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The asymptotic and �nite sample distributions of
OLS and simple IV in simultaneous equations

Jan F. Kiviet and Jerzy Niemczyk
Tinbergen Institute, University of Amsterdam�

15 September 2006
JEL-classi�cation: C13, C15, C30

Keywords: e¢ ciency of an inconsistent estimator, invalid instruments,
simultaneity bias, weak instruments, 4D diagrams

Abstract

In practice structural equations are often estimated by least-squares, thus ne-
glecting any simultaneity. This paper reveals why this may often be justi�able and
when. Assuming data stationarity and existence of the �rst four moments of the
disturbances we �nd the limiting distribution of the ordinary least-squares (OLS)
estimator in a linear simultaneous equations model. In simple static and dynamic
models we compare the asymptotic e¢ ciency of this inconsistent estimator with
that of consistent simple instrumental variable (IV) estimators and depict cases
where �due to relative weakness of the instruments or mildness of the simultaneity
�the inconsistent estimator is more precise. In addition, we examine by simulation
to what extent these �rst-order asymptotic �ndings are re�ected in �nite sample,
taking into account non-existence of moments of the IV estimator. By dynamic
visualization techniques we enable to appreciate any di¤erences in e¢ ciency over
a parameter space of a much higher dimension than just two, viz. in colored an-
imated image sequences (which are not very e¤ective in print, but much more so
in live-on-screen projection).

1 Introduction

Relatively little attention has been paid in the econometric literature to the limiting
distribution of inconsistent estimators. Usually, when developing and rating alternative
estimators, consistency has been considered to establish a minimum requirement. This
seems very reasonable when actual samples are so large that estimation variance is

�Department of Quantitative Economics, Amsterdam School of Economics, University of Ams-
terdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands; phone +31.20.5254217; email
J.F.Kiviet@UvA.NL and J.Niemczyk@UvA.NL. Animated graphs (4D-diagrams) are available via
http://www.fee.uva.nl/ke/jfk.htm. We want to thank two anonymous referees and co-editor Jan Mag-
nus for helpful comments.
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relatively small. In �nite sample, however, it could well be the case that, when the bias
of alternative consistent and inconsistent estimators is of similar magnitude whereas the
inconsistent one has smaller variance than its consistent rival, the consistent estimator
is actually less precise according to reasonable criteria to be operationalized below. An
example where this occurs is in estimating dynamic panel data models, where so-called
fully e¢ cient GMM estimators may actually have larger mean squared error (MSE)
than inconsistent least-squares estimators, see Bun and Kiviet (2006). For a completely
speci�ed data generating process any such di¤erences can easily be assessed from Monte
Carlo experiments, but may only persuade practitioners to use inconsistent but actually
more precise estimators when at the same time techniques are developed to use them
accurately for inference purposes. The present study embarks on this by deriving the
asymptotic variance of an inconsistent estimator. We establish the limiting distribution
of such estimators and examine its relevance for actual �nite sample behavior.
We focus on least-squares and instrumental variable estimators in a simple linear

structural equation from a simultaneous system. An early �but incomplete �attempt
to obtain the limiting distribution of OLS in a simple speci�c case can be found in Phillips
and Wickens (1978, problem 6.10). A derivation in a more general context for an IV
estimator that may contain invalid instruments (note that OLS is thus a special case)
can be found in Maasumi and Phillips (1982). However, they do not provide an explicit
representation. Joseph and Kiviet (2005) make an attempt to derive such an explicit
representation for an inconsistent OLS estimator, but we will show here that this result
is incomplete. By developing a useful decomposition of the OLS estimation error and by
applying a rather standard form of the central limit theorem (CLT), we will derive here
a general representation of the limiting distribution of OLS in a linear regression model
where the regressors are stationary and may be contemporaneously correlated with the
disturbance term. We �nd this distribution to be normal and centered at the pseudo true
value (true coe¢ cient plus inconsistency) with an asymptotic variance that can simply
be expressed as a function of the asymptotic variance of a consistent OLS estimator, the
actual inconsistency and a measure for the simultaneity. It can easily be shown that in
general this asymptotic variance gets smaller (in a matrix sense) when the simultaneity
and thus the inconsistency become more severe. However, this is not the case for the
�rst-order asymptotic approximation to the MSE of OLS. We make comparisons with
the asymptotic variance of consistent IV implementations in speci�c simple static and
dynamic simultaneous models. By that we establish areas in the parameter space where
OLS beats IV on the basis of asymptotic MSE. In addition, we examine the accuracy
of these asymptotic approximations via simulation experiments. In order to ease the
presentation, absorption and interpretation of our extensive numerical �ndings they are
all put into colored 2D and 3D diagrams. All these diagrams are in fact single images
of animations (3D and 4D diagrams) which, when viewed as a �lm on a monitor via the
web, allow to depict the various most relevant phenomena in more than three dimensions.
In order to limit the size of this paper we make actual comparisons between OLS

and just identi�ed consistent IV estimation only, i.e. exploiting precisely as many valid
instruments as regressors. This implies that we have to take into account the non-
existence of moments of IV. At a later stage we also plan to examine overidenti�ed
cases and to compare consistent IV and inconsistent IV implementations which exploit
some invalid instruments. Then a recent study by Hall and Inoue (2003) will become
relevant. They examined generalized method of moments estimators in misspeci�ed
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models. Loosely formulated they de�ne misspeci�cation as exploiting orthogonality
conditions which are in fact false for any possible parameter value, whereas they exclude
the case where as many orthogonality conditions as parameters are employed. Hence,
they exclude the case of OLS when some of the regressors are in fact invalid instruments,
which is precisely the main focus of the present study.
Our major �nding is that inconsistent OLS often outperforms consistent IV when

the sample size is �nite. For some simple speci�c models we �nd that in samples with
a size as large as hundred observations the actual estimation errors of IV are notice-
ably smaller than those of OLS only when the degree of simultaneity is very substantial
and the instruments are far from weak. We also �nd that the �rst-order asymptotic
approximations to the error margins of IV and OLS are often very accurate in �nite
sample, except in those two cases where it has been shown recently that standard as-
ymptotics does not apply, viz. when instruments are very weak and when in dynamic
models roots are very close to unity; see, for instance, Bound et al. (1995) and Elliott
and Stock (2003), respectively. More generally, we re-establish that �rst-order asymp-
totic approximations are often (but not always) reasonably accurate in static stationary
models, whereas in dynamic models there is usually room for substantial improvement
by higher-order asymptotic approximations, see Kiviet and Phillips (2003).
The structure of this paper is as follows. In Section 2 we introduce the model and

some of its particulars, especially the standard asymptotic properties of OLS and IV
when the data are stationary. Next in Section 3 we derive the limiting distribution of
OLS when the regressand of the model is in fact jointly dependent with some of the
regressors. In Section 4 we discuss the measures that we will use to make comparisons
between the performance of di¤erent estimators. We address the issues that are rele-
vant when using the limiting behavior of an inconsistent estimator for such a comparison.
For representing the actual �nite sample performance obtained from Monte Carlo exper-
iments, we develop alternative measures for situations where IV has no �nite moments
and simply calculating the mean squared error from the simulations would be inap-
propriate. Next in Section 5 we present graphical results for various particular simple
models which are of great practical importance. In order to make models from speci�c
classes comparable over relevant parts of their parameter space, we impose particular
restrictions, such as regarding long-run multipliers and signal-to-noise ratios. Section 6
concludes.

2 Model, estimators and standard asymptotics

We examine method of moments estimators for the single linear structural model

y = X� + "; (1)

where y and " are n�1 vectors, X is a full column rank n�k matrix of regressors, which
may contain exogenous regressors but also endogenous variables (i.e. jointly dependent
with y) and lagged endogenous (i.e. weakly exogenous) variables. The k � 1 vector
� contains the unknown coe¢ cients of this relationship between y and X: These are
the parameters of primary interest. The relationship must be well-speci�ed, because we
assume that the disturbances are white noise (unconditionally), i.e.

E(") = 0;Var(") = �2"In: (2)

3



While the functional relationship of model (1) is supposed to be adequately speci�ed, we
examine the consequences of misspeci�cation of the chosen set of instrumental variables.
We focus on the speci�c case where the regressors X are used as instruments, i.e. OLS
is applied and any simultaneity is neglected.
The OLS estimator of model (1) is

�̂OLS = (X
0X)�1X 0y: (3)

Because we consider here exclusively models with stationary variables, �̂OLS will be
consistent and asymptotically e¢ cient only if E(X 0") = 0; and will yield an inconsistent
estimator otherwise. Then, consistent estimators could be obtained by exploiting instru-
mental variables W for which E(W 0") = 0: Here we will only consider as a competitor
of OLS the case where W is a full column rank n � k matrix, which yields the simple
(just identi�ed) IV estimator

�̂IV = (W
0X)�1W 0y: (4)

Matrix W should be such that W 0X has rank k:
We make standard mild stationarity assumptions yielding

X 0X = Op(n); W
0W = Op(n); W

0X = Op(n); (5)

and we de�ne (for n!1)

�X0X � plimn�1X 0X; �W 0W � plimn�1W 0W; �W 0X � plimn�1W 0X; (6)

which all are supposed to have full rank. This yields standard results on the asymptotic
distributions of the estimators, provided that the instruments actually used are valid,
i.e.

n1=2(�̂IV � �)! N(0; �2"�
�1
W 0X�W 0W�

�1
X0W ); if E(W 0") = 0; (7)

and
n1=2(�̂OLS � �)! N(0; �2"�

�1
X0X); if E(X 0") = 0: (8)

However, when E(X 0") 6= 0; OLS is inconsistent and its limiting distribution will be
di¤erent from (8).
Below, we restrict ourselves to cases where E(W 0") = 0 whereas E(X 0") may be non-

zero, i.e. the instruments W are valid and some of the regressors may be correlated
with the disturbance term. Although we will examine cases where some instruments
may be weak (then the columns of W 0X are almost linearly dependent), in this study
we will not consider alternative asymptotic sequences, as in (approaches referred to in)
Staiger and Stock (1997). We �rst want to obtain under standard regularity conditions
the counterpart of (8) when OLS is inconsistent and compare it with (7) and with actual
behavior of the estimators in �nite sample. No doubt these regularity conditions and
the speci�cation of our data generating scheme can be relaxed in various ways, as is
done in for instance Gallant and White (1988). However, the present strict framework
easily yields an explicit and calculable characterization of the limiting distribution of
inconsistent OLS.
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3 The asymptotic distribution of inconsistent OLS

We assume that the k� 1 vector � expresses the dependence of the current observations
in the regressor matrix X on the corresponding disturbances "; such that matrix X can
be decomposed as

X = �X + "�0; (9)

with
E( �X 0") = 0 and E(X 0") = n�2"�: (10)

Note that this does not exclude cases where X contains lagged endogenous variables.
These will be a part of the component �X and have a corresponding element in � equal to
zero. Only current endogenous regressors will have corresponding elements of � di¤erent
from zero. Decomposition (9) with properties (10) implies

�X0X = plimn
�1( �X 0 �X + �X 0"�0 + �"0 �X + �"0"�0) = plimn�1 �X 0 �X + �2"��

0:

We de�ne � �X0 �X � plimn�1 �X 0 �X and �nd

� �X0 �X = �X0X � �2"��0: (11)

Below, we will often condition on (the rows of) �X:
The probability limit of �̂OLS will be denoted as �

�
OLS; for which we obtain

��OLS � plim �̂OLS = � + ��1X0X plimn
�1X 0" = � + �2"�

�1
X0X�: (12)

This is the pseudo true value of �̂OLS: Now, exploiting (1), (12) and (10), we obtain

�̂OLS � ��OLS = (X 0X)�1X 0"� �2"��1X0X� (13)

= (X 0X)�1[X 0"� E(X 0")] + �2"[(n
�1X 0X)�1 � ��1X0X ]�:

We examine the limiting behavior of the two terms of this expression. The �rst term of
the �nal expression of (13) has factor

X 0"� E(X 0") = �X 0"+ �("0"� n�2"); (14)

which has two components. Writing �X 0
i for the i

th row of �X; and making use of the
uncorrelatedness of the elements of the disturbance vector "; the Central Limit Theorem
(CLT) yields for the �rst component of (14)

n�1=2 �X 0" = n1=2
�
1

n

Xn

i=1

�Xi"i

�
! N

�
0; plim

1

n

Xn

i=1
Var( �Xi"i)

�
; (15)

where, conditioning on �Xi, Var( �Xi"i) = �
2
"
�Xi
�X 0
i; so that the asymptotic variance equals

�2"� �X0 �X :
Upon assuming E("4i ) = �4�

4
"; which yields variance (�4 � 1)�4" for the mutually

uncorrelated zero mean scalars ("2i � �2"); the CLT also leads to

n�1=2("0"� n�2") = n1=2
�
1

n

Xn

i=1
("2i � �2")

�
! N[0; (�4 � 1)�4"] (16)
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for the second component of (14).
However, to derive the asymptotic distribution of (14), we should apply the CLT to

the two components jointly. After appropriate scaling, we obtain

n�1=2 [X 0"� E(X 0")] = n1=2
�
1

n

Xn

i=1

�
�Xi"i + �("

2
i � �2")

��
! N

�
0; plim

1

n

Xn

i=1
Var

�
�Xi"i + �("

2
i � �2")

��
;

because the vectors of which we consider the sample mean are mutually uncorrelated.
When we also assume E("3i ) = �3�

3
"; we obtain

Var
�
�Xi"i + �("

2
i � �2")

�
= �2" �Xi

�X 0
i + �

3
"�3( �Xi�

0 + � �X 0
i) + �

4
"(�4 � 1)��0:

Hence, using � �X0� � plim 1
n

Pn
i=1

�Xi = plim 1
n
�X 0�; where � is an n � 1 vector with all

elements unity, we �nd

n�1=2 [X 0"� E(X 0")]! N[0; �2"� �X0 �X + �
3
"�3(� �X0��

0 + ���0 �X) + �
4
"(�4 � 1)��0]:

Note that � �X0� = �X0�: Hence, when the �rst column of X �and thus of �X �equals
� then � �X0� is equal to the �rst columns of � �X0 �X and �X0X . So, for the appropriately
scaled �rst component of (13), i.e.

(n�1X 0X)�1n�1=2 [X 0"� E(X 0")] ;

we �nd that it has asymptotic distribution

N[0; �2"�
�1
�X0 �X

+ �3"�3�
�1
�X0 �X
(� �X0��

0 + ���0 �X)�
�1
�X0 �X

+ �4"(�4 � 1)��1�X0 �X
��0��1�X0 �X

]: (17)

Under normality of the disturbances "; which implies �3 = 0 and �4 = 3; this specializes
to formula (17) of Joseph and Kiviet (2005), which �as emerges here �incorrectly omits
to take the second component of the �nal expression of (13) into account.
In order to obtain an improved and complete result for the asymptotic distribution

of �̂OLS (which is also quite general, as it does not impose normality), we should not
proceed now by deriving the asymptotic distribution of the second component of (13)
separately, since we have to apply the (standard) CLT to both components jointly.
Therefore, we start o¤ again from �̂OLS � ��OLS; which we scale and decompose now,
using (10), as follows

n1=2(�̂OLS � ��OLS) = n1=2(X 0X)�1X 0"� �2"n1=2��1X0X�

= (n�1X 0X)�1n�1=2[X 0"� E(X 0")] + �2"n
1=2[(n�1X 0X)�1 � ��1X0X ]�

= (n�1X 0X)�1fn�1=2[X 0"� E(X 0")]� �2"n1=2[(n�1X 0X)� E(n�1X 0X)]��1X0X�

��2"n1=2[E(n�1X 0X)� �X0X ]�
�1
X0X�g: (18)

In the �nal expression the factor in curly brackets has three terms. The third term,
which is non-random, contains a factor that can be simpli�ed by using (9), (10) and
(11), viz.

n1=2[E(n�1X 0X)� �X0X ] = n
1=2[E(n�1 �X 0 �X)� � �X0 �X ]: (19)
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In what follows we will neglect the third term because of factor (19). Hence, we assume
that it is o(1): This certainly holds under weak stationarity of the regressors, which
implies that E( �Xi

�X 0
i) = Q is constant, so that both E(n�1 �X 0 �X) = Q and � �X0 �X =

plimn�1
Pn

i=1
�Xi
�X 0
i = E( �Xi

�X 0
i) = Q; giving E(n�1 �X 0 �X) � � �X0 �X = O for any positive

n; so that n1=2[E(n�1 �X 0 �X) � � �X0 �X ] = O; also in the limit. We want to remark that
assumption (5) as such is not su¢ cient1 for (19) to be o(1):
The remaining two terms within curly brackets in (18) are of �nite order in probability

and, both separately (we showed that already for the �rst one) and jointly, they have a
limiting normal distribution, as we shall prove now. Using (9) and (10) we �nd

X 0X � E(X 0X) = �X 0"�0 + �"0 �X + �("0"� �2"n)�0;

and, using (14), we may write the two �rst terms between curly brackets in (??) as

n�1=2[X 0"� E(X 0")]� �2"n1=2[(n�1X 0X)� E(n�1X 0X)]��1X0X� (20)

= n�1=2[ �X 0"+ �("0"� n�2")]� �2"n�1=2[ �X 0"�0 + �"0 �X + �("0"� �2"n)�0]��1X0X�

= n�1=2[A0"+ a("0"� n�2")];

where A is an n� k matrix and a a k � 1 vector, viz.

A0 � [(1� �2"�0��1X0X�)Ik � �2"��
0��1X0X ]

�X 0; (21)

a � (1� �2"�0��1X0X�)�: (22)

Denoting the ith row of A as A0i we can now write (20) as a scaled sample mean of
uncorrelated random vectors Ai"i + a("2i � �2") and apply the standard CLT, giving

n1=2
�
1

n

Xn

i=1

�
Ai"i + a("

2
i � �2")

��
! N

�
0; plim

1

n

Xn

i=1
Var

�
Ai"i + a("

2
i � �2")

��
:

(23)
Since Var[Ai"i + a("2i � �2")] = �2"AiA0i + �3"�3(Aia0 + aA0i) + �4"(�4 � 1)aa0; we �nd that
n1=2(�̂OLS � ��OLS) has limiting distribution

N

�
0; �2"�

�1
X0X

�
plim

1

n
[A0A� �"�3(A0�a0 + a�0A)] + �2"(�4 � 1)aa0

�
��1X0X

�
: (24)

For the special case with normal disturbances, and exploiting (11), the asymptotic vari-
ance specializes to

�2"�
�1
X0X [(1� �2"�

0��1X0X�)Ik � �2"��
0��1X0X ]� �X0 �X � (25)

[(1� �2"�0��1X0X�)Ik � �2"��1X0X��
0]��1X0X + 2�

4
"(1� �2"�0��1X0X�)

2��1X0X��
0��1X0X

= (1� �2"�0��1X0X�)[(1� �2"�
0��1X0X�)�

2
"�

�1
X0X � (1� 2�2"�

0��1X0X�)�
4
"�

�1
X0X��

0��1X0X ]:

Note that when � = 0; i.e. when OLS is consistent and e¢ cient, the above formula
yields �2"�

�1
X0X for the asymptotic variance, as it should. Also note that �2"�

0��1X0X�

1This is illustrated by the following simple, but rather pathologic, example. Let �X contain just one
variable, such that �X2

i = 1 +
p
i �

p
i� 1: Then n�1

Pn
i=1

�X2
i = 1 + n�1=2: Hence, � �X0 �X = 1; but

n1=2(n�1
Pn

i=1
�X2
i � � �X0 �X) = 1; for any n: Thus, we require slightly faster convergence of n

�1 �X 0 �X to
� �X0 �X ; such that their discrepancy is o(n

�1=2):
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constitutes the population R2 of the auxiliary regression of " on X; denoting the OLS
estimator of this regression as �̂ = (X 0X)�1X 0"; we �nd

R2";X � plim
�̂
0
X 0X�̂

"0"
= plim

"0X(X 0X)�1X 0"

"0"
= �2"�

0��1X0X�; (26)

which expresses the seriousness of the simultaneity. Substituting (26) and (12) result
(25) implies

AVarN(�̂OLS) = n
�1(1�R2";X)[(1�R2";X)�2"��1X0X�(1�2R2";X)(�

�
OLS��)(��OLS��)0]; (27)

where the superscriptN indicates that we assumed that the �rst four moments of the dis-
turbances conform to normal, and where 0 < 1�R2";X � 1: Because (��OLS��)(��OLS��)0
is positive semi-de�nite, we �nd that as a rule, and certainly when R2";X < 0:5; simul-
taneity has a mitigating e¤ect on the asymptotic variance of the OLS estimator. This
is plausible because by the pseudo true value also part of the disturbances is explained,
and hence the e¤ective signal-to-noise ratio becomes larger under simultaneity.
For the case with symmetric disturbances (�3 = 0) and excess kurtosis (�4 6= 3) the

asymptotic variance (27) changes to

n�1(1�R2";X)f(1�R2";X)�2"��1X0X� [(4��4)�(5��4)R2";X ](�
�
OLS��)(��OLS��)0g: (28)

Assuming that the �rst column of X equals � so that ��1X0X�X0� = e1 = (1; 0; :::; 0)0 is
a unit vector whereas �0e1 = 0, then in case of skewness, the extra contribution to the
variance of the limiting distribution is

n�1�3"�3(1�R2";X)2[e1�0��1X0X + �
�1
X0X�e

0
1]: (29)

Note that �in agreement with established knowledge �the contributions due to �3 6= 0
or �4 6= 3 are nil when � = 0:
An expression that can be shown to be similar to (27) can be found in Rothenberg

(1972). However, his formula (4.7), which is employed in Hahn and Hausman (2003),
is much more involved and therefore hard to interpret. By the decomposition (9) we
avoided an explicit speci�cation of the variance matrix of the disturbances in the reduced
form forX; as employed by Rothenberg (1972), and then from (25) it is easy to recognize
that, apart from �2"�

�1
X0X ; the only determining factors of the asymptotic variance are

the very meaningful characteristics: (i) the inconsistency ��OLS � � and (ii) a measure
for the simultaneity R2";X : The incorrect result in Joseph and Kiviet (2005) yielded the
expression n�1[�2"�

�1
X0X + (�

�
OLS � �)(��OLS � �)0] for AVar(�̂OLS): It can be shown that

the di¤erence between the incorrect and the correct formula is positive semi-de�nite.
Hence, the area in the parameter space where OLS beats IV on the basis of their limiting
distribution is actually even larger than indicated in that earlier study.

4 Measures for estimator accuracy

We want to use characteristics of the limiting distributions of OLS and IV estimators
in order to express the essentials of their location and spread, so that we can make
useful comparisons, which hopefully will also prove to approximate their relative qualities
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in �nite samples reasonably well. Apart from using �rst-order asymptotic theory to
approximate these �nite sample characteristics, in addition we shall use simulation to
assess them. The asymptotic distributions of OLS and IV in the models to be considered
are all normal and have �nite moments.
Let for the generic estimator �̂ of �; with pseudo true value ��; the asymptotic

distribution be given by
n1=2(�̂ � ��)! N(0; V ): (30)

Under a complete speci�cation of the data generating processes for both y and the vari-
ables occurring in X and W; matrices like �X0X and �W 0X and vector � are determined
just by the model parameters. Then all elements of both �� and V depend on the pa-
rameters only. The �rst order asymptotic approximation to the variance of �̂ is given
by

AVar(�̂) � n�1V; (31)

and to its bias by �� � �: Hence, the �rst-order asymptotic approximation to the MSE
(mean squared error) can be de�ned as

AMSE(�̂) � n�1V + (�� � �)(�� � �)0; (32)

which for a consistent estimator simpli�es to n�1V:
The simple IV estimators �̂IV considered in this study do not have �nite moments in

�nite sample and hence their bias E(�̂ � �), their variance Var(�̂); and their MSE, i.e.

MSE(�̂) � E(�̂ � �)(�̂ � �)0 = Var(�̂) + E(�̂ � �)E(�̂ � �)0; (33)

do not exist. This makes the usual measures of the actual distribution of �̂; calculated
on the basis of Monte Carlo sample moments, unsuitable. Denoting the series of mutu-

ally independent simulated realizations of the estimator by �̂
(1)
; :::; �̂

(R)
; where R is the

number of replications, the habitual Monte Carlo estimator of E(�̂) is the Monte Carlo
sample average

ME(�̂) � R�1
XR

r=1
�̂
(r)
: (34)

However, ME(�̂) will not converge for R ! 1 if E(�̂) does not exist. Self-evidently,
similar problems arise for the Monte Carlo assessment of the variance, i.e.

MVar(�̂) � 1

R� 1
XR

r=1
(�̂
(r) �ME(�̂))(�̂(r) �ME(�̂))0; (35)

and for the empirical (Monte Carlo) MSE, i.e.

MMSE(�̂) � 1

R

XR

r=1
(�̂
(r) � �)(�̂(r) � �)0; (36)

if the corresponding moments do not exist. Therefore, to �nd expressions for estimator
quality obtained fromMonte Carlo results such that they will always summarize location
and spread in a meaningful way, we will choose measures here which are based directly
on characteristics of the empirical Monte Carlo density or the empirical distribution
function F̂i of the ith element of the vector �̂; such as the median and other quantiles.
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For any real argument value x the empirical distribution function of �̂i; obtained
from the Monte Carlo experiments, is de�ned as

F̂i(x) �
1

R

XR

r=1
I(�̂

(r)

i � x); (37)

where I(�) is the Kronecker indicator function. Then the empirical median or sec-
ond quartile is F̂�1i (0:5); and the �rst and third empirical quartiles are F̂�1i (0:25) and

F̂�1i (0:75); respectively. These qth quartiles can easily be obtained after sorting the �̂
(r)

i

in non-decreasing order and then taking (assuming R is a multiple of 100)

F̂�1i (q=4) = 0:5(�̂
(qR=4)

i + �̂
(1+qR=4)

i ); q = 1; 2; 3: (38)

To mimic the RMSE (root mean squared error) criterion, which is
p
�2i + b

2
i ; when �i

and bi are the standard deviation and the bias of �̂i respectively, a similar alterna-
tive empirical measure, not requiring existence of �nite moments, seems the following.
We replace �i by q�0:75[F̂

�1
i (0:75) � F̂�1i (0:25)]=2; for some real number q�0:75; and bi by

F̂�1i (0:5) � �i: We can choose q�0:75 such that in case an estimator is in fact normally
distributed the criterion conforms precisely to RMSE. Indicating the standard normal
distribution function by � this requires q�0:75[�

�1(0:75)���1(0:25)]=2 = 1; which results
in q�0:75 = (0:67499)

�1 = 1:4815: As an alternative to the RMSE we could then useq
(q�0:75)

2[F̂�1i (0:75)� F̂�1i (0:25)]2=4 + [F̂�1i (0:5)� �i]2:

However, we do not necessarily have to use the quartiles. More generally, for any 0:5 <
p < 1; we may de�ne

d(p) � [��1(p)� ��1(1� p)]=2:
Let ��;� be the distribution function of N(�; �2); then

��1�;�(p)� ��1�;�(1� p) = 2�d(p):

Now as an assessment �̂i(p) from an empirical distribution F̂i that should mimic �i (if
this exists), we may use

�̂i(p) �
1

2d(p)
[F̂�1i (p)� F̂�1i (1� p)]: (39)

This will work perfectly well for any 0:5 < p < 1 if F̂i is in fact normal. We have
experimented with a few values of p; trying Chi-squared (skewed) and Student (fat
tailed) distributions, and found especially p = 0:841345; for which d(p) = 1; to work
well. Therefore, when �nite moments do not exist, instead of RMSE, we will use what
we call the �empirical quantile error distance�, which we de�ne as

EQED(�̂i) �
q
[F̂�1i (0:841345)� F̂�1i (1� 0:841345)]2=4 + [F̂�1i (0:5)� �i]2: (40)

Below, we will calculate this for alternative estimators for the same model (and same
parameter values and sample size), including the consistent and asymptotically optimal
estimator, and then depict the logarithm of the ratio (with the asymptotically optimal in
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the denominator), so that positive and negative values directly indicate which estimator
has more favorable EQED criterion for particular parameter values. Having smaller
EQED will be interpreted as being more accurate in �nite sample. Hence, negative
values for the log of the ratio will indicate that the asymptotically optimal is actually
less accurate in �nite sample.
To examine the accuracy in �nite sample of the precision criteria obtained from the

limiting distribution we can calculate the log ratio of EQED(�̂i) and the asymptotic root
mean squared error

ARMSE(�̂i) �
p
n�1Vii + (�

�
i � �i)2: (41)

For an estimator with �nite moments we can simply take the log ratio of the Monte
Carlo root mean squared error

MRMSE(�̂i) �
r
1

R

XR

r=1
(�̂
(r)

i � �i)2 (42)

and ARMSE(�̂i).
Note that for an inconsistent estimator, where ��OLS;i 6= �i; the ARMSE criterion

will converge for n ! 1 to j ��OLS;i � �i j6= 0; whereas it will converge to zero for any
consistent estimator. Hence the criterion follows the logic that, since estimator variance
gets smaller in larger samples irrespective of whether the estimator is consistent, the
larger the sample size the more pressing it becomes to have a consistent estimator. On
the other hand, when sample size is moderate, an inconsistent estimator with possibly
a substantial bias in �nite sample but a relatively small variance could well be more
attractive than a consistent estimator, especially when the latter�s distribution has fat
tails, and is not median unbiased with possibly a wide spread. In the models to be
de�ned below, we will �rst examine the log ratios of the ARMSE criterion for OLS and
IV, with IV in the denominator, so that positive values of this ratio indicate parameter
values for which IV is more accurate on the basis of �rst-order asymptotic theory. Next
we will examine whether the �ndings from �rst-order asymptotic theory are vindicated
in �nite sample by simulation experiments.

5 Pictured parametrizations

In this section we specify a few very simple speci�c models that allow to parametrize
the asymptotic characteristics of both OLS and IV. These models will be simulated too
in order to assess the actual behavior in �nite sample and to examine the accuracy of
the asymptotic approximations. We restricted our study to cases where disturbances
are normally distributed. In all simulations we use the same set of random drawings
for the various disturbance vectors for all grid-points in the graphs. To further reduce
the experimental variance, exploiting the assumed symmetry of the disturbances, we
also made use of the simple variance reduction method of re-using vectors of normal
random numbers by simply changing their sign. In dynamic models, where we need
initial values, we generated the start-up observations by drawing from the stationary
distribution. The number of Monte Carlo replications for each parameter combination
is 1,000,000 (for denisties at n = 100); 100,000 (for densities at n = 1000) and 10,000
for the 3-D pictures. The diagrams presented below are single images from animated
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versions, which are available via the world-wide-web and allow to inspect the relevant
phenomena over a much larger part of the parameter space.
For the simplest of the static models that we examine below some analytic �nite

sample properties are available; see Woglom (2001) and Hillier (2005) for some recent
contributions and further references. We have not made use of these and employed
straightforward Monte Carlo simulation, which as yet seems the only option for assessing
�nite sample properties in the more complex, though more relevant, dynamic models.

5.1 A basic static model

We commence by considering the most basic example we can think of, viz. a model with
one regressor and one valid and either strong or weak instrument. The two variables
x and w, together with the dependent variable y, are jointly IID (independent and
identically distributed) with zero mean and �nite second moments. This case may be
denoted as

yi = �xi + "i; (43)

xi = �xi + �"i; (44)

where � is scalar now. Data for y; x and w can be obtained by the generating scheme

"i = �"v1i;

�xi = �1v2i;

wi = �2v2i + �3v3i;

where vi = (v1i; v2i; v3i)0 � IID(0,I3): Thus0@ "i
xi
wi

1A = Pvi =

0@ �" 0 0
�"� �1 0
0 �2 �3

1A vi; (45)

giving ("i; xi; wi)0 � IID(0; PP 0):
We will focus on this model just for the case � = 1: This is merely a normalization

and not a restriction, because we can imagine that we started from a model yi =���xi+"i;
with �� 6= 0; and rescaled the explanatory variable such that xi = �xi=��: We can impose
some further normalizations on the 5 parameters of P; because, without loss of generality,
we may take

�" = 1; (46)

�2w = �22 + �
2
3 = 1: (47)

By (46) we normalize all results with respect to �"; and because the IV estimator is
invariant to the scale of the instruments (only the space spanned by w is relevant) we
may impose (47) which will be used to obtain the value

�23 = 1� �22 � 0: (48)
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From the above we �nd the following data variances, covariances and related correlations:

�2x = �
2 + �21 �2y = �

2 + 2� + 1 + �21
�x" = � �x" = �=

p
�2 + �21

�w" = 0 �w" = 0

�xw = �1�2 �xw = �1�2=
p
�2 + �21

9>>=>>; (49)

Note that these depend on only 3 remaining free parameters: viz. �; �1 and �2; and so
will the expressions for asymptotic variance (together with �3 and �4; the 3rd and 4th
moments of v1i).
However, instead of designing our results in terms of the three parameters �; �1 and

�2, we prefer another parametrization. We shall use as a base of the design parameter
space for this simple model, the three parameters: �x"; �xw and PF; where

PF = �2x=(�
2
x + 1) � 0: (50)

The latter parameter expresses the population �t of the regression of interest; it is equal
to the variance of the explanatory part as a fraction of that variance plus the disturbance
variance. Note that the denominator di¤ers from �2y: By �xing PF; we basically �x the
ratio �2�2x=�

2
" = �

2
x = PF=(1� PF ); which is the signal-noise ratio.

This reparametrization is useful because the parameters �x"; �xw and PF have a
direct econometric interpretation, viz. the degree of simultaneity, instrument strength
and model �t, respectively. By varying the three parameters j�x"j < 1; j�xwj < 1 and
0 < PF < 1; we can examine the whole parameter space of this model. For given values
of PF and �x" one can obtain � and �1; i.e.

� = �x"

���pPF=(1� PF )��� ; (51)

�1 =

����qPF=(1� PF )� �2���� = ���pPF (1� �2x")=(1� PF )��� : (52)

With �xw we can now obtain

�2 = �xw=
���p1� �2x"��� (53)

and, of course,

�3 =

����q1� �22���� = ���p(1� �2x" � �2xw)=(1� �2x")��� ; (54)

so that �2x" + �
2
xw < 1:

In this simple model we have

��OLS � � = �
�2x
= �x"

���p(1� PF )=PF ���
R2";X =

�2

�2x
= �2x"

�X0X = �
2
x = PF=(1� PF )

��1W 0X�W 0W�
�1
X0W = �2w=�

2
xw = 1=�

2
xw�

2
x = (1� PF )=(PF � �2xw)

9>>>=>>>; (55)

giving for the case where all variables are (almost) normally distributed

AVarN(�̂OLS) = n
�1(1� �2x")(1� 2�2x" + 2�4x")(1� PF )=PF: (56)
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This yields
@AVarN(�̂OLS)

@�2x"
= �n�1(3� 8�2x" + 6�4x")(1� PF )=PF;

which is strictly negative, because the polynomial factor between parentheses is strictly
positive. Therefore, the asymptotic variance of OLS decreases when the simultaneity
aggravates, even when R2";X � 0:5 (compare with the �nding below (27)).
Result (56) implies for the �rst-order asymptotic approximation to the mean squared

error under normality of the disturbances the speci�c result

AMSEN(�̂OLS) = [n
�1(1� �2x")(1� 2�2x" + 2�4x") + �2x"](1� PF )=PF; (57)

from which we �nd @
@�2x"

AMSE(�̂OLS) > 0 for n > 3: So, �rst order asymptotic theory
predicts that in all cases of practical interest the reduction in variance due to an increase
in simultaneity will be o¤set by the squared increased inconsistency.
We want to compare expression (57) with the corresponding quantity for IV

AVar(�̂IV ) = (1� PF )=(n� PF � �2xw): (58)

Note that, unlike AVar(�̂OLS); this is invariant with respect to �x": According to �rst
order asymptotic criteria, OLS will be more accurate than IV for all combinations of
parameter values and n satisfying AMSEN(�̂OLS) < AMSE(�̂IV ) = AVar(�̂IV ); i.e. for

�2xw[(1� �2x")(1� 2�2x" + 2�4x") + n�2x"] < 1: (59)

Note that this watershed between IV and OLS as far as AMSE is concerned is invariant
with respect to PF; and so is the relative (but not the absolute) di¤erence in AMSE.
Self-evidently (59) shows that for �x" = 0 OLS will always be more accurate. It is also
obvious that IV runs into weak instrument problems when �2xw gets close to zero. When
�2xw = 0 the equation is not identi�ed. For IV this implies an exploding variance but not
for OLS, where AMSEN(�̂OLS) is not a¤ected by �

2
xw: So, although obtaining meaningful

inference on � will be an illusion, �̂OLS has still a well-de�ned distribution.
Since

�̂OLS � � =
q

1�PF
PF

Pn
i=1

�
�x"vi1+

p
1��2x"vi2

�
vi1Pn

i=1

�
�x"vi1+

p
1��2x"vi2

�2 ;

�̂IV � � =
q

1�PF
PF

Pn
i=1(�2vi2+�3vi3)vi1Pn

i=1(�2vi2+�3vi3)
�
�x"vi1+

p
1��2x"vi2

� ;
(60)

the �nite sample distributions of both �̂OLS and �̂IV are determined by PF in a very
straightforward way. In fact, the shape of the densities is not a¤ected, but only the
scale. This is also the case for the inconsistency, see the �rst formula in (55), and thus
carries over to the asymptotic variances (27) and (58) too. From (60) we can also see
that due to the symmetry of vi; the densities of both �̂OLS and �̂IV are not a¤ected by
the sign of �x" nor by the sign of �xw; so we will examine positive values only.
The actual values of ��OLS and of (the square root of) AMSE

N(�̂OLS) and AVar(�̂IV )
could be calculated and tabulated now for various values of n; PF; �x" and �xw and then
(to �nd out how accurate these �rst-order asymptotic approximations are) be compared
with simulation estimates for the expectation (or median) and the standard error (or
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interquartile range). We have chosen, however, for a visual and more informative repre-
sentation of these phenomena by focussing both on density functions and on graphs of
ratios of the performance measures mentioned in section 4. We will portray these over
the relevant parameter space. From the foregoing it is clear that varying PF will have a
rather straightforward and relatively neutral e¤ect, so we focus much more on the e¤ects
of �x"; �xw and n:
In the Figures 1 and 2 densities are presented, both for OLS (red or grey lines) and

IV (black or dark lines), both for the actual empirical distribution (solid lines) and for
its asymptotic approximation (dashed lines). For the latter we take

�̂OLS
a� N

�
��OLS; n

�1AVarN(�̂OLS)
�
;

�̂IV
a� N

�
�; n�1AVar(�̂IV )

�
:

(61)

In the simulations we took vi � IIN(0; I3). From the results we may expect to get quick
insights into issues as the following. For which combinations of the design parameter
values are the actual densities of �̂OLS and �̂IV close (regarding mean/median, spread,
symmetry, unimodality, tail behavior) to their normal approximations (61)? Is there a
qualitative di¤erence between the accuracy of the OLS and the IV asymptotic approxi-
mations? Do these densities already disclose where IV seems to perform beter (or worse)
than OLS? Hence, we focus on the correspondences and di¤erences in shape, location
and spread of the two pairs of asymptotic and empirical distributions.
Both Figures 1 and 2 consist of eight panels. The top four concern mild simultaneity

(�x" = 0:2) and the bottom four more severe simultaneity (�x" = 0:5): In each block of
four the panels concern the cases �xw = 0:1; 0:5; 0:75 and 0:85 respectively. Each panel
contains the four densities for the case PF = 0:5. Figure 1 has n = 100 and Figures
2 has n = 1000: We �nd that for a relatively strong instrument, i.e. �xw � 0:5; and
relatively strong simultaneity, i.e. �x" � 0:5; the IV estimator is clearly more attractive
than the OLS estimator, when n � 100. However, for �x" = 0:2 this is less clear-
cut. For a rather weak instrument (�xw = 0:1) the density of IV is so �at that it is
obvious that OLS is more attractive. Then the bias and inconsistency of OLS do not
seem to disqualify the OLS estimator in comparison to IV, because OLS has a relatively
moderate variance. The quality of the asymptotic approximation of IV is very bad (as is
well known) when the instrument is extremely weak. Self-evidently it improves with the
sample size. Especially at n = 100 it is noticeable that the asymptotic approximation of
IV does not represent the asymmetry of the actual empirical distribution nor the fatness
of at least one of its tails. The asymptotic approximation to the actual distribution of
OLS is much better when �x" = 0:2 than for �x" = 0:5; where, even for n = 1000; the
actual and asymptotic densities show substantial discrepancy. Note that each block of
four panels contains the same two OLS densities (because they are not a¤ected by �xw),
but just on a di¤erent scale.
To examine more closely for which parameter values the performance measures de-

veloped in section 4 show a positive (negative) di¤erence between the precision of OLS
and IV in �nite sample we produce here 3D graphs (and 4D graphs on the web) of

log
�
EQED(�̂OLS)=EQED(�̂IV )

�
; (62)

for �xed values of PF and n over the (�x"; �xw) plane. This log-ratio (62) is positive
when IV performs better (yellow/amber surface) and negative (light/dark blue surface)
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when OLS is more precise. The four panels in Figure 3 correspond to n = 20; 50, 100
and 200 respectively. We took PF = 0:9 but this ratio is invariant with respect to
PF: These graphs illustrate that IV performs better when both �x" and �xw are large
in absolute value, i.e. when both simultaneity is severe and the instrument relatively
strong. The (blue) area where OLS performs better diminishes when n increases. Where
the ratio equals 2, IV is exp(2)� 100% or about 7.5 times as accurate as OLS, whereas
where the log-ratio is less than -3 OLS is more than exp(3) (i.e. about 20) times as
accurate as IV. We notice that over a substantial area in the parameter space (which
obeys �2x" + �

2
xw < 1) the OLS e¢ ciency gains over IV are much more impressive than

its potential losses can ever be.
A measure for the weakness of an instrument is the �rst-stage population F value

(see, for instance, Staiger and Stock, 1997), which in this model is

F � n�
2
x � �2x(1� �2xw)
�2x(1� �2xw)

= n
�2xw

1� �2xw
: (63)

Instrument weakness is associated with small values of F; say F � 10: The latter implies
here �2xw � 10=(n + 10) or j�xwj � 0:58 (for n = 20) and j�xwj � 0:3 (for n = 100).
From Figure 3 we see that this criterion lacks the in�uence of �x" in order to be useful
to identify all the cases where IV performs better/worse than OLS.
Figure 4 examines the quality of the asymptotic approximation of the empirical OLS

distribution on a RMSE criterion. The 3D graphs represent

log
�
ARMSE(�̂OLS)=MRMSE(�̂OLS)

�
; (64)

hence positive values indicate pessimism of the asymptotic approximation (actual RMSE
smaller than �rst-order asymptotic approximation) and negative values optimism. Self-
evidently �x" has no e¤ect, but apart from the closeness of the densities as represented
in the earlier �gures, the relative size of ��OLS � � has. We �nd that the asymptotic ap-
proximation of MSE developed in this study is especially accurate when the simultaneity
is serious.
The above model can easily be generalized, for instance by including another ex-

planatory variable for yt or by adding further exogenous regressors in the generating
scheme for �xt; so that more valid instruments are available. Or we can generalize the
generating processes for zt or �xt into AR(1) processes. Then zt�1 and xt�1 establish extra
valid instruments. Note, however, that any extra valid instruments will be e¤ective and
improve the asymptotic performance only if they are also incorporated with a non-zero
coe¢ cient in the generating scheme for xt: Below we introduce dynamic aspects into the
above model in two steps.

5.1.1 A basic semi-dynamic model

Below we stick to the simple static model for yt; but make the reduced form equa-
tion for its stationary explanatory variable xt dynamic by choosing an AR(1) scheme
with autoregressive coe¢ cient j � j< 1. Then the model can be written (we index the
observations now by t = 1; :::; n)

yt = �xt + "t;
xt = �xt�1 + �t + �"t;

�
(65)
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where "t � IID(0,1) is independent of �t � IID(0; �2�): Generating these for t = 0; :::; n
we can obtain a starting value

x0 = (�0 + �"0)=
p
1� �2: (66)

Taking wt = xt�1; this yields (again �xing � = 1)

�2x = (�
2 + �2�)=(1� �2) �2y = �

2
x + 2� + 1

�x" = � �x" = �=�x
�w" = 0 �w" = 0
�xw = ��

2
x �xw = �

9>>=>>; (67)

Using again the same base for the parametrization, i.e. �x"; �xw and PF; where now
�2x = �

2
w = PF=(1� PF ); we �nd the coe¢ cients of the generating scheme from

� = �xw
� = �x"

p
PF=(1� PF )

�2� = (1� �2x" � �2xw)PF=(1� PF )

9=; (68)

The latter result highlights that in this model we again have �2x"+�
2
xw < 1 and regarding

asymptotic performance we �nd again the results of (56), (57), (58) and (59), because
(55) still holds.
We observed that the �nite sample distributions too are little a¤ected by the serial

dependence in the stationary series for yt and xt in this model, because they were found
to be virtually similar to those of the static model, especially when �xw is small. Hence,
also for this model, see Figure 5, we �nd a very substantial area in the parameter
space where OLS beats IV, and again the population F statistic of the reduced form
cannot properly identify that area. Figure 6 indicates that changing the characteristics
of the instrument xt�1 through �xw also a¤ects the OLS estimator now, because it has
a direct e¤ect on the regressor xt: Note that AMSE is reasonably accurate (but always
too optimistic) when n is not too small and � = �xw is not very large.

5.1.2 A simple fully dynamic model

We can make the semi-dynamic model fully dynamic by sticking to the same reduced
form for xt; and adding a lagged-dependent explanatory variable to the equation of
interest, giving

yt = �xt + yt�1 + "t;
xt = �xt�1 + �t + �"t;

�
(69)

with jj < 1 to ensure stationarity. We can still normalize �2" = 1; without loss of
generality. Instead of normalizing again with respect to �; now we prefer to normalize
the long-run multiplier of y with respect to x; i.e. we take

� = 1� : (70)

To establish the asymptotic results on OLS and IV, using as instruments xt�1 and
yt�1; we have to �nd expressions in terms of the parameters for the elements of �X0X ;
�W 0X and �W 0W ; i.e. for Var(xt); Var(yt); Cov(xt; yt�1); Cov(xt; xt�1) and Cov(xt; yt):
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Exploiting the assumed stationarity and the normalizations, these �ve data moments
obey the �ve equations

(1� �2)Var(xt) = �2 + �2�
(1� 2)Var(yt) = (1� )2Var(xt) + 2(1� ) Cov(xt; yt�1) + 2(1� )� + 1
Cov(xt; yt) = (1� )Var(xt) +  Cov(xt; yt�1) + �
Cov(xt; yt�1) = �Cov(xt; yt)
Cov(xt; xt�1) = �Var(xt)

9>>>>=>>>>; (71)

These yield
Cov(xt; xt�1) = �Var(xt)
Cov(xt; yt) = [(1� )Var(xt) + �]=(1� �)
Cov(xt; yt�1) = �[(1� )Var(xt) + �]=(1� �)
Var(yt) =

(1�)(1+�)
(1+)(1��) Var(xt) +

2
(1+)(1��)� +

1
1�2

Var(xt) = (�
2 + �2�)=(1� �2)

9>>>>=>>>>; (72)

Note that all data moments are determined by four parameters, viz. ; �; � and �2�:
A set of meaningful design parameters for this more complex model is obtained as

follows. To control for the strength of the instrument we use the population �t of the
reduced form regression for xt; which we de�ne as

PFR � �2�2x=�2x = �2: (73)

Furthermore, we have

�x" = �=�x = �
q
(1� �2)=(�2 + �2�): (74)

For the population �t of the equation of primary interest we now have

PF = Var(�xt + yt�1)=[Var(�xt + yt�1) + 1]:

Using (72) this yields

PF=(1� PF ) = (1� )2Var(xt) + 2Var(yt) + 2(1� ) Cov(xt; yt�1) (75)

= g(; �; �; �2�);

where g(�) is a non-linear function. For chosen values of the three design parameters PF;
PFR and �x"; however, we cannot solve the four parameters ; �; �; �

2
� from the three

non-linear equations (75), (73) and (74). Therefore, we shall also use the characterization
of the dynamics  as a design parameter. Provided the three non-linear equations can
be solved (for which we use Mathematica) for chosen values of PF; PFR; �x" and ;
the components of AVarN(�̂OLS) and AVar(�̂IV ) can be calculated and for chosen n be
compared with their simulated counterparts. In the simulations we generate x0 again
according to (66) and y0 as follows. We took

y0 = �
�
1�0 + �

�
2"0; (76)

where ��1 and �
�
2 are chosen such that Var(y0) = ��21 + �

�2
2 and Cov(x0; y0) = (��1 +

��2�)=
p
1� �2 obey the solutions of (72).
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We present the results just in the form of densities, for the speci�c values n =
100; PF = 0:95 and  = 0:5: For �x" and PFR = �2 we choose similar values as
before. Figures 7 gives densities for estimates of � = 0:5: Note that the asymptotic
approximations are not very far o¤ the corresponding empirical distributions. The IV
distributions are very �at, and therefore most of the time OLS seems to be better than
IV. Figure 9 presents the densities for estimates of  = 0:5: The IV distributions are less
�at here, but they show some bias in the same direction as OLS. Again the estimation
errors made by OLS seem usually less substantial than those of IV.

6 Conclusions

Econometrics developed as a �eld separate from statistics, mainly because it focusses
on the statistical analysis of observational non-experimental data, whereas standard
statistics generally analyzes data that have been obtained from appropriately designed
experiments. This option is often not open in economics, where data are not random
samples from a well-de�ned population usually. Unlike data obtained from experiments,
most variables may be jointly dependent. As a consequence the structural relation-
ships become part of a simultaneous system, and their explanatory variables may be
contemporaneously correlated with the equation�s disturbance term. In that situation
the least-squares estimator exhibits bias, not just in �nite samples. In simultaneous
equations of stationary variables least-squares estimators are inconsistent. Hence, even
asymptotically (in in�nitely large samples) this estimator produces systematic estima-
tion errors. For that reason its actual distribution has received relatively little attention
in the literature, mainly because in an identi�ed (partial-) simultaneous system alterna-
tive consistent method of moments estimators are available. However, in �nite samples
these instrumental variable estimators have systematic estimation errors too, and may
even have no �nite moments. The fact that they can be very ine¢ cient (even in large
samples) has been highlighted recently in the literature on weak instruments; see Dufour
(2003) for a recent overview. In extreme cases these method of moment estimators are
no longer consistent either, whereas in less extreme cases, they may still have reasonable
location properties, while showing an unfavorable spread.
In this paper we provide further evidence on the behavior of inconsistent least-squares

and consistent just identi�ed instrumental variable estimators. This evidence enables
us to monitor the trade-o¤ options between: (i) the systematic but generally bounded
dislocation of the least-squares estimator, and (ii) the vulnerability of the instrumental
variable estimator regarding both its location and its scale (we avoid here addressing
these as mean and variance, because just identi�ed instrumental variable estimators
have no �nite moments). To achieve this we �rst derive the limiting distribution of the
least-squares estimator when applied to a simultaneous equation. We are not aware of
any published study that provides an explicit representation for this asymptotic distri-
bution in terms of its inconsistency and the degree of simultaneity. Analyzing it in a
few particular models shows that simultaneity usually has a mitigating e¤ect on the as-
ymptotic variance of OLS, and comparing it with results from Monte Carlo experiments
shows that in many cases (and in static models especially) the asymptotic variance of
least-squares provides a reasonable approximation to the actual variance. The asymp-
totic distribution of IV is often very informative on its behavior in �nite samples, but
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not in cases of weak instruments due to poor identi�cation. This is natural, because
under weak instruments the standard asymptotic results do not apply.
From the limiting distribution of OLS we straightforwardly obtain a �rst-order as-

ymptotic approximation to its MSE, which we can compare with its counterpart for
instrumental variables. We do so for various speci�c types of models over all feasible
parameter values for particular classes of these models, where the latter are limited by
particular chosen values of long-run multipliers and signal-to-noise ratios. We �nd that
least-squares can perfrom much better, even substantially so, than instrumental vari-
ables under moderate simultaneity or for moderately weak instruments in samples of
a limited size. On the other hand, when both simultaneity and instrument strength
are extreme, IV estimation is only marginally more (or on a root mean squared error
criterion in moderately large samples roughly about twice as) precise than least-squares,
although IV is uniformly superior when the sample is really large. These general pre-
dictions from �rst-order asymptotic theory are vindicated in simulation experiments of
actual samples of sizes in the range from 20 till 200. To make such comparisons we need
an equivalent to the root mean squared error, which is still meaningful when moments
do not exist. Therefore we developed what we call the empirical quantile error distance,
which proves to work adequately.
In practice, very often least-squares estimators are being used in situations where,

according to common text-book knowledge, more sophisticated method of moments
estimators seem to be called for. Some of the results in this paper can be used to
rehabilitate the least-squares estimator for use in linear (dynamic) simultaneous models.
However, we should warn that the present study does not provide yet proper accurate
inference methods (estimated standard errors, tests, con�dence sets) that can be applied
to least squares when it is inconsistent. This is on the agenda for future research, that
should focus also on methods to modify least-squares, in order to render it consistent,
and examining its e¤ects on the resulting e¢ ciency.
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Figure 1: �̂OLS and �̂IV in static model, n = 100; PF = 0:5
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Figure 2: �̂OLS and �̂IV in static model, n = 1000; PF = 0:5
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Figure 3: static model, log[EQED(�̂OLS)=EQED(�̂IV )]
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Figure 4: static model, logARMSE[(�̂OLS);MRMSE(�̂OLS)]
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Figure 5: semi-dynamic model, log[EQED(�̂OLS)=EQED(�̂IV )]
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Figure 6: semi-dynamic model, logARMSE[(�̂OLS);MRMSE(�̂OLS)]
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Figure 7: �̂OLS and �̂IV in dynamic model, n = 100; PF = 0:95;  = 0:5
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Figure 8: ̂OLS and ̂IV in dynamic model, n = 100; PF = 0:95;  = 0:5
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