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Abstract

An attempt is made to set rules for a fair and fruitful competition between alter-
native inference methods based on their performance in simulation experiments. This
leads to a list of eight methodologic aspirations. Against their background we criticize
aspects of many simulation studies that have been used in the past to compare com-
peting estimators for dynamic panel data models. To illustrate particular pitfalls some
further Monte Carlo results are produced, obtained from a simulation design inspired by
an analysis of the (non-)invariance properties of estimators and occasionally by available
higher-order asymptotic results. We focus on the very speci�c case of alternative im-
plementations of one and two step generalized method of moments (GMM) estimators
in homoskedastic stable zero-mean panel AR(1) models with random individual speci�c
e¤ects. We compare a few implementations, including GMM sytem estimators with
alternative weight matrices, and illustrate that an impartial evaluation of the outcome
of a Monte Carlo based contest requires evidence �both analytical and empirical �on
the completeness, orthogonality and relevance of the simulation design.

� Department of Quantitative Economics, Faculty of Economics and Econometrics, Universiteit van
Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands (J.F.Kiviet@UvA.NL). This paper
bene�tted tremendously from discussions I had over the years with many of the authors whose work is refered
to in this study. However, none but the author himself should be held responsible for the opinions expressed
here.
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1 Introduction

The joint occurrence in dynamic panel data models of individual speci�c e¤ects and of lagged
dependent variables complicates the statistical inference on the model parameters consider-
ably. A great number of alternative techniques for the estimation of dynamic panel data
models have been suggested over the last few decades, see inter alia Balestra and Nerlove
(1966), Anderson and Hsiao (1981, 1982), Holtz-Eakin et al. (1988), Arellano and Bond
(1991), Ahn and Schmidt (1995, 1997), Blundell and Bond (1998) and Hsiao et al. (2002).
As a rule these techniques claim particular desirable asymptotic properties under speci�c
circumstances. Various Monte Carlo studies have been undertaken in order to �nd out how
well (variants of) these methods work in �nite samples, see inter alia Nerlove (1967, 1971),
Bhargava and Sargan (1983), Arellano and Bond (1991), Kiviet (1995), Blundell and Bond
(1998), Judson and Owen (1999), Blundell et al. (2000), Harris and Mátyás (2000, 2004),
Andrews and Lu (2001), Doornik et al. (2002), Hsiao et al. (2002), Alvarez and Arellano
(2003), Bun and Kiviet (2003, 2005), Doran and Schmidt (2005). The main purpose of this
study is to clarify that in most of these simulation studies the focus has been too narrow,
at least regarding particular aspects, to enable fair and fully informative conclusions on the
qualities of the alternative inference procedures examined. Progress in this line of research
could have been more e¢ cient, as we shall argue, if the designs of these Monte Carlo studies
had been less restrictive and more transparent.
Usually the �nite sample distribution of individual coe¢ cient estimators and test statistics

does not involve just the parameters a¤ecting their asymptotic distribution. However, exact
or almost exact �nite sample results are usually hard to obtain by analytic derivation. There-
fore, examination of the e¤ects of nuisance parameters and initial conditions on inference in
�nite samples constitutes the main motivation for performing simulation experiments. As we
shall illustrate, the design of such experiments requires a justi�cation built on both analytical
and empirical considerations regarding the choices made on the model speci�cations included
in the simulation study, the particular parameter values chosen and any further conditions
set and possibly varied. Although any Monte Carlo design will have limitations regarding its
size and scope, we shall show that in addition there are particular qualitative aspects �say
aspects of proper Monte Carlo methodology �which should always be respected in order to
make a simulation exercise really worthwhile. Already for many decades a great number of
studies in econometric theory are supplemented by simulation �ndings, but usually without
much explicit reference to simulation methodology. Monte Carlo has become part of the
standard toolkit, and seems to be very user-friendly, because researchers use it without refer-
ence to any user-manual. In fact, not much has been published in econometrics about Monte
Carlo methodology since Hendry (1984). Indeed, this is still the state-of-the-art study. It
provides the necessary background to Monte Carlo simulation, but just as far as it concerns
the fundamentals of the techniques for assessing in an e¢ cient and e¤ective way by random
experimentation on a programmable computer the �nite sample characteristics of one partic-
ular estimator or test procedure. However, it does not address explicitly the various issues
that are relevant when a further purpose of the Monte Carlo study is to make a comparison
between di¤erent inference techniques. Here we will argue that particular improvements in
the practice of designing Monte Carlo contests seems to be called for. We shall illustrate this
in the context of the comparison by simulation of di¤erent method of moment estimators for
dynamic panel data models.
We focus on a very simple example of the dynamic panel data model, viz. the stable

�rst-order autoregressive panel relationship with an unknown intercept, random unobserved
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individual e¤ects, and i.i.d. disturbances. Hence, there are no further external regressors. Its
full speci�cation is

yit = � + yi;t�1 + �i + "it

yi0 = �0 + �1�i + �2"i0

�i � i.i.d.(0; �2�)

"i = ("i0; "i1; :::; "iT )
0 � i.i.d.(0; �2"IT+1)

9>>>>>>>>=>>>>>>>>;
i = 1; :::; N ; t = 1; :::; T: (1)

The model has two random error components, viz. the individual speci�c e¤ects �i and the
white-noise innovations "it: For any i; j 2 f1; :::; Ng the vector "i and scalar e¤ect �j are inde-
pendent. The start-up values yi0 are mutually independent, are determined by the two types
of random error components and a non-random component too, and are independent of all "jt
for t > 0: Note that we have seven unknown parameters: �0; �1; �2; �; ; �2� and �

2
": These are

all similar for the N cross-section units. We shall only examine here the stable case jj < 1;
which will yield weakly-stationary yit series (time-invariant mean and auto-covariances) un-
der particular initial conditions only. Inference on the parameter of primary interest  can
only be based on the N observed time-series fyit; t = 0; :::; Tg; which are identically and
independently distributed over the N cross-sections. Various alternative implementations of
GMM estimators are available for the estimation of model (1). In illustrations below some
of these will be used in our attempt to constitute some explicit methodological standards for
designing Monte Carlo experiments when the purpose is to compare and to rate alternative
competing inference techniques.
The structure of this paper is the following. In Section 2 we list a number of important

general qualitative aspects for a simulation study, when the aim is to draw conclusions on the
relative and absolute qualities of alternative inference methods under relevant circumstances.
Before we can fully substantiate by illustrations the importance of the rules we set for such
studies, we have to discuss some further details on panel AR(1) models and their estimation.
Therefore, in Section 3, we �rst examine some consequences for data transformations occur-
ring in GMM procedures which stem from particular speci�cations of the start-up values yi0
via the coe¢ cients �0; �1 and �2: Next, in Section 4, we introduce the range of estimators
to be considered here. Special attention is paid to the weight matrices used in GMM imple-
mentations. In Section 5 we discuss aspects of a number of the earlier Monte Carlo studies
referred to above and confront them with the rules discussed in Section 2. To illustrate some
of their de�ciencies we produce a few further Monte Carlo results from an alternative design.
Finally, Section 6 concludes.

2 Rules for simulation contests

Inevitably any simulation study is limited in scope and detail. One simply cannot produce
results for all parameter values deemed relevant and for all inference techniques that might
be of interest for the type of model under study. On the contrary, if one does not want to put
o¤ consumers of the results of simulation studies, one has to restrict the number and size of
resulting tables severely. Also one should try to condense the information as much as possible
to enhance its palatability, for instance by using graphical methods or possibly by producing
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so-called response surfaces1, although these never became widely popular. Hence, it is simply
unavoidable to put restrictions on the design of the experiments, such as the chosen density
of the grid of discrete numerical values of both the model parameters and further design
parameters, such as: the examined actual sample sizes, nominal signi�cance levels of tests,
the chosen number of included exogenous variables and the actual parametrizations of their
generating schemes, etc. Apart from that, also the actual number of executed Monte Carlo
replications for each separate experiment will be limited, implying that Monte Carlo results
do not deliver the exact characterizations of estimators and test statistics, such as their
moments and quantiles, but only estimates of these which have error margins. These aspects
and various methods to economize on computer time, while reducing at the same time as
much as possible the speci�city and imprecision of the simulation results, are all addressed
in Hendry (1984), when the focus is to examine one single speci�c estimator or test statistic
for a particular class of data generating process.
However, when comparisons are to be made between competing inference techniques, then

next to the primarily quantitative aspects just indicated there are particular more qualitative
facets to the justi�cation of the chosen design, to the range of techniques included and to
the �nal presentation of the results of the executed experiments, which are of paramount
importance too. Their neglect may in fact have much more serious consequences than the
unavoidable imposed restrictions on the primarily quantitative aspects. Below, we list eight
such more qualitative aspects. First we merely give a succinct characterization, and in the
remainder of this section we give some further explanation. A more tangible clari�cation
follows later when we discuss and criticize aspects of earlier simulation studies on panel
AR(1) models and produce some further illustrative simulation results.

Methodologic aspirations for an adequate and impartial design of simulation stud-
ies that aim to rank various alternative inference techniques:
1. Explicit exploitation of any invariance properties;
2. Exploration of the non-invariance properties, both analytically and experimentally;
3. No dimensional restrictions on the relevant nuisance parameter space;
4. �Orthogonal�reparametrization of the parameter space to enhance interpretability;
5. Well-argued choice of the examined design parameter values;
6. Any contending techniques should play both at home and away;
7. Inclusion of (non-)operational full information techniques;
8. Full documentation with respect to accuracy, interpretability and reproducibility.

Most of the points mentioned above are strongly interrelated. Some of these aspirations
do also refer to the simulation e¢ ciency issues discussed in Hendry (1984); some are also
mentioned in Davidson and MacKinnon (1993, Chapter 21).
The �rst six points focus on the construction and delineation of the set of designs to be

examined in the simulation experiments. Point 1 is simply a matter of simulation e¢ ciency,
and is easily illustrated as follows. For most techniques for analyzing  in model (1) the actual
value of � is inconsequential under particular initial conditions. Of course, it is useless then
to perform Monte Carlo experiments for various values of �; as long as we are only interested
in the qualities of inference methods for : Moreover, the study should mention that the
actual value chosen for �; for instance zero, does not limit the scope for conclusions from this
design. As a complement to a successful extraction of all � if any � invariance properties,

1In designing reponse surfaces, see Hendry (1984), one is faced with inevitable speci�cation problems that
might corrupt the simulation �ndings; see Davidson and MacKinnon (1993) for further references.
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the nuisance parameters, which in�ict non-invariance properties, as mentioned in point 2,
remain. Again, simulation e¢ ciency is enhanced when theoretical evidence is exploited on
the e¤ects of particular parameters on the statistics of interest, as we shall illustrate later.
As a rule, however, such analytical small sample evidence is scarce or incomplete, and the
primary goal of the simulation study is exactly to disclose experimentally whether and how
the various parameters do have e¤ects in �nite samples. This requires a deliberate strategy
when choosing the actual parameter values in the experiments, in order to be able to reveal
the essentials of the actual dependencies. This is reiterated by point 3. If restrictions are
imposed on the dimensionality of the experimental design then it is impossible to reveal the
independent e¤ects from all parameters separately, and consequently what is supposed to be
an impartial simulation contest between various estimators may actually be a handicap race
for particular competitors.
Although the parameters as they appear in the model speci�cation may provide a straight-

forward base for the nuisance parameter space, it can be very useful to �nd a transformation
for this base, such that it becomes both easier to select empirically relevant values for the
nuisance parameters and to interpret their e¤ects. As we shall illustrate below this base
should consist of autonomous parameters and thus be orthogonal in a particular sense, as is
stated in point 4. The related point 5 re-emphasizes that the actual choice of and variation
in the design parameter values should be thoroughly justi�ed, both in the light of the before
mentioned goal to reveal yet unknown (in)dependencies, but also with respect to empirical
relevance. Since it is simply practically impossible to examine a grid of parameter values
which reasonably well represents the full usually unbounded parameter space, it seems much
more important to make sure that the chosen grid covers that part of the parameter space
which seems empirically most relevant. Points 4 and 5 can be illustrated as follows for model
(1). Below, we shall argue more extensively that it is very bene�cial for the simulation study
if one does not select particular �xed values for �1; but for another parameter �; and select
for instance � 2 f0; 0:5; 1g and  2 f0; 0:4; 0:8g to determine �1 = �(1� ): Now � is a base
parameter �orthogonal�to  expressing and procuring the degree in which the start-up value
yi0 has attained the equilibrium level of the individual e¤ect component in yit; irrespective of
the value of :
Points 6 and 7 have to do with the techniques to be included in a simulation contest in

relation to further particulars of the simulation design. Both points are easily clari�ed by
illustration in the context of model (1) too. Comparing the behavior of various 1-step GMM
implementations for this model di¤ering in, for instance, the weight matrix used and in the
nature and number of moment conditions exploited, it seems worthwhile to generate data
under various situations covering all particular situations that in turn renders each of the
examined weight matrices optimal or not, and the exploited moment conditions either valid
or not. Point 6 highlights that a fair competition requires that the range of simulation designs
examined should be such that all contending techniques can demonstrate their qualities under
the conditions for which they were speci�cally designed, but have to expose as well their
possible failures under the conditions that may better suit the other techniques examined.
Point 7 approaches the same issue from opposite direction. Whereas point 6 says that, given
the techniques included, the various designs should be such that all techniques have to perform
under each others most favorable circumstances, point 7 states, that given the designs that
are to be covered because of their practical relevance, one should also include techniques
that exploit a considerable amount of the information incorporated in the simulated data
generating processes, even if such techniques appear non-operational from a practical point
of view. Their inclusion is useful nevertheless, because it generates information on the costs of
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being deprived of particular information. For instance, it seems useful in the context of 1-step
GMM estimation to include techniques that exploit the optimal weight matrix, even if this
includes parameters which are unknown in practice, simply because that yields a yardstick
against which the performance of the operational techniques can be judged, whereas it o¤ers
insights also into what at best can be achieved by an operational 2-step GMM estimator.
The �nal point 8 refers to obvious quality criteria such as reporting all relevant information

regarding the reproducibility of the simulation study, and with respect to the accuracy of
the resulting Monte Carlo estimates. It also stresses the importance that the presentation of
Monte Carlo studies should allow a full and proper interpretation of their �ndings, mentioning
clearly its unavoidable limitations. To further substantiate and illustrate the above, some
further analysis of the panel AR(1) model is required �rst.

3 Initial conditions

According to the scheme yit = �+yi;t�1+ �i+ "it all yit contain, in addition to yi;t�1; three
types of components, viz. a deterministic component � and two random error components,
the individual speci�c �i and the idiosyncratic "it respectively. Therefore it seems reasonable
and fully general that we assumed the yi0 to be generated by three such types of components
as well. By de�ning "i0 in (1) all conceivable options for a speci�cation of the start-up values
are represented by yi0 = �0+�1�i+�2"i0; where � = (�0; �1; �2)

0 are three extra unobservable
parameters. By repeated substitution we �nd that model (1) implies for t > 0

yit = �
t�1P
s=0

s + �0
t +

�
t�1P
s=0

s + �1
t

�
�i +

t�1P
s=0

s"i;t�s + t�2"i0 (2)

=

�
�

1� 
+ t

�
�0 �

�

1� 

��
+

�
1

1� 
+ t

�
�1 �

1

1� 

��
�i

+

�
t�1P
s=0

s"i;t�s + t�2"i0

�
;

exposing for each yit its three constituent components, viz. a non-random part, an individual
e¤ects part, and a component determined by the idiosyncratic disturbances ("i0; :::; "it):
From the �rst component of the �nal expression of (2) we �nd that yit will have constant

mean through time only if

�0 =
�

1� 
: (3)

The second component shows that the impact of �i on yit will be constant through time only
if

�1 =
1

1� 
: (4)

When (4) is not ful�lled this will have far reaching consequences, because of the following.
An important issue in the estimation of dynamic panel data models with individual e¤ects is
whether it is possible to remove these individual e¤ects from the model, or from the regressors,
or from any variable that may be used as an instrument. A transformation often employed
in this context is �rst-di¤erencing. Although it may seem, at �rst sight, that taking �rst
di¤erences in (1), which results (for t > 1) in

�yit = �yi;t�1 +�"it; (5)
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has completely removed the individual e¤ects, this is only really the case under (4). This is
seen as follows. From (2) we �nd (for t > 1)

�yit = t�1 [� � (1� )�0] + t�1 [1� (1� )�1] �i (6)

+"it � (1� )

�
t�1P
s=1

s�1"i;t�s + t�1�2"i0

�
:

Hence, estimators involving �yit will in general not be invariant with respect to the elements
of �; nor to �; ; �2" and �

2
�: However, from (6) we �nd that under (3) and (4) �yit is invariant

with respect to �0; �1; � and �2�: For other transformations that are used in this context, such
as taking di¤erences from individual means (taken over time) or orthogonal forward deviations
(see Arellano and Bover, 1995), one easily �nds similar invariance properties, provided (3)
and (4) hold.
From (2) we can also derive that (for t � 0)

Var(yit) =

�
1

1� 
+ t

�
�1 �

1

1� 

��2
�2� +

�
1

1� 2
+ 2t

�
�22 �

1

1� 2

��
�2": (7)

Therefore, variance constancy of yit through time requires both (4) and

�2 = �
r

1

1� 2
; (8)

and then yields

Var(yit) =
�2�

(1� )2
+

�2"
1� 2

; t = 0; :::; T: (9)

When the two conditions (4) and (8) hold jointly then we obtain for the auto-covariance (for
0 � s � t)

Cov(yit; yi;t�s) =
�2�

(1� )2
+

s�2"
1� 2

: (10)

Like (9) these are not determined by t either, thus the three conditions on � jointly imply
weak-stationarity of yit:
From the above we conclude that the distribution of the untransformed yit (for t > 0) is

always determined by �; ; �2� and �
2
"; irrespective of the properties of yi0 (the values of the

� parameters), whereas for particular � values, viz. under the three above special conditions,
�yit is determined by  and �2" only. Because in panel data often T is rather small and
asymptotics concerns N ! 1; the e¤ects of the initial conditions are not asymptotically
diminishing, and hence they are of major importance.
In addition we want to remark that the three special conditions on �, though mathemat-

ically convenient, are not necessarily very realistic cases. There does not seem much reason
to assume that in actual empirical panel data observations the accumulated impact of the
disturbances, of the random individual e¤ects and of the deterministic components all three
happen to be constant in magnitude (or variance) through time. Therefore, in principle, in
a Monte Carlo study of model (1) one should vary �0; �1; �2, �; ; �2� and �

2
"; which after

scaling with respect to for instance �2" implies dimensionality six of the parameter space.
However, in most earlier studies all � parameters have been set at their stationarity values.
Although weak stationarity implies invariance of inference on  with respect to � for some
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techniques only, � is often set at zero nevertheless. Moreover, �2�=�
2
" is usually �xed at unity

2

and only  is varied, so that the dimensionality of the nuisance parameter space is restricted
from six to just one.
Below, when we address the three stationarity assumptions regarding the initial values

that may hold in addition to the stability condition jj < 1, we will indicate (3) as deter-
ministic stationarity, which implies that E(yit) is constant; (4) will be called accumulated
e¤ect stationarity, which implies that E(yit j �i) � E(yit) is constant; and (8) will be called
accumulated noise stationarity, which implies that Var(yit j �i) is constant for all i and t:

4 Various GMM implementations

4.1 Generic framework

The GMM (system) estimators we will examine all �t into the following simple generic setup,
which allows further regressors. After appropriate manipulation (transformation and stack-
ing) of the panel data observations one has

y��i = Xi� + �i; i = 1; :::; N; (11)

where y��i is a T �� � 1 vector that may contain �y�i = (�yi2; :::;�yiT )0 or y�i = (yi2; :::; yiT )0
or both stacked, hence T �� is either T � = T � 1 or 2T �; and �i contains the corresponding
vector of error components. The T ���K�� matrix Xi and K��� 1 coe¢ cient vector � follow
straightforwardly from the choice regarding y��i : In case of our panel AR(1) model � equals
(�; )0 if y��i contains y�i (i.e. K

�� = 2) and if it just contains �y�i then � =  (i.e. K�� = 1);
with Xi = �y

�
i;�1:

The unknown vector � is estimated by employing L � K�� moment conditions that hold
for i = 1; :::; N; viz.

E[Z 0i(y
��
i �Xi�)] = 0; (12)

where Zi; which will be substantiated in the next subsection, is T �� � L: Exploiting the
assumption that the individuals are i.i.d. the GMM estimator using the L� L semi-positive
de�nite weight matrix W is found by minimizing the quadratic form�

NP
i=1

Z 0i(y
��
i �Xi�)

�0
W

�
NP
i=1

Z 0i(y
��
i �Xi�)

�
; (13)

which yields
�̂W = (X 0ZWZ 0X)�1X 0ZWZ 0y��; (14)

where y�� = (y��01 ; :::; y��0N )
0; X = (X 0

1; :::; X
0
N)

0 and Z = (Z 01; :::; Z
0
N)

0: We only consider cases
where convenient regularity conditions hold, including the existence of

plim
N!1

1

N
Z 0X and plim

N!1

1

N
Z 0Z;

whereas rank(N�1Z 0X) and rank(N�1Z 0Z) are K�� and L with probability 1, respectively,
implying that the estimator �̂W exists. According to (12) the instruments are valid, thus
plimN!1N

�1PN
i=1 Z

0
i�i = 0; so that �̂W is consistent.

2Notable exceptions are Nerlove (1967, 1971), initiating this line of research. Nerlove uses in his design
the so-called �intra-class correlation�, the transformed parameter � � �2�=(�

2
" + �

2
�); which he varies over its

entire domain 0 � � < 1:
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The asymptotically e¢ cient GMM estimator3 in the class of estimators exploiting instru-
ments Z is obtained ifW is chosen such that, after appropriate scaling, it has probability limit
proportional to the inverse of the covariance of the limiting distribution of N�1=2PN

i=1 Z
0
i�i:

This implies

W opt /
�
plim
N!1

1

N

NP
i=1

Z 0i�i�
0
iZi

��1
; (15)

and we shall denote the asymptotically e¢ cient GMM estimator as �̂W opt :
For the special case �i � i.i.d.(0; �2�IT ��) one would obtain W

opt
iid / (Z 0Z)�1; which yields

the familiar 2SLS or GIV result

�̂GIV = [X
0Z(Z 0Z)�1Z 0X]�1X 0Z(Z 0Z)�1Z 0y��; (16)

which in case K�� = L simpli�es to the simple instrumental variable estimator

�̂IV = (Z
0X)�1Z 0y��: (17)

However, �i � i.i.d.(0; �2�IT ��) does usually not hold in panel data, either due to the occurrence
of the two error components, or due to the e¤ects of the transformation applied to remove the
individual speci�c component. Also (but we shall not consider these cases here) there may be
further complications, such as cross-sectional heteroskedasticity, cross-sectional dependence
or serial correlation.
If, under particular assumptions on the distribution of �i; the matrix W opt is not directly

available then one may use some arbitrary initial weight matrixW that produces a consistent
(though ine¢ cient) 1-step GMM estimator �̂W , and then exploit the 1-step residuals �̂i =
y��i �Xi�̂W to construct the empirical weight matrix

Ŵ opt / ( 1
N

PN
i=1 Z

0
i�̂i�̂

0
iZi)

�1; (18)

which yields the 2-step GMM estimator

�̂Ŵ opt = (X
0ZŴ optZ 0X)�1X 0ZŴ optZ 0y��: (19)

This 2-step GMM estimator �̂Ŵ opt is asymptotically equivalent to �̂W opt ; and hence it is
e¢ cient in the class of estimators exploiting instruments Z.
Note that, provided the moment conditions are valid, �̂GIV is consistent thus could be

employed as a 1-step GMM estimator. When K�� = L using a weight matrix is redundant,
because the criterion function (13) will be zero for anyW; because all moment conditions can
be imposed on the sample observations.

4.2 Instruments for panel AR(1) models

We now consider a range of GMM estimators that have been suggested for linear dynamic
panel data models, but we specialize them to our very speci�c model (1). It is obvious that
estimating model (1) by OLS will yield inconsistent estimators, because it follows from (2)
that

E[yi;t�1("it + �i)] = �2�

�
1

1� 
+ t

�
�1 �

1

1� 

��
; (20)

3see Hansen (1982) and, in the context of dynamic panel data, Arellano (2003) and Baltagi (2005).
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and this di¤ers from zero for any �1 and jj < 1; unless �2� = 0: Also the least-squares
estimator for  obtained after removing the individual e¤ects from the model by taking
deviations from the mean per individual over the time-series observations, known as the
least-squares dummy variable estimator (LSDV) or within groups estimator, is inconsistent
unless T !1.
To obtain valid moment conditions many techniques actually estimate the transformed

model
�yit = �yi;t�1 +�"it; i = 1; :::; N ; t = 2; :::; T: (21)

Applying least-squares would again yield an inconsistent estimator (also for T !1) because

E(�yi;t�1�"it) = �E(yi;t�1"i;t�1) = ��2" 6= 0;

but, given "it � i.i.d.(0; �2"); it is obvious that in (21) the (T �2)(T �1)=2 moment conditions

E(�yir�"it) = 0; r = 1; :::; t� 2; t = 3; :::; T; (22)

can be exploited. In fact, the even more extensive set of (T � 1)T=2 conditions

E(yir�"it) = 0; r = 0; :::; t� 2; t = 2; :::; T (23)

hold. Note that all conditions of set (22), where the instruments are lagged �rst di¤erences,
are implied by set (23), where the instruments are lagged levels. So, we cannot exploit these
two sets jointly, because they would lead to a Z matrix that does not have full column rank.
Set (23) implies for the ith partition �"�i = (�"i2; :::;�"iT )

0 of the stacked disturbance vector
of model (21) the corresponding block Zi of the N(T �1)� (T �1)T=2 matrix of instruments
Z that is given (and here denoted) by

ZABi =

2666664
yi;0 0; 0 � � � 00 00

0 yi;0; yi;1 00 00

...
. . .

...
0 0; 0 yi;0; :::; yi;T�3 00

0 0; 0 � � � 00 yi;0; :::; yi;T�2

3777775 : (24)

For the instrument matrix ZAB to have full column rank it is required that N � T=2 and
T � 2: Exploiting the instrument set ZABi was suggested by Arellano and Bond (1991).
It has been found, however, that using ZAB may lead to bias problems, especially when N

is moderate and T not very small. Bun and Kiviet (2005) found that the leading term of this
bias has magnitude O(N�1T 0): They suggest using fewer instruments in order to mitigate
the bias problems, and prove that GMM using a subset of 2T � 3 instruments, viz.

ZBKi =

2666664
yi;0 0; 0 � � � 0; 0 0; 0
0 yi;0; yi;1 0; 0 0; 0
...

. . .
...

0 0; 0 yi;T�4; yi;T�3 0; 0
0 0; 0 � � � 0; 0 yi;T�3; yi;T�2

3777775 ; (25)

reduces the order of the bias to O(N�1T�1): Note that ZBKi = ZABi CBKAB ; where C
BK is a

(T � 1)T=2� (2T � 3) matrix that annihilates instruments from ZABi .
Anderson and Hsiao (1981, 1982) originated removing the individual e¤ects from the

model by �rst-di¤erencing and then applying IV to (21). They suggested using either a
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lagged �rst-di¤erence as instrument, i.e. exploiting (22) just for r = t � 2, or a lagged level
variable as instrument, i.e. exploiting (23) just for r = t� 2; giving either

ZAHdi =

26664
0

�yi;1
...

�yi;T�2

37775 or ZAHli =

26664
yi;0
yi;1
...

yi;T�2

37775 (26)

as instruments. These entail a much more drastic reduction of the valid instruments available
than ZBKi . Note that ZAHli = ZBKi CAHlBK and ZAHdi = ZBKi CAHdBK ; where both CAHlBK and CAHdBK

are simple transformation matrices of just one column.
Blundell and Bond (1998), on the other hand, attempted to mitigate the bias problems

associated with ZAB by extending the set of instruments. Upon checking the validity of lags
of di¤erenced variables as instruments in the untransformed model (1) in levels, one �nds
using (6)

E[�yir(�i + "it)] = r�1 [1� (1� )�1]�
2
�; r = 1; :::; t� 1; t = 2; :::; T: (27)

Hence, under the condition of stationary accumulated e¤ects (4) these expectations are zero,
and then they imply the (T � 1)T=2 moment conditions

E[�yir(�i + "it)] = 0; r = 1; :::; t� 1; t = 2; :::; T: (28)

This set can be transformed linearly into two sub-sets of T�1 and (T�2)(T�1)=2 conditions
respectively, viz.

E[�yi;t�1(�i + "it)] = 0; t = 2; :::; T;

E[�yir�"it] = 0; r = 1; :::; t� 2; t = 3; :::; T:

9=; (29)

Note that the second sub-set conforms to (22) and hence is found to be implied by (23)
already. Nevertheless, we see that assuming stationary accumulated e¤ects generates T � 1
moment conditions in addition to (22). Arellano and Bover (1995) and Blundell and Bond
(1998)4 exploit these in a system comprising both equations

�yit = �yi;t�1 +�"it

yit = � + yi;t�1 + uit

9=; (30)

for t = 2; :::; T; with uit = �i + "it. Here the ith block has the disturbances

�i = (�"i2; :::;�"iT ; ui2; :::; uiT )
0; (31)

and the instrument matrix has ith block

ZBBi =

2666664
ZABi O

O

�yi1 0 � � � 0
0 �yi2 0
...

. . .
...

0 0 � � � �yi;T�1

3777775 ; (32)

4They speak about mean-stationarity instead of accumulated e¤ect stationarity. We prefer the latter,
because (4) does not lead to constant (conditional) mean in a model where (3) does not hold.
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whereas ZBB = (ZBB
0

1 ; :::; ZBB
0

N )0 is 2N(T � 1) � (T + 2)(T � 1)=2: Applying GMM to the
system (30) exploiting the instruments (32) will be labelled below as GMMs. For ZBB to
have full column rank T � 2 and N � (T + 2)=4 are required.
Due to the i.i.d. assumption regarding "i further (non-linear) moment conditions are valid

in the dynamic panel data model, see Ahn and Schmidt (1995, 1997), but below we will only
consider the instrument matrices (24), (25), (26) and (32).

4.3 Weight matrices

To establish the optimal weight matrixW opt of (15) for the generic model (11) we have to �nd
an expression that has probability limit equivalent to limN!1

1
N

PN
i=1 E(Z

0
i�i�

0
iZi); which is a

symmetric matrix. Note that when ZABi is used the individual elements of the matrix Z 0i�i�
0
iZi

are all of the form yir�"it�"isyip; with t; s = 2; :::; T and r = 0; :::; t � 2; p = 0; :::; s � 2:
When ZBKi is used only the cases r = max(0; t� 3); t� 2 and p = max(0; s� 3); s� 2 occur.
Because of the symmetry we shall focus on the expression yir�"it�"isyip for the cases t � s
only. Using Eq to denote expectation conditional on information available at time period q;
we obtain (under both time-series and cross-section homoskedasticity and independence of
the disturbances) for t = s

Es�2(yir�"is�"isyip) = yiryipEs�2(�"is)
2 = 2�2"yiryip;

and for t = s+ 1 we �nd

Es�1(yir�"i;s+1�"isyip) = yiryipEs�1[("i;s+1 � "is)("is � "i;s�1)] = ��2"yiryip;

whereas E(yir�"it�"isyip) = 0 for t > s + 1: Employing both the law of large numbers and
the law of iterated expectations we have

plim
N!1

1

N

NX
i=1

Eq(yir�"it�"isyip) = lim
N!1

1

N

NX
i=1

EEq(yir�"it�"isyip)

= lim
N!1

1

N

NX
i=1

E(yir�"it�"isyip)

for any q: Using this with the obtained (conditional) expectations we establish

lim
N!1

1

N

NX
i=1

E(yir�"it�"isyip) = �2"hts plim
N!1

1

N

NX
i=1

yiryip;

where hts is the typical element of the (T � 1)� (T � 1) matrix

H =

26666664
2 �1 0 : : : 0

�1 2 �1 . . .
...

0 �1 2
. . . 0

...
. . . . . . . . . �1

0 : : : 0 �1 2

37777775 : (33)

From the above we �nd that for GMM estimation of model (21), when the DGP (data
generating process) is given by (1) and the instruments Zki (for k = AB;BK) are being
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employed, the optimal weight matrix W opt
k is given by

W opt
k _ [

NX
i=1

Zk0i HZ
k
i ]
�1 = [Zk0(IN 
H)Zk]�1: (34)

Using it in 1-step GMM we will indicate as GMMAB
1 (or GMMBK

1 ), whereas GMMAB
2 employs

the residuals of GMMAB
1 in 2-step GMM and similarly for GMMBK

2 . Self-evidently, the
weight matrix for the Anderson-Hsiao implementations is of no concern, because the number
of instruments equals the number of regressors.
The derivation of the optimal weight matrix for the GMMs estimator is much more in-

volved. Although its matrix Z 0i�i�
0
iZi still contains the elements just examined, it now also

has elements of the hybrid type yir�"it("is + �i)�yi;s�1; for t; s = 2; :::; T and r = 0; :::; t� 2;
and of the type �yi;t�1("it + �i)("is + �i)�yi;s�1; where t; s = 2; :::; T: To date the GMMs
optimal weight matrix has only been derived for the speci�c no individual e¤ects case �2� = 0
by Windmeijer (2000), who �nds

W opt
BB;�2�=0

_ [ZBB0(IN 
Dopt
�2�=0

)ZBB]�1 (35)

with

Dopt
�2�=0

=

�
H C
C 0 IT�1

�
; (36)

where C is the (T � 1)� (T � 1) matrix

C =

26666664
1 0 0 : : : 0

�1 1 0
. . .

...

0 �1 1
. . . 0

...
. . . . . . . . . 0

0 : : : 0 �1 1

37777775 : (37)

We re-establish this result with respect to the matrix C by observing that for s > t and for
t > s+ 1 we have E(yir�"it"is�yi;s�1) = 0; whereas for t = s we �nd

Es�1(yir�"is"is�yi;s�1) = yir�yi;s�1Es�1("
2
is � "is"i;s�1) = �2"yir�yi;s�1;

and for t = s+ 1 we obtain

Es�1(yir�"i;s+1"is�yi;s�1) = yir�yi;s�1Es�1("i;s+1"is � "2is) = ��2"yir�yi;s�1:

The identity matrix in the South-East block of (36) follows from E(�yi;t�1"it"is�yi;s�1) = 0
for t 6= s; whereas for t = s we obtain Es�1(�yi;s�1"2is�yi;s�1) = �2"(�yi;s�1)

2:
When allowing for individual e¤ects, we �nd with respect to the elements �yi;t�1("it +

�i)("is + �i)�yi;s�1 for t = s that

Es�1(�yi;s�1("is + �i)
2�yi;s�1) = (�yi;s�1)

2(�2" + �2i )

and for t > s

Et�1[�yi;t�1("it + �i)("is + �i)�yi;s�1] = �yi;t�1�yi;s�1("is + �i)[Et�1("it) + �i]

= �yi;t�1�yi;s�1("is�i + �2i ):
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Since plimN!1
1
N

PN
i=1 �

2
i = �2� and plimN!1

1
N

PN
i=1 "is�i = 0 it follows that in case �

2
� 6= 0

we should replace the IT�1 matrix in the South-East block of (36) by IT�1 +
�2�
�2"
�T�1�

0
T�1:

Without having analyzed the e¤ects of �2� 6= 0 on the non-diagonal block, from the above
we already note that, when the ratio �2�=�

2
" is unknown (which it usually is), the optimal

weight matrix is infeasible. Therefore, various feasible but (even under i.i.d. disturbances)
non-optimal weight matrices have been suggested. Blundell, Bond and Windmeijer (2000,
footnote 11), and Doornik et al. (2002, p.9) in the computer program DPD, use in 1-step
GMMs the operational weight matrix WDPD

BB _ [ZBB0(IN 
DDPD)ZBB]�1; with

DDPD =

�
H O
O IT�1

�
: (38)

The motivation for the chosen block diagonality of DDPD; which does not lead to an interest-
ing reduction of computational requirements, is unclear. There is no speci�c parametrization
for which these weights are optimal. Blundell and Bond (1998) did use (see page 130, 7 lines
from bottom) in their �rst step of 2-step GMMs

DGIV =

�
IT�1 O
O IT�1

�
= I2T�2; (39)

which yields the simple GIV estimator. This is certainly not optimal, but it is easy and
suits well perhaps as a �rst step (to be indicated below as GMMsGIV1 ) in a 2-step procedure
(GMMsGIV2 ). Blundell and Bond (1998) mention that, in most of the cases they examined,
GMMsGIV1 gave similar results as GMMsGIV2 , suggesting that the weight matrix to be used
in combination with ZBB under homoskedasticity seems of minor concern. However, in our
less restrained simulation experiments below, we will �nd that di¤erent weight matrices can
lead to huge di¤erences in the performance of GMMs1. Although we �nd too that GMMsGIV1

and GMMsGIV2 give very similar results, we also establish that both perform poorly in �nite
sample in comparison to other operational weight matrices.
A more promising operational alternative to DDPD and DGIV could be the following.

Instead of capitalizing on the assumption �2� = 0; as in Dopt
�2�=0

; one could employ a weight

matrix which presupposes a particular (not necessarily zero) value of the ratio �2�=�
2
"; i.e.

Dsubopt
�2�=�

2
"
=

 
H C

C 0 IT�1 +
�2�
�2"
�T�1�

0
T�1

!
: (40)

We make explicit that the resulting weight matrix

W subopt
BB _ [ZBB0(IN 
Dsubopt

�2�=�
2
"
)ZBB]�1 (41)

is not optimal (unless �2� = 0) even when a correct non-zero value of �2�=�
2
" is substituted,

because the non-diagonal blocks have been obtained under the assumption of no individual
e¤ects.
Above an already rather wide collection of competing 1-step and 2-step GMM estimators

have been presented. They are consistent (provided the employed moment conditions are
valid), and some may claim optimality properties under particular circumstances asymptot-
ically for N ! 1: Below we will make an initial attempt to rank the performance of these
estimators by employing Monte Carlo simulation for the situation where both T and N are
small or moderate.
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5 A limited Monte Carlo contest

In the experiments below we have severely restricted ourselves regarding the generality of
the Monte Carlo design, simply for practical reasons. The main purpose here is to illustrate
particular pitfalls in estimator comparisons by Monte Carlo. This study is certainly not
meant to produce the ��nal�in a Monte Carlo tournament on dynamic panel data estimators.
At this stage we only considered the fully homoskedastic case, where "i � i.i.d.(0; �2"IT+1);
whereas 2-step GMM is especially meant to cope with cross-section heteroskedasticity. Ac-
cording to aspiration 7, as set out before, we should have included estimators that exploit the
homoskedasticity restriction, since it implies further moment conditions and corresponding
asymptotically more e¢ cient GMM implementations. However, if we had included them,
we should also have performed experiments involving heteroskedasticity in order to satisfy
aspiration 6 and make all estimators play both at home and away. Also, in all the present
experiments "it and �i are Gaussian. This situation too could have been exploited by includ-
ing maximum-likelihood estimators in the set of competing techniques5, but we didn�t at this
stage, so we do not fully respect aspirations 6 and 7. Not only did we not examine dynamic
panel data models with any further exogenous regressors, but we also imposed � = 0 so that
deterministic stationarity is in fact not an issue here, and all GMM estimators have K�� = 1:
We also restricted ourselves to models with accumulated noise stationarity, i.e. (8) holds and
�2 = �(1� 2)�1=2:
Thus, apart from illustrating some of the individual aspirartions for an impartial Monte

Carlo contest, the main object of study will be limited here to examine whether under ac-
cumulated noise stationarity, homoskedasticity, cross-section independence and normality of
both error components there is much impact on the bias and RMSE (root mean squared
error) in zero-mean panel AR(1) models of:
(i) the e¤ects of various di¤erent weight matrices in GMMs;
(ii) the e¤ects of skipping from ZBB the instruments related to accumulated e¤ect sta-

tionarity, i.e. using ZAB;
(iii) the e¤ects of skipping valid moment conditions from ZAB and using either ZBK or

even ZAHl or ZAHd:
We will investigate just a few particular small values for N and T; only positive stable values
of ; a few di¤erent values of �2�=�

2
" and of �1: Note that GMMs will be inconsistent for

�1 6= (1� )�1:

5.1 An orthogonal Monte Carlo design

Due to the above mentioned restrictions, we loose the parameters �; �0 and �2; and retain
; �1; �

2
�; and �

2
" only. Note that our data series yit and �yit are now such that

E(yit) = 0 E(�yit) = 0

E(yit j �i) =
h

1
1� + t

�
�1 � 1

1�

�i
�i E(�yit j �i) = t�1[1� (1� )�1]�i

Var(yit) =
h

1
1� + t

�
�1 � 1

1�

�i2
�2� +

�2"
1�2 Var(�yit) = 2t�2[1� (1� )�1]

2 + 2�2"
1�2

Var(yit j �i) =
�2"
1�2 Var(�yit j �i) =

2�2"
1�2

Since all estimators to be examined include level and/or di¤erenced variables in a highly
non-linear way, we do not expect that more general invariance properties can be exploited in

5Hsiao et al. (2002) examines ML and GMM estimators under both normal and nonnormal errors.
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the Monte Carlo than the one with respect to the scale parameter �": So, next to items such
as N; T and the adopted normality of both random components, the only design parameters
are ; �1 and �2�=�

2
": However, we shall not use these as a base for the Monte Carlo grid, but

; � and  ; where

� � �1(1� ); (42)

 2 � 1 + 

1� 

�2�
�2"
: (43)

Note that for � = 1 we have accumulated e¤ect stationarity6, for � = 0 the individual
e¤ect component in yi0 is zero, and for � = 0:5 the e¤ect component in yi0 is 50% of the
stationary magnitude 1=(1 � ): Hence, by �xing � instead of �1 we can control the e¤ect
component in yi0 in proportion to the stationary magnitude, irrespective of the chosen value
for ; whereas when we �x �1 this characteristic would vary with : Therefore we may call
the parameters  and � autonomous and orthogonal:  is just about speed of adjustment and
� exclusively about the initial disequilibrium condition with respect to the individual e¤ects,
whereas �1 is an ambiguous parameter because the consequences for yit of its magnitude can
only be understood when either  or � are known too.
The parameter  expresses the following basic characteristic of the observations from the

DGP independently from  and �: We �nd that when � = 1 or otherwise for t ! 1 when
accumulated e¤ect stationarity has been attained

Var(yit) =
�2�

(1� )2
+

�2"
1� 2

=

�
1 + 

1� 

�2�
�2"
+ 1

�
�2"

1� 2
(44)

= ( 2 + 1)
�2"

1� 2
:

Hence,  2 expresses under accumulated e¤ect stationarity the magnitude of the variance
component in Var(yit) stemming from the individual e¤ects in terms of the magnitude of
the variance of Var(yit) originating from the other error component, the accumulated noise.
If we would �x �2�=�

2
" the characteristic  

2 would vary with : By �xing  we can control
the relative size of the variance of the accumulated two error components in a stationary yit;
irrespective of the value of ; by choosing

�2� =
1� 

1 + 
 2�2": (45)

Although �2�=�
2
" directly characterizes the relative magnitude of the incremental error com-

ponents in the right-hand side of yit = � + yi;t�1 + �i + "it; it does not characterize the
data, unless  is known too. Therefore we �nd that  is an autonomous parameter (like
 and �); whereas ��=�" and �1 are not. The reparametrization makes it easier to chose
and to cover the relevant values of the parameters and it will enhance the interpretability
of the Monte Carlo results too, because we can change  now while keeping the two other
basic characteristics expressed by � and  �xed, whereas otherwise changing  would imply
changing the relative prominence and closeness to stationarity of the accumulated individual
e¤ects too.7

6This parameter is also used in Andrews and Lu (2001, p.149).
7Note that  di¤ers from the design parameter � = (1 � )�1��=�" introduced in the Monte Carlo in

Kiviet (1995, p.65) and also practiced in Harris and Mátyás (2004). Like  this � serves to break away
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Most published Monte Carlo studies on (generalizations of) the above panel AR(1) model
assume that all stationarity conditions hold. And in addition most of them consider only
one value for �2�=�

2
" (often one), which is a further restriction on the dimensionality of the

parameter space8. This restriction makes it quite likely that important properties of the
estimators will be overlooked, and one cannot distinguish between the e¤ects of increasing 
and decreasing  2. Even if the value of �2�=�

2
" is varied, relationship (43) implies that from

such simulations one cannot easily disentangle the e¤ects due to a high (low)  and those
due to a high (low)  value9.
What would be reasonable values for  ? In Blundell and Bond (1998, model A) it varies

from 1 when  = 0 to 19 when  = 0:9: In Blundell and Bond (1998, model B)10 it is 1 again
for  = 0 but only 0.19 for  = 0:9: Hence, neither in model A nor B  is held constant
when  is changed, which hampers the interpretation of the Monte Carlo results. It would be
interesting to know the actual estimates of �2� and �

2
" in the application of the AR(1) model

in Bond (2002) or in similar empirical exercises. In Blundell, Bond, Windmeijer (2000), for
instance p.16, it is discussed what happens �at high values of  and high values of �2�=�

2
"�.

Note that this implies doubly high values of  2 in their model A. Thus, we should know
whether it is really likely to occur that  = 5

p
1:8=0:2 = 15 or even higher. Below, we will

restrict ourselves to values 0 �  � 5 and 0:1 �  � 0:9; implying 0 � ��=�" � 4:52:
Choosing in a Monte Carlo exclusively equivalent values for �2� and �

2
" is deceiving from

a theoretical point of view as well. Recently, Bun and Kiviet (2005) derived a �rst order
asymptotic approximation to the bias of the GMMs estimator when use is made of the
simple weight matrix involving DGIV = I in �rst-order autoregressive panel data models
with another weakly exogenous regressor. When we specialize that result for the case of a
pure AR(1) panel model we obtain that the leading term of the bias, which is O(N�1); is in
fact proportional to

1

N

1

1� 

�
1�

�2�
�2"

�
: (46)

Hence, in all Monte Carlo studies restricted to the case �2� = �2" this leading term is zero,
which may explain the relatively small bias that has been established for the GMMs estimator

from the habitual designs where ��=�" is constant. Its rationalization bears on the arguments given in
Nerlove (1967, footnote 2) and is also in line with the parameter orthogonalization achieved by Lancaster
(2002, p.655). However, regarding designing a DGP we �nd that  has a more solid underpinning and
interpretation than � has. The latter compares the accumulated magnitude of the individual e¤ect with
that of the current idiosyncratic disturbance, whereas  2 (already used in Bun and Kiviet, 2005) captures
the accumulated variance of both error components and thus seems closer to a basic characteristic of the
generated data orthogonal to .

8This o¤ence of aspiration 3 occurs in, for instance, Bhargava and Sargan (1983), Arellano and Bond
(1991), Blundell and Bond (1998), Blundell et al. (2000), Harris and Mátyás (2000), Andrews and Lu (2001),
Bond (2002), Bowsher (2002), Doornik et al. (2002), Bond and Windmeijer (2005) and Windmeijer (2005).
Little or no information on the actual magnitude of the individual e¤ects in their experiments is given by
Judson and Owen (1999), Hansen (2001) and Hsiao et al. (2002), which is at odds with aspiration 8.

9For instance, Alvarez and Arellano (2003, p.1133) examine  2 f0:2; 0:5; 0:8g and �2�=�2" 2 f0:2; 1:0g:
They infer that �2�=�

2
" has little e¤ect, but since their design does not cover cases where  is large (say 5)

and  small, this limited grid cannot reveal the full e¤ect of  and : Doran and Schmidt (2005) use a wider
grid including �2�=�

2
" = 4; so at moderate  = 0:5 they cover  = 3:5: They report, as do Alonso-Borrego and

Arellano (1999), that the e¤ects of increasing  and �2�=�
2
" are qualitatively similar. Note that these �ndings

underscore the non-orthogonality of these two parameters.
10Stephen Bond informed me that there is a typo in Blundell and Bond (1998, p.129-130) regarding the

speci�cation of simulation model B. Their published simulation results for model B have actually been ob-
tained by (their notation) yit = �yi;t�1+(1��)�i+�it; with start-up value yit = �i+ui1; so that accumulated
e¤ect stationarity is obtained indeed (which would not when using the initial condition mentioned on p.130).
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in such restricted simulation studies.

5.2 Some new Monte Carlo �ndings

Using the design suggested above I ran simulations (1000 replications for each parame-
trization, using the same �i and "it realizations for di¤erent parameter values and di¤er-
ent techniques) for various GMM implementations for N = 100 and T = 3(+1)10; over
 = 0:1(+0:2)0:9 and choosing � 2 f1; 0:5g and  2 f0 or 0:5; 1; 5g: The chosen N may seem
small for some applications, but it is large for other. Moreover, �nding serious problems and
quality di¤erences for modest N values, usually quite well indicates where similar problems
may still be looming for larger though �nite N: Of course, for N ! 1 there is no bias and
the RMSE will be zero for any consistent GMM estimator.
Below two diagrams are presented above each other for all the particular parametrizations

and implementations of GMM examined: the upper diagrams present relative bias, i.e. the
Monte Carlo estimate of E(̂ � )=; the lower diagrams depict relative e¢ ciency, which is
RMSE(̂)=: Both are given in %. Where the relative bias is larger than, say, 25% in absolute
value there is a serious bias problem, and where relative RMSE is larger than, say, 50% there
seems a serious problem regarding e¢ cient and useful inference. Naturally, extreme values
of these relative measures will always occur for values of  very close to zero. However, for
a particular estimator (at the sample sizes examined) to show satisfying behavior it seems
reasonable to require that its relative RMSE does not exceed 50% for, say,  > 0:2; although
this criterion should not be taken too strictly.

5.2.1 GMMs under accumulated e¤ect stationarity (� = 1)

We �rst examine the system estimator GMMs for the situation where � = 1; hence the extra
instruments for the equation in levels are valid. Given that observations are available on yit
for t = 0; :::; T; GMMs exploits (T + 2)(T � 1)=2 instruments, viz. T (T � 1)=2 instruments
as in the Arellano-Bond implementation plus T � 1 non-redundant �level instruments�. In
Figure 1 we �rst investigate the simple weight matrix DGIV = I2T�2 in GMMsGIV1 for  = 0;
1 and 5 (from left to right) respectively. Similar results for GMMsGIV2 ; which exploits the
empirical weight matrix (18) based on GMMsGIV1 residuals, are given in Figure 2. Both
these estimators are examined in Blundell and Bond (1998) too. Note that in their design
A  =

p
1:9=0:1 = 4:36 when  = 0:9 and  =

p
1:1=0:9 = 1:1 when  = 0:1; but they

did not examine large  in combination with small or moderate  (nor vice versa). From
our �gures we see that the e¤ect on bias and RMSE of  and T is almost similar, both for
 = 0 and  = 1 and for one and two step GMMsGIV , the latter being only slightly better.
However, at  = 5 the sign of the bias has changed (which may explain the very small bias
at  = 0:5 and  =

p
1:5=0:5 = 1:73 in Table 5 of Blundell and Bond, 1998) and the bias is

dramatically high for moderate and small values of : At  = 5 the bias and RMSE results
are satisfactory for large values of  only (which are the only large  cases examined in
earlier Monte Carlo�s). In Table 5 of Blundell and Bond (1998), for  = 0:5 and  = 1:73;
the 1-step and 2-step estimators show both their consistency (by a small bias), and the 2-step
estimator shows a just slightly lower variance. Examining the nuisance parameter space over
an extra dimension, we �nd only minor di¤erences between one and two step GMMsGIV too;
the 2-step procedure seems to lead to a very moderate improvement of e¢ ciency over the
whole parameter space. However, this correspondence should not be interpreted as though
the weight matrix has only minor e¤ects, as we will see from further experiments.
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In Figures 3 and 4 we examine what the quality is of the operational weights used in
DPD. We do not �nd much di¤erence between the DDPD and DGIV results in 1-step GMMs,
although for  = 0 we �nd that the DPD weights work slightly better than the simple GIV
weights. However, for  = 5 and  not very large, using DDPD in the weight matrix works
even worse than DGIV :
Next we examine the e¤ects on bias and RMSE of GMMs when using the non-operational

weights W subopt
BB given in (41), in which we substituted the true value of �2�=�

2
" in 1-step

estimation, giving what we denote as GMMs
�2�=�

2
"

1 (see Figure 5), and employing its residuals

in 2-step estimation to give GMMs
�2�=�

2
"

2 (see Figure 6). Note that for  = 0 (no individual

e¤ects) these are the optimal weights. We see that for �2�=�
2
" = 0 estimator GMMs

�2�=�
2
"

1 has
much smaller bias than both GMMsGIV1 and GMMsDPD1 ; and also its RMSE is much smaller,
especially for larger values of T (even more than four times smaller at T = 10 and  = 0:9):

Self-evidently at  = 0 GMMs
�2�=�

2
"

2 does not outperform the already optimal GMMs
�2�=�

2
"

1 ;
which is also notably better than the asymptotically equivalent GMMsDPD2 and GMMsGIV2 ;
which have larger (double and triple respectively) RMSE at  = 0;  = 0:9 and T = 10;

N = 100. For  > 0 GMMs
�2�=�

2
"

1 is sub-optimal, but we see that it has very moderate bias
and behaves well, whereas both GIV and DPD weights lead to very poor performance when
 is large and  moderate or small. For this non-operational 1-step estimator we �nd too
that (under i.i.d. disturbances) 2-step estimation does not yield worthwhile improvements.
Looking into the options for making the attractive properties of weight matrix W subopt

BB

operational, we examined using it while taking in 1-step estimation for the unknown �2�=�
2
" a

value of 10; irrespective of the true value, and indicate it as GMMs101 in Figure 7. Note that
in our simulations the actual value of �2�=�

2
" is zero when  = 0; and when  = 1 or 5, �

2
�=�

2
"

decreases from 0.81 to 0.05 and from 20.5 to 1.32 respectively, when  moves from 0.1 to 0.9.
We see that the easy and operational GMMs101 procedure yields results almost as good as the

non-operational GMMs
�2�=�

2
"

1 when  is large. This is not the case when  � 1; but then it
still has smaller RMSE than GMMsGIV1 and GMMsDPD1 ; except for T very small and  very
large. Employing the GMMs101 residuals to obtain GMMs102 (see Figure 8) the performance
of the estimator has improved slightly.
Hence, with respect to the system estimator we conclude that the quality of the weight

matrix used in 1-step GMMs is of much more importance for its resulting bias and e¢ ciency
than was recognized previously. Also the widespread reputation of GMMs as yielding only
very moderate bias needs correction: when GIV or DPD weights are used in the system
estimator then a moderate bias is obtained only when  is large.

5.2.2 GMM not exploiting all valid instruments, while � = 1

It seems interesting now to examine similar results for GMM in this context while omitting
the T � 1 di¤erenced instruments in the level equation. Still having �1 = 1=(1� ); we �nd
in Figure 9 for the Arellano-Bond implementation that it works best for intermediate values
of : The bias is negative now for all  values and is not large for intermediate  values.
However, it is substantial for large and for small positive ; especially for large  and small
T: For large values of  all GMMs implementations achieve a smaller RMSE. However, we also
�nd that even in the case of accumulated e¤ect stationarity, adding the level equation with
di¤erenced instruments and form a system, while using the poor weight matrices based on
DGIV or DDPD; is counterproductive when  is small and  large. Irrespective of the weights
used in the �rst step, 2-step GMMs is asymptotically e¢ cient. However in �nite sample we
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�nd, that when poor weights are used in 1-step GMMs, the Arellano-Bond implementation
is often better.
From Figure 10 we note that omitting more valid instruments by using the matrix ZBK

yields slightly less bias and higher e¢ ciency than for ZAB only when  � 1; and the other
way around when  = 5: The latter is surprising, because in Bun and Kiviet (2005) we found
that when ZBK is used instead of ZAB then the leading term of the bias is of smaller order in
T by a factor T: Earlier we found that it yields a smaller bias indeed in a model with further
regressors and T = 10 and N = 20: Apparently, this does not occur in the pure AR(1) model
for T � 10 at N = 100:
Reducing the number of instruments to just one and employing the Anderson-Hsiao im-

plementation with the lagged level instrument ZAHli of (26) leads to curious results presented
in Figure 11. Here we notice a phenomenon that has already undermined so many earlier
simulation �ndings. Because the number of instruments equals the number of regressors this
estimator has no �nite moments. Therefore, the Monte Carlo sample average of the 1000 es-
timates (and also the RMSE) do not converge to a constant for increasing number of Monte
Carlo replications, but to a random variable. The ostensible small bias for  � 1 (apart from
the outlying value at T = 3 and  = 0:9) would change in a jumble as for  = 5 when we
would use a much larger number of replications. The density at zero for the denominator in
the expression of the estimator is apparently larger for smaller T; larger  and larger  ; but
at  � 1 the probability of huge outliers in just 1000 trials is still moderate. The results
for ZAHdi (not included in the �gures) proved to be even more vulnerable in this respect. To
represent the behavior of these estimators appropriately the median and interquartile range
could and should have been used11. Note that the GMMAB and GMMBK estimators have
an equal number of instruments and regressors for T = 2 only, so by examining T � 3 we
avoided similar confusing results in the Figures 9 and 10. At T = 3 they exploit 3 instruments
for one regressor and hence their �rst two moments exist.

5.2.3 Results for non-stationary accumulated e¤ects (� = 0:5)

Next we examine various of the estimators when applied to data series where accumulated
e¤ect stationarity does not hold. Of course, this is of no interest when  = 0 and no e¤ects
are present. Therefore we examined  = 0:5 instead. Figure 12 shows that the �nite sample
properties of GMMAB

1 are much worse than those of the � = 1 case when  = 1: When
 = 0:5 or 5; however, GMMAB

1 works much better under � = 0:5 than it does under � = 1:
Similar results (not presented) were found for GMMBK

1 .
Finally we examine what happens when GMMs is applied when � 6= 1. Of course, for

any weight matrix both 1-step and 2-step implementations are inconsistent now. In Figure
13 we see that the inconsistency of GMMs is evident only when  is not small and  not
very large. In fact, when  = 1 and  large GMMsDPD2 behaves better than the consistent
estimator GMMAB. For larger  , however, GMMAB is much more e¢ cient. Figure 14 shows

that GMMs
�2�=�

2
"

1 seems less vulnerable when  is large. These results make clear that it
is of great importance to test for the validity of accumulated e¤ect stationarity, before its
orthogonality conditions are imposed in estimation.

11Studies in which Monte Carlo estimates on moments of Anderson-Hsiao estimators have been presented
which (due to the limited number of simulation replications) seem meaningful but are in fact all will o�the
wisps include: Arellano and Bond (1991), Arellano and Bover (1995), Kiviet (1995), Judson and Owen (1999),
Doornik et al. (2002) and Hsiao et al. (2002).
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6 Concluding remarks

We performed Monte Carlo experiments in the context of a very speci�c simple dynamic
panel data model and examined and compared the results of a few implementations of 1
and 2-step GMM, which di¤er in the number of moment conditions exploited and in the
weight matrix employed. This Monte Carlo study as such was not designed to enable a
serious competition between the full range of alternative techniques available for dynamic
panel data models. It has only been used here to illustrate the importance of the eight
distinct methodological aspirations listed in Section 2 for the design and conduct of a fair
tournament. In particular, we illustrated that in Monte Carlo comparisons one should always
examine what the restrictions are that have been put on the parameter space of the design, and
whether these seem reasonable. We gave attention to the dimensionality of the parameter
space of the Monte Carlo design, but also to the actual parameter values chosen in the
experiments. Moreover, we demonstrated that it is very useful to create a base for the
parameter space which is orthogonal with respect to separately interpretable characteristics
of the generated data processes. Otherwise, the marginal e¤ects of numerical changes in the
design parameters are hard to disentangle. We also showed that it can be useful to examine
non-operational techniques, which exploit information that is usually not available in practice,
but self-evidently is in simulation experiments.
With respect to the qualities of various GMM estimators in zero-mean stable panel AR(1)

models we found the following. Most existing studies have been misleading, because they did
not include parametrizations where both the individual e¤ects are prominent ( high) and
the lagged dependent variable coe¢ cient () moderate. We demonstrate that these are cases
where the quality of GMMs (the system estimator) is extremely dependent on the weight
matrix used. Both the GIV and DPD weight matrices work poorly here, and performing
a second iteration step is of little or no help. It is shown that aiming to get closer to the
non-operational optimal weight matrix yields substantial improvements. This �nding is in
line with results obtained recently in Doran and Schmidt (2005). Earlier simulation studies
paid little or no attention to data series where the initial conditions deviate from accumulated
e¤ect stationarity. Then GMMs is inconsistent and GMMAB

1 is the asymptotically e¢ cient
estimator. Although we re-establish that in �nite sample this estimator may show substantial
bias, we also �nd that GMMAB

1 may work surprisingly well. We note that the bias is a¤ected
non-monotonically by the long-run magnitude of the e¤ects  when the e¤ect in the initial
observation is moderate (� = 0:5).
We should re-emphasize that our present experimental �ndings just pertain to the highly

speci�c simple panel AR(1) model without any further explanatory variables. The simplicity
of this DGP should in principle enable to obtain analytic evidence on the actual depen-
dence on the model parameters of the quality of alternative instrument and weight matrices
and resulting estimator e¢ ciency. Blundell and Bond (1998) obtained such evidence for the
simple case T = 2 (in our notation) where the weight matrix is not a complicating factor.
Probably, due to the simplicity of the AR(1) DGP, a relatively good performance is achieved
by instrument matrices incorporating very few lags, because it seems likely that higher-order
lagged variables will establish weak instruments here. To rate estimators for empirically more
relevant but much more complex DGP�s (i.e. including higher-order lags, further weakly ex-
ogenous regressors, cross-sectional heteroskedasticity, non-normality, non-stationary initial
values) the only practicable option seems to run appropriately designed simulation experi-
ments, for which in our opinion the design in Bun and Kiviet (2005) establishes a reasonable
starting point to meet the eight aspirations mentioned in Section 2. However, in conclu-
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sion we want to remark that it seems highly unlikely that it will ever happen that single
winners can be celebrated in fully �edged simulation contests between alternative inference
techniques, because of the following truism: Techniques that build on many assumptions,
though e¢ cient when these assumptions do hold, usually are not robust to situations where
they are false, whereas more robust techniques will not beat full information techniques on
their home ground.
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Figure 1: GMMsGIV1 at N = 100; � = 1;  = 0; 1; 5:

Figure 2: GMMsGIV2 at N = 100; � = 1;  = 0; 1; 5:
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Figure 3: GMMsDPD1 at N = 100; � = 1;  = 0; 1; 5:

Figure 4: GMMsDPD2 at N = 100; � = 1;  = 0; 1; 5:

25



Figure 5: GMMs
�2�=�

2
"

1 at N = 100; � = 1;  = 0; 1; 5:

Figure 6: GMMs
�2�=�

2
"

2 at N = 100; � = 1;  = 0; 1; 5:
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Figure 7: GMMs101 at N = 100; � = 1;  = 0; 1; 5:

Figure 8: GMMs102 at N = 100; � = 1;  = 0; 1; 5:
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Figure 9: GMMAB
1 at N = 100; � = 1;  = 0; 1; 5:

Figure 10: GMMBK
1 at N = 100; � = 1;  = 0; 1; 5:
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Figure 11: MMAHl at N = 100; � = 1;  = 0; 1; 5:

Figure 12: GMMAB
1 at N = 100; � = 0:5;  = 0:5; 1; 5:
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Figure 13: Inconsistent GMMsDPD2 at N = 100; � = 0:5;  = 0:5; 1; 5:

Figure 14: Inconsistent GMMs
�2�=�

2
"

1 at N = 100; � = 0:5;  = 0:5; 1; 5:
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