probability %, and
no-one of them can profitably deviate from this convention if the seller
approaches both buyers with equal probability. The generalization to
the case of n—1 buyers with different valuations is also straightforward.
Specifically, if wy < ... < w, it can be shown that for any strict stable
demand vector z* we have 7 = wy — «, 5 = « and for j € {3,...,n}
T = wj — wy + a, where a € (0,w;). As a consequence, r} < zj for
any ¢ and 7 such that 2 <i < j <n.

Let us revert to the case of two buyers with different valuations.
Before we stressed that no communication among players was possible.
Suppose we relax this assumption and allow that players can make
any kind of proposals to each other. Suppose further that player 1
wants to allocate his object by means of an English auction, in which
all indeterminacies are resolved with the help of a lottery®. Then the
"fair’ price in this auction is wy. Correspondingly, player 1 would earn
the surplus of ws, player 3 would get ws — wy and player 2 would
obtain zero. However, if wy > %* player 3 has incentives to propose to
player 2 to keep the price at zero level. This would result in a lottery,
in which both buyers obtain the object with probability % Player 2
does not have any incentives not to agree to this proposal, since for
any price p < wsy player 3 in the English auction overbids player 2.
By agreeing to cooperate with player 3, player 2, however, obtains a
strictly positive surplus in expected terms. This situation exemplifies
the case, in which collusion between bidders in the English auction is
particularly attractive. It seems that player 1, if he is 'rational’, should
never use the English auction in this case at all!

By introducing the possibility of making binding agreements, one can
push the above logic even further. Observe that in the core, player 2
obtains zero surplus, and players 1 and 3 can divide the surplus w3 —ws
in any way they like. However, if player 1 offers to player 3 less than
%2, player 3 can threaten to make a binding agreement with player 2 to
keep the price at zero (or at €, which is sufficiently small). This threat
is credible, because player 2 will gladly sign any binding agreement
with player 3. In fact, if wy > %* then the core is not stable in the
above sense at all, since player 3 always wants to collude with player
2!

We conclude this part on market games with some remarks on the
symmetry of (strict) stable solutions. From Example 4 it may seem
that symmetric players must obtain the same payoff. However, this

8The results will not hold for a sealed bid auction, though.
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does not hold generally. It may well be the case that some (strict) stable
demands involve asymmetric claims and payoffs of symmetric players.
Consider, for instance, the market game where L = {1,2}, M = {3, 4},
wf =0 forall i € L and w)’ =1 for all j € M. Under these conditions,
clearly all sellers are symmetric and all buyers are symmetric. However,
it can be verified that the demand vector x = (%, %, i, %) is strict
stable?. Moreover, z is not in the core of the game, which is given by
the set {(o,,1 —,1 —a) € R a € [0,1]}.

6.2. Apex games. The characteristic function of the apex game of
player j and coalition J C N\{j} with J # & is given by

(S) = 1, if either J C S or both S>> jand SNJ # @,
v | 0, otherwise.

Thus, the worth v (N) can be earned by player j together with at
least one player ¢« € N\{j} or by all players in .J cooperating together.
Clearly apex games are superadditive and all players in J are symmet-
ric. In what follows, without loss of generality we will consider the
apex game of player 1 only; thus J = N\{1}. To avoid degeneracies,
we also assume that |N| > 3.

We will show now that strict stable demand vectors in apex games
can be characterized in a neat way. Let x be a strict stable demand
and consider the following three possibilities:

1) ZiEJ T; > 1.
iii) > . m =L
First we consider case (i). Since coalition J is not feasible, strictness
implies that z; > 0 for all ¢ and that every player i € J can form a
coalition with the apex player, otherwise its probability is equal to zero.
Moreover, for i € J we should have that 1+ x; = 1, since ¢ can increase
its demand if x1 + z; < 1. Consequently, all strict stable demands have
the form (1 — «, a, ..., ) for some o < 1. To find the lower bound on
«, note that if o > ﬁ, then clearly no player i € J can benefit from
changing his demand. If, however, o < ﬁ, we need to ensure that no
i € J has a profitable reduction in demand to y; = 1 —a (n — 2). That
is, if
2(1-—a(n—-2)) __«@
n n—1

9Since p; (x) = 1 for all i € N one only has to check whether players 2 and 3 do
not want to increase their demands to % and %, respectively.



30 G. VAN DER LAAN AND V. PRUZHANSKY

or
2(n—1)
6.1 —— <«
(6.1) 2n? —bn+4
holds. This condition gives the lower bound on «, which decreases with
n.

If x is a strict stable demand vector in case (ii), it should also have
the form (1 — o, a,...,a). To see why, note that if there is ¢ € J
such that x; + x; < 1, then player ¢ can increase his demand up to
yi = min{l — 1,1 — > . 5,y Z;} — €, where € is positive and small
enough!® and get it satisfied with probability p; (z) . Thus, for all i € J
we have x1 + x; > 1. If, however, x; + z; > 1 for some i € J, then
such player ¢ can increase his demand up to y; = (1 — >, iy Tj) — €
and still get it with probability p; (x). Thus, for all ¢ € J we have
x1 + x; < 1. Hence the equality z; + z; = 1. Allowing now z; = « for
all i € J we need to deter possible deviations to y; = 1 — a(n —2).
This results in the following condition

20 1—a(n—2)
S
n n—1

(6.2)

After simplification we obtain the lower bound a > —*=. The upper
bound a < L follows from the condition Y, ; z; < 1.

Case (iii) requires that there exists at least one player i € J such
that 1 + z; = 1. Clearly, i solves

(6.3) i € argmin{zy, ..., T, }.
jeJ

Without loss of generality, let ¢ = 2 and z5 < ... < x,. Clearly, player
2 does not have profitable deviations. In order to deter possible devia-
tions of other players in J\{2} we need to have z; > 3z, for all j € J
such that z; > xo. As for player 1, we need

x k-1
?1>(1—.’Ek) A

for all k = 3,...,n. In such a case the symmetry among the players in
J need not hold anymore. For instance, let n = 4 and consider the
vector of demands z* = (g—g, %, %, é—g) . It can be verified that z* is
strict stable, yet all symmetric players (2, 3 and 4) submit different
demands and obtain different expected payoffs.

By applying Proposition 2, we can see that the efficiency of strict

stable demands in their expected forms is achieved only in cases (i)

0This ensures that ZjeJ\{i} z; + x; < 1 holds.
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and (iii). The following symmetric solution x* that belongs to the last
case has already received some attention in the literature:

n-2 for all i € J.

* *
T = and z] =

n—1 n—1

As it was shown by Bennett and van Damme [5], this demand vector
is a unique subgame perfect equilibrium in a certain proposal making
model. Moreover, in its expected form x} corresponds to the Shapley
value of player i € N, see van den Brink [9]. Note that for N = {1, 2, 3}
the apex game becomes a superadditive three-player game and the
demand vector z* equals the vNM vector z = (%, %, %) in this case.
Consequently, z* is also strict stable according to Proposition 3.
Finally, we will illustrate that the set B (V,v) does not have to be

convex. For the apex game with n = 4 take x* = (5 3 3 §) and

878788
* _ (10 1 5 5 * * : P
Y= (117 SRR 11) . Both z* and y* are strict stable demands, it is

easily verified that z* belongs to case (i) above and y* to case (iii).
Consider a convex combination w = yz* + (1 — ) y* with v = %. It
can be checked that for j € {3,4} the condition w; > Fw, is violated
and, hence, w is not a stable demand vector.
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