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A STUDY ON LINEAR INEQUALITY REPRESENTATION
OF SOCIAL WELFARE FUNCTIONS

KEISUKE SATO AND YOSHITSUGU YAMAMOTO

Abstract. This paper presents a study on the recently proposed linear inequality rep-
resentation of Arrovian Social Welfare Functions (ASWFs). We first give an alternative
proof of the ASWF integer linear inequality representation theorem, and then show
several sufficient conditions on preference domains for the linear inequalities of the rep-
resentation to form integral polytopes. We also show that a given probabilistic ASWF
induces a real vector satisfying the inequalities.

1. Introduction

Social choice theory discusses the way of aggregating individual opinions and making
a decision of the society. Since Arrow [2] proved the classic Impossibility Theorem, this
theory has been studied by various researchers of various academic fields. For the com-
prehension and the development of the theory see Arrow, Sen, and Suzumura [3] as well
as Sen [10]. Recently Sethuraman, Teo, and Vohra [11] formulated Arrovian Social Wel-
fare Functions (ASWFs), which are social welfare functions satisfying fundamental Pareto
principle and independence of irrelevant alternatives axioms, as integer solutions to cer-
tain linear inequalities. They showed the Impossibility Theorem and other results such as
Kalai and Muller [6] by solving their inequality system.

In this paper we study the linear inequality representation of ASWFs. We give an al-
ternative proof of the one-to-one correspondence result between an ASWF and an integer
solution to the ASWF linear inequality representation in Sethuraman et al. [11]. Next we
consider some polyhedral structure determined by the linear inequalities of the represen-
tation. We correct one claim in Sethuraman et al. [11] and show that when the preference
domain is single-peaked, single-caved, or the domain on which each triple of alternatives
contains an alternative that cannot be medium, and it satisfies what we define as the
“weakly nonisolated” condition, the set of nonnegative solutions to the inequalities forms
an integral polytope. We then discuss noninteger solutions to the inequality system. After
showing that a real vector satisfying the ASWF inequalities can be constructed from every
“probabilistic” ASWF, we derive a subadditive function of Barberá and Sonnenschein [4]
as a special case. The construction of a probabilistic ASWF from a given solution to the
inequalities is also studied.

The rest of the paper is organized as follows. Section 2 introduces notations and axioms.
In Section 3 we give an alternative proof of the ASWF integer linear inequality represen-
tation theorem of Sethuraman et al. [11]. Discussions as to some polyhedral structure
determined by the linear inequalities are held in Section 4. In Section 5 we discuss a
relation between probabilistic ASWFs and noninteger solutions to the linear inequality
representation. Section 6 concludes the paper and we give our view to future work.

Date: February 20, 2006.
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2. Notations and Axioms

The finite set of players is denoted by N = {1, 2, . . . , n} and we suppose that the
number of players is at least two. Let X = {x, y, z, . . .} be the set of all alternatives and
assume 3 ≤ |X | < ∞. A binary relation Â on X is a linear ordering if it satisfies

(i) completeness: x Â y, y Â x, or both hold for any pair of alternatives x, y ∈ X ,
(ii) transitivity : if x Â y and y Â z then x Â z holds for any alternatives x, y, z ∈ X , and
(iii) antisymmetry : if x Â y and y Â x then x = y holds for any pair of alternatives x, y ∈ X .

Let L(X ) be the family of all linear orderings on X . The statement x Â y is read “x is
preferred to y.” We call a member of L(X ) a preference ordering or simply preference. For
a subset Y ⊆ X , we denote by Â|Y the restriction of binary relation Â to Y, i.e., Â|Y is
defined on Y × Y and xÂ|Yy if and only if x Â y and x, y ∈ Y.

Let Ω be a nonempty subset of L(X ) and call it the preference domain or the domain.
We set P = Ωn, the n-ary Cartesian product of Ω, call an element p ∈ P a profile, and
denote by Âp

i the preference of player i at profile p. We denote by S(p, x Â y) the set of
players preferring alternative x to y at p ∈ P, i.e.,

S(p, x Â y) := { i ∈ N | x Âp
i y }.

Given P ⊆ L(X )n we let CP(S, x Â y) be the set of profiles at which only the players in
S prefer x to y, that is,

CP(S, x Â y) := { p ∈ P | S(p, x Â y) = S }.
Let us define NP(x Â y), which indicates whether the players can express their opinions
as x Â y or not, and similarly NP(x Â y Â z), as

NP(x Â y) :=

{
N if there exists a preference in Ω such that x Â y,

∅ otherwise,

NP(x Â y Â z) :=

{
N if there exists a preference in Ω such that x Â y Â z,

∅ otherwise,

for each distinct x, y, z ∈ X on a given P = Ωn.
A social welfare function (on linear orderings) denoted by f , is a mapping that assigns

an ordering on X to a profile p ∈ P, i.e., f : P → L(X ). We denote by Âf(p) the social
preference ordering on X determined by f at profile p ∈ P. A social welfare function is
said to satisfy unrestricted domain property when Ω = L(X ) holds. If there exists a player
i ∈ N , such that x Âp

i y implies x Âf(p) y for any pair of distinct alternatives x, y ∈ X
and for any profile p ∈ P, then the function is said to be dictatorial and i to be a dictator.
A social welfare function satisfying the following two axioms is called an Arrovian Social
Welfare Function (ASWF).

Axiom 2.1 (Pareto Principle (PP)). If the property that

x Âp
i y for all i ∈ N implies x Âf(p) y

holds for any pair of distinct alternatives x, y ∈ X and for any profile p ∈ P, then the
social welfare function f is said to have Pareto principle.

Axiom 2.2 (Independence of Irrelevant Alternatives (IIA)). If the property that

Âp1
i |{x,y} = Âp2

i |{x,y} for all i ∈ N implies Âf(p1)|{x,y} = Âf(p2)|{x,y}
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holds for any pair of distinct alternatives x, y ∈ X and for any pair of distinct profiles
p1, p2 ∈ P, then the social welfare function f is said to satisfy independence of irrelevant
alternatives.

3. Alternative Proof of Integer Linear Inequality Representation

This section shows an alternative way to prove the one-to-one correspondence theorem
between an ASWF and an integer solution to the ASWF linear inequalities in Sethuraman
et al. [11]. First of all, let ASWF f be given, and we introduce variable dS(x, y) for each
pair of distinct alternatives x, y ∈ X , and for each set S such that NP(x Â y) \ NP(y Â
x) ⊆ S ⊆ NP(x Â y). The value of dS(x, y) is set by

(3.1) dS(x, y) :=

{
1 if x Âf(p) y holds for all p ∈ CP(S, x Â y),
0 otherwise,

and we will give a certain integer linear inequality system to which the dS(x, y) constructed
by this way becomes a solution. On the other hand, for a given solution to this inequality
system, we construct f , a function which maps a profile into a binary relation on X and
is hopefully an ASWF, as follows: for each profile p ∈ P and for each distinct pair of
alternatives x, y ∈ X ,

x Âf(p) y if dS(p,xÂy)(x, y) = 1, and

x 6Âf(p) y otherwise.
(3.2)

We present below the inequality system with regard to dS(x, y).

Definition 3.1 (Integer Linear Inequality Representation of ASWFs).
(Integrality and IIA). For all pairs of distinct alternatives x, y ∈ X , and for all sets S

such that NP(x Â y) \ NP(y Â x) ⊆ S ⊆ NP(x Â y),

(3.3) dS(x, y) ∈ {0, 1}.
(PP). For all pairs of distinct alternatives x, y ∈ X such that NP(x Â y) = N ,

(3.4) dN (x, y) = 1.

(Completeness and Antisymmetry). For all pairs of distinct alternatives x, y ∈ X , and
for all sets S such that NP(x Â y) \ NP(y Â x) ⊆ S ⊆ NP(x Â y),

(3.5) dS(x, y) + dN\S(y, x) = 1.

(Transitivity). For all ordered triples (x, y, z) of distinct alternatives x, y, z ∈ X , and
for all sets A ⊆ NP(x Â z Â y), B ⊆ NP(y Â x Â z), C ⊆ NP(z Â y Â x), U ⊆ NP(x Â
y Â z), V ⊆ NP(z Â x Â y), W ⊆ NP(y Â z Â x), such that (A,B, C, U, V,W ) is a
partition of N ,

(3.6) dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2.

We note that there is a slight difference between the original ASWF formulation by
Sethuraman et al. [11] and that by Definition 3.1. For any pair of distinct x, y ∈ X , the
set S takes between an empty set and the whole set N of players in the former, while
NP(x Â y) \ NP(y Â x) ⊆ S ⊆ NP(x Â y) in the latter. The difference arises when
NP(x Â y) = ∅ or NP(y Â x) = ∅, i.e., one alternative is always strictly preferred to the
other for all preference orderings in the domain Ω. This situation is said that either (x, y)
or (y, x) is a trivial pair (see Definition 4.4). In the original work a constant value is set to
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the variables involving a trivial pair by convention, while we do not even enumerate such
variables.

Theorem 3.2 (Sethuraman et al. [11, Theorem 1]). Every solution to Integer Linear
Inequality Representation of ASWFs corresponds to an ASWF on linear orderings and
vice versa.

We will present another proof of this theorem, which we believe will furnish us with
a more insightful view. In the first stage of proving Theorem 3.2 we introduce another
integer linear inequality system and show one-to-one correspondence between a solution
to the system and an ASWF. We introduce the profile-dependent variable d(p, x, y) and
make an ASWF f and a vector d of d(p, x, y)’s correspond to each other by the following
natural way: for each p ∈ P and for each distinct x, y ∈ X ,

x Âf(p) y if and only if d(p, x, y) = 1, and

x 6Âf(p) y if and only if d(p, x, y) = 0.
(3.7)

We give the integer linear inequalities concerning the profile-dependent variable.

Definition 3.3 (Profile-dependent Integer Linear Inequality Representation of ASWFs).
(Integrality). For all profiles p ∈ P, and for all pairs of distinct alternatives x, y ∈ X ,

(3.8) d(p, x, y) ∈ {0, 1}.
(PP). For all profiles p ∈ P, and for all pairs of distinct alternatives x, y ∈ X , if

p ∈ CP(N , x Â y) then

(3.9) d(p, x, y) = 1.

(IIA). For all pairs of distinct profiles p1, p2 ∈ P, and for all pairs of distinct alternatives
x, y ∈ X , if p1, p2 ∈ CP(S, x Â y) for some S then

(3.10) d(p1, x, y) = d(p2, x, y).

(Completeness and Antisymmetry). For all profiles p ∈ P, and for all pairs of distinct
alternatives x, y ∈ X ,

(3.11) d(p, x, y) + d(p, y, x) = 1.

(Transitivity). For all profiles p ∈ P, and for all triples of distinct alternatives x, y, z ∈
X ,

(3.12) d(p, x, y) + d(p, y, z) ≤ 1 + d(p, x, z).

Lemma 3.4. Every solution to Profile-dependent Integer Linear Inequality Representation
of ASWFs corresponds to an ASWF on linear orderings and vice versa.

Proof. First we show that d(p, x, y) constructed from a given ASWF f satisfies the in-
equalities in Definition 3.3. Needless to say (3.8) is satisfied. When p ∈ CP(N , x Â y),
Axiom (PP) of an ASWF makes x Âf(p) y hold, and therefore (3.9) is satisfied. By def-
inition, the statement p1, p2 ∈ CP(S, x Â y) implies S(p1, x Â y) = S(p2, x Â y) = S.
Since the preferences of the players in p1 and p2 are all linear-ordered, both S(p1, y Â x)
and S(p2, y Â x) are N \ S. Hence Âp1

i |{x,y} = Âp2
i |{x,y} holds for all i ∈ N . Accordingly

Axiom (IIA) guarantees Âf(p1)|{x,y} = Âf(p2)|{x,y} and from that (3.10) is obtained. Com-
pleteness and antisymmetry of a social welfare function ensure (3.11), and by transitivity
(3.12) is satisfied.
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Next we let vector d be an arbitrary solution to (3.8)-(3.12) and let f be constructed
by d. From (3.8) and (3.11), exactly one of either x Âf(p) y or y Âf(p) x holds for any
profile p ∈ P and for any pair of distinct alternatives x, y ∈ X , so that f is complete and
antisymmetric. Suppose that f does not satisfy transitivity, i.e., x Âf(p) y, y Âf(p) z and
x 6Âf(p) z for some triple x, y and z ∈ X . Then we have d(p, x, y) = d(p, y, z) = 1 and
d(p, x, z) = 0, which violates (3.12). To show that f satisfies Axiom (PP), take an arbitrary
pair of distinct alternatives x, y ∈ X . Then for any p ∈ P such that S(p, x Â y) = N ,
(3.9) and (3.11) indicate d(p, x, y) = 1 and d(p, y, x) = 0, which means x Âf(p) y. Choose
an arbitrary pair of distinct x, y ∈ X as well as arbitrary distinct p1, p2 ∈ P, and suppose
that the statement Âp1

i |{x,y} = Âp2
i |{x,y} holds for all i ∈ N . It implies p1, p2 ∈ CP(S, x Â y)

for some S and p1, p2 ∈ CP(N \ S, y Â x). Then from (3.8) and (3.10), they hold that
x Âf(p1) y if and only if x Âf(p2) y and y Âf(p1) x if and only if y Âf(p2) x. Therefore we
can say that f satisfies Axiom (IIA). Thus the lemma has been proved. ¤

In the second stage for the proof of Theorem 3.2 we connect the profile-dependent
representation with the original representation. Namely, let an arbitrary solution to (3.8)-
(3.12) be given, and set dS(x, y) for each pair of distinct alternatives x, y ∈ X , and for
each set S such that NP(x Â y) \ NP(y Â x) ⊆ S ⊆ NP(x Â y) as

(3.13) dS(x, y) :=

∑
p∈CP (S,xÂy) d(p, x, y)

|CP(S, x Â y)| .

In other words, we regard dS(x, y) as the ratio of x being socially preferred to y at the
profiles such that all the players in S express their preferences as x Â y and the rest as
y Â x. We confirm that CP(S, x Â y) is not empty for each pair of distinct alternatives
x, y ∈ X and for each set S such that NP(x Â y) \ NP(y Â x) ⊆ S ⊆ NP(x Â y). When
NP(x Â y) = ∅, S can only be ∅. In this case there does not exist a preference such that
x Â y. Therefore S(p, x Â y) = ∅ holds for all p ∈ P, and equivalently CP(∅, x Â y) = P.
When NP(x Â y) = N and NP(y Â x) = ∅, S can only be N . This means that for
all profiles every player strictly prefers x to y, thus CP(N , x Â y) 6= ∅ holds. Each
player can express x Â y or y Â x when both NP(x Â y) and NP(x Â y) are N , so
in this case CP(S, x Â y) is nonempty for any ∅ ⊆ S ⊆ N . From this discussion we
can say that dS(x, y) constructed by (3.13) is well-defined. Meanwhile, given a solution
to Integer Linear Inequality Representation of ASWFs in the sense of Definition 3.1, we
create d(p, x, y) for each p ∈ P and for each distinct pair of alternatives x, y ∈ X as follows:

(3.14) d(p, x, y) := dS(p,xÂy)(x, y).

Lemma 3.5. Every solution to Integer Linear Inequality Representation of ASWFs cor-
responds to a solution to Profile-dependent Integer Linear Inequality Representation of
ASWFs and vice versa.

Proof. Since p ∈ CP(S, x Â y) holds if and only if S(p, x Â y) = S holds, d(p, x, y)
obtained from a given dS(x, y) by (3.14) returns the same dS(x, y) by (3.13). The converse
also holds if (3.10) is assumed. Hence it suffices to show that a solution to (3.8)-(3.12)
constructs a solution to (3.3)-(3.6) and a given dS(x, y) gives d(p, x, y) which satisfies the
constraints (3.8)-(3.12) in Definition 3.3.

Let an arbitrary solution to (3.8)-(3.12) be given. We take an arbitrary pair of distinct
x, y ∈ X , and an arbitrary but appropriate S. From (3.10) and (3.13), the statement

(3.15) dS(x, y) = d(p, x, y)
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dS(x,y)d(p,x,y)

(3.13)

(3.14)

Profile-dependent

Integer Linear Inequality
Representation

Integer Linear Inequality
Representation

ASWF

f
(3.7)

Figure 1. Correspondence among f , d(p, x, y) and dS(x, y)

holds for any p ∈ CP(S, x Â y). This equation along with (3.8) indicates (3.3). Consider
the case where S = NP(x Â y) = N , and we have (3.4) from (3.9). When a profile p is
in CP(S, x Â y) it is also a member of CP(N \ S, y Â x) because of the antisymmetry of a
linear preference ordering. Therefore, (3.11) and (3.15) imply

dS(x, y) + dN\S(y, x) = d(p, x, y) + d(p, y, x) = 1,

which is (3.5). To show that (3.6) is satisfied, suppose not. Then for some distinct
x, y, z ∈ X and for some partition (A,B, C, U, V,W ) of N with A ⊆ NP(x Â z Â y),
B ⊆ NP(y Â x Â z), C ⊆ NP(z Â y Â x), U ⊆ NP(x Â y Â z), V ⊆ NP(z Â x Â y),
and W ⊆ NP(y Â z Â x),

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) > 2

holds. If player i is in A, there exists a preference ordering on which i can express his/her
opinion as x Â z Â y. This is because i ∈ A implies NP(x Â z Â y) = N , the existence of
a preference with x Â z Â y. Likewise i ∈ B means that i can choose a preference from Ω
which is y Â x Â z, etc. Note also that each player is in exactly one of A, B, C, U , V ,
and W , and that we can choose a profile p ∈ P such that, for each i ∈ N ,

if i ∈ A then x Âp
i z Âp

i y, else if i ∈ B then y Âp
i x Âp

i z,
else if i ∈ C then z Âp

i y Âp
i x, else if i ∈ U then x Âp

i y Âp
i z,

else if i ∈ V then z Âp
i x Âp

i y, else if i ∈ W then y Âp
i z Âp

i x.

For this profile, we have p ∈ CP(A ∪ U ∪ V, x Â y), p ∈ CP(B ∪ U ∪ W,y Â z), and
p ∈ CP(C ∪ V ∪W, z Â x) hold. Then by (3.15), we have

d(p, x, y) + d(p, y, z) + d(p, z, x) > 2.

On the other hand by applying (3.11) to (3.12) we obtain

(3.16) d(p, x, y) + d(p, y, z) + d(p, z, x) ≤ 2,

consequently a contradiction.
Let a solution to Integer Linear Inequality Representation of ASWFs in the sense of

Definition 3.1 be given, and the value of d(p, x, y) be set by (3.14). We show that this
d(p, x, y) satisfies (3.8)-(3.12). The constructed d(p, x, y) by this way satisfies (3.10) since
the statement p1, p2 ∈ CP(S, x Â y) is equivalent to S(p1, x Â y) = S(p2, x Â y) = S.
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In the case where S = N , (3.9) is implied by (3.4). The set S(p, x Â y) lies between
NP(x Â y) \ NP(y Â x) and NP(x Â y), hence we have (3.8) from (3.3). Antisymmetry
of preference orderings in the common preference domain framework guarantees S(p, y Â
x) = N \ S(p, x Â y), and this together with (3.5) assures us

d(p, x, y) + d(p, y, x) = dS(p,xÂy)(x, y) + dS(p,yÂx)(y, x) = 1,

which is (3.11). Let us suppose that (3.12) does not hold for some p ∈ P and for some
distinct alternatives x, y, z ∈ X . Then (3.16) is also violated by these p, x, y, and z, i.e.,

d(p, x, y) = 1, d(p, y, z) = 1, and d(p, z, x) = 1.

It means, by (3.14), that

dS(p,xÂy)(x, y) = 1, dS(p,yÂz)(y, z) = 1, and dS(p,zÂx)(z, x) = 1,

respectively. Regarding the triple {x, y, z}, there are six patterns of preference orderings
at this p. We partition the whole set N of players into the six types as follows:

Ā := { i ∈ N | x Âp
i z Âp

i y }, B̄ := { i ∈ N | y Âp
i x Âp

i z },
C̄ := { i ∈ N | z Âp

i y Âp
i x }, Ū := { i ∈ N | x Âp

i y Âp
i z },

V̄ := { i ∈ N | z Âp
i x Âp

i y }, W̄ := { i ∈ N | y Âp
i z Âp

i x }.
Since S(p, x Â y) = Ā ∪ Ū ∪ V̄ , S(p, y Â z) = B̄ ∪ Ū ∪ W̄ , and S(p, z Â x) = C̄ ∪ V̄ ∪ W̄
hold, we have

dĀ∪Ū∪V̄ (x, y) + dB̄∪Ū∪W̄ (y, z) + dC̄∪V̄ ∪W̄ (z, x) = 3.

This contradicts (3.6) because the sets Ā, B̄, C̄, Ū , V̄ , and W̄ are all disjoint, their union
coincides with N , and Ā is a subset of NP(x Â z Â y), B̄ ⊆ NP(y Â x Â z), etc. ¤

Combining Lemma 3.4 and Lemma 3.5 we have the following proof.

Proof of Theorem 3.2. By Lemma 3.4 and Lemma 3.5 along with the transformation pro-
cedures (3.7), (3.13), and (3.14), we have the one-to-one correspondence between an ASWF
and a solution to Integer Linear Inequality Representation of ASWFs. ¤

We note that the transitivity inequalities (3.6) ‘for all “ordered” triples’ can be sub-
stituted for those ‘for all “unordered” triples,’ which contributes to a reduction in the
number of constraints.

Definition 3.6 (Transitivity on Unordered Triples). For all unordered triples {x, y, z} of
distinct alternatives x, y, z ∈ X , and for all sets A ⊆ NP(x Â z Â y), B ⊆ NP(y Â x Â z),
C ⊆ NP(z Â y Â x), U ⊆ NP(x Â y Â z), V ⊆ NP(z Â x Â y), W ⊆ NP(y Â z Â x),
such that (A,B, C, U, V,W ) is a partition of N ,

(3.17) 1 ≤ dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2.

Theorem 3.7. When (3.5) is assumed, (3.6) is equivalent to (3.17).

Proof. Let {x, y, z} be an arbitrary unordered triple of distinct alternatives x, y, z ∈ X .
We evaluate (3.6) for all permutations of {x, y, z}, i.e., (x, y, z), (y, z, x), (z, x, y), (x, z, y),
(z, y, x), and (y, x, z).

Case 1: (x, y, z). For all sets A ⊆ NP(x Â z Â y), B ⊆ NP(y Â x Â z), C ⊆ NP(z Â
y Â x), U ⊆ NP(x Â y Â z), V ⊆ NP(z Â x Â y), W ⊆ NP(y Â z Â x), such that
(A,B, C, U, V,W ) is a partition of N ,

(3.18) dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≤ 2.
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Case 2: (y, z, x). For all sets Ā ⊆ NP(y Â x Â z), B̄ ⊆ NP(z Â y Â x), C̄ ⊆ NP(x Â
z Â y), Ū ⊆ NP(y Â z Â x), V̄ ⊆ NP(x Â y Â z), W̄ ⊆ NP(z Â x Â y), such that
(Ā, B̄, C̄, Ū , V̄ , W̄ ) is a partition of N , it clearly holds that

(3.19) dĀ∪Ū∪V̄ (y, z) + dB̄∪Ū∪W̄ (z, x) + dC̄∪V̄ ∪W̄ (x, y) ≤ 2.

By letting Ā = B, B̄ = C, C̄ = A, Ū = W , V̄ = U , and W̄ = V , we see that (3.19) is the
same as (3.18).

Case 3: (z, x, y). For all sets Ā ⊆ NP(z Â y Â x), B̄ ⊆ NP(x Â z Â y), C̄ ⊆ NP(y Â
x Â z), Ū ⊆ NP(z Â x Â y), V̄ ⊆ NP(y Â z Â x), W̄ ⊆ NP(x Â y Â z), such that
(Ā, B̄, C̄, Ū , V̄ , W̄ ) is a partition of N ,

(3.20) dĀ∪Ū∪V̄ (z, x) + dB̄∪Ū∪W̄ (x, y) + dC̄∪V̄ ∪W̄ (y, z) ≤ 2.

Setting Ā = C, B̄ = A, C̄ = B, Ū = V , V̄ = W , and W̄ = U tells us that (3.20) is also
equivalent to (3.18).

Case 4: (x, z, y). For all sets Â ⊆ NP(x Â y Â z), B̂ ⊆ NP(z Â x Â y), Ĉ ⊆ NP(y Â
z Â x), Û ⊆ NP(x Â z Â y), V̂ ⊆ NP(y Â x Â z), Ŵ ⊆ NP(z Â y Â x), such that
(Â, B̂, Ĉ, Û , V̂ , Ŵ ) is a partition of N ,

(3.21) dÂ∪Û∪V̂ (x, z) + dB̂∪Û∪Ŵ (z, y) + dĈ∪V̂ ∪Ŵ (y, x) ≤ 2.

We let Â = U , B̂ = V , Ĉ = W , Û = A, V̂ = B, Ŵ = C, then (3.21) is as this: for all sets
A ⊆ NP(x Â z Â y), B ⊆ NP(y Â x Â z), C ⊆ NP(z Â y Â x), U ⊆ NP(x Â y Â z),
V ⊆ NP(z Â x Â y), W ⊆ NP(y Â z Â x), such that (A,B, C, U, V,W ) is a partition of
N ,

(3.22) dU∪A∪B(x, z) + dV ∪A∪C(z, y) + dW∪B∪C(y, x) ≤ 2.

By applying (3.5) to all the variables in (3.22) we obtain the following inequality: for all
sets A ⊆ NP(x Â z Â y), B ⊆ NP(y Â x Â z), C ⊆ NP(z Â y Â x), U ⊆ NP(x Â y Â z),
V ⊆ NP(z Â x Â y), W ⊆ NP(y Â z Â x), such that (A,B, C, U, V,W ) is a partition of
N ,

dA∪U∪V (x, y) + dB∪U∪W (y, z) + dC∪V ∪W (z, x) ≥ 1.

Case 5: (z, y, x). For all sets Ā ⊆ NP(z Â x Â y), B̄ ⊆ NP(y Â z Â x), C̄ ⊆ NP(x Â
y Â z), Ū ⊆ NP(z Â y Â x), V̄ ⊆ NP(x Â z Â y), W̄ ⊆ NP(y Â x Â z), such that
(Ā, B̄, C̄, Ū , V̄ , W̄ ) is a partition of N ,

(3.23) dĀ∪Ū∪V̄ (z, y) + dB̄∪Ū∪W̄ (y, x) + dC̄∪V̄ ∪W̄ (x, z) ≤ 2.

We see that (3.23) is equivalent to (3.21) by setting Ā = B̂, B̄ = Ĉ, C̄ = Â, Ū = Ŵ ,
V̄ = Û , and W̄ = V̂ .

Case 6: (y, x, z). For all sets Ā ⊆ NP(y Â z Â x), B̄ ⊆ NP(x Â y Â z), C̄ ⊆ NP(z Â
x Â y), Ū ⊆ NP(y Â x Â z), V̄ ⊆ NP(z Â y Â x), W̄ ⊆ NP(x Â z Â y), such that
(Ā, B̄, C̄, Ū , V̄ , W̄ ) is a partition of N ,

(3.24) dĀ∪Ū∪V̄ (y, x) + dB̄∪Ū∪W̄ (x, z) + dC̄∪V̄ ∪W̄ (z, y) ≤ 2.

Again we have (3.21) if we let Ā = Ĉ, B̄ = Â, C̄ = B̂, Ū = V̂ , V̄ = Ŵ , and W̄ = Û in
(3.24). ¤

Corollary 3.8. Every solution to (3.3)-(3.5) and (3.17) corresponds to an ASWF on linear
orderings and vice versa.
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4. Polyhedral Structure of Linear Inequalities

This section studies some polyhedral structure determined by the linear inequalities
(3.4)-(3.6) along with the nonnegativity of the variables in Integer Linear Inequality Rep-
resentation of ASWFs. We introduce the weakly nonisolated condition on the preference
domain and present that all the extreme points of the polytope are integers when the
domain is single-peaked, single-caved, or the domain on which each triple of alternatives
contains an alternative that cannot be medium, and it satisfies the weakly nonisolated
condition.

Definition 4.1 (Single-peakedness). Let B be a linear ordering on X , i.e., B ∈ L(X ).
The domain Ω is called single-peaked with respect to B if Ω is a subset of ΩP (B) where

ΩP (B) := {Â∈ L(X ) | for every x, y, z ∈ X with x B y B z, y Â x or y Â z holds }.
We refer to the linear ordering B as the reference linear ordering.

The class of single-peaked domains is well known and seen in Arrow [2], Sen [10], and
other many books and papers. Concerning the polyhedral structure on single-peaked
domains the following is claimed in Sethuraman et al. [11].

Claim 4.2 (Sethuraman et al. [11, Theorem 10]). When Ω is single-peaked (with respect
to B ∈ L(X )) the set of nonnegative solutions satisfying (3.4)-(3.6) is an integral polytope,
i.e., all the extreme points are integer vectors.

We discuss here an example of the ASWF linear inequality formulation and its polytope
on a single-peaked domain.

Example 4.3. Let n = 2, X = {u, v, w, x, y, z}, Ω = {u Â v Â w Â x Â y Â z, z Â y Â
x Â w Â v Â u}, and the reference linear ordering B be u B v B w B x B y B z. The
domain Ω is obviously single-peaked with respect to B. We show below its ASWF linear
inequalities (3.4), (3.5), and (3.17) that determine a polytope. Note that we choose here
an unordered triple {a, b, c} with a B b B c to enumerate all the inequalities of (3.17) for
arbitrary distinct alternatives a, b, c ∈ X . The sets A, B, V , and W in (3.17) must always
be empty since only the preferences with a Â b Â c and c Â b Â a are admissible.

(4.1)

For all pairs of distinct alternatives a, b ∈ X ,
dN (a, b) = 1, d∅(a, b) = 0, d{2}(a, b) = 1− d{1}(b, a).

For all unordered triple {a, b, c} of alternatives a, b, c ∈ X such that a B b B c,
and for all disjoint sets U,C such that C ∪ U = N ,

1 ≤ dU (a, b) + dU (b, c) + dC(c, a) ≤ 2.

To this linear inequality system, a fractional solution
(4.2)

d{1}(u, v) = 0.5, d{1}(u,w) = 0, d{1}(u, x) = 0.5, d{1}(u, y) = 0.5, d{1}(u, z) = 0,
d{1}(v, u) = 0, d{1}(v, w) = 0, d{1}(v, x) = 0.5, d{1}(v, y) = 0, d{1}(v, z) = 0.5,
d{1}(w, u) = 0, d{1}(w, v) = 0, d{1}(w, x) = 0.5, d{1}(w, y) = 0.5, d{1}(w, z) = 0.5,
d{1}(x, u) = 0, d{1}(x, v) = 0, d{1}(x,w) = 0, d{1}(x, y) = 0, d{1}(x, z) = 0,
d{1}(y, u) = 0, d{1}(y, v) = 0, d{1}(y, w) = 0, d{1}(y, x) = 0, d{1}(y, z) = 0.5,
d{1}(z, u) = 0, d{1}(z, v) = 0, d{1}(z, w) = 0, d{1}(z, x) = 0, d{1}(z, y) = 0,
and dN (a, b) = 1, d∅(a, b) = 0, d{2}(a, b) = 1− d{1}(b, a)

for all pairs of distinct alternatives a, b ∈ X ,
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can be obtained and is seen to be the unique solution to the following equalities:
d{1}(u,w) = 0, d{1}(u, z) = 0, d{1}(v, u) = 0, d{1}(v, w) = 0, d{1}(v, y) = 0,
d{1}(w, u) = 0, d{1}(w, v) = 0, d{1}(x, u) = 0, d{1}(x, v) = 0, d{1}(x,w) = 0,
d{1}(x, y) = 0, d{1}(x, z) = 0, d{1}(y, u) = 0, d{1}(y, v) = 0, d{1}(y, w) = 0,
d{1}(y, x) = 0, d{1}(z, u) = 0, d{1}(z, v) = 0, d{1}(z, w) = 0, d{1}(z, x) = 0,
d{1}(z, y) = 0,
d{1}(u, v) + d{1}(v, y) + d{2}(y, u) = 1, d{1}(u,w) + d{1}(w, x) + d{2}(x, u) = 1,
d{1}(u,w) + d{1}(w, y) + d{2}(y, u) = 1, d{1}(u, x) + d{1}(x, y) + d{2}(y, u) = 1,
d{1}(v, w) + d{1}(w, x) + d{2}(x, v) = 1, d{1}(v, w) + d{1}(w, z) + d{2}(z, y) = 1,
d{1}(v, x) + d{1}(x, z) + d{2}(z, v) = 1,
d{1}(u, v) + d{1}(v, z) + d{2}(z, u) = 2, d{1}(u, y) + d{1}(y, z) + d{2}(z, u) = 2,
and dN (a, b) = 1, d∅(a, b) = 0, d{2}(a, b) = 1− d{1}(b, a)

for all pairs of distinct alternatives a, b ∈ X .

Thus the fractional solution given by (4.2) is an extreme point of the set determined by
the linear inequality system (4.1). This is a counter-example to Claim 4.2.

We impose an additional condition on a single-peaked domain and make the polytope
induced by the inequalities on the domain integral. For the introduction of the new
condition let us present the commonly known concept of a trivial pair of alternatives on
admissible preferences, and then we define triviality on an unordered triple of distinct
alternatives for convenience.

Definition 4.4 (Trivial Pair). An ordered pair (x, y) of distinct alternatives x, y ∈ X is
said to be a trivial pair on Ω if x Â y holds for all preference orderings in Ω.

Definition 4.5 (Triviality over an Unordered Triple). For an unordered triple of distinct
alternatives x, y, z ∈ X , we call that {x, y, z} has a trivial pair on Ω if at least one of
(x, y), (y, x), (x, z), (z, x), (y, z), and (z, y) is a trivial pair.

Then we refer to the notion of an isolated triple, which is originally proposed by Sethu-
raman et al. [11], and define nonisolation on an unordered triple.

Definition 4.6 (Isolated Triple). An ordered triple (x, y, z) of distinct alternatives x, y, z ∈
X , is said to be an isolated triple on Ω if there exists a preference ordering in Ω with
x Â y Â z and there does not exist with y Â z Â x or z Â x Â y.

Definition 4.7 (Nonisolation over an Unordered Triple). For an unordered triple of dis-
tinct alternatives x, y, z ∈ X , we say that {x, y, z} has nonisolation on Ω if none of (x, y, z),
(y, z, x), (z, x, y), (x, z, y), (z, y, x), and (y, x, z) is an isolated triple.

From the above definitions we finally introduce the condition on the preference domain
that we call weak nonisolation and show the corrected version of Claim 4.2.

Definition 4.8 (Weak Nonisolation). The domain Ω is said to be weakly nonisolated if
every unordered triple in X has either a trivial pair or nonisolation on Ω.

Theorem 4.9. When Ω is single-peaked with respect to the reference linear ordering B ∈
L(X ) and weakly nonisolated, the set of nonnegative solutions satisfying (3.4)-(3.6) is an
integral polytope.

Proof. We follow the technique of proof in Sethuraman et al. [11]: given an arbitrary
nonnegative solution to the linear inequalities, we round it to an integer by a certain
procedure, show that the rounded solution still satisfies the inequalities, and see that
these facts guarantee the integrality of the polytope. Let OP be the polytope we are to
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discuss, that is, the set of nonnegative solutions satisfying (3.4), (3.5), and (3.17) instead
of (3.6) on the given P = Ωn. Let d be an arbitrary vector of dS(x, y)’s with d ∈ OP .
We generate a random number Z from the uniform distribution between 0 and 1. We
round the vector d to a 0-1 vector, say d′, by the following way: for each pair of distinct
alternatives a, b ∈ X , and for each S with NP(a Â b) \ NP(b Â a) ⊆ S ⊆ NP(a Â b),

if a B b, d′S(a, b) :=

{
1 if dS(a, b) > Z,

0 otherwise,
else, d′S(a, b) :=

{
1 if dS(a, b) ≥ 1− Z,

0 otherwise.

We see that d′ trivially satisfies (3.4) for any Z. Because dS(x, y) + dN\S(y, x) = 1 for
an arbitrary pair of distinct alternatives x, y ∈ X and for an arbitrary appropriate S,
dS(x, y) > Z holds if and only if dN\S(y, x) < 1 − Z holds and dS(x, y) ≤ Z if and only
if dN\S(y, x) ≥ 1− Z. Exactly either one of dS(x, y) or dN\S(y, x) is 1 and the other is 0
when rounded, which means that (3.5) is also satisfied for d′.

Take an arbitrary triple of distinct alternatives x, y, z ∈ X with x B y B z, and consider
(3.17) for {x, y, z}. By the single-peakedness of the domain with respect to B, there does
not exist a preference in Ω such that x Â z Â y or z Â x Â y. The sets NP(x Â z Â y)
and NP(z Â x Â y) are empty, and (3.17) for {x, y, z} can be written without the sets
A and V : for all sets B ⊆ NP(y Â x Â z), C ⊆ NP(z Â y Â x), U ⊆ NP(x Â y Â z),
W ⊆ NP(y Â z Â x), such that (B,C, U,W ) is a partition of N ,

(4.3) 1 ≤ dU (x, y) + dB∪U∪W (y, z) + dC∪W (z, x) ≤ 2.

Case 1: {x, y, z} has a trivial pair. When (x, y) is trivial, there does not exist a
preference with y Â x, which indicates that NP(y Â x Â z), NP(z Â y Â x), and
NP(y Â z Â x) are all empty. Since (B,C, U,W ) is a partition of N , U must be N , and
we have dU (x, y) = 1, dB∪U∪W (y, z) = 1, and dC∪W (z, x) = d∅(z, x) = 0 from (3.4) and
(3.5). Then the rounded solution satisfies (4.3), for 1 is rounded to 1 and 0 to 0 for any
Z.

When (y, x) is trivial, NP(x Â y Â z) = ∅, and dU (x, y) = d∅(x, y) = 0. Then the
rounded solution d′ trivially satisfies the “equal to or less than 2” part of (4.3). The rest
is to show that

1 ≤ dB∪W (y, z) + dC∪W (z, x)
is satisfied even after d is rounded. We see that if dB∪W (y, z) is equal to or less than Z
then the other variable is equal to or more than 1−Z, and that if dC∪W (z, x) is less than
1 − Z the rest exceeds Z. Therefore d′ satisfies this inequality from the rounding rule as
well as y B z and x B z.

When (x, z) is trivial, NP(z Â y Â x) and NP(y Â z Â x) are the empty set. Accord-
ingly B ∪ U = N holds. This indicates dB∪U∪W (y, z) = 1 and dC∪W (z, x) = 0, so the
rounded d′ clearly satisfies (4.3).

When (z, x) is trivial, it means NP(y Â x Â z) = NP(x Â y Â z) = ∅. Then
dU (x, y) = 0, and dC∪W (z, x) = 1 due to C ∪W = N . In this case d′ satisfies (4.3) again.

When (y, z) is trivial, C ⊆ NP(z Â y Â x) = ∅, and dB∪U∪W (y, z) = 1 since B∪U ∪W
must be N . The rounded solution trivially satisfies the “equal to or more than 1” part of
(4.3). The rest is to prove that

dU (x, y) + dW (z, x) ≤ 1

is kept satisfied after the rounding procedure. Assume here that dU (x, y) is more than Z,
then the other is less than 1− Z. When dW (z, x) ≥ 1− Z holds, dU (x, y) is equal or less
than Z. Hence by x B y and x B z this inequality is satisfied for d′.
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When (z, y) is trivial, NP(y Â x Â z), NP(x Â y Â z), and NP(y Â z Â x) are
empty. This means B = U = W = ∅ and C = N . Accordingly we obtain dU (x, y) =
dB∪U∪W (y, z) = 0 and dC∪W (z, x) = 1. The variables do not change if rounded.

Case 2: {x, y, z} does not have a trivial pair. From the single-peakedness of Ω there
is not a preference with z Â x Â y or x Â z Â y. Then there exist preferences in Ω
with x Â y Â z, z Â y Â x, respectively, otherwise (y, x) or (y, z) is trivial. Since
{x, y, z} is nonisolated, a preference with y Â z Â x exists in Ω, and also a preference
such that y Â x Â z. Therefore, NP(y Â x Â z), NP(z Â y Â x), NP(x Â y Â z),
and NP(y Â z Â x) are all equal to N , and (4.3) holds for any partition (B,C, U,W )
of N . Take an arbitrary partition (B,C, U,W ), and let W ′ = C ∪W , C ′ = ∅. Because
(B,C ′, U,W ′) is also a partition of N , d satisfies the following:

2 ≥ dU (x, y) + dB∪U∪W ′(y, z) + dC′∪W ′(z, x) = dU (x, y) + dB∪U∪C∪W (y, z) + dC∪W (z, x)

= dU (x, y) + 1 + dC∪W (z, x).

By rounding dU (x, y) and dC∪W (z, x) in this inequality, we have

d′U (x, y) + d′C∪W (z, x) ≤ 1

from the rounding procedure together with x B y and x B z. We see that d′ satisfies
the “equal to or less than 2” part of (4.3) whether dB∪U∪W (y, z) is rounded to 1 or 0.
Regarding the “equal to or more than 1” part of (4.3), let B′ = B ∪ U , U ′ = ∅, and
(B′, C, U ′,W ) is also a partition of N . Hence,

1 ≤ dU ′(x, y) + dB′∪U ′∪W (y, z) + dC∪W (z, x) = dB∪U∪W (y, z) + dC∪W (z, x)

holds. We round the vector d in this inequality, then

d′B∪U∪W (y, z) + d′C∪W (z, x) ≥ 1

is obtained. This observation implies that d′ satisfies the “equal to or more than 1” part
of (4.3) regardless of the rounded value of dU (x, y). Hence we have confirmed that for any
d ∈ OP the rounded vector d′ is also in OP .

Now we are ready to consider our main problem. Suppose that the polytope OP , the
set of nonnegative solutions which satisfies (3.4), (3.5), and (3.17), has an extreme point
which is not an integer. Here we let d̄ be such a point. Since d̄ is an extreme point of OP
there exists a cost vector c such that d̄ becomes the unique optimal solution to the linear
programming problem:

(P )
∣∣∣∣

min c>d
s.t. d ∈ OP

where c> denotes the transpose of c. We generate a random number Z and round d̄ by
the procedure proposed above. The rounded vector, denoted by d̄Z ′, is still in OP as we
have discussed. Now d̄ is assumed to be the unique optimal solution to (P), then

(4.4) c>d̄Z ′ > c>d̄

holds for any Z. Meanwhile, the expected value of each component of d̄Z ′ is

if a B b, E(d̄Z ′
S(a, b)) = 0× P (Z ≥ d̄S(a, b)) + 1× P (Z < d̄S(a, b)) = d̄S(a, b),

else, E(d̄Z ′
S(a, b)) = 0× P (Z < 1− d̄S(a, b)) + 1× P (Z ≥ 1− d̄S(a, b)) = d̄S(a, b),
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for each a, b ∈ X and for each S which lies between NP(a Â b)\NP(b Â a) and NP(a Â b),
since Z is uniformly distributed between 0 and 1. This fact implies

E(c>d̄Z ′) = c>d̄,

contradicting (4.4). Thus all the extreme points of OP are integers. ¤

We give another type of preference domains, called single-caved domains, and show that
such domains along with weakly nonisolated condition also form integral polytopes.

Definition 4.10 (Single-cavedness). The domain Ω is called single-caved with respect to
B ∈ L(X ) if Ω is a subset of ΩC(B) where

ΩC(B) := {Â∈ L(X ) | for every x, y, z ∈ X with x B y B z, x Â y or z Â y holds }.
Theorem 4.11. When Ω is single-caved with respect to B ∈ L(X ) and weakly nonisolated,
the set of nonnegative solutions satisfying (3.4)-(3.6) is an integral polytope.

Proof. We can apply the same proof technique as the case where Ω is single-peaked to this
case, so we omit the proof. ¤

Single-peakedness is interpreted that one of three alternatives cannot be worst among
the three while single-cavedness is that one of three cannot be best. We define the situation
where one alternative cannot be medium among three alternatives. Then we derive integral
polytopes on the domains that have such property.

Definition 4.12 (Cannot-be-medium Property). For a triple of distinct alternatives x, y,
z ∈ X , it is said that y cannot be medium among (x, y, z) on Ω if there does not exist a
preference ordering in Ω such that x Â y Â z or z Â y Â x.

Theorem 4.13. When each triple of alternatives contains an alternative that cannot be
medium on Ω and Ω is weakly nonisolated, the set of nonnegative solutions satisfying
(3.4)-(3.6) is an integral polytope.

Proof. Again we apply the same technique as when Ω is single-peaked to this proof, except
that the rounding rule is changed as follows: for each pair of distinct alternatives a, b ∈ X ,
and for each S with NP(a Â b) \ NP(b Â a) ⊆ S ⊆ NP(a Â b),

if {1} ∈ S, d′S(a, b) :=

{
1 if dS(a, b) > Z,

0 otherwise,
else, d′S(a, b) :=

{
1 if dS(a, b) ≥ 1− Z,

0 otherwise.

Given an arbitrary vector d ∈ OP , the rounded d′ clearly satisfies (3.4) for any Z, and
also (3.5) since player 1 is always a member of either S or N \ S but not both. Now
it suffices to show that d′ satisfies (3.17). Let us take an arbitrary triple of distinct
alternatives x, y, z ∈ X , and consider (3.17) for {x, y, z} with y cannot be medium. Then
NP(x Â y Â z) = NP(z Â y Â x) = ∅ holds, and (3.17) for {x, y, z} reduces to
this: for all sets A ⊆ NP(x Â z Â y), B ⊆ NP(y Â x Â z), V ⊆ NP(z Â x Â y),
W ⊆ NP(y Â z Â x), such that (A,B, V,W ) is a partition of N ,

(4.5) 1 ≤ dA∪V (x, y) + dB∪W (y, z) + dV ∪W (z, x) ≤ 2.

Case 1: {x, y, z} has a trivial pair. When (x, y) is trivial, B and W must be empty and
A ∪ V = N holds. Then dA∪V (x, y) = dN (x, y) = 1 as well as dB∪W (y, z) = d∅(y, z) = 0
holds. Recall that 1 is rounded to 1 and 0 to 0 for any Z, and we see that the rounded d′
satisfies (4.5) regardless of the value of d′V ∪W (z, x).
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When (y, x) is trivial, A = V = ∅ and the union of B and W is the whole set of players.
This time dA∪V (x, y) = 0 and dB∪W (y, z) = 1 hold. Again (4.5) is still satisfied after d is
rounded.

When (x, z) is trivial, both NP(z Â x Â y) and NP(y Â z Â x) are empty, and
accordingly V and W are. Then dV ∪W (z, x) = 0 and the rounded d′ trivially satisfies the
“equal to or less than 2” part of (4.5). We round the rest inequality:

1 ≤ dA(x, y) + dB(y, z).

Player 1 is in exactly either A or B, so we see that d′ still satisfies this inequality.
When (z, x) is trivial, it means A = B = ∅ and dV ∪W (z, x) = dN (z, x) = 1. Hence the

“equal to or more than 1” part of (4.5) is cleared, and

dV (x, y) + dW (y, z) ≤ 1

is still satisfied after the rounding, for player 1 is a member of either V or W but not both.
When (y, z) is trivial, NP(x Â z Â y) and NP(z Â x Â y) are empty. The set of players

N is partitioned into B and W , which is the same case as (y, x)-trivial.
When (z, y) is trivial, B ⊆ NP(y Â x Â z) = ∅ and W ⊆ NP(y Â z Â x) = ∅. For the

rest of sets it holds that A ∪ V = N . This is the same situation where (x, y) is trivial.
Case 2: {x, y, z} does not have a trivial pair. The cannot-be-medium property of y

means that there is not a preference with x Â y Â z or z Â y Â x in Ω. Then it can be
said that there exist preferences such that x Â z Â y, y Â x Â z, z Â x Â y, and y Â z Â x.
That is because an isolated triple emerges if any one of them is removed. Let x Â z Â y be
removed for instance, and y Â x Â z becomes an isolated triple. If two are removed then
we see either an isolated triple or a trivial pair. A trivial pair is also observed when we
remove three of these preferences. Thus (4.5) holds for any partition (A,B, V,W ) of N .
Take an arbitrary partition (A,B, V,W ), and let V ′ = A∪V , W ′ = B ∪W , A′ = B′ = ∅.
We see that (A′, B′, V ′,W ′) is a partition of N . Then d satisfies the following:

2 ≥ dA′∪V ′(x, y) + dB′∪W ′(y, z) + dV ′∪W ′(z, x) = dA∪V (x, y) + dB∪W (y, z) + 1.

We round dA∪V (x, y) and dB∪W (y, z) in this inequality, and obtain

d′A∪V (x, y) + d′B∪W (y, z) ≤ 1

since player 1 is either in A ∪ V or in B ∪W . This inequality implies that the “equal to
or less than 2” part of (4.5) is satisfied at d′. With regard to the “equal to or more than
1” part of (4.5), let A′ = A ∪ V , V ′ = B ∪ W , V ′ = W ′ = ∅, and we have a partition
(A′, B′, V ′,W ′) of the set of the players. Then d satisfies the following:

1 ≤ dA′∪V ′(x, y) + dB′∪W ′(y, z) + dV ′∪W ′(z, x) = dA∪V (x, y) + dB∪W (y, z).

We round the d in this inequality and obtain

d′A∪V (x, y) + d′B∪W (y, z) ≥ 1.

This observation tells us that d′ satisfies the “equal to or more than 1” part of (4.5).
We have confirmed that for a given d ∈ OP , the rounded vector d′ is also in OP . Then

assuming that there is a noninteger extreme point leads to a contradiction as we have seen
in the single-peaked case. ¤
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5. Probabilistic ASWFs and Linear Inequality Representation

In this section we discuss the relation between a noninteger solution to the linear in-
equality representation and a probabilistic social welfare function. A probability mea-
sure on L(X ) is a function ` : 2L(X ) → [0, 1] such that `(∅) = 0, `(L(X )) = 1, and
`(ω1 ∪ ω2) = `(ω1) + `(ω2)− `(ω1 ∩ ω2) for all ω1, ω2 ∈ 2L(X ). We let L(L(X )) be the set
of all probability measures on L(X ).

Definition 5.1. A probabilistic social welfare function (on linear orderings) is a mapping,
say h, that maps each profile to a probability measure on L(X ), that is, h : P → L(L(X )),
where P = Ωn ⊆ L(X )n. The probabilistic social welfare function h is said to satisfy
unrestricted domain property when Ω = L(X ).

For each profile p ∈ P and for each pair of distinct alternatives x, y ∈ X , we define
rh(p, x Â y) as the sum of probabilities that h gives to the preference orderings such that
x Â y at profile p, i.e.,

rh(p, x Â y) := `
({B ∈ L(X ) | B|{x,y} = x Â y }) ,

where ` = h(p) ∈ L(L(X )). We call the function h satisfying the probabilistic version of
Arrow’s two axioms shown below a probabilistic Arrovian Social Welfare Function (prob-
abilistic ASWF for short).

Axiom 5.2 (Pareto Principle (PP)). If the property that

x Âp
i y for all i ∈ N implies rh(p, x Â y) = 1

holds for any pair of distinct alternatives x, y ∈ X and for any profile p ∈ P, then the
probabilistic social welfare function h is said to have the Pareto principle.

Axiom 5.3 (Independence of Irrelevant Alternatives (IIA)). If the property that

Âp1
i |{x,y} = Âp2

i |{x,y} for all i ∈ N implies rh(p1, x Â y) = rh(p2, x Â y)

holds for any pair of distinct alternatives x, y ∈ X and for any pair of distinct profiles
p1, p2 ∈ P, then the probabilistic social welfare function h is said to satisfy independence
of irrelevant alternatives.

We show that a given probabilistic ASWF induces a real vector satisfying the inequalities
of the ASWF representation and it coincides with a subadditive function of Barberá and
Sonnenschein [4] on the family of subsets of players under unrestricted domain property.
The way of constructing the vector is as this: given an h : P → L(L(X )), we set

(5.1) dS(x, y) :=

∑
p∈CP (S,xÂy) rh(p, x Â y)

|CP(S, x Â y)|
for each pair of distinct alternatives x, y ∈ X and for each set S such that NP(x Â
y) \ NP(y Â x) ⊆ S ⊆ NP(x Â y).

Theorem 5.4. For every probabilistic ASWF, dS(x, y) defined by (5.1) is a nonnegative
solution to (3.4)-(3.6).

Proof. From the definition of rh

rh(p, x Â y) + rh(p, y Â x) = 1
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and

rh(p, x Â y) + rh(p, y Â z) = rh(p, x Â y or y Â z) + rh(p, x Â y and y Â z)

≤ 1 + rh(p, x Â z)

hold for any profile p ∈ P and for any distinct x, y, z ∈ X . We simply let

d(p, x, y) := rh(p, x Â y),

then (3.11) as well as (3.12) in Section 3 is satisfied. We also see that (3.9) holds because of
(PP) of Axiom 5.2, and (3.10) holds because of (IIA) of Axiom 5.3. As we have seen in the
proof of Lemma 3.5 that dS(x, y) defined by d(p, x, y) through (3.13) satisfies (3.4)-(3.6),
dS(x, y) defined by (5.1) satisfies (3.4)-(3.6). ¤

Note that under (IIA) of Axiom 5.3, dS(x, y) of (5.1) satisfies

(5.2) dS(x, y) = rh(p, x Â y) for any p ∈ CP(S, x Â y)

or equivalently

(5.3) dS(p,xÂy)(x, y) = rh(p, x Â y).

While the following statement can be found in Sethuraman et al. [11], we give the proof
to make this paper self-contained.

Lemma 5.5. When the domain is unrestricted, the solution dS(x, y) to (3.4)-(3.6) does
not depend on the pair (x, y) of alternatives.

Proof. We consider (3.6) for an arbitrary triple of distinct alternatives x, y, z ∈ X . By
unrestricted domain property, NP(x Â z Â y), NP(y Â x Â z), NP(z Â y Â x),
NP(x Â y Â z), NP(z Â x Â y), and NP(y Â z Â x) are all N . Take an arbitrary S ⊆ N
and let U = S, W = N \ S, the other sets be empty. Then the following holds:

dS(x, y) + dS∪(N\S)(y, z) + dN\S(z, x) ≤ 2.

Applying (3.4) and (3.5) to this inequality ensures

dS(x, y) ≤ dS(x, z).

Meanwhile, we set U = S, V = N \ S and have

dS(y, z) ≤ dS(x, z).

Since x, y, and z are arbitrarily chosen, these consequences say that the value of dS(x, y)
does not depend on the pair of alternatives but only the set S. ¤

Thus, when the domain is unrestricted, the system (3.4)-(3.6) reduces to

dN = 1,(5.4)

dS + dN\S = 1 for each S ⊆ N,(5.5)

dA∪U∪V + dB∪U∪W + dC∪V ∪W ≤ 2 for each partition (A,B, C, U, V,W ) of N .(5.6)

Barberá and Sonnenschein [4] characterized the probabilistic ASWF as follows.

Theorem 5.6 (Barberá and Sonnenschein [4]). For every probabilistic ASWF h on the
unrestricted domain, there exists a function µ : 2N → R such that

µ(S(p, x Â y)) = rh(p, x Â y)

16



for each profile p ∈ P and for each pair of distinct alternatives x, y ∈ X , and furthermore
µ satisfies

µ(N ) = 1,(5.7)

µ(S) + µ(N \ S) = 1 for each S ⊆ N,(5.8)

µ(S ∪ T ) ≤ µ(S) + µ(T ) for each S, T ⊆ N (subadditivity).(5.9)

Since we have seen (5.3), to see this theorem we have only to show the equivalence
between the system (5.4)-(5.6) and (5.7)-(5.9).

Lemma 5.7. When the domain is unrestricted, the systems (5.4)-(5.6) and (5.7)-(5.9) are
equivalent.

Proof. Suppose d satisfies (5.4)-(5.6) and let S and T be arbitrary subsets of N . We set
C = S ∩ T,U = N \ (S ∪ T ), V = T \ S and W = S \ T . Then from (5.4)-(5.6) we see

dS∪T ≤ dS + dT .

Next suppose µ satisfies (5.7)-(5.9) and let a partition (A,B, C, U, V,W ) be given. Then

µ(A ∪ U ∪ V ) + µ(B ∪ U ∪W ) + µ(C ∪ V ∪W )

= 1− µ(B ∪ C ∪W ) + 1− µ(A ∪ C ∪ V ) + 1− µ(A ∪B ∪ U)

≤ 3− µ(A ∪B ∪ C ∪ U ∪ V ∪W )
= 2,

which is (5.6). ¤
Note that the following monotonicity condition in the original version of Theorem 5.6:

µ(S′) ≤ µ(S) for each S, S′ ⊆ N with S′ ⊆ S,

can be derived from (5.7)-(5.9) by setting T = N \ S′ as follows:

µ(S) + µ(N \ S′) ≥ µ(S ∪ (N \ S′)) = µ(N ) = 1 = µ(S′) + µ(N \ S′).

We next consider the construction of a probabilistic ASWF from a solution to the linear
inequalities. Let HP be the set of all probabilistic ASWFs on the given P = Ωn ⊆ L(X )n,
and recall that OP defined in the proof of Theorem 4.9 is the set of nonnegative solutions
satisfying (3.4)-(3.6). We denote by ΓP : HP → OP a function that assigns a nonnegative
solution in OP to a probabilistic ASWF by (5.1). Concerning its characteristics, the first
question is whether ΓP is injective. The following example shows that it is not injective
in general.

Example 5.8. Let n = 2, X = {x, y, z}, and Ω = {x Â y Â z, z Â y Â x}. Then there
are four profiles, named p1, . . . , p4. We define two probabilistic ASWFs h1, h2 where the
probability of each social preference being selected at each profile is shown below. While
these two functions h1 and h2 are different, they give the same value of rh and hence
dS(x, y). In fact, take p2 for example, then we have

rh1(p2, x Â y) = h1(p2) ({x Â y Â z, x Â z Â y, z Â x Â y}) =
1
2

+ 0 + 0 =
1
2
,

and

rh2(p2, x Â y) = h1(p2) ({x Â y Â z, x Â z Â y, z Â x Â y}) =
1
4

+
1
4

+ 0 =
1
2
.

17



h(p) x Â y Â z z Â y Â x x Â z Â y y Â z Â x y Â x Â z z Â x Â y

h1

ţ
x Âp1

1 y Âp1
1 z

x Âp1
2 y Âp1

2 z

ű
1 0 0 0 0 0

h1

ţ
x Âp2

1 y Âp2
1 z

z Âp2
2 y Âp2

2 x

ű
1/2 1/2 0 0 0 0

h1

ţ
z Âp3

1 y Âp3
1 x

x Âp3
2 y Âp3

2 z

ű
1/2 1/2 0 0 0 0

h1

ţ
z Âp4

1 y Âp4
1 x

z Âp4
2 y Âp4

2 x

ű
0 1 0 0 0 0

h2

ţ
x Âp1

1 y Âp1
1 z

x Âp1
2 y Âp1

2 z

ű
1 0 0 0 0 0

h2

ţ
x Âp2

1 y Âp2
1 z

z Âp2
2 y Âp2

2 x

ű
1/4 1/4 1/4 1/4 0 0

h2

ţ
z Âp3

1 y Âp3
1 x

x Âp3
2 y Âp3

2 z

ű
1/4 1/4 1/4 1/4 0 0

h2

ţ
z Âp4

1 y Âp4
1 x

z Âp4
2 y Âp4

2 x

ű
0 1 0 0 0 0

Table 1. Two different probabilistic ASWFs that yield the same dS(x, y)

The second question is whether ΓP is surjective, i.e., if there is a probabilistic ASWF
for each point of OP . Concerning the problem, we should observe the result of McLennan
[7] that when the number of alternatives is six or more and the domain is unrestricted,
the function µ in Theorem 5.6 is additive, that is,

(5.10) µ(S ∪ T ) = µ(S) + µ(T ) for all disjoint S, T ⊆ N .

Using this result we see by the next example that ΓP is not surjective in general.

Example 5.9. Let n ≥ 3, |X | ≥ 6, and P = Ωn = L(X )n, i.e., unrestricted domain. For
each pair of distinct alternatives x, y ∈ X , and for each set S ⊆ N , we set

dS(x, y) :=





1 if S = N ,
1
2 if ∅ ( S ( N ,

0 if S = ∅.

This is clearly a fractional solution to (3.4)-(3.6). We suppose that this is obtained by
a probabilistic ASWF h through (5.1). Then, as we have seen before dS(p,xÂy)(x, y) =
rh(p, x Â y), and from Theorem 5.6 we also have rh(p, x Â y) = µ(S(p, x Â y)). Since the
domain is unrestricted, we obtain that for every pair of distinct alternatives x and y and
for every S ⊆ N

dS(x, y) = µ(S).
Note that dS(x, y) is independent of the pair of alternatives. Let N be partitioned into
three nonempty sets, say S1, S2, S3, then dS1 + dS2 = 1/2 + 1/2 = 1 whereas dS1∪S2 =
dN\S3

= 1/2. We see that µ(S) = dS does not satisfy (5.10) and hence not an image of
ΓP .

The following result shows that we have only to check the extreme points of the polytope
when we judge whether ΓP is surjective.

Theorem 5.10. The function ΓP is surjective if and only if for each extreme point d∗ of
OP there exists a probabilistic ASWF h∗ such that ΓP(h∗) = d∗.
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Proof. The “only if” part is trivial, and we show the “if” part. For a given P we denote
all the extreme points of polytope OP by d∗1, . . . , d

∗
K. Then for any point d̄ in OP there is

λ1, . . . , λK satisfying
∑K

i=1 λi = 1 as well as λi ≥ 0 for each i ∈ {1, . . . ,K} and d̄ can be
written as

d̄ =
K∑

i=1

λid
∗
i .

For each i ∈ {1, . . . ,K} let h∗i a probabilistic ASWF with ΓP(h∗i ) = d∗i . We define h̄ as

h̄(p)(B) :=
K∑

i=1

λih
∗
i (p)(B)

for each p ∈ P and for each B ∈ L(X ), then h̄ is a probabilistic ASWF and ΓP(h̄) = d̄. ¤
Let us consider the polytope determined by (5.7)-(5.10) and the nonnegativity constraint

of µ. Combining (5.7) and (5.10), we have (5.8). Furthermore (5.9) is obtained from (5.10)
and nonnegativity:

µ(T ) + µ(S)− µ(S ∪ T ) = µ(T ) + µ(S ∩ T ) + µ(S \ T )− µ(S \ T )− µ(T )

= µ(S ∩ T ) ≥ 0.

Thus (5.7)-(5.10) together with the nonnegativity constraint is equivalent to the system
of (5.7), (5.10) and the nonnegativity. Therefore there is an n-dimensional vector π =
(π1, . . . , πn) in the regular simplex Π := {π ∈ Rn | π ≥ 0;

∑n
i=1 πi = 1 } such that

(5.11) µ(S) =
∑

i∈S

πi

holds for every S ⊆ N . Conversely, for a given π ∈ Π, µ(S) :=
∑

i∈S πi satisfies (5.7),
(5.10) and nonnegativity. Therefore the polytope defined by (5.7)-(5.10) and the non-
negativity is the image of the regular simplex Π ⊆ Rn under the linear function defined
by (5.11). Since each extreme point of the polytope is an image of an extreme point of
Π, which is a unit vector, we see that all the extreme points of the polytope are integer
vectors. In fact, for each i ∈ N let µi ∈ R2n−1 be defined by

µi(S) :=

{
1 if i ∈ S,
0 otherwise.

Then the set of extreme points of the polytope consists of µi’s for i ∈ N . Since, as we
have seen, an integer extreme point of the polytope is an image of an ASWF, this together
with Theorem 5.10 means that ΓP is surjective in this case.

6. Concluding Remarks

This paper presented a study on the linear inequality representation of Arrovian Social
Welfare Functions. We gave an alternative proof of the ASWF integer linear inequality
representation theorem of Sethuraman et al. [11]. Our technique of proof can be applied
to derive another linear inequality formulation of ASWFs for different preference domain
frameworks such as the one discussed in Ando, Ohara, and Yamamoto [1] and Ohbo, Tsu-
rutani, Umezawa, and Yamamoto [8] as well as an ASWF on weak orderings. See Sato
[9] for further details. We also studied the polyhedral structure determined by the lin-
ear inequalities on single-peaked domains, single-caved domains, and the domains where
each triple of alternatives contains one that cannot be medium, showing that the set of
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nonnegative solutions to the inequalities forms an integral polytope when these domains
satisfy weakly nonisolated condition. We then showed that a real vector satisfying the
linear inequalities can be created from any probabilistic ASWF and derived the subaddi-
tive function of Barberá and Sonnenschein [4] as a special case. We also considered the
construction of a probabilistic ASWF from a given nonnegative solution to the inequalities.

There still remain interesting problems unsolved. One is the characterization of social
choice functions as a system of inequalities. A construction problem of a probabilistic
ASWF from a solution to the linear inequalities on restricted domains is also worth further
study. Study of the probabilistic version of social choice functions in Gibbard [5] through
inequality representations is left for future research.
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