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Abstract

This paper examines monetary policy implementation in a
sticky price model. The central bank’s plan under discre-
tionary optimization is entirely forward-looking and exhibits
multiple equilibrium solutions if transactions frictions are
not negligibly small. The central bank can then implement
stable history dependent equilibrium sequences that are con-
sistent with its plan by inertial interest rate adjustments or
by money injections. These equilibria are associated with
lower welfare losses than a forward-looking solution imple-
mented by interest rate adjustments. The welfare gain from
a history dependent implementation is found to rise with
the strength of transactions frictions and the degree of price
flexibility. It is further shown that the central bank’s plan
can uniquely be implemented in a history dependent way by
money injections, whereas inertial interest rate adjustments
cannot avoid equilibrium multiplicity.
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1 Introduction

Does it matter how a particular plan of a central bank is implemented? In general, discre-
tionary policy leads to suboptimal outcomes, while an optimal commitment policy, which
implements a superior allocation, is not time consistent (see Kydland and Prescott, 1977).3
Discretionary policies are further known to allow for the possibility of rational expecta-
tions equilibrium multiplicity (see Albanesi et al., 2003, and King and Wolman, 2004:).4
Both, inefficiency and indeterminacy are due to the characteristic feature of discretionary
policymaking not to account for private sector expectations about policy actions, and to
the lack of history dependence when the private sector is forward-looking (see Woodford,
2003a, 2003b). In this paper, we show that a plan of a central bank acting under discretion
can be implemented in a history dependent way, even when the private sector is entirely
forward-looking. The conduct of monetary policy depends on past conditions when the
central bank applies either the interest rate in an inertial way or the money growth rate
as its instrument. The induced history dependence is able to raise household welfare com-
pared to the case where the central bank implements its plan by purely forward-looking
interest rate adjustments. In order to avoid equilibrium indeterminacy the central bank
should control the growth rate of nominal money balances.

Previous studies on the monetary instrument choice have mainly focussed on the sta-
bilization and welfare implications of particular rules for different instruments, such as
Poole (1970), Sargent and Wallace (1975), Carlstrom and Fuerst (1995), Collard and Del-
las (2004), or Gavin et al. (2004). In contrast to these studies, we examine different
reaction functions for monetary policy instruments under a particular plan of an optimiz-
ing central bank. Throughout the paper, we restrict our attention to the realistic case
where the central bank cannot commit itself to a once-and-for-all-policy, and acts in a
discretionary way. We consider a framework with conflicting macroeconomic distortions,
implying that the central bank faces a trade-off, since it cannot eliminate more than one
friction with a single instrument. The central bank’s optimal plan under discretion can
then exhibit multiple equilibrium solutions. This has also been shown in several recent
studies on monetary discretion in New Keynesian models, where distortions induced by
price rigidities are accompanied by distortions due to monopolistic competition (see King
and Wolman, 2004, and Siu 2005) or transactions frictions (see Albanesi et al., 2003,
Brueckner and Schabert, 2005, and Kurozumi, 2005). Once a particular plan is consistent
with more than one allocation and equilibrium price system, the operational procedure of
monetary policy and the instrument choice can matter.

The novel idea of this paper is that different instruments, which are designed to im-

3Exceptions of the latter principle are examined in Alvarez et al. (2004). In particular, they show that
commitment policies can be time consistent when the Friedman rule is optimal.

4The existence of multiple equilibria under discretionary monetary policy is further examined in Brueck-
ner and Schabert (2005), Kurozumi (2005), and Siu (2005).



plement such a (not uniquely determined) plan of the central bank, can lead to unequal
macroeconomic outcomes and therefore to different results regarding equilibrium deter-
minacy and social welfare. Specifically, we consider three means of monetary policy im-
plementation: i.) a forward-looking and #i.) an inertial reaction function for the risk-free
nominal interest rate, as well as éii.) a forward-looking reaction function for monetary
injections. If the plan is implemented by i.), the conduct of monetary policy by a central
bank that acts in a discretionary way is entirely forward-looking. However, when the
monetary instrument is set in a history dependent way, such as under an inertial interest
rate reaction function, monetary policy becomes history dependent. The same result holds
for the case iii.), where the central bank adjusts the money stock in a forward-looking
way in order to implement its plan. The reason is that a central bank operation that is
meant to adjust the supply of money has to take into account the (predetermined) stock
of outstanding money.® Put differently, the beginning-of-period stock of money contains
non-negligible information for a contingent money injection required to obtain a particu-
lar end-of-period stock of money. Thus, when money supply, i.e., the money growth rate,
serves as the instrument monetary policy becomes history dependent, even if the central
bank does — in contrast to ii.) — not consider past conditions as indicators for adjustments
of its instruments.

We apply a standard New Keynesian framework with transactions frictions (modelled
by money-in-the-utility-function) and with cost-push shocks. The central bank’s plan un-
der discretionary optimization is shown to allow for equilibrium multiplicity. Since interest
rate changes are associated with non-negligible welfare costs, the central bank abstains
from choosing a plan that is associated with strong (active) adjustments of the interest
rate, which would lead to equilibrium uniqueness (since the Taylor-principle applies in
our model). The likelihood of equilibrium multiplicity under discretionary policy thereby
increases with the severity of transactions frictions. However, the central bank can avoid
equilibrium indeterminacy by designing a reaction function for the prevailing instrument
in an appropriate way. For example, there exist interest rate reaction functions of type 3.)
that uniquely implement an entirely forward-looking solution to the central bank’s plan.
There further exists a money supply reaction function that uniquely implements a history
dependent and stable solution to the plan. In contrast, it is shown that a reaction func-
tion of type 4i.) cannot implement a history dependent solution of the plan in a stable
and unique way. Thus, under an inertial interest rate reaction function the problem of
equilibrium indeterminacy cannot be avoided, implying that monetary policy allows for

non-fundamental equilibria and thus endogenous fluctuations.

"Related studies on the equilibrium behavior of sticky price models have also shown that real money
serves as a relevant endogenous state variable when the central bank controls the money growth rate (see
e.g., Evans and Honkapohja, 2003, and Schabert, 2005).

®Tn the limiting case, where the distortion due to transactions frictions is negligible, the central bank’s
plan under discretionary exhibits a unique solution (see Jensen, 2002).



Given that the reaction functions i.) — #ii.) lead to different equilibria, which are all
consistent with the central bank’s plan, we compare the welfare implications of differ-
ent means of monetary policy implementation.” As stressed by Woodford (2003a), history
dependence can be beneficial for social welfare when the private sector behavior is forward-
looking. Based on this principle, Walsh (2003) and Woodford (2003b) have shown that
social welfare can be raised under a discretionary monetary policy by introducing lagged
endogenous variables in the central banker’s objective, inducing the plan under discre-
tionary optimization to be history dependent. Corresponding to these results, we find
that equilibria under a history dependent implementation of monetary policy, i.e., under
i1.) and 47i.), can be associated with higher social welfare compared to the unique equilib-
rium under an entirely forward-looking interest rate setting, even if they are all consistent
with the same plan. Social welfare is thus raised by a history dependent central bank
behavior that is induced by monetary policy implementation, rather than by a particular
plan based on preferences of a central banker which deviate from social welfare.

In general, history dependence affects the expectations about future realizations of
macroeconomic aggregates and therefore their conditional variances.® Here, the relevance
of a lagged variable for the evolution of macroeconomic aggregates under a reaction func-
tion #3.) or i4i.) can lower welfare-reducing macroeconomic fluctuations, as forecast error
variances tend to decrease with the introduction of relevant state variables. However, an
extension of the state space increases the support of the stochastic variables, which might
raise the variances of macroeconomic aggregates. We find that this effect on the variances
of macroeconomic aggregates is less important when the autocorrelation of the common
state variable, i.e., the cost-push shock, is high. The extent to which social welfare is raised
under a history dependent implementation of the plan further depends on the particular
economic structure. Specifically, we find that the welfare gain from a history dependent
implementation increases with the severity of the distortion due to transactions frictions
and with the degree of price flexibility. The main conclusion from the welfare analysis is
therefore that a central bank should implement its plan by forward-looking interest rate
adjustments only if the aggregate shock is not very persistent or transactions frictions are
negligible. Otherwise, it should implement the plan in a history dependent way.

To summarize, this paper contributes to the analysis of discretionary monetary policy
in two novel ways. Given an environment where monetary discretion allows for equilibrium

multiplicity, we, firstly, show that a potentially welfare-enhancing history dependence can

"We disregard the possibility that the central bank controls both instruments simultancously, which
is for example considered in Adao et al. (2003). They demonstrate that the optimal allocation under
sticky prices can welfare dominate the optimal allocation under flexible prices, if the central bank sets the
nominal interest rate equal to a sufficiently small value and, simultaneously, controls money supply.

8If a central bank takes into account the impact of monetary policy on expectations of a forward-
looking private sector, its plan would exhibit history dependence. See, for example, Woodford (2003a) for
a so-called optimal commitment policy under a timeless perspective.



be introduced by monetary policy implementation, in particular, by an inertial interest
rate policy or a money growth policy. Secondly, the problem of equilibrium multiplicity
under monetary discretion can be eliminated if the central bank implements its plan by
state contingent money injections (but not by an inertial interest rate policy).”

The remainder is organized as follows. In section 2 we describe the model. Section
3 discusses the equilibrium behavior under different reaction functions. In section 4, we
examine the central bank’s plan under discretionary optimization and its implementation.

In section 5, we compare social welfare under different solutions. Section 6 concludes.

2 The model

In this section we describe the macroeconomic framework, which closely relates to the
model in Woodford (2003a). There are three sectors, the household sector, the production
sector, and the public sector. Cost-push shocks, which stem from exogenous changes in
the elasticity of substitution of individual labor services, are the only source of uncertainty.
There are no information asymmetries between the three sectors. Nominal (real) variables
are denoted by upper-case (lower-case) letters.

There is a continuum of infinitely lived households indexed with j € [0, 1]. Households
have identical asset endowments and identical preferences. Household j maximizes the

expected sum of a discounted stream of instantaneous utilities U :

oo

Eo Y B'U (cju L, Mju/ Py), (1)
t=0

where Fjy is the expectation operator conditional on the time 0 information set, and
B € (0,1) is the subjective discount factor. The instantaneous utility U is assumed to
be increasing in consumption ¢ and real balances M/P, decreasing in working time I,
strictly concave, twice continuously differentiable, and to satisfy the usual Inada condi-
tions. Instantaneous utility U is further assumed to be separable in the utility from private
consumption and from real balances, and in the disutility of working time, U (¢, l;) =

u(cje) — v(lye) +v(Mje/Py).
At the beginning of period ¢ household j is endowed with holdings of money M;;—1 and
a portfolio of state contingent claims on other households yielding a (random) payment
Zji. Before the goods market opens, households enter the asset market, where they can
adjust their portfolio and receive government transfers. Let g; ;41 denote the period ¢ price

of one unit of currency in a particular state of period ¢t 4+ 1 normalized by the probability

9This result corresponds to the property of nominal (in)determinacy under money growth (interest rate)
policy, which has for example been examined by Sargent and Wallace (1974). While a money growth policy
facilitates nominal determinacy under perfectly flexible prices, it causes beginning-of-period real balances
to be relevant for equilibrium determination when prices are not perfectly flexible. The predetermined value
of real money then serves as a equilibrium selection criterion, which rules out solutions with extraneous
states that would allow for endogenous fluctuations.



of occurrence of that state, conditional on the information available in period t. Then,
the price of a random payoff 7,1 in period ¢t 4 1 is given by E¢[q; ¢+1Zj¢+1). Households
further receive wage payments and dividends D;; from monopolistically competitive firms

indexed with ¢ € [0,1]. The budget constraint of household j can be written as
1
My < Mjs—1 + Zjp — Eilqi 41 Zj141) + Powjglye + Pty — Prejy + / Dj idi, (2)
0

where P; denotes the aggregate price level and wj; the (individual) real wage rate. Lump-
sum injections P;7¢, which households receive in the asset market, serve as a central bank
instrument. As will be demonstrated below, money supply can equivalently be specified
by assuming that money is injected via open market operations, instead of via lump-sum
transfers. We further assume that households have to fulfill a no-Ponzi game condition,
lims oo Etqet+s(Mjtys + Zjt414s) > 0.

We assume that households monopolistically supply differentiated labor services [;,
which are transformed into aggregate labor input [; where lt1 —Lme fol l;; Y T dj. The
elasticity of substitution between differentiated labor services 1, > 1 is allowed to vary
exogenously over time. Cost minimization then leads to the following labor demand

1—n, 1-n,

Lt = (wje/we) ~ely, with w, " = [ w};

Maximizing the objective (1), subject to the budget constraint (2), the labor demand

dj, where w; denotes aggregate real wage rate.

condition, and the no-Ponzi-game condition, for given initial values Z;o and M; 1 leads

to the following first order conditions:

uc(cjt) =Njt,  vi(lje) = & wjrAjt, (3)
A s
Nt — vm( Myt /) = BRIE, L g B At
T+l 41 Ajt

where 7 denotes the inflation rate (7; = P,/ P,—1), A the shadow price of wealth and £ the
wage mark-up where &, = n,/(n, — 1). The stochastic properties of &, will be discussed
below. Furthermore, the budget constraint (2) holds with equality and the transversality
condition, limg_, o ﬁt“Et[)\jHS(Msz + Zjt+14s)/ Pivs] = 0, must be satisfied. The one-
period nominal interest rate on a risk-free portfolio, which serves as an alternative central

bank instrument, is defined as follows
Ry = [Bygi) " (4)

Using (4) money demand can be written as vy, (M;i/P;) = uc(cjt) (R — 1) /Ry The final
consumption good is an aggregate of differentiated goods produced by monopolistically
competitive firms indexed with ¢ € [0,1]. The CES aggregator of differentiated goods
is defined as y:%l = fol y;f:l di, with € > 1, where y; is the number of units of the final
good, y;; the amount produced by firm ¢, and e the constant elasticity of substitution

between these differentiated goods. Let P;; and P denote the price of good i set by



firm ¢ and the price index for the final good. The demand for each differentiated good
is yi = (Pi/Py)” “yi, with Ptl*6 = fol P;fﬁdi. A firm ¢ produces good y; employing a
technology which is linear in labor: y;; = l;;, where [ = fol lirdi. Hence, labor demand
satisfies: mci = wy, where mci; = mey denotes real marginal costs.

We allow for a nominal rigidity in form of staggered price setting as developed by Calvo
(1983). Each period firms may reset their prices with the probability 1 — ¢ independently
of the time elapsed since the last price setting. The fraction ¢ € (0, 1) of firms is assumed
to adopt the previous period’s prices according P;; = Pj;—1. In each period a measure 1 —¢
of randomly selected firms sets new prices Py in order to maximize the expected sum of
discounted future dividends (D;; = (Py — Pymey) yit): maxp By 2 0 Grits (]BityiHS -
Py ysmciqsyit+s), 4. Yitrs = Pt Pfy ;Yi+s. The first order condition is given by

p, = _¢ By 2o [Qt,t+syt+sp teislmctﬁ}
i = :
Te—1 B Y20 0° [airsyies Pl

(5)

Aggregate output is yy = (P;/FP)¢l;, where (P})~ fo P, “di and thus (P;)~°
¢ (Pry) “+(1—9)P "

The central bank is assumed to trade with households in the asset markets. There,
it injects money via lump sum transfers P;7;. Its budget constraint is given by Piry =
My—M;—1 = (u; — 1) My_1, where p, denotes the gross money growth rate, p, = My/M;_1.
It should be noted that we can, alternatively, assume that money and government bonds
B are exclusively traded in open market operations, where their supply is characterized
by “holding fiscal policy constant in the face of a government asset exchange” (see, e.g.,
Sargent and Smith, 1987): (u, — 1) My—1 = —B; + R?,lBt_l and Py = 0.19 A consistent
initial value for total government liabilities would be equal to zero, B_1 + M_; = 0, which
is consistent with government solvency, limg_.oo(Byts + Myts)I5_(1/RY, ) = 0. This
alternative specification is then equivalent to the former specification. Finally, the central
bank is assumed to set either the risk-free nominal interest rate R; or the money growth
rate p; = mym/my—1, where m denotes real balances m; = M;/P,. The equilibrium for
R; > 1 is defined as follows.

Definition 1 A rational expectations equilibrium for Ry > 1 is a set of sequences {yt, lt,
Py, Pt, Pt, mcg, W, mt, Ry} satisfying the firms’ first order conditions mey = wy, (5)
with Py = Py, and P, " = ¢ (Pi_1)" " “+(1 — ¢) PL=¢, the households’ first order conditions
uc(ye)we = vi(le)&s, ue(yr)/ Pr = BRLEY [uc(yt+1)/Pt+l]; V(M) /uc(ye) = (Re — 1) /Rt,jhe
aggregate resource constraint y; = (Pf/P;)¢ly, where (P})™¢ = gb( t*_l)_6 +(1—-9)P ¢,
and the transversality condition, given a monetary policy, a sequence {1}, and initial
values P_1 >0, P*; >0, and m_1P_1 = M_; > 0.

1The households’ budget constraint would then be given by Bj; + M;; < Ri’_lBjt,l + M1+ Zj —
E, [q,g7t+1Z]'t+1] + Piwjiljs — Prcje + fol Dj ;:di, and the first order condition on bond holdings by uc(cjt) =
BRYE;[uc(cjerr)/mia], implying Ry = Ry.



The stochastic process for the wage mark-up &, is assumed to satisfy /f\t = pgt_l +¢&¢, where
Zt =log&, — € and p € [0,1). The innovations are assumed to be normally distributed

with mean zero and a constant variance, g, ~ N (0, vare).

3 Equilibrium behavior under different reaction functions

In this section we present the log-linearized version of the model described in the previous
section and summarize the main equilibrium properties of the model under different reac-
tion functions for the monetary instrument. The equilibrium conditions given in definition
1 are log-linearized at the deterministic steady state.!! Given that our analysis focusses
on the stabilization properties of monetary policy, we abstract from long-run effects of dif-
ferent monetary policy regimes and assume that they are consistent with the same steady
state. We further assume that the steady state is characterized by a constant price level,
such that the steady state values for the inflation rate, the money growth rate, and the
interest rate are given by ¥ =i = 1 and R = 1/ > 1. A steady state is then character-
ized by uniquely determined values for output u.(7)/v;(g) = 2, where 2 = Ei > 1, and
for real balances v, (M) = u.(g) (1 — 8). Throughout the paper, Z; denotes the percent
deviation of a generic variable z; from its steady state value T : ¥ = log(z;) — log(Z). An
equilibrium of the log-linear model is defined as follows:

A rational expectations equilibrium of the log-linear approximation to the model at the

steady state is a set of sequences {7, My, Ur, ﬁt};ﬁo satisfying

oG = 0Bt — Ry + Efis, (6)
Fe=wi + BERe1 + XEp, (7)
= (0/om)it — lom (B —1)] 'Ry, (8)

where w = X(9+0), 0 = —Uee(€)E/uc(C) > 0,9 = vy(D)l/vi(1) > 0, 0y = —TWspn () /v () >
0, and x = (1 — ¢)(1 — B¢)/¢, the transversality condition, for a monetary policy, a se-
quence {Et}fio, and given initial values for nominal balances M_; and the price level
P12

In what follows, we consider three types of monetary policy regimes which are char-
acterized by state contingent adjustments of the prevailing central bank instrument. The

first monetary policy regime is characterized by a forward-looking reaction function for

" Throughout the paper, we implicitly assume that the bounds on the mark-up fluctuations are suffi-
ciently tight, such that the central bank can always ensure the nominal interest rate to be larger than one,
Ry > 1.

2Note that output 7; can be interpreted as a measure for the output gap (measured by output deviations
from an efficient value), since any deviation of current output from its steady state value is induced by a
distortionary shock.



the risk-free nominal interest rate

Re = prTe + pye + pey (9)

The reaction function (9) allows for an explicit feedback from the exogenous state (the
cost-push shock). This is the main difference to widely applied interest rate feedback rules,
which are specified without a feedback from private sector shocks p, = 0.

For the second regime we consider a history dependent reaction function for the risk-

free nominal interest rate, which allows to smooth interest rates
Ry = ppRi—1 + paTe + pye + pi&s,  pr € (0,1), (10)

where p; /(1 — pg) and p; /(1 — pp) measure the long-run feedback from inflation and
output. In contrast to (9), the inertial reaction function (10) features a feedback from
past conditions, ﬁt_l. By adjusting the current interest rate contingent to a changes in a
lagged variable, central bank behavior becomes history dependent under (10).

Under the third regime, the central bank applies a reaction function for the money

growth rate:
L = bt + pyYr + pels (11)

Since [, = my + T — my—1, the reaction function (11) introduces beginning-of-period
real balances, m;_1, as a backward-looking element. Monetary policy might therefore be
history dependent, even though past conditions are not considered as policy indicators (in
contrast to 10).

The following lemma summarizes main properties of the fundamental solutions for the
equilibrium sequences for the endogenous variables xj = [T, My Uy ﬁt] for monetary policy
satisfying (9), (10), or (11). It should be noted that the fundamental solution, i.e., the
minimum state variable solution, is identical with the uniquely determined and stable
solution in our framework.'® The derivation of the conditions in part 1. and 2. of the
lemma can be found in Woodford (2003a). The proof of the third part relates to the
analysis in Schabert (2005) and is provided in appendix 7.1.

Lemma 1 Consider the fundamental solution for the equilibrium sequences {x:}§2, sat-
isfying (6)-(8) and either (9), (10), or (11).

1. Under an interest rate policy (9) it takes the form %, = x(&,), and is the unique
stable equilibrium solution if and only if p, + [(1 = B)/w]p, > 1.

2. Under an inertial interest rate policy (10) it takes the form Xy = x(Ri_1,&,), and
is the unique stable equilibrium solution if and only if p; + [(1 — B)/w]p; > 1 — pg.

Then, the single stable eigenvalue o = 8§t/81§t_1 satisfies o € (0,1).

3See McCallum (2004) for a comprehensive discussion of the relation between determinate solutions
and the minimum state variable solution in rational expectations models.



3. Under a money growth policy (11) it takes the form X; = x(Mmy—1, Et), and is the
unique stable equilibrium solution if and only if a.) p, + [(1 — B)/wlp, <1 and b.)

fir + (L4 B)/wlp, <14 2w+0 (R+1) (B+ D]/[(R— 1)wow]. Then, the single
stable eigenvalue 8., = Omy/Omy—1 satisfies §,, € (0,1).

The properties summarized in the first two parts of lemma 1 are well established (see
Woodford, 2001, 2003a) and are, therefore, not discussed in further detail. Subsequently,
we will refer to the notion of an active (passive) interest rate policy, which is defined as an
interest rate setting satisfying p,+[(1-08)/w]p, > 1 (< 1) or (p5+[(1-8)/wlp;)/(1—pr) >
1 (< 1). According to lemma 1 part 3, the central bank is able to ensure the existence
of a unique and stable equilibrium if the response of money supply to a rise in output
or inflation is sufficiently small, in the sense that the conditions a.) and b.) are satisfied.
If, however, money supply satisfies p, + [(1 — 8)/w]u, > 1, then any rise in inflation (or
output) causes the central bank to raise the stock of nominal balances, which tends to
increase the price level. Given that prices are not fully flexible, a rise in nominal balances
is accompanied by a rise in real balances, which tends to lower the nominal interest rate
by (8) and to raise aggregate demand by (6). Hence, monetary policy stimulates real
activity and further increases inflation, such that self-fulfilling expectations or explosive
equilibrium sequences are possible. The likelihood for explosiveness thereby increases with
the price rigidity, i.e., with the fraction of firms that do not set prices in an optimal way.

It should be noted that condition a.) ensures the existence of exactly one stable eigen-
value, which lies between zero and one, and therefore the existence and the uniqueness
of stable and non-oscillatory equilibrium sequences. Condition b.) further guarantees that
there is no additional negative and stable eigenvalue, which would allow for an alternative
stable solution characterized by equilibrium sequences that oscillate around the steady

state.

4 Monetary policy under discretion

In this section we characterize the central bank’s plan under discretionary optimization
and discuss the existence of multiple solutions to the plan. In the second part, we establish
the existence of reactions functions of the type (9), (10), or (11) that implement the central
bank’s plan and examine their ability to solve the indeterminacy problem. Throughout
the subsequent analysis, we repeatedly apply some standard parameter values for o, 9,
B, ¢, and € for demonstrative purposes. They are given in table 1. We set (the inverse
of) the intertemporal substitution elasticities equal to two, 0 = ¥ = o, = 2, implying
the income elasticity of money demand to equal one (see 8). We further set § = 0.99,
€ = 6, and ¢ = 0.8; the latter being consistent with empirical evidence, for example by

Gali and Gertler (1999).!4 As an alternative, we consider a lower value for the fraction

14 Given these parameter values, the composite coefficients in (7) equal x = 0.052, and w = 0.208.



of non-optimizing price setters (¢ = 0.5), which might be more consistent with recent
microeconomic evidence (see Bils and Klenow, 2004). Finally, for the steady state velocity
v = 7/ we use the value 2 for the benchmark case and, alternatively, the value 0.44,
which is taken from Christiano et al. (2005).

Table 1 Benchmark parameter values

o om ¥ B ¢ € T v
2 2 2 09 08 6 1 2

4.1 Discretionary policy and equilibrium multiplicity

We now examine the plan of a central bank that aims to maximize social welfare. We
realistically assume that the central bank does not have access to a technology which
enables a commitment to a once-and-for-all policy. Thus, we assume that it aims to
maximize social welfare in a discretionary way. We follow Woodford (2003a) and apply a
linear-quadratic approximation of household welfare at the undistorted steady state. Since
we want to abstract from long-run distortions due to monopolistic competition we assume
that an unspecified (lump-sum tax financed) wage subsidy ensures 2 = 1. We further
assume that the long-run distortion due to transactions frictions is negligible.'® Applying
a second-order Taylor-expansion of household welfare and of the private sector equilibrium
conditions at the undistorted steady state, leads to the following objective, as shown by
Woodford (2003a, proposition 6.8)'6
)

max Fy Z B'U; &~ max , (12)

t=0

o
— 1 /. o ~
U—YE Y A'5 (w% + g+ wa)
t=0

1 1 1 w
Umyﬁ—la+1967

w
where a=—, and ¢ =
€

and T > 0. Applying the parameter values in table 1, the weights in the loss function
are o = 0.0347 and ¢ = 0.215. The loss function weight ¢ on the interest rate variance,
which provides a measure for the severity of the distortion induced by transactions fric-
tions, is thus 6.2-times larger than the weight on output fluctuations for our benchmark
parametrization.!” The relative size of the weight ¢, which will be crucial for the subse-
quent analysis, is similar to Woodford’s (2003b) value (4.9) and much smaller than Walsh’s
(2005) value (25.7). Evidently, the weight on the inflation variance is still larger than the

'"This can be rationalized by an (unspecified) constant interest rate on money holdings R™, which is set
by the central bank in a way that minimizes welfare costs of money holdings in the steady state, R~ — 1/8
(see Woodford, 2003a). The steady state velocity would then relate to a long-run satiation level of money
holdings, which is characterized by ™ =g /v.

"6 This approximation of household welfare is for example also applied in Woodford (2003b), Brueckner
and Schabert (2005), Kurozumi (2005), or Walsh (2005) for isomorphic models.

"The coefficient ¢ would be equal to zero in a “cashless” version of this model (see Woodford, 2003a).
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other weights, indicating that the predominant distortion is induced by the price rigidity.
In the subsequent section we will apply alternative values for the velocity v and for the
interest elasticity of money (induced by changes in o,,), which alter the welfare costs of
interest rate changes, and we change the fraction of non-optimizing firms ¢.

The central bank’s problem under discretion can be summarized by a simple linear-
quadratic set-up, where (12) serve as the policy objective and the linear equilibrium condi-
tions (6)-(8) as constraints. Taking expectations as given, leads to the following first order
conditions for all periods t > 0 : Ty + ¢g; = 0, t — X0 Py, + 01, = 0, and oR, + o1 =0,
where ¢, and ¢, denote the multiplier on the constraints (6) and (7), respectively. We

can then define a central bank’s plan as follows.
Definition 2 A central bank’s plan is a set of sequences {7y, My, Y, }A%t}fio satisfying
Jg@ﬁt = a@\t -+ w%t, Vi > 0, (13)

(6)-(8), and the transversality condition, given {Et}fio and an initial value m_y.

According to the first part of lemma 1, a monetary policy satisfying (9) is associated with
a unique equilibrium solution if and only if p_ + % py > 1. The central bank’s first order
condition (13), which is often called "targeting rule" (see Svensson, 1999), implies the
relation between the interest rate, inflation, and output to satisfy p, = :’—(p and p, = %
(as well as p; = 0). The central bank’s plan therefore exhibits a unique solution only
if the weight ¢ is sufficiently small. Otherwise, discretionary policy is associated with
equilibrium multiplicity, which has also been shown by Brueckner and Schabert (2005)
and Kurozumi (2005) for an isomorphic model and by Albanesi et al. (2003), King and
Wolman (2004), and Siu (2005) for models with different price setting schemes. The

condition for the existence of multiple equilibria is summarized in the following lemma.

Lemma 2 The central bank’s plan exhibits a unique stable solution if and only if ¢ < ¢*,

where ©* = wt(=B)/e " This solution takes the form x; = x(&,). If ¢ > ©*, there further

g
exist stable autoregressive solutions to the plan.

According to lemma 2, the central bank’s plan under discretion is associated with a
unique solution if the distortion induced by transactions frictions are sufficiently small
such that ¢ < ¢*.!% Applying the parameter values in table 1, leads to a threshold equal
to ¢* = 0.105. Hence, our benchmark value for the interest rate weight (¢ = 0.215) clearly
exceeds this threshold, indicating that there exists multiple solutions to the plan. When
transactions frictions are non-negligible, the central bank is not willing to strongly stabilize

inflation and the output gap, since the associated interest rate adjustments lead to welfare

'8 This corresponds to the result in Albanesi et al. (2003), who show that multiple equilibria can arise
under discretion in a (non-linearized) sticky price model where transaction frictions are induced by a
cash-in-advance constraint.
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losses. If ¢ > ¢*, interest rates are adjusted in a passive way, p, + %py < 1, which
allows for multiple equilibria (see lemma 1).!? Then, there exists a stable solution without
any endogenous state variable, X; = x(gt), as well as stable autoregressive equilibrium
solutions that feature a lagged endogenous state variable, X; = x(;—1, Et), Xt = x(Ty—1,
Et), % = x(Ry_1, Et), or Xy = x(My—1, Et) Further, there exist non-fundamental solutions,
featuring an extraneous state variable, that allow for expectations to become self-fulfilling,
i.e., for sunspot equilibria. In the subsequent analysis we will not apply the latter type of

solutions.

4.2 Implementing the plan under discretionary optimization

In this section we take a closer look at the implementation of the central bank’s plan given
in definition 2. We examine if and how a central bank can implement its plan with reaction
functions of the form (9), (10), and (11). In particular, we want to assess if the plan can
be implemented in a stable and unique way, such that explosive equilibrium sequences and
endogenous fluctuations are avoided. Evidently, a forward-looking interest rate reaction
function (9) can uniquely implement the plan if ¢ < ¢*, since the central bank’s first order
condition (13) can be interpreted as a specific case with p; = 0. If ¢ > ¢*, the central
bank can design forward-looking reaction functions with pg # 0 which uniquely implement

its plan. The following proposition summarizes this result.

Proposition 1 Suppose that the central bank controls the interest rate in a forward-
looking way. Then, there exist infinitely many reaction functions (9) which uniquely im-
plement the central bank’s plan. They are characterized by pe # 0.

Proof. The fundamental equilibrium solution under (9) is characterized by 7, = nlgt and
U= 772/5\,5, and therefore m; = %’y} Lemma 1 part 1 then implies that for any ¢, and
Cy satisfyiAng Cr+25) + (1= B)/w]((y + 55) > 1 thereAexists an interest rate reaction
function Ry = ((r + 55)7 + (Cy + 55)Ut — (o1 + §ym2)§; that uniquely implements the
fundamental solution. W

Hence, regardless whether its plan exhibits a unique solution (¢ < ¢*) or multiple solutions
(¢ > ¢*), the central bank can always uniquely implement the fundamental solution by
choosing a particular forward-looking reaction function of the type (9). To be more precise,
it can design a forward-looking reaction function, which is characterized by a feedback from
inflation and output which is strong enough to rule out multiple solutions (by satisfying
pr +[(1 = B)/w]p, > 1). At the same time, an appropriate feedback from the exogenous
state variable ensures that the implemented equilibrium is consistent with the fundamental

solution to the plan.

YFor the benchmark parameter values, the targeting rule can be written as Et =0.485 -7 + 0.08 - ;.
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When the central bank applies an inertial interest rate reaction function (10) this
picture changes. If transactions frictions are very small such that ¢ < ¢*, there is a
unique stable solution to the central bank’s plan of the form X; = x@). According to
lemma 1 part 2, the central bank can therefore not apply an inertial interest rate reaction
function to implement its plan (in a stable way). If transactions frictions are sufficiently
large, ¢ > ¢*, the central bank can in principle implement a stable set of sequences
of the form X; = x(ﬁt_l, Et) which are consistent with its plan. A closer look at the
feedback coefficients of the inertial interest rate reaction function however shows that such

an equilibrium is not uniquely determined.

Proposition 2 Suppose that the central bank controls the interest rate according to an
inertial reaction function (10). If ¢ < ¢*, it cannot implement its plan in a stable way.
If o > ©*, it cannot implement its plan in a unique way.

Proof. Consider an inertial reaction function R; = p*R}A%tq + prTe + Py + ngt with
P € (0,1), which implements a set of equilibrium sequences {Xj }72, consistent with the
plan under discretionary optimization. According to lemma 1 part 2, the fundamental
equilibrium solution then takes the form X; = x(R;_1, Et) According to lemma 2, the
sequences {X;}{2, are unstable if ¢ < ¢* and stable if ¢ > ¢* (see also appendix 7.4).
Now suppose that ¢ > ¢* (A1) and that p; + [(1 — 8)/w]p; > 1 — pk (A2) are satisfied.
Then, the set of sequences {X}}$°, would be uniquely determined and stable, and the
interest rate solution would read R, = & Rﬁtq +9 ReEt with dg € (0,1). Combining the
latter with the reaction function would lead to the equilibrium relation Et = %?ﬁ +

PN PE—PRORe/OR> . . . ~ ~ ~. .
17—%%% + Wﬁt. Given that the solution satisfies X; = x(Ri—1, &), it follows

immediately that for any given p}, # Jg there exist exactly one set of coefficients {p3, pj,
pZ} that is consistent with the central bank’s first order condition (13). These coefficients
have to satisfy pr/(1 — pi/6r) = w/(op) > 0, p;/(1 — pr/6r) = a/(cp) > 0, and
pz = pRORe/0r. If p, > dg, the coefficients p; and p, have to be negative, which
contradicts assumption (A2). If p}, < dg, assumption (A2) implies that the coefficients
satisfy Bl,fm +

C%p—i-%% < 1. Hence, if ¢ > ¢* the central bank’s plan cannot uniquely be implemented.
[ |

> 1. This contradicts assumption (Al), which implies

Proposition 2 thus indicates that the central bank’s plan cannot be implemented by an
inertial interest rate reaction function in a stable and unique way. If transactions frictions
are sufficiently large such that ¢ > ¢*, the central bank’s first order condition (13) requires
passive (short-run) interest rate adjustments. In order to implement equilibrium sequences
that are consistent with this behavior, an inertial reaction function (10) has to exhibit
feedback coefficients that imply interest rates to be passively adjusted in the long-run,

P+ [(1=8)/wlp;, < 1—pp, which allows for further solutions that exhibit two endogenous
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state variables (see lemma 1 part 2). Thus, when the central bank applies an inertial
interest rate reaction function to implement its plan in a history dependent way, it does
not rule out equilibrium multiplicity and therefore allows for endogenous fluctuations.
Now consider the case where the central bank uses money injections as its instru-
ment and controls the money growth rate in a state contingent way (11). The minimum
state variable solution for a rational expectations equilibrium then takes the form m; =
Sme—1 + Omely , Tt = Ommife—1 +Orely, G = Oymitu—1 +0yey, and Ry = Spmity—1 + 0 el
(see lemma 1 part 1). We want to assess whether there exists a money growth reaction

function of the form (11) that can implement the central bank’s plan.?’

Lemma 3 Suppose that the central bank uses money injections as its instrument. Then,
there exists a money growth reaction function (11) that implements equilibrium sequences
that are consistent with the plan. It satisfies

Hr = Hl(ﬂwaﬂy): /'Ly - HQ(M%?/’L:U% ,Ltg = R3</’Lﬂ'7 My?ﬂf)? (14)

B o 1 -1
where K1 zl—é(l—;—@%frt), 9 = %%f?am{jm, K3 = pa—i[(R—l) (50 Re +
_l’_

5Rm5me) + O'mliy(&ne(sym + 6ye%) (6em57rm + 57re%)((u7r - 1) Om — 1)]7 and »x = (p - 5m)

Proof. See appendix 7.2.

According to lemma 3, the central bank’s plan can in principle be implemented by a money
growth reaction functions (11). It remains to analyze whether a money growth reaction
function can implement the plan in a stable and unique way. The following proposition

refers to the particular reaction function characterized in lemma 3.

Proposition 3 Suppose that the central bank implements its plan with a money growth
reaction function satisfying (11) and (14). If ¢ > ¢*, the equilibrium sequences are stable,
non-oscillatory, and uniquely determined. If p < ¢*, they are unstable.

Proof. See appendix 7.3.

A money growth reaction function of the type (11) can thus implement the central bank’s
plan in a stable, non-oscillatory, and unique way, if transactions frictions are sufficiently
large (¢ > ¢*). Otherwise (¢ < ¢*), a money growth reaction function cannot implement
the plan in a stable way, which corresponds to the case of inertial interest rate adjustments
(see proposition 2). In contrast to the latter case, a central bank can avoid equilibrium
multiplicity by applying the money growth rate as its instrument. Thus, a money growth
policy ensures a unique determination of the plan while a corresponding (passive) interest

rate policy allows for multiple equilibria in our sticky price model. This results corresponds

20This analysis relates to Schabert (2005), where the implementation of interest rate targets via money
supply adjustments is examined for different specifications of aggregate supply and for money demand.
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to its well-known property of money growth policy to facilitate nominal determinacy when
prices are perfectly flexible (see Sargent and Wallace, 1975). While the predetermined
value of beginning-of-period real balances serve as equilibrium selection criterion under a
money growth reaction function (11), the mere introduction of the lagged interest rate as

a policy indicator is not sufficient for this purpose.

5 Monetary instruments and social welfare

In this section we examine social welfare when the central bank applies different instru-
ments in order to implement its plan under discretionary optimization. To compare the
welfare implications of different monetary policy regimes, we focus on the case ¢ > ¢*
(see lemma 2). We restrict our attention to stable fundamental (minimum state variable)
solutions which are characterized in lemma 1. To be more precise, in the case where the
central bank sets the interest rate in a forward-looking way (9) or controls the money
growth rate according to (11), we assume that it applies a particular reaction function for
the prevailing instrument that ensures its plan to be implemented in a unique and stable
way.?! As shown in proposition 2, this is not possible for the case where the central bank
applies an inertial interest rate reaction function (10).

The fundamental solution under an inertial interest rate policy reads m; = nlgt, U =
nzgt, R, = nggt and my = 774& (see part 1 of lemma 1). If the central bank applies an
inertial interest rate reaction function or a money growth reaction function, the equilibrium
sequences become history dependent. Under an inertial interest rate reaction function, the
solution takes the form Et = plﬁbt,l + p2/§\t, T = pgl/%tq + ,04215, and 7y = ,051%4 + p6/§\t
(see lemma 1 part 2). Under a money growth reaction function it takes the form m; =
01My—1 +52/§\t, T = 03My—1 +54/§\t, Yt = O5My_1 +56/§\t, and R\t = 071 "‘58/5\15 (see lemma
1 part 3). The solution coefficients are derived in appendix 7.4.

Before we turn to the welfare comparison, which will be based on the unconditional
variances of the endogenous variables, we briefly want to assess the difference between
the conditional variances of a forward-looking solution and of a history dependent
solution to the central bank’s plan. In particular, we compare the conditional variance
of inflation which is implemented by a forward-looking interest rate reaction function,
vartl (7?%) = n%var (Et>, to its counterpart under a money growth reaction function,
varM@ (%f) = 63m? | + 542111(17“(&). Since, the solution coefficients (given in appendix 7.4)
are in general too complex to compare these variances, we apply the simplifying parameter
values 0 =1, o, = 1, ¥ = 0, and v = 1. We then obtain tractable expressions for the

limiting case where the discount factor converges to one 5 — 1.2? The ratio of the variances

21 The existence of such reaction functions have been established in proposition 1 for an interest rate
regime and in proposition 3 for a money growth regime for ¢ > ™.

2¥or the limiting case B — 1, the variances are given by limg 3 varM%(7?) = (—%1-)21/7\1?,1 +
—(1—p)x 2 z ; IR(~2y _ (_—(1—p)x \2 3 )
(wpf(lfp)2+§1(w+lf§1+17p)) var(§,) and limg_1 var' *(7}) = (ﬁpf(lfp) Vvar(&,).
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for the limiting case is then

lim5_>1va7‘MG(7?f):<ﬁ A )2 m2_, +[ A 2
e (1—p)x var(2t> A+6(w+1=-061+1—p)

15
limg_,; var!k (ﬁf) » (15)

where A = wp — (1 — p)2. Suppose that the autocorrelation of cost-push shocks is suf-
ficiently large such that p/ (1 —p)® > 1/w. Then, A > 0 and the term in the square
brackets in (15) is smaller than one, given that the solution under the money growth re-
action function is stable and non-oscillatory 61 € (0,1). Thus, for any given value m;_1,
the inflation variance under a money gkllrgx(zvgl)l policy can be smaller than under a forward-

ur

limg_,1 varlB(7%)

limg_,, var

looking interest rate policy, < 1, if the variance of the cost-push shock

var(gt) is sufficiently large. If, however, the autocorrelation is small p/ (1 — p)? < 1/w,
the inflation variance for a history dependent solution is always larger then for a purely
forward-looking solution. Under a history dependent solution, the responses to a shock
can be spread out over time and might not die out after the shock disappears. This effect
tends to raise the variance, in particular, when shocks are not very persistent. If the
autocorrelation of the common exogenous state is large, the macroeconomic responses to
shocks can persist even if there is no endogenous state variable. If the variance of the
exogenous state var(gt) is further large enough, then a history dependent solution can
be associated with a smaller variance, as shock responses are smoothed. This principle
also applies for the unconditional variances, which will be demonstrated in the subsequent
welfare analysis.

For the welfare analysis we apply the second order approximation to household welfare
(12). Since policy implementation is — by assumption — ensured to be steady state invari-
ant, we use the welfare measure Eg Y o 8" Ly, where Ly = var(7;) + avar(g;) + pvar(Ry)
and var(7;) denotes the variance of a generic variable Z;. Let var, denote its uncon-
ditional variance, i.e., the variance conditional upon the state in period ¢t = 0. We

assume that the state in the initial period is identical with the steady state, such that
Eo> 72 B'L; = Yo B'L where

L = vary + avary, + gvarg. (16)

Since the discount factor is held constant throughout our analysis, L provides a measure
for the welfare ranking of allocations implemented by different policy regimes. Given the
solution coefficients under the reaction functions (9)-(11), which are derived in appendix
7.4, we compute values for the variances.

The unconditional variances for the fundamental solution under a forward-looking in-
terest rate reaction function are var, = n%varg, vary = n%varg, and varg = n%varg,
where vare = (1 — p?)~tvar. denotes the variance of the cost-push shock. The un-

conditional variances for the fundamental solution under an inertial interest rate reac-
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tion function are vary = (pip3(1 — p3) =1 + p3) vare, vary = (p2p3(1 — p)~' + p2) vare,
and varg = p3(1 — p?)~tvare. The unconditional variances for the fundamental so-
lution under a money growth policy are given by wvar, = (5%5%(1 — 5%)_1 —i—éi) vare,
vary = (0263(1 — 0%) 71 + 0§) vare, and varg = (6205(1 — 67) 71 + 63) vare.

Table 2 Welfare losses L/vare for alternative instruments

p i.) Forward-looking ii.) Backward-looking iii.) Forward-looking

interest rate policy  interest rate policy# money growth policy

0.95 0.016 0.0020 0.0019
0.9 0.079 0.0021 0.0021
0.8 0.57 0.0030 0.0032
0.7 0.049 0.0047 0.0051
0.6 0.020 0.0075 0.0082
0.5 0.011 0.012 0.013
0.4 0.0074 0.021 0.023

Note: The eigenvalue under ii.) and iii.) equals 0.83 and # indicates indeterminacy.

Table 2 presents (relative) welfare losses L/vare of the three equilibrium solutions for
the parameter values in table 1. (The associated unconditional variances can be found
given in table Al in appendix 7.5.) The results are reported for various values for the
autocorrelation of cost-push shocks p. It should be noted that we present relative variances
vary /vare, in order to abstract from changes in variances of endogenous variables that are
solely due to changes in vare induced by different degrees of autocorrelation. The loss
L/vare under the unique solution for a forward-looking interest rate policy 4.) changes
with p in a non-monotonic way. For high values (p > 0.8) the relative loss decreases
with p since the variance of the cost-push shock vare rises more strongly with higher
values for p than the unconditional variances of endogenous variables. For p < 0.8, this
effect is reversed. In contrast, under the history dependent solutions implemented by
an inertial interest rate policy or a money growth policy, the relative loss monotonically
decreases with p. These solutions exhibit a backward-looking element that is independent
of the shock persistence, namely, an endogenous state variable with a non-zero eigenvalue
(which equals 0.83 for the benchmark parameter values). As a consequence, the variances

of endogenous variables are much less affected by p than vare. It should be noted that
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empirical evidence suggest the autocorrelation p to be high. For example, Ireland’s (2004)
estimation of a similar model leads leads to p = 0.95.

Overall, the welfare losses of both history dependent solutions are closely related,
though the loss under #i.) is almost always slightly smaller than under éii.). For p =
0.95, the relative loss (0.016) for a purely forward-looking solution induced by a forward-
looking interest rate policy, is clearly larger than those under an inertial interest rate
policy (0.0020) and a money growth policy (0.0019). As demonstrated for the conditional
inflation variances (see 15), forecast error variances can be reduced by the inclusion of a
relevant lagged endogenous variable in the information set. Yet, unconditional variances
can increase with the eigenvalues of endogenous variables, which enlarge the support of
their distributions. Depending on whether the former or the latter effect dominates, a
history dependent solution can, therefore, lead to higher or lower welfare losses. The
latter effect becomes less relevant if the common (exogenous) state already exhibits a high
eigenvalue p. For our benchmark parameterization, p > 0.5 is sufficient for this. Then,
social welfare is higher when the central bank implements its plan in a history dependent
way, i.e., by #i.) or 4ii.). If the autocorrelation p is low (here p < 0.5), the welfare-reducing
impact of the endogenous state on the variance of macroeconomic variables prevails, such

that social welfare is higher under a forward-looking interest rate policy.

Table 3 Welfare losses L/vare for a lower interest rate elasticity (o = oy, = 4)

P i.) Forward-looking ii.) Backward-looking iii.) Forward-looking

interest rate policy  interest rate policy# money growth policy

0.95 0.44 0.017 0.017
0.9 0.12 0.029 0.030
0.8 0.037 0.057 0.058
0.7 0.020 0.092 0.094
0.6 0.012 0.14 0.15
0.5 0.0084 0.22 0.23
0.4 0.0061 0.37 0.38

Note: The eigenvalue under ii.) and iii.) equals 0.98 and # indicates indeterminacy.

Table 3 further presents corresponding results for the case where the macroeconomic dis-
tortion due to transactions frictions is smaller. This is induced by setting ¢ and o, equal

to 4 such that the interest elasticity of money demand is half as large, while the income
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elasticity still equals one. As a consequence, the loss function weight on output fluctuations
rises to a = 0.07, whereas the weight on interest rate fluctuations falls to ¢ = 0.107 (while
©* equals 0.104). Given that the distortion due to transactions frictions is less costly, a
welfare gain from a history dependent implementation of the time consistent plan requires
a higher value for p than before. A forward-looking interest rate policy then leads to lower
welfare losses if p < 0.8. We further examined the case where the steady state velocity v
is lowered to a value of 0.44, which is taken from Christiano et al. (2005). This evidently
emphasizes the role of money and therefore the welfare costs of interest rate changes mea-
sured by ¢ (see 12), while it leaves the private sector equilibrium conditions unaffected.
The weight ¢ then almost equals the weight on the inflation variance ¢ = 0.98, while «
equals 0.035. A a consequence, the threshold for p falls to 0.4 (see table A2 in appendix
7.5).23

Table 4 Welfare losses L/vare under more flexible prices (¢ = 0.5)

p i.) Forward-looking ii.) Backward-looking iii.) Interest rate policy

Interest rate policy  Interest rate policy# Money growth policy

0.95 0.041 0.022 0.022
0.9 0.077 0.025 0.026
0.8 0.36 0.037 0.039
0.7 3.66 0.063 0.065
0.6 19.21 0.11 0.11
0.5 1.68 0.20 0.21
0.4 0.69 0.38 0.39

Note: The eigenvalue under ii.) and iii.) equals 0.63 and # indicates indeterminacy.

To get an intuition for the role of transactions frictions, suppose that the autocorrelation
p equals zero, such that Eyy1 = Ey7ir1 = 0 under an interest rate policy. Further
consider a cost-push shock that tends to raise inflation. Then, a reduction in output (and
inflation) requires a strong interest rate adjustment since the aggregate demand condition
oY — Etrs1) = —(]/%t — Eym1) reduces to 4 = —0_1]5:15. Under a history dependent
solution, a reduction in current output implies 4y < Egir1 < 0 = |4 — Eyir1| < |9t] in

231t should be noted that the relative losses under the history dependent solutions are then also not
strictly decreasing in p, which is (partially) due to the lower eigenvalue 0.75.
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a stable and non-oscillatory equilibrium. As a consequence, smaller interest rate changes
are required as long as monetary policy stabilizes expected inflation by applying small or
negative values for y, and for y,. Thus, the change in expectation formation can reduce
the interest rate variance and, according to the central bank’s first order condition (13),
also the variances of the other endogenous variables. As a consequence, welfare losses can
be reduced under a history dependent solution, while the welfare gain increases with the
interest elasticity of money demand and decreases with the velocity. Further, when prices
are more flexible, future inflation is expected to return faster to its steady state value,
which also tends to reduce the required increase in the nominal interest rate and, thus,
welfare losses. When, for example, the fraction of non-optimizing price setters is set to a
smaller value (¢ = 0.5), which is more in accordance with microeconomic evidence (see
Bils and Klenow, 2004), there is a welfare gain of a history dependent implementation

even for an autocorrelation of p = 0.4 (see table 4).

6 Conclusion

When money is held to reduce transactions costs, a central bank should abstain from
strong adjustments of nominal interest rates. This might however be necessary for the
stabilization of prices in an environment where price movements are associated with welfare
costs. If the central bank acts in a discretionary way such a trade-off can lead to an
optimal policy plan which fails to uniquely pin down an allocation and equilibrium price
system. Or, put in terms of New Keynesian macroeconomics, the central bank’s plan under
discretionary optimization can imply interest rate adjustments that violate the Taylor-
principle. Once a policy plan is consistent with multiple equilibria, different central bank
operating procedures can be associated with different macroeconomic outcomes.

In this paper we apply a standard New Keynesian model and compare social welfare of
different equilibrium solutions to the central bank’s plan under different means of monetary
policy implementation. The central bank either sets the nominal interest rate in a forward-
looking way or in an inertial way, or it uses money injections. Since the central bank acts
under discretion, it does not account for its impact on private sector expectations such
that its plan does not exhibit any backward-looking element. However, monetary policy
can be history dependent if the central bank implements its plan by inertial interest rate
adjustments or by money injections. By providing a link to past conditions, monetary
policy then alters the way private sector expectations are built and can thereby affect
macroeconomic fluctuations. As responses to aggregate shocks are smoothed out, a his-
tory dependent monetary policy implementation can reduce welfare losses compared to an
entirely forward-looking conduct of monetary policy. In particular, this welfare gain in-
creases with the persistence of cost-push shocks, with the interest rate elasticity of money
demand, and with the degree of price flexibility. However, the central bank can only avoid

a history dependent equilibrium to exhibit real indeterminacy if it implements its plan
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by money injections. The predetermined stock of money then becomes a relevant state
variable and serves as an equilibrium selection criterion. Correspondingly, the interest rate
should be applied as the monetary policy instrument if transactions frictions are negligibly
small compared to distortions induced by price rigidities.

The results in this paper can further be interpreted in an alternative way. Studies
on optimal monetary policy usually apply stylized models where the issue of policy im-
plementation is not explicitly considered. While some real world central banks might be
able to change interest rate targets by mere announcements, the majority of central banks
still implements operating targets by quantity adjustments in open market operations. A
reduction of monetary policy to (forward-looking) interest rate adjustments can therefore
overemphasize problems that originate in the lack of history dependence. These prob-
lems might in fact be less severe if one considers the underlying money supply behavior,
which is, in general, not independent from past conditions, i.e., the accumulated stock of

outstanding money.
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7 Appendix
7.1 Proof of lemma 1

To establish the claim made in the third part of the lemma, we eliminate the interest rate
with the money demand condition (8). The model under a money growth policy can then
be summarized by (6), the reaction function (11), and Roys = 0 Etyry1 + (R — 1) o +
E7i41, where we used R = R for convenience. The model can further be written as
(e By Eidieyr) = A (fu—y 7t T) + (—x 0 0)&,, where

1 Mg — 1 My
A=| o ! e
om(1-R) om( ompi,(1-R)

pp—1)(1-R) "
R+ +

1
o _E+ o o

The characteristic polynomial of A is given by

(R—1)Bopmp, —w—[1+(R+1)plo
Bo
oL+ A+ B) Rlo+ (w—py —why) (R—Dom R

Bo B

Given that the model exhibits one predetermined, m;_1, and two jump variables, 7; and

QX) =X+ X?

¢t, stability and uniqueness of equilibrium sequences require exactly one stable eigenvalue.
To derive the conditions therefore, we use that the value of Q(X) at X = 0 : Q(0) =
—RB™! < —1. Thus, det(A) = —Q(0) > 1 implying that there are either two or zero
negative eigenvalues, and that there is at least one unstable eigenvalue. The existence of
a stable root lying between zero and one, thus, requires Q(1) > 0. Examining Q(X) at
X =1, which is given by

(R—1)opm
Q1) = e (W —pr) =1 =P) ),
reveals that the value Q(1) depends on the elasticities y, and p,, :

1-p
I T My < 1.
While this ensures X; € (0,1) and thus the existence of a solution with stable and non-
oscillatory equilibrium sequences, uniqueness additionally requires the remaining roots,
Xo and X3, to lie outside the unit circle. For this, we assess Q(X) at X = —1, which is

given by
Q1) = 5 {om (R=1) [ + 11, (1 B)] = 2+ (R = Dol = 20 (R+1) (B+ D}

As det(A) > 1, two further stable roots (either complex or real) cannot exist, since they

would necessarily lead to a determinant with an absolute value that is smaller than one.
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Thus for Q(—1) < 0, there exists exactly one stable eigenvalue. This is ensured by

R+1 1
un+uyﬁ<1+2”+?;_+l)léﬁ+ ).

Hence, the equilibrium sequences are stable and uniquely determined if and only if . +
1= B hy < 1land p, +p, 1:B <1+ Q%W. Then, the single stable eigenvalue lies

between zero and one X; € (0,1). W

7.2 Proof of lemma 3

To characterize the equilibrium behavior of nominal interest rates under a state contingent
money growth policy 1, = My + T — My—1 = p7e + p Y + ,ugﬁt, we use the equ1hbr1um
condition Roy; = 041+ (R — 1) OmMmt +T¢11 and money demand o, M + 5 Rt o,
to get oy Eiliy 1 = (0m — 1) EyTeqp1— —EthH +— Rt, which together Wlth the money
growth reaction function (11) leads to,

R =~ 1 ~ . . ~
T 1Rt - 1Eth+1 = (omptr — (Om — 1)) EiTtes1 + py0m Bt + preompé-

Now use that the fundamental solution under a money growth policy implies Et§t+1 =
(5m§t + ((p—0m)0Re + 0 Rméme)@. Thus, the current nominal interest rate is character-

ized by the following equilibrium relation

~ R-1
Jr—

R— 6,

R—-1

1
T o, (Mg Omp + =— (0= 0m) ORe + drmd me)> &

[(ombtr = (0m = 1)) EeTrsr + pyom Erge1]

Further using that Fimi1 = 0mme + ((p — 0m) One + &rméme)a, and Esi1 = Ol +

((p = 0m) Oye + SymOme) /E\t, we can rewrite this expression as

~ R—-1 . _ R—-1 . _
Ri=lom(p, —1)+1] = STt + pyOm=——0mlt
—Um R - 5m
767774 5 € 5 méme
Nggmp+ (,0 )%_ﬁ R }Z
t-

R—dp, { + (Um,uw - (Um - 1)) ((P - 5m) Ore + 57rm5me) + HyOm ((P - 5m) 5ye + 6ym6me)

We further know that there exists a unique value for '“Z’ such that the term in the curly
brackets equals zero if p, = ,uz, since all solution coefficients in the curly brackets are
either independent of ji¢, such as 0y, dRm, dxm, and drm, or are linear in ,uz, such as e,

ORe, Oye, and dre. The value of ug is given by

* -1 55} -1
'ug = pT |:(R — 1) ((p - 5m) 5Re + 5Rm5m€) + O-ﬂ"uuy (5em5my + 5ey (p - 5m)) (18)

T GemBm + bem (0= ) (s — 1) s — )]
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Then, we end up with an expression which takes the form of the first order condition (13).
This imposes the following restrictions on the partial derivatives OR, /0w and OR, /Oy
R-1

afzt/a%t = [om (1 —1) +1]T'0,, and 81%/8@5 = pyoml'dpm, where I' = = 5

which are satisfied by equilibrium sequences implemented by a money growth reaction

function. Hence, a money growth reaction function satisfying (18),

—> and —iﬁ_(sm 1
ap R-1 Om ’ My_o—()@ R-1 5m0'm,

implements a set of equilibrium sequences which are consistent with the plan. l

7.3 Proof of proposition 3

From lemma 1 and 2 it follows immediately that a history dependent solution under a
money growth reaction function (11) has to be unstable if ¢ < ¢*. It remains to examine
the stability and uniqueness properties of this solution when ¢ > ¢*. For this we consider
the characteristic polynomial of the model (6)-(8) and (11), which has been derived in the
proof of lemma (1), Q(X) = X?+X?[(R — 1) fomp, —w—0f (1+ R)—o](Bo) 1+ X[w+
o1+ R(1+8))+ (R—1) opm(w — p, —wpig)](Bo) ™t — R/ (see 17). The roots X of this
polynomial are functions of the reaction function parameter p, and p,. The values for
the latter have to satisfy pu, =1+ = (iui — ) and p1, = - BoX 1 (see lemma

om \op R—1 X op R—1 Xom
3), in order to implement the central bank’s plan, and they are functions of the particular

eigenvalue. Eliminating the reaction function parameter with these conditions, we end up

with the following cubic equation for the eigenvalues X:

2 2 2
Q(X):0<:>O:X3_X2aﬂ+o—wg0+o— SO_._O- 5¢+RO— /BSO

2
o
+on+Ra[3+Rawg0+w2 + 0% + Ro?p + Ro?By _ a+ w? —i—a2ch
@B po?p '
It can immediately be seen that Q(0) = —Uglz@ (oz +w?+ 02<p) < —1, implying that the

product of the eigenvalues exceeds one. Hence, there is at least one unstable eigenvalue
and either no or two negative eigenvalues. Assessing the value of Q(X) at X =1, Q(1) =
50_2}3 (owp — a (1 — B) — w?), reveals that ¢ > ¢* = %% + 2 & Q(1) > 0. Thus, there
exists one stable eigenvalue X; if and only if ¢ > %% + 2. It satisfies X3 € (0,1). We

further use the second derivative of Q(X) at X = 1, which is strictly negative

Q1) = —%[aﬁ topwto(l—B)+(R—1)08)] < 0.

If the roots X and X3 are real, this evidently ensures the existence of exactly one stable

eigenvalue. When the roots Xy and X3 are complex, they can be written as Xo, X3 = htwvi.
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Using X; + X3 + X3 = b for the cubic polynomial Q(X) = X3+ bX? +cX +d, we further
know that h then satisfies h = (b — X7) /2. Given that Q"(1) =6+20 <0< b < —3, we
know that A > 1 and that X, and X3 are unstable, if ¢ > ¢* < X; € (0,1). Hence, under
a money growth reaction function (14) there are two unstable and one stable (positive)

eigenvalue if ¢ > *. B

7.4 Appendix to the solutions of the central bank’s plan

Forward-looking interest rate policy If the central bank applies an interest rate
reaction function of the form (9), the fundamental solution satisfies X; = x(¢;). Under
the central bank’s plan the equilibrium can be summarized by a two dimensional system
in inflation and output satisfying (6) and (o — %)@t = oEyi+1 + %ﬁi + Et%tJrlA' The
generic solution for the coefficients derived above, thus reduce to 7, = 1,&;, yr = 15&;, and
Ry = 13&,. These coefficients are given by 1, = (o + 020 — 02p)xF, 19 = (opp — w)XF

and 73 = (ow + ap — owp) xF , where f = [a—aBp—owpp+w?+02p(1—p—Bp+Bp*)] L.

Inertial interest rate policy As for the previous regime, it is sufficient for our pur-
pose to solve the equilibrium under an inertial interest rate reaction function (10) for the
sequences of inflation, output, and the interest rate. In order to be consistent with the
plan these sequences have to satisfy (6), (7), and (13). Eliminating output with the latter,
Y = zafﬁt — 274, leads to the following set of equilibrium conditions for inflation and the
interest rate

2
~ w . o ~ N
(1+ O'QQD/OZ)Rt - Uam :EtT(pRtH + (1 —ow/a) B4y,

~ 0P 5 ~ ¢
(1 +w?/a)7, IUJESORt + BET 41 + X&t-

The generic form of the minimum state variable solution for inflation and the interest rate

under an inertial interest rate reaction function is given by
Ry =piRi—1+p&y,  and 7 = psRi—1 + pyé;.

Applying these solutions, leads to the following set of conditions for the undetermined

coefficients

0=0wps — apy + apips — owpipz — 0Py + 0 0pT,

0 =owpp; — aps + abpips — w’ps,

0=0wpy — APy + PPy — OWPPy + AP2p3 — OWPaP3 — T2PPy + 07 PPy + 07 P1 P2,
0=ax — apy + afpps + owpps + afipyps — w’py.
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T2l and the following condition

Combining the first two conditions, gives p3 = R pm—x

) af+owp+ oo+  a+w?+oie]
P1— M 028y o28p P1=

One solution is evidently given by p; = 0, which leads to the previous forward-looking

solution. To assess the existence of another solution, let G(p;) denote the quadratic
polynomial in the square brackets. Since G(0) = 87! + (o + w?)/(pBo?) > 1 and G(1) =
[a(1—=P8) + (w—op)w]/(pBc?), we can conclude that there exists exactly one stable

conditions for the undetermined coefficients imply

(1]

and strictly positive root if and only if ¢ > ¢* (see also proposition 2). The remaining
ow+ ap —owp X [(1 ow+ ap —owp

afp—a—w? 2 afp — a — w? <awcp+aaﬁw<pw2+a — Bp1) >/ ﬂ

——a—X 1_aw+ap—awp owy + aoPw A1 /E
Pa= aBp — o — w? aBp — o — w? 7 SOu)Q—i-cz(l—,Bpl) - ’

2 — o2 —oz+a2 + ow @ o
PP ® ¥P1 @P1w2+a(1_5p1)-

pr=a

where E =0

The coefficients for the output solution 7y = p51§t_1 + Pth can easily be derived by applying
U = iRt — —7Tt They have to satisfy

op w oY w
= —_— _—— d — —_ =
Ps o P1 T Py and pe o P27 P

which completes the minimum state variable solution under an inertial interest rate reac-
tion function.

Money growth policy In order to derive the solution under a money growth reaction
function that is consistent with the central bank’s plan, we use the central bank’s first
order condition, agpﬁt = a¥;+wm, and money demand, Ri=c (R—1)Yr—om (R—1)my,

to summarize the equilibrium by (6), and

Royy = 0 Eiyir1 + (R — 1) oy + EyTqa,
(po? (R —1) — @) §Jp = po0m (R — 1) iy + wTy.

The fundamental solution under a money growth reaction function takes the form
my = 01Mmy—1 + 02§, T = 03my—1 +04&;, and ¥y = 05my—1 + 66&;.

The set of equilibrium conditions in inflation, output, and real balances can be reduced,
. iy~ ~ ~ m(R—1
by eliminating output with y; = ¥ m; + Yo7y, where 1, = %&1)7)@ and ¢y =

m. Hence, the equilibrium can be summarized by the following two dimen-
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sional system in m; and 74

(1 — wipy) Ty = wipy g + BRes1 + XEp,
RO’?,Z)Q%,: :O'Q,Z)lT/T\Lt+1 + (1 + O'¢2) %t+1 + ((R — 1) Om — RU¢1) ﬁ’Lt.

Applying the solutions m; = d1ms_1 + (52& and T; = O3Mmyp—1 + (54&, we end up with the

following set of conditions for the undetermined coefficients

0= 6163 + w1y — 3 (1 —wpy),

0= 00711 — Rodsiy + 0103 (0% + 1) + 01 (0m (R — 1) = Royy),

0=x+ wdat; + B (pds + 0203) — 64 (1 — wipy),

0=01; (pd2 + 6192) — Rod4)y + (pd4 + 0203) (0 + 1) + 02 (01 (R — 1) — Row)y) .

The first two conditions can be combined to give d3 = (1*53‘% and the following
condition, where J; is the eigenvalue of real balances:
9 Yy (c+w+ RoB)+ fom (1 —R)  o0m (R—1)(1 —wipy) — Roy
01 |07 — 41 — = 0.

0B, oy

Evidently, there is one solution characterized by a zero eigenvalue §; = 0. Let K(d;1) denote
the quadratic polynomial in the square brackets. As K(d1) is strictly positive at 67 = 0,
K(0) = o717 1o 2(a4w?+02p) > 1, and satisfies K (1) = ¢ 17072 (a—aB—owp+w?),
we can conclude that there exists exactly one stable and non-zero root of K(d1), if and
only if ¢ > ¢*. Thus, when this condition is satisfied, the solution with d; > 0 is stable
and uniquely determined. Combining the remaining two equations, we end up with the

following conditions for the coefficients do and d4 :

X (p (oY +1) — Royy) X + 62803 + dowy

09 = — , 04 = ,
2 (0 ! 1= Bp—wiy

where ¢3: (le <P+ 01 — R) +0om (R— 1) + 03 (O’”gb2 + 1)) (1 —w¢2 — BP) ‘

+(p(0y + 1) — Rovpy) (B3 + wipy)

In order to solve for output we apply m; = 0171 + 52275 and T; = 03M—1 + 54/5\,5, leading
to Yy = dsmy_1 + 56&, where

05 = 53¢2 + 51”@[11, and g = (54"@[12 + (521/}1.

Finally, we solve for the interest rate using Ry = o (R — 1) §i — o (R — 1) i to give the

solution for the nominal interest rate ﬁt = O7Mmy_1 + 58&, where
d7=(R—-1)(005 —omoé1), and dg=(R—1)(cds — omd2).

This completes the solution under a money growth reaction function (11) and (14).
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7.5

Monetary instruments and social welfare (further results)

Table A1 Variances for alternative instruments

P i.) Forward-looking ii.) Forward-looking iii.) Backward-looking
Interest rate policy Interest rate policy# Money growth policy

vargy vary varg vary vary varg vary vary varp

vare vare vare vare vare vare vare varg vare

0.95 0012 0080 00057 7.6/10% 0033 28/10 6.1/10" 0035 3.3/10%
0.9  0.069 0.15 0.025  0.0010 0028 45/10* 9.9/10" 0029 5.1/10%
0.8 053 0.23 0.15  0.0021 0022 86/10* 00022 0023 9.6/10%
0.7 0046  0.0046  0.012  0.0037 0.020 0.0014 0.0041 0.021 0.0016
0.6 0019 32/10' 00046 0.0063 0.020 0.0023 0.0069 0.021  0.0025
0.5 0011 021/10° 0.0025 0011 0022 00037 0012 0.023 0.0040
0.4 00071 3.1/10° 0.0016 0019  0.028 0.0063 0021  0.030 0.0068

Note: The eigenvalue under ii.) and iii.) equals 0.83 and # indicates indeterminacy.

Table A2 Welfare losses L/varg for a smaller velocity (v = 0.44)

p i.) Forward-looking ii.) Backward-looking iii.) Forward-looking
Interest rate policy  Interest rate policy# Money growth policy

0.95 0.0037 0.0018 0.0021
0.9 0.0096 0.0017 0.0021
0.8 0.16 0.0018 0.0028
0.7 0.25 0.0025 0.0043
0.6 0.035 0.0039 0.0067
0.5 0.015 0.0064 0.011
0.4 0.0089 0.011 0.019

Note: The eigenvalue under ii.) and iii.) equals 0.75 and # indicates indeterminacy.
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