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Model-based measurement of actual volatility

in high-frequency data

B. Jungbacker and S.J. Koopman

Department of Econometrics, Free University Amsterdam,

De Boelelaan 1105, NL-1081 HV Amsterdam, Netherlands

December 23, 2004

Abstract

In this paper we aim to measure actual volatility within a model-based framework
using high-frequency data. In the empirical finance literature it is known that tick-by-tick
prices are subject to market micro-structure such as bid-ask bounces and trade informa-
tion. Such market micro-structure effects become more and more apparent as prices or
returns are sampled at smaller and smaller time intervals. High-frequency returns can
be used for the computation of realised volatility. Recent theoretical results show that
realised volatility is a consistent estimator of actual volatility but when it is subject to
micro-structure noise, the estimator diverges. Nonparametric methods can be adopted
to account for the micro-structure bias. Here we measure actual volatility using a model
that takes account of micro-structure noise together with intra-daily volatility patterns
and stochastic volatility. The coefficients of this model are estimated by maximum likeli-
hood methods that are based on importance sampling techniques. It is shown that such
Monte Carlo techniques can be employed successfully for our purpose in a feasible way.
As far as we know, this is a first serious attempt to model the basic components of the
mean and variance of high-frequency prices simultaneously. An illustration is given for
three months of tick-by-tick transaction prices of the IBM stock traded at the New York
Stock Exchange.

Keywords: Importance sampling; Maximum likelihood estimation; Micro-structure
noise; Realised variance; Stochastic volatility model.
JEL classification: C22, C53, G15.



1 Introduction

The price of a financial asset is denoted by Pt. A common assumption in the finance literature

is that the log of Pt can be represented by a stochastic differential equation (SDE) of the form

d logPt = µt(ψ)dt+ σt(ψ)dBt, t > 0, (1)

where µt(ψ) is the drift function representing expected return, σt(ψ) is a stochastic process

representing the spot volatility, Bt is a standard Brownian motion and ψ is a vector of unknown

parameters, see Campbell, Lo, and MacKinlay (1997) for more background. In many contexts

the financial economist is interested in measuring and predicting the variability of the asset

price. This variability is mainly determined by what is called integrated volatility

σ∗2(0, t) =

∫ t

0

σ2
t (ψ)dt, (2)

where the dependence of ψ is implied. The related concept of actual volatility for the interval

[t1, t2] is defined as σ∗2(t1, t2) where

σ∗2(t1, t2) = σ∗2(0, t2) − σ∗2(0, t1). (3)

It should be noted that integrated and actual variance would be the more precise names for

integrated and actual volatily, respectively. However we choose to follow the convention in

much of the financial econometrics literature and refer to these quantities as volatilities.

The price of an asset can be observed when a trade has taken place. Trades ocur continuously

at international financial markets. The Trades and Quotes (TAQ) database of the New York

Stock Exchange (NYSE) contains all equity transactions reported on the so-called Consolidated

Tape and it includes transactions from the well-known NYSE, AMEX and NASDAQ markets

but also from various important other exchange markets. When such trade prices within a

certain period are collected, we obtain a so-called high-frequency dataset. We refer to high-

frequency data when observations are sampled at very small time intervals. In the finance

literature, this usually means that observations are taken at the intra-daily interval of five

minutes or 1 minute (calendar time sampling) or that observations are recorded trade-by-trade

(business time sampling). The trade-by-trade data is regarded as the ultimate high-frequency

collection of prices. Note that time in such databases is usually measured in seconds. In

calendar time, we may therefore have multiple trades within the same time-interval although

this is unlikely. It is more likely that on a time-scale of seconds many prices will be missing

since trades do not take place every second.

The observed log price at the discrete time point tn (in seconds) is denoted by Yn = logPtn

for observation index n. The number of time points (seconds) in one trading day is denoted by
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Nd. We therefore have potentially Nd observations Y1, Y2, . . . , YNd
of the log price of a trade in

a particular day d. The index t0 refers to the start of the period while the distance tn − tn−1 is

constant for n = 1, . . . , Nd. The value Yn will not be available when no trade has taken place

at time tn. Such values will be treated as missing. The number of trades is denoted by N ≤ Nd

so that we have Nd −N missing values in day d.

A natural estimator of actual volatility is given by what is called realised volatility denoted

by σ̃∗2(t0, tNd
) and given by

σ̃∗2(t0, tNd
) =

Nd/m∑
j=2

(Ymj − Ymj−m)2 , (4)

where m is the sampling frequency, see Andersen, Bollerslev, Diebold, and Labys (2001). For

example, when the sampling frequency is 5 minutes, m equals 300 assuming that the index

of Yn refers to the nth second. In the case a transaction has not taken place at time n, so

that Yn is missing in (4), it can be approximated via an interpolation method using observed

values in the neighbourhood of Yn, see Malliavin and Mancino (2002) and Hansen and Lunde

(2004) for discussions of different filtering methods. Novel asymptotic theory is developed for

the realised volatility estimator (4) as the number of observations in the fixed interval [t0, tn]

increases (or as m decreases), see Barndorff-Nielsen and Shephard (2001). Specifically it is

shown that σ̃∗2(t0, tNd
) is a consistent estimator of actual volatility. This result suggests that if

we sample the log price process logPt more often in a fixed time interval by taking m small, the

efficiency of the estimator will be increased. Empirical work on the subject however indicates

the complete opposite, see, in particular, Andreou and Ghysels (2001) and Bai, Russell, and

Tiao (2000). If the realised volatility is computed using ever more observations, the estimate

seems to diverge. The cause of this phenomenon is the fact that the efficient price is not

observed directly. Observed trading prices Yn are contaminated by so-called micro-structure

noise that has various causes such as bid-ask bounces, discrete price observations and irregular

trading, see Campbell, Lo, and MacKinlay (1997) for a further discussion with references.

It is therefore argued that micro-structure noise ruins the reliability of realised volatily

as an estimator. Recently non-parametric methods have been proposed by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2004) and Äıt-Sahalia, Mykland, and Zhang (2004) that produce

consistent estimates of volatility even in the presence of micro-structure noise.

In this paper we take a model-based approach to measure volatility using high-frequency

prices that are observed with micro-structure noise. Standard models for price and volatility

from the finance literature will be considered. Further, the model allows for an intra-daily

volatility pattern and stochastic volatility. The details of the model are described in section 2.

In this way, the salient features of high-frequency prices are described and efficient estimates of

actual volatility can be produced. However, the estimation of parameters in this class of models
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is nonstandard and simulation-based methods need to be employed. This also applies to the

methods of volatility measurement. We propose importance sampling techniques in section 3

and it is shown that such methods can work effectively and efficiently for our purposes. This is

illustrated in section 4 in which daily volatilities are measured from high-frequency IBM prices

recorded at the New York Stock Exchange for a period of three months.

2 Models for high-frequency prices

2.1 Model for price with micro-structure noise

Many possible specifications for the drift and diffusion components of model (1) have been pro-

posed in the financial literature. Throughout the paper we assume that the drift term equals

zero so that var(Pt+τ |Pt) only depends on the diffusion term σt(ψ) in (1), see Andersen, Boller-

slev, and Diebold (2002). For the volatility process σt(ψ) we consider various specifications.

The first and most basic specification is where the volatility is kept constant over time, that is

σt(ψ) = σ(ψ). These assumptions lead us to the following model for the efficient price process,

d logPt = σ(ψ)dBt, (5)

where Bt is standard Brownian motion.

Further we assume that the observed trade prices Yn is a noisy observation of the efficient

price and we denote the micro-structure noise by Un. We therefore have Yn = logPt + Un for

t = tn. It is assumed that the micro-structure noise has zero mean and variance σ2
U . The

discrete time model then becomes

Yn = pn + σUUn, Un ∼ IID(0, 1), (6)

pn+1 = pn + σεεn, εn ∼ NID(0, 1), (7)

where pn = logPt is the unobserved price (in logs) at time t = tn for n = 1, . . . , Nd. It is noted

that n refers to an index of seconds with equidistances tn − tn−1.

In this setting we have a simple expression for actual volatility

σ∗2(tn, tn+1) = (tn+1 − tn)σ2
ε .

The model implies that the observed return

Rn = ∆Yn+1 = ∆pn+1 + σU∆Un+1 = σεεn + σUUn+1 − σUUn,

follows an moving average (MA) process of order one, that is Rn ∼ MA(1), see Harvey (1989)

for a further discussion of the local level model.
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The assumption of constant volatility is too strong for a relative long period, say one day.

However, this simple framework allows us to obtain a preliminary estimate of daily volatility

using high-frequency data. The estimation of the local level model (7) is explored in detail by

Durbin and Koopman (2001, Chapter 1) and is based on the standard Kalman filter equations.

The possibly many missing values in the series Yn can be accounted for within the Kalman filter

straightforwardly. When it is assumed that micro-structure noise Un and price innovation εn

are Gaussian distributed error terms, exact maximum likelihood (ML) estimates of σ2
U and σ2

ε

are obtained by numerically maximising the Gaussian likelihood function that can be evaluated

by the Kalman filter. When the Gaussian assumption is not wanted, these estimates can be

referred to as quasi maximum likelihood (QML) estimates.

Äıt-Sahalia, Mykland, and Zhang (2004) also consider the local level model framework to

describe the true process of the observed log prices and also observe that the returns therefore

follow an MA(1) process. In their theoretical analysis it is argued that distributional properties

of Un do not matter asymptotically. Their main conclusions of their analysis are that modelling

the noise explicitly restores the first order statistical effect that sampling as often as possible is

optimal and this remains the case if one misspecifies the assumed distribution of the noise term.

We regard this as an endorsement of our modelling approach. They further discuss possible

extensions of the local level model by modelling Un as a stationary autoregressive process and

by allowing for contemporaneous correlation between Un and εn. In our modelling framework,

the former extension can be incorporated straightforwardly although the estimation of autore-

gressive moving average (ARMA) processes for financial data may be hard in practice. The

latter proposed extension is more difficult from an inference point of view since the correlation

coefficient between Un and εn is not identified when both variances are unrestricted, see the

discussion in Harvey and Koopman (2000).

2.2 Intra-daily seasonal patterns in volatility

In empirical work it is often found that estimates of actual volatility for different intervals within

the day show a strong seasonal pattern. At the opening and closure of financial markets, price

changes are more volatile than at other times during the trading session. In 24-hour markets,

such different volatile periods within the day can be found too. Discussions of this phenomenon

and empirical evidence are given by, amongst many others, Dacarogna, Müller, Nagler, Olsen,

and Pictet (1993) and Andersen and Bollerslev (1997). To account for the intra-daily variation

of integrated volatility we replace the constant spot volatility σ2 in (5) by an intra-daily seasonal

specification in the volatility, that is

σ2
t = σ2 exp g(t), or log σ2

t = log σ2 + g(t),
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where g(t) is a deterministic function that can represent a diurnal pattern and starts at zero,

that is g(0) = 0. An example of an appropriate function g(t) is given in Appendix A. The

integrated volatility becomes

σ∗2(0, t) =

∫ t

0

σ2
sds = σ2

∫ t

0

exp g(s)ds. (8)

The actual volatility can be analytically derived from (8) or it can be approximated by

σ∗2(tn, tn+1) ≈ σ2

tn+1∑
s=tn

exp g(s),

where the index step length can be chosen to be very small. As a result, σ2
ε in (7) is replaced

by σ2
ε,n = σ∗2(tn, tn+1) with σ2 representing the constant variance part that is still denoted by

σ2
ε . The function g(t) = g(t;ψ) depends on parameters that are collected in vector ψ, together

with the variances σ2
ε and σ2

U , that will be estimated by maximum likelihood methods. As a

result, the model (7) is unchanged except that the state variance has become dependent of a

deterministic function of time. The Kalman filter can incorporate time-varying coefficients and

therefore the estimation methodology remains straightforward.

2.3 Stochastic volatility model

Various specifications for stochastic volatility models have been proposed. To keep the analysis

and estimation simple, we will assume one of the most basic, non-trivial specifications. The

efficient price process (5) is extended as follows. The constant volatility σ is replaced by a

stochastic time-varying process to obtain the system of SDE’s

d logPt = σtdB
(1)
t ,

log σ2
t = log σ′2

t + ξ, (9)

d log σ′2
t = −λ log σ′2

t dt+ σηdB
(2)
t ,

where B
(1)
t and B

(2)
t are independent Brownian motions while log σ′2

t represents an Ornstein-

Uhlenbeck process. Here ξ represents the fixed mean of log volatility. The vector of unknown

parameters is ψ = (λ ξ σ2
η)

′. Using the Euler-Maruyama method, see Kloeden and Platen

(1999) for details, we obtain an approximation to the solution of the system of SDE’s (9) as

given by the discrete representation

logPtn+1 = logPtn + σnεn, εn ∼ NID(0, 1),

log σ2
n = log σ′2

n + ξ, (10)

log σ′2
n+1 = (1 − λ) log σ′2

n + σηηn, ηn ∼ NID(0, 1).
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Note that λ = ση = 0 implies constant volatility with log σ2
n = ξ. The process (10) represents

the standard discrete stochastic volatility (SV) model, see Ghysels, Harvey, and Renault (1996)

for an overview. It follows that the actual volatility is approximated by

σ∗2(tn, tn+1) ≡
∫ tn+1

tn

σ2
sds ≈ (tn+1 − tn)σ2

n.

Finally, assuming that a particular day d consists of Nd intraday intervals, the actual volatility

of day d is approximated by

σ∗2(t0, tNd
) ≈

Nd∑
n=1

(tn+1 − tn)σ2
n.

To analyse the stochastic log prices (mean) and the stochastic volatility (variance) simul-

taneously, it is more convenient to represent the model in terms of returns log(Ptn+1 / Ptn).

It follows from the discussion in section 2.1 that when the model for log prices accounts for

micro-structure noise, the observed returns Rn follows an MA(1) process. By further allowing

for stochastic volatility, we obtain

Rn = σnεn + σUWn, (11)

where log σ2
n is modelled as in (10) and Wn = Un+1 − Un such that Wn ∼ MA(1). From

an estimation point of view, it will be argued in the next section that maximum likelihood

estimation of this model is intricate. We therefore consider a white noise process for Wn in the

empirical part of this paper.

The final model that we consider in this paper is the price model with SV that also accounts

for the intra-daily seasonal pattern. In the previous section we have introduced the flexible

deterministic function g(t) for this purpose. The final model is therefore based on the system

of SDE’s

d logPt = σtdB
(1)
t ,

log σ2
t = log σ′2

t + g(t),

d log σ′2
t = −λ log σ′2

t dt+ σηdB
(2)
t ,

The flexible function g(t) is incorporated in the SV specification (10) in the same way as

described in section 2.2. In particular, log σ2
n in (10) is replaced by

log σ2
n = log σ′2

n + ξ + g(t).

Borus: this only works because in our case tn+1 − tn = 1 second.
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3 Estimation methods

3.1 The problem of estimation

It is already argued in sections 2.1 and 2.2 that the model for prices with constant or determin-

istic time-varying volatilities is relatively straightforward to estimate by using Kalman filter

methods. However, estimating the model with stochastic volatility is known to be much more

intricate. Various methods have been developed for the estimation of the SV model without

micro-structure noise. Such methods have been based on quasi-maximum likelihood, Bayesian

Markov chain Monte Carlo procedures, importance sampling techniques, numerical integra-

tion, method of moments and others. The presentation of an overview of all these methods

is beyond the scope of this paper but the interested reader can be referred to the collection

of articles in Shephard (2005). Most of these methods have not considered the existence of

micro-structure noise in the returns since the empirical applications in this work have been

concerned with returns data measured at a low frequency such as months, weeks and days.

The issue of micro-structure noise is irrelevant in these cases. This section discusses feasible

methods for the estimation of the model for returns with SV and noise since this is relevant

for high-frequency data. We limit ourselves to approximate and maximum likelihood methods.

Bayesian and (efficient and/or simulated) method of moments can be considered as well and in

fact we believe that such methods will be applicable too. However, given our favourable experi-

ences with maximum likelihood estimation using importance sampling techniques for standard

SV models, we have been encouraged to generalise these methods for the models described in

the previous section.

To focus the discussion on estimation, the model for returns with stochastic volatility, intra-

daily seasonality and micro-structure noise is represented as the nonlinear state space model

Rn = exp(
1

2
hn)εn + σUWn, (12)

hn = ξ(n) + φ {hn−1 − ξ(n− 1)} + σηηn, (13)

where hn = log σ′2
n and φ = 1 − λ. The log-volatily hn follows an autoregressive process of

order one and the micro-structure noise Wn follows an moving average process of order one.

These processes can be generalised to other stationary time series processes. The disturbances

driving the time series processes for hn and Wn together with εn are assumed Gaussian and

independent of each other, contemporaneously and at all time lags. These assumptions can

be relaxed, see the discussion in section 3.3. The model for the returns (12) is nonlinear and

depending on a state vector with the log variance logσ′2
n modelled as a linear autoregressive

process and with coefficients to measure the intra-daily volatility pattern g(t). The nonlinearity

is caused by the term exp(1
2
hn)εn in (12) since both hn and εn are stochastic. Conditional on
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the unobservable hn, the model (12) is a linear Gaussian ARMA model (for the micro-structure

noise σUUt) with additive heteroskedastic noise (for the returns logPtn+1 − logPtn).

Different approximate methods for the estimation of the unknown parameters in model (12)

and (13) can be considered. For example, the multiplicative term exp(hn / 2)εn can be linearised

by a first-order Taylor expansion in hn. The resulting linearised model can be considered by

the Kalman filter. This approach is referred to as the Extended Kalman filter. The details will

not be discussed here since we believe that this approach will provide a poor approximation

especially when the volatility is relatively large or small, that is, when |hn| is large. Some

improvements may be obtained when the resulting estimate of hn is inserted in the model so

that a linear model is obtained which can be treated using standard methods. Such a mix of

approximate methods does not lead to a satisfactory estimation strategy and therefore we aim

to provide a maximum likelihood estimation method in the next section.

3.2 Estimation using importance sampling techniques

The evaluation of the likelihood function using importance sampling techniques has been con-

sidered for the model (12) and (13) with σU = 0 by Shephard and Pitt (1997) and Durbin

and Koopman (1997). Further details of this approach have been explored in Part II of the

monograph of Durbin and Koopman (2001). The basic ingredients of this approach are as

follows.

• The approximate linear Gaussian model

y = θ + u, u ∼ NID(c, V ), (14)

is considered with its conditional density denoted by g(y|θ) where y is the vector of

observations and θ is the associated unobserved signal. In the SV model without noise,

we have y = (R1, . . . , RNd
)′ and θ = (h1, . . . , hNd

)′. The approximate conditional Gaussian

density g(y|θ) depends on mean vector c and diagonal variance matrix V which are chosen

such that

ġ(y|θ) = ṗ(y|θ), g̈(y|θ) = p̈(y|θ),
where q̇(·) and q̈(·) are the first and second derivatives, respectively, of the density q(·)
with respect to θ. Further, p(·) refers to the density of the model (12) and (13), here with

σU = 0. To obtain the mean and variance of g(y|θ), we require to estimate θ from the

approximate linear Gaussian model (14) that also depends on θ. Therefore an iterative

method involving Kalman filtering and smoothing needs to be carried out.

• Given the importance density associated with the approximate model (14), simulations

from density g(θ|y) can be obtained using simulation smoothing algorithms such as the
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recent ones of de Jong and Shephard (1995) and Durbin and Koopman (2002). The

resulting simulated θ’s are denoted by θ(i) ∼ g(θ|y).

• The importance sampling estimator of the likelihood is based on

L(ψ) = p(y;ψ) =

∫
p(y, θ)dθ =

∫
p(y, θ)

g(θ|y) g(θ|y)dθ = g(y;ψ)

∫
p(y, θ)

g(y, θ)
g(θ|y)dθ,

and since p(θ) = g(θ), we obtain the convenient expression

L(ψ) = Lg(ψ)

∫
p(y|θ)
g(y|θ)g(θ|y)dθ,

where Lg(ψ) = g(y;ψ) is the likelihood function of the approximating model. All densities

p(·) and g(·) depend on parameter vector ψ even when this is not made explicit. The

importance sampling estimator of the likelihood function L(ψ) is therefore given by

L̂(ψ) = Lg(ψ)

M∑
i=1

p(y|θ(i))

g(y|θ(i))
,

where θ(i) ∼ g(θ|y) for i = 1, . . . ,M . It is noted that the densities p(y|θ) and g(y|θ) are

relatively easy to evaluate. The likelihood function evaluated by importance sampling is

exact but subject to Monte Carlo error. Further, to ensure that the importance estimator

of the likelihood is reliable, the importance density needs to have a variance, see Geweke

(1989).

The last items are general and do not depend on the particular model specification. Finding

an approximate linear Gaussian model from which we can generate simulation samples from

g(θ|y), does obviously depend on the model in question. The details of obtaining an approximate

model for the standard SV model for importance sampling can be found in Shephard and Pitt

(1997) and Durbin and Koopman (2001, page 195). The values for cn and Vn, the n-th element

of c and the n-th diagonal element of V , respectively, in this case are obtained by

Vn = 2
exp(hn)

R2
n

, cn =
1

2
Vn +Rn − hn − 1. (15)

For the case with micro-structure noise the values for c and V need to be derived as hinted

in the first item. The details of the derivations are given in Appendix B. For the case of IID

noise, that is Wn ∼ IID(0, 1), the actual values are given by

V −1
n =

1

2

(
bn − b2n

)
+

(
bn − 1

2

)
bn
an
R2

n, cn = Rn − hn − 1

2
Vnbn

(
R2

n

an
− 1

)
, (16)

where an = exp(hn) + σ2
U and bn = exp(hn) / an. We note that an > 0 and 0 < bn ≤ 1. For

this methodology to work, we obviously require Vn > 0 for all n. This can only be guaranteed

10



when σ2
U < exp(hn) since this implies that bn > 1

2
. In other words, the variation due to

microstructure noise must be smaller than the variation due to volatility in returns. This

condition refers unexpectedly to the debate whether realised volatility merely reflects micro-

structure noise variation or underlying price changes of assets, see Bandi and Russell (2004)

and Zhang, Mykland, and Äıt-Sahalia (2004). If Vn ≤ 0, importance sampling has a problem.

We take a practical approach on this issue. If Vn is negative, it is replaced by the Vn obtained

when no micro-structure noise is considered, that is Vn = 2 exp(hn) / R2
n.

3.3 Discussion of estimation methods

Details of importance sampling methods for estimating the general model are presented in the

previous section. It is assumed that Wn is IID while the basic modelling framework for the

prices in section 2.1 insists that Wn should be at least modelled as a MA(1) process or possibly

as an ARMA process. The consideration of an ARMA disturbance term in the measurement

equation requires multivariate sampling devices which are intricate and will slow down the

computations considerably. Other methods need to be considered when we want to allow for

ARMA structures in Wn and currently research is devoted on this matter.

For estimation purposes the price model with stochastic volatility is reformulated in terms

of returns. The ultimate aim however is to estimate models as specified in (10). This is not an

easy task and various methods can be considered. In this paper we have considered Kalman

filter and importance sampling techniques. This may lead to feasible methods but it is not yet

clear how they can be utilised more effectively for the task at hand.

Other estimation techniques can also be considered such as numerical integration, simulated

method of moment and Bayesian methods. It should be noted that the number of transactions

in one trading day can be as big as 23, 400 but is usually between 1000 and 5000 for a liquid

stock. As a consequence, the integral of the likelihood function is of a very high dimension and

therefore numerical integration is not feasible.

As far as we know, effective methods of moments and Bayesian methods are not developed

as yet for models such as (10). For example, the Markov chain Monte Carlo (MCMC) method

of Kim, Shephard, and Chib (1998), in which candidate samples are generated by approximate

densities based on mixture of normals, can not be used straightforwardly.

11



4 Empirical results for three months of IBM prices

4.1 Data

A small subset of the the Trades and Quotes (TAQ) database for the New York Stock Ex-

change (NYSE) is available to us. We have considered the IBM equity transactions reported

on Consolidated Tape. The IBM stock is regarded by many as a heavily traded or liquid stock.

The NYSE market opens at 9:30 AM and closes at 4 PM. Prices of transactions made outside

these official trading hours have been deleted. The resulting database consists of prices and

times (measured in seconds) of transactions realised in the three months of November 2002,

December 2002 and January 2003. No further manipulations have been carried out on this

dataset. The prices for each trading day are considered as a time series with the time index

in seconds. Such time series have possibly many missing observations. For example, when no

trade has taken place in the last two minutes, we have at least 120 consecutive missing values

in the series.

4.2 Measuring actual volatility for one day

As a first illustration we consider tick-by-tick prices and returns of IBM realised in the NYSE

trading day of November 1, 2002. In Figure 1 the prices and returns are presented for the

hourly intervals of the trading day. The number of trades that has taken place on this day is

3, 321. Given that a trading day consists of 23, 400 seconds, that is 6.5 trading hours times

3600 seconds in one hour, the average duration between trades is 7.05 seconds. In other words,

on average, 511 trades in one hour and 8.5 trades in one minute has been realised. However,

approximately, the first 300 trades took place before 10 am and the last 600 trades took place

after 3 pm. The time series of prices and returns presented in Figure 1 are against an index

of seconds. This means that 23, 400 observations can be displayed but only 3, 321 transactions

have been realised, resulting in 20, 079 missing values on this day. We note that no multiple

trades occurred in the same second. These facts aim to put the plots of Figure 1 into some

perspective. Due to the lack of resolution in our graphs, the majority of missing values go

almost unnoticed.

In Figure 2 we present prices, returns and squared log returns of the IBM stock for November

1, 2002. Here the index is trade by trade. Nevertheless, the series of prices in Figures 1 and

2 appear to be very similar. This is again due to the limited resolution that can be provided

in these graphs. In any case, both plots of returns show that volatility is substantially higher

at the beginning of the trading day and somewhat higher at the end of the trade session. The

small price variation in the middle of the trading day is probably due to the fact that no relevant

information has arrived in these hours.

12
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Figure 1: IBM stock prices and returns for all trades on November 1, 2002. The tick-by-tick

data is presented against time in seconds.

To analyse the trade prices on this day, we first consider the model for prices (5) with

constant volatility σ and intra-daily pattern g(t) for spot volatility. For the function of g(t)

we adopted the cubic spline as described in Appendix A with three knots (two at either end

of the trading day and one in the middle of the day, the first knot value is restricted to be

zero so that g(t0) = 0. It is argued in section 2.1 that the standard Kalman filter can be used

for the estimation of the coefficients of this model. The Kalman filter as implemented in the

SsfPack package of Koopman, Shephard, and Doornik (1999) allows for missing values and

deterministic time-varying variances. We have implemented the calculations in the Ox package

of Doornik (2001) using the state space library of SsfPack, version 3. The estimation results

are as follows with

log σ̂ = −5.112, γ̂2 = −1.747, γ̂3 = −1.135.

These results give some initial indication of results that can be obtained from a high-frequency

dataset.

More interestingly from theoretical and empirical perspectives are the results for the returns

model with stochastic volatility and intra-daily seasonality. In particular, we are focussed on

the differences in the estimation results for this model with or without micro-structure noise.

The estimation method for the model with noise requires importance sampling techniques as

13
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Figure 2: IBM stock prices, returns and squared log returns for all trades on November 1, 2002.

The data is presented against the trade index so that every tick is one trade.

discussed in Section 3.2. The calculations are implemented in Ox with intensive use of the

SsfPack library of state space functions to obtain an approximating model and to simulate

conditional random samples of log volatility.

The estimates for the parameters are as follows. For the model (12) and (13) without

micro-structure noise (σU = 0), we have

φ̂ = 0.961, σ̂2
η = 0.0619,

log σ̂ = −7.977 γ̂2 = −1.654, γ̂3 = −1.135.

For the model with micro-structure noise, we have

σ̂2
U = 0.00003985, σ̂U = 0.00631,

φ̂ = 0.955, σ̂2
η = 0.0821,

log σ̂ = −8.033, γ̂2 = −1.629, γ̂3 = −1.065.

When these estimation results are compared with the constant plus spline volatility model, the

constant variation drops to make place for the stochastic part of log volatility. The persistence

of log volatility is of the same order when model is estimated with noise or without noise.

Although apparently the micro-structure noise seems low, it has a big impact on the estimate
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Figure 3: Estimated intra-day volatility: (i) log-volatility component log σ̂′; (ii) intra-daily

volatility pattern ĝ(t); (iii) integrated volatility σ∗2(tn−1, tn).

σ̂η. The estimate increases when micro noise is accounted for. Relative more variation is

attributed to the stochastic part rather than the constant part when micro-noise is excluded

from the observed returns.

In Figure 3 we present the estimated volatility components for this day. The time series

length is 23, 400 seconds for which 20, 079 seconds have recorded no price. During the model

estimation process, these 20, 079 non-available prices are treated as missing observations. The

estimated prices and returns are obtained using the importance sampling methods for filtering

and smoothing, see Durbin and Koopman (2001, Chapter 11) and Appendix B for further

details. As a result we obtained 23, 400 estimates for which the vast majority are interpolations

implied by the estimated model, see Figure 3. To provide a somewhat more detailed insight,

we also present estimates of log σ′
t for a smaller interval of 30 minutes and four intervals of 5

minutes in Figures 4 and 5, respectively.

4.3 Measuring actual volatility for three months

We convinced ourselves that the model-based methods for estimating coefficients and for mea-

suring volatility were implemented satisfactory given the results of the previous section. Also

several limited simulation studies have been carried out and the results confirmed the reliability
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Figure 4: Estimated log-volatility component log σ̂′ for an interval of 30 minutes.
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Figure 5: Estimated log-volatility component log σ̂′ for four intervals of 5 minutes.

16



0 20 40 60
0

2

4

6

8

10
(i)

0 20 40 60
0

2

4

6

8

10
(ii)

0 20 40 60
0

2

4

6

8

10
(iii)

0 20 40 60
0

2

4

6

8

10
(iv)

Figure 6: Volatility measures: (i) realised volatility; (ii) estimates from constant volatility

model; (iii) estimates from constant plus spline volatility model; (iv) estimates from stochastic

volatility model with spline. The volatility estimates are for the 61 trading days of November

2002, December 2002 and January 2003.

of the implemented procedures. Subsequently we repeated the analysis for a large dataset of

IBM stock returns for 61 consecutive trading days in the months of November 2002, December

2002 and January 2003. We present in Figure 6 the measures obtained from standard realised

volatility calculations, model with constant volatility, model with constant plus spline volatility

and model with constant, spline and stochastic volatility.

The patterns of the volatility measures are similar. The overall level of measures obtained

by models with SV are higher compared to realised volatility and the measure obtained from

model with constant volatility. For the case of realised volatility, this can be explained by the

fact that variations between, say, 5 minutes are not considered whereas in our SV modelling

framework all variations within the day are used. This clearly leads to higher estimates of

volatility. In the case of the model with constant volatility, the estimates are lower since they

are close to a mean of squared log returns which means that excessive variations are averaged

out.

The difference between the models with SV, one with micro-structure noise and another

without noise, seems relatively small. However it should be bared in mind that the number
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Figure 7: Sample autocorrelation functions of the volatility measures from Figure 6. The

correlation coefficients are therefore based on 61 datapoints.

of trades in each day are between 2000 and 5000. It is clear that the volatility estimates for

models with SV and noise are somewhat lower compared to models with SV but without noise

as the former model attributes part of the noise to micro-structure effects.

Finally, we display the sample autocorrelation functions for the daily volatility measures in

Figure 7. Although it is somewhat surprising that the correlogram for realised volatility is not

significant at any lag despite the widely accepted view that realised volatility is serially cor-

related and can effectively modelled as an autoregressive fractional integrated moving average

(ARFIMA) process, see, for example, Andersen, Bollerslev, Diebold, and Labys (2003). How-

ever, for the realised volatility series analysed in Koopman, Jungbacker, and Hol (2005), many

instances are encountered where the correlogram is also not significant when random subsam-

ples of length 100 are considered. Note that for the full sample of 1500 daily realised volatilies,

a significantly persistent correlogram is present. In the analysis of this paper, it appears that

model-based measures of volatility are persistent over days, especially when stochastic volatility

is modelled explicitly. The daily time series of model-based volatility measures are relatively

smooth and show to contain some level of persistency.
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5 Discussion and conclusion

We have proposed to measure volatility from high-frequency prices using a model-based frame-

work. A standard basic model is considered that captures the salient features of prices and

volatilities in financial markets. In particular, it accounts for micro-structure noise, an intra-

daily volatility pattern and stochastic volatility. Feasible estimation methods have been im-

plemented for this class of models and the illustration shows that this approach can work

effectively in determining the volatility in financial markets using tick-by-tick data. As a re-

sult, no information is lost as opposed to realised volatility for which prices are sampled at a

low frequency, say 1 or 5 minutes. Therefore a part of the variation in prices is lost in realised

volatility. When more detailed comparisons are made between realised volatility and the high-

frequency measures, it is shown that the supposed long memory property of realised volatility

may not be identified from a realtive small number of days whereas for high-frequency measures

the persistence of daily volatility estimates remain. However, more empirical investigation is

needed to obtain further insights on this issue. Nonparametric methods have also been pro-

posed recently to tackle the problem of micro-structure noise. However, as far as we know,

this paper presents a first attempt to analyse ultra high-frequency prices using a model that

simultaneously accounts for micro-structure noise and stochastic volatility.

Appendix A: Cubic spline for intra-daily volatility pattern

The intra-daily pattern of volatility is captured by a flexible function g(t). In this paper we

take g(t) as a cubic spline function. We follow Poirier (1976) in developing a cubic spline.

Given a mesh of, say 3, x values ({x0, x1, x2}) and a set of corresponding y values ({y0, y1, y2},
respectively), the y values for xj−1 ≤ x ≤ xj can be interpolated by

y = g(x) =
(xj − x)3

6(xj − xj−1)
z1,j−1+

(x− xj−1)
3

6(xj − xj−1)
z1,j +(xj−x)z2,j +(x−xj−1)z3,j +z4,j , j = 1, 2,

where zi,j are unknown coefficients for i = 1, 2, 3, 4 and j = 1, 2. The coefficients zi,j are

determined by restricting smoothness conditions on g(x) such as continuity at xj (j = 1, 2)

of the spline itself and its first and second derivatives. The resulting set of equations can be

solved in zi,j via standard matrix algebra. Given this solution for zi,j , the spline function can

be expressed as

g(x) =
2∑

j=0

wjyj,
2∑

j=0

wj = 1,

where weights wj depend on x and the mesh {x0, x1, x2}.
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Appendix B: Approximating model for SV with noise

Consider a non-linear state-space model where the state equation is linear and Gaussian, but the

distribution of the observations Y = (Y1, . . . , YN) conditional on the states h = (h1, . . . , hN) is

determined by a family of probability densities p(Yn|hn), n = 1, . . . , N . It is evident that the SV

models considered in the main text are special cases of this class of models, the interested reader

is referred to Durbin and Koopman (2001) for further examples. For the importance sampling

procedure a linear Gaussian approximating model is chosen with the same state equation as

the true model but with an observation equation given by

Yn = cn + hn + un, un ∼ NID(0, Vn), (17)

where the constants cn and Vn have to be chosen in a suitable manner. The approach advocated

in Durbin and Koopman (2001) consists of choosing cn and Vn for n = 1, . . . , N such that

the true smoothing density, p(h|Y ), and the smoothing density of the approximating model,

g(h|Y ;V ; c), have the same mode and have equal curvature around this mode. This means,

denoting V = (V1, . . . , Vn)
′ and c = (c1, . . . , cn)

′, that V and c are solutions to the system of

equations defined by
∂p(Y, h)

∂hn

=
∂g(Y, h; c, V )

∂hn

= 0,

and
∂2p(Y, h)

∂h2
n

=
∂2g(Y, h; c, V )

∂h2
n

,

for n = 1, . . . , N . The key to solving these equations and finding c and V lies in two obser-

vations. First of all, it is a well known fact that for a Gaussian distribution the mode simply

equals the mean. This means that, conditional on c and V , the mode, ĥ = (ĥ1, . . . , ĥn), can

be obtained by computing the mean of g(h|V ; c), a problem that is routinely handled by the

Kalman filter and smoother. On the other hand the fact that the marginal distribution of h is

equal for both the true as well as the approximating model, combined with the monotonicity

of the log transformation implies that the system of equations is equivalent to

∂ log p(Y |h)
∂hi

=
∂ log g(Y |h; c, V )

∂hi

= 0,

and
∂2 log p(Y |h)

∂h2
i

=
∂2 log g(Y |h, c, V )

∂h2
i

,

implying that conditional on the mode ĥ a solution to this set of equations is given by the

vectors V and c satisfying

∂ log p(Yn|hn)

∂hn

∣∣∣∣
hn=ĥn

=
∂ log g(Yn|hn; c, V )

∂hn

∣∣∣∣
hn=ĥn
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and
∂2 log p(Yn|hn)

∂h2
n

∣∣∣∣
hn=ĥn

=
∂2 log g(Yn|hn; c, V )

∂h2
n

∣∣∣∣
hn=ĥn

,

for n = 1, . . . , N . If we now use

∂ log g(Yn|hn; c, V )

∂hi
=
Yn − hn − cn

Vn
,

and
∂2 log g(Yn|hn; c, V )

∂h2
n

=
1

Vn
,

then these expressions imply

Vi =

(
∂2 log p(Yi|hi)

∂h2
i

)−1

, (18)

and

ci = Yi − hi − Vi
∂ log p(Yi|hi)

∂hi

. (19)

These two observations suggest the following algorithm

1. Choose a starting value h1 for ĥ.

2. For i = 1, 2, . . . use hi to obtain ci and V i using (18) and (19). Create a new proposal for

ĥ, hi+1, by applying the Kalman smoother to Y1, . . . , Yn for the model defined by (17),

with c = ci and V = V i.

3. Keep repeating 2 until ‖hi+1 − hi‖ < εc, where εc is some small threshold value.

To implement this algorithm for the Stochastic Volatility models considered in this paper the

only thing that remains to be done is to calculate the derivatives in (18) and (19). For the SV

model defined in (10) these derivatives can easily be seen to be

∂ log p(Yn|hn)

∂hn
=

1

2

(
Y 2

n

exp hn
− 1

)
,

∂2p(Yn|hn)

∂h2
n

= − Y 2
n

2 exphn
,

whereas for the SV model with micro-structure noise defined in (11) we get

∂ log p(Yn|hn)

∂hn
=

1

2
bn

(
Y 2

n

an
− 1

)
,

∂2 log p(Yn|hn)

∂h2
n

=

(
1

2
− bn

)
bnY

2
n

an
− 1

2

(
bn − b2n

)
,

where an = exp(hn) + σ2
U and bn = exp(hn) / an.
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