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Returns to density in operations of the Netherlands Railways.

Eric Pels Vanessa E. Daniel Piet Rietveld

Free University, Department of Spatial Economics

De Boelelaan 1105, 1081 HV Amsterdam

abstract

Rail cost function analysis has been a popular topic in the (empirical) economics literature over the past
decades. Most studies find increasing returns to density for rail companies. The results can, however,
be quite diverse. Results for the Dutch National Railway company (NS), for instance, indicate very
strong increasing returns to density (Andrikopoulos and Loizides, 1998) or decreasing returns to
density (Preston, 1994). Using the, to our knowledge, most comprehensive dataset for the NS, this
paper estimates a translog variable cost function for the NS. While the returns to density parameter
shows increasing returns, like so many other papers, the calculated standard errors shows that the null

hypothesis of constant returns may not be rejected.

1. Introduction

In discussions on a possible privatization of public railways, knowledge of returns to
scale is important. When increasing returns to scale are present, straightforward
marginal cost pricing leaves (private) railway operators with a loss. Public provision
of rail services then requires a subsidy, or prices (in sub-markets) must be set above
marginal costs. When returns to scale are present, privatization of a public railway
may lead to the creation of a (local) natural monopoly, which cannot charge marginal
costs without incurring losses. The results of both privatization of public railways and
regulation of private railways are thus dependent on the presence of returns to scale.
Rail cost function analysis has been a popular topic in the (empirical)
economics literature over the past decades. Wellington (1893) already discussed this
issue (cited in Borts, 1952). Over the years the body of literature increased steadily,
first using linear and Cobb-Douglas type cost functions or production functions, and
later using flexible functional forms, while also efficiency analysis gained ground.
The abundance of literature allows for the comparison of the results of
different studies. This may lead to confusing (even conflicting) views; for example,

different studies conclude that the output elasticity of costs for the Dutch national



railway company is very low (so that the company operates under strong increasing
returns to scale) or above one (implying decreasing returns to scale). Using time series
to estimate a long run translog cost function with passenger kilometers and freight
kilometers as outputs Van Ooststroom (1998) estimates an output elasticity of 0.52 for
the Dutch railway company. Andrikopoulos and Loizides (1998) use cross section
data and the sum of freight and passenger kilometers as outputs, and estimate an
elasticity of 0.04 for the same company. Preston (1994) reports that the Dutch railway
company is operating under decreasing returns to scale.

There may be various explanations for the difference in findings, such as the
choice of the specific outputs, and the different types of data (limited time series
versus pooled data). Moreover, although various studies report increasing or
decreasing returns, one would typically need the associated standard error to come to
a final conclusion.

In this paper, we calibrate a variable cost function of the Dutch Railways for
the period 1951 to 1993, using, to our knowledge, the most extensive cost data for the
Dutch Railways available. Based on these estimations, a measure of returns to scale
(density) is calculated, together with the associated standard error.

The structure of the paper is as follows. Section 2 contains a concise
review of the literature on railway cost function estimation. Section 3 discusses the
methodology used in this paper, and Section 4 discusses the data. Section 5 contains

the estimation results and Section 6 concludes.

2. Literature review

Rail cost function estimation has been a popular topic in the applied economics
literature. Early examples include Borts (1960)', and usually rely on statistical cost-
output relations or Cobb-Douglas cost functions. Statistical cost-output relations do
not include input prices as explanatory variables. This implies that there may be a
missing variable bias®. Also, the Cobb-Douglas (and other inflexible functional forms)
have their problems; such forms put a priori restrictions on the production technology,

and may therefore be too restrictive.

! Earlier papers date back to the early 20" century or the late 19" century.
2 When the firm does not have a costminimizing strategy but a cost function is estimated as if the firm
does have such a strategy, the effects will be less severe; one simply includes too many variables.



Since the 1970s flexible functional forms, which do not put a priori
restrictions on the production technology, gained popularity. The most common form
is the translog specification, which has been used in a number of rail cost function
studies. Table 1 contains a number of cost function estimations for U.S. railroads. The
reported numbers were obtained from underlying studies, or based on own
calculations using inputs from underlying studies (see equation (6)); because the
definition of economies of scale and density varies, some readjustments were
necessary to make the numbers comparable. The general pattern shows constant to

slightly increasing returns to scale and increasing returns to density’.

Table 1 about here

Friedlaender and Spady (1980) report some firms with decreasing returns to density.
They attribute this to the fact that a short-run cost function is estimated. A firm facing
short-run capital shortage may face short-run decreasing returns to density and long-
run increasing returns to density. Friedlaender et al. (1993) report some very high
values for the returns to density parameter. However, the associated standard errors
are very large in these cases; generally speaking, returns to scale parameters with
values larger than four appear to have very high standard errors. Smaller values for
the returns to scale parameter are in many cases statistically different from 1. The
rather high value for Brauetigam et al. (1982) is based on calculations using equation
(6), and not reported by Brauetigam. The reported output elasticity of cost is,
however, rather low (0.1105).

Table 2 about here

3 Caves and Christensen (1980) define the flexibility property for the case of consumerbehavior as

follows. “For any particular data point (one observation on prices and income) any set of price and
income elasticities can be achieved through an appropriate set of parameter values. Anonflexible form

is only capable of achieving a subset of the full range of price and incomeelasticities”. In the case of
cost (production) functions, this means that elasticities of factor substitution are unrestricted (and not
necessarily constant); there are no a priori constraints on the first and second order derivatives of the
cost function.

* Generally speaking, returns to scale are defined as 1 over the sum of the output elasticity of cost and
the network size elasticity of cost and returns to density are defined as 1 over the output elasticity of
cost. Precise definitions will be provided later.



Table 2 briefly summarizes cost function estimations for European countries.
At first sight, the variance in the returns to density parameter is much larger compared
to U.S. studies. Preston (1994) reports a very high value for the Finnish railway
company, and notes that this is a railway company with a relatively low traffic density
per kilometer of line. All other values are, however, below the value of 6, which may
still be a little high compared to the U.S. numbers. Also Andrikopoulos and Loizides
(1998) present very high returns to density parameters. It is not entirely clear why
these values are so high. It could be a result of the aggregate output measure
(kilometers passengers plus kilometers freight); Filippini and Maggi (1992), however,
use a similar output indicator and present returns to scale and density parameters that
are of the same order of magnitude as the average values for the U.S. It could also be
caused by the by the specification of the cost function itself; a time series estimation
for specific European railway companies with only a few degrees of freedom. Other
European studies present results that are similar to the U.S. results. McGeehan (1993)
and van Ooststroom (1998) present values that still are a little high compared to most
U.S. studies. They are, however, comparable to some of the values reported by
Friedlaender et al. (1993).

Both studies of U.S. and European railways thus hint at constant returns to
scale and increasing returns to density, although the variance in European studies
tends to be larger. One explanation could be the different “orientation” of U.S. and
European railway companies. Although European (and U.S.) companies may already
be quite diverse between themselves, passenger transport is arguably more important
for European companies. Moreover, institutional settings between European countries
may simply be more heterogeneous. Looking at the various studies, we see that Caves
et al. (1980), Caves et al. (1981) and Caves et al. (1981) use similar data and
specifications. Also Berndt et al. (1993) and Friedlaender et al. (1993) use the same
data and specifications. Other authors using U.S. data may use different data, but still
use cross-sections or pooled data. Cantos (2000, 2001), using similar data in two
studies (11 observations are added in one study) already finds markedly different
returns to scale parameters. Andrikopoulos and Loizides (1998) have a similar data
structure, although for different years, but with a different specification and different
outputs they obtain completely different results. Other authors estimating cost

functions for European railway companies use time series or pooled data.



Harris (1977) argues that “inappropriate measures of output” are frequently
used, usually gross ton-miles. Although such an output provides a “common measure
of the output of passengers and freight”, it also (wrongly) includes the weight of
engines and cars, while freight and passengers carried are the true output. Moreover,
using gross ton-miles one implicitly assumes that one ton carried 1000 miles and 1000
tons carried 1 mile are equivalent. Keeler argues that omitting the average length of
haul in the specification leads to biased estimates’. Also, Keeler argues that there is a
positive correlation between traffic density and the passenger/freight service ratio.
Simply adding up passenger and freight gross ton-miles ignores this fact, and may
lead to biased results. From Tables 1 and 2 it is clear that (many) different output
specifications are used, and although this more than likely influences the results, it is
impossible to say that “one performs better than the other”. Preston (1994)
specifically concentrates on supply-oriented (intermediate) output measure, because
final demand related output measures such as passengerkilometers and freight
tonkilometers are influenced by e.g. fare restrictions and therefore “poor measures of
managerial and organizational performance”. The “correct” output may thus be
dependent on the structure, operating environment and legal status of the firm. In this
paper, we follow Preston (1994) because the Dutch railway company is operating

under strict fare controls.

3. Methodology

Translog.

The advantage in estimating a flexible functional form is that one puts no a-priori
restrictions on cost elasticities (as is e.g. the case with the Cobb-Douglas function).

Moreover, the translog may be used as a Taylor-series approximation of an unknown
function at a certain point. Around that point, the first and second order derivatives of
the translog function and the unknown function (and the dual functions) are the same.

The most simple translog specification for a micro-economic cost function is

(subscripts denoting individual observations have been omitted to reduce notation.):

> Keeler (1977) reports that the correlation between density and average length of haul is 0.77.

® Blackorby and Diewert (1979)

" The underlying assumption is that there exists a transformation process with a strictly convex input
structure from which the maximum possible amount of outputs is produced. The dual to this
transformation process is a multi-product cost function thatminimises the cost of all inputs.
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where C is operational cost, Y; is output i and P; is the price of input ;. K is the quasi-
fixed input, which is included because we estimate a (short-run) variable cost function
(Caves et al., 1981). When the quasi-fixed factor would not be included in the
estimations, the parameter estimates would be biased. The quasi-fixed input is
corrected for usage (Oum et al., 1991; Oum and Zhang, 1991).

The point of approximation is denoted by superscript . When the translog is
interpreted as a Taylor-series expansion, ¢y is the value of the unknown function at
the point of approximation, and the parameters are the first and second-order
derivatives of the unknown function with respect to the various variables. Symmetry
implies that §;=8;; and vy;=y;i. Moreover, the restrictions for linear homogeneity in

factor prices are:
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Assuming cost minimisation and applying Shephard’s lemma yields the

following share equations, which are useful in the estimation procedure:
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Estimation.

The two standard methods used to estimate simultaneously all the equations of a fully
specified structural model are three-stage least squares and full information maximum
likelihood. The three-stage least squares estimation method combines the two-stage
least squares and Zellner’s method, the SUR (seemingly unrelated regressions,
Zellner, 1962); this allows for correcting both simultaneous equation bias and
disturbances’ correlation between equations.

Zellner proposed a two step method to estimate models in which disturbances
are contemporaneously correlated at a certain point of time. The initial difficulty
when applying generalised least squares (GLS)’, is that the elements of the covariance
matrix of the disturbance’ terms are unknown. To alleviate this difficulty, Zellner
proposed to apply OLS to each of the equations in a first step, and then to deduce the

vector of the residuals e;. The elements of the covariance matrix are computed as

S = — (3)

el.ej
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with n the number of equations, k; the number of explanatory variables for each
equation, and s; being the diagonal elements, s; being the other elements. The
obtained estimation of the covariance matrix is then employed in the initial GLS
methodology. It results in the feasible GLS estimator, or SUR estimator. Zellner’s
approach is the standard approach in the literature for the joint estimation oftranslog
cost functions and share equations.

For the estimation process, it is important to realize that the point of

approximation is the same for all observations. This means that the point of

¥ When we derive a variable cost function, there will be a fixed factor as an argument in the variable
cost function. When this factor is not included, the parameters would suffer from a “missing variable-
bias”.

’ The GLS is to be applied when disturbances are non spherical: E(uu') = o 0 ; it consists in the
application of OLS including the covariance matrix in the specification of the estimator



standardization is no more than an adjustment of some of the parameters. Specifically,

we can rewrite the share equations as:
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The implication is that the constants in the share equations are not equal to £ unless

Y, =P =K / =1. At any other point, the constants are estimated as the first RHS-terms

in brackets in equations (5). 3 can be calculated from these constants. This means that
one should calculate the proper f for each iteration in the iterative estimation
procedure'’. In this paper, we use full information maximum likelihood, where this is

not an issue. See Appendix A for a similar discussion on the cost function.

Returns to scale and returns to density.
Harris (1977), points out that economies of scale are a property of a long-run cost
function; average costs decrease as the firm size increases, where firm size is
measured in outputs and network size. For (short-run) pricing issues (with fixed
networks) economies of density (keeping network size fixed) are arguably more
important (Harris, 1977).

It is, however, not uncommon to determine both returns to densityand returns
to scale from a short run variable cost function; for example, Caves et al. (1981)
specify a short-run variable cost function and calculate returns to scale using two
measures including and excluding network characteristics. Following Panzar and
Willig (1977), it is common to define returns to scale as 1 over the sum of the output

elasticities, where the output elasticity is 0InC/0InY, " When the expression is

larger than 1, positive returns to scale prevail>. In the case of a short-run cost

1 Unless the data are standardized on the point In(1)=0.

" Christensen and Greene (1976) calculate the returns to scale measure as 1 — Zé’ In C/ Oln Y,

J
which is positive when scale economies prevail and negative when diseconomies prevail. This
definition is also used in the transport economics literature for returns to density. It is straightforward to
“translate” a number calculated from one definition to a number calculated from the other definition.
12 From the dual production function we could determine an elasticity of scale. This elasticity of scale
only equals the inverse of the output elasticity of the cost function when technology ishomothetic.



function, (short-run) returns to scale are (1 minus the elasticity of cost with respect to
capital) over the sum of the output elasticities.
In the transport economics literature, this definition is commonly used for

(short run) returns to density (R7D); see e.g. Caves et al. (1981):
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Returns to scale are usually calculated as 1/(sum of output elasticities plus the
network size elasticity). Available miles of track are frequently used in the rail cost
literature as a measure of network size, see e.g. Bitzan (2000), Cantos (2001) and
Caves et al. (1984). The theoretical interpretation of RTS may, however, be somewhat
tedious when the network size variable cannot be interpreted as an output. When the
outputs are passenger kilometers or revenue kilometers, network size (network length)
could be seen as an input. We then calculate RTS using the elasticity of costs with
respect to both outputs and an input.

Preston (1994) argues that many rail companies operate(d) in a regulated
environment, and have little control over the final (consumer) prices. Preston
therefore uses “length of line” as an “intermediate” output, so that the network size
variable has an interpretation as an output and the calculation of RTS is solely based
on outputs. Although the Netherlands Railways company also operates under strict
fare controls, so that a measure of network size could be included as an (intermediate)
output, in our case it was not possible to calibrate a meaningful cost function
including a measure of network size due to data limitations. We therefore do not
calculate RTS.

In Appendix 1 we show that it does not matter for the calculation of RTD (or

RTS) which point of approximation is chosen. Estimating one cost function and

When technology is homothetic, positive returns to scale will still prevail when the output elasticity of



calculating RTD for all sample points yields the same results as calculating RTD from

calibrated cost functions standardized at each sample point.

4. Data.
In this section, the data are described. We start with a concise description of the

Netherlands Railway Company.

The Netherlands Railways: Nederlandse Spoorwegen (NS)
EU directive 91/440/EEC, implemented January 1 1993, recommended financial
equilibrium, autonomy and competitiveness for European railways, and stated that
transport services and infrastructure exploitation have to be discriminated. Indeed, in
1991, Netherlands Railways (NS) has split in five sub-sections: NS travellers, NS
cargo, NS stations, NS real estate, and NS traffic control (Van Ooststroom, 1999).
Data after 1993 are different from those before 1993. To keep homogeneity in the
time series used in the analysis, the dataset is therefore not expanded beyond 1993.
The State, exclusive owner of NS, has gradually stopped any financial
support”®, and NS is now financially independent. Actually, NS’ investments have
been reduced over the years; the current value of capital decreased at a very slow pace
over the four considered decades, with a large break between 1971 and 1972 (-8.5%),

when part of the network was put out of operation.

Supply and demand
The supply of passenger transport services has almost tripled in the past forty years,
when both the number of available seats and the covered distances are considered, see
Figure 1.

From the 1970s, NS made increased the frequencies of trains (van Ooststroom,
1998), which becomes apparent in Figure 1; there is a sharp increase in the number of
seat-kilometers. This increase is only temporary, and slows down following the oil

crisis. In the 1980s, there was a growth again, with a rapid increase in the early 1990s.

cost is smaller than 1.

" The European Industrial Relations Observatory, ¢ Comparative study on industrial relations in the
rail transport sector, the Netherlands’, and Les relations industrielles dans le secteur ferroviaire’
http://www.eiro.eurofound.ie/2000/03/word/nl000176s.doc
http://www.eiro.eurofound.ie/2000/03/Study/TN0003277S.html
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Figure I about here

Figure 1 shows that the actual demand for transport passenger services
(traveller-kilometres) has been increasing at a relatively slow pace until the late
1980s, then growing sharply and stabilising around 1991, whereas the supply
continued to increase. The sudden increase in demand in the early 1990s was the
consequence of the government’s decision to give students free access to public
transport. As a matter of fact, the load factor, which was not far from fifty percent in
the early 1950s, has diminished approximately by ten percentage points (Figure 2).
Again, free student access to public transport is visible in 1991 with a sudden rise in

the load factor. The load factor does, however, not reach the level of the early 1950s.

Figure 2 about here

Network

Until the early 1970s, the size of the network remained steady. After the early 1970s,
the number of stations increased little by little, while at the same time the length of
the network decreased, in a smaller scale, however. Unprofitable lines were deleted,
and more stations were opened along “thick” lines. NS has strongly focused its

attention on passenger transport. Freight operations are limited.

Figure 3 about here

The dataset.

The dataset contains a time series for the Dutch railways for the period 1951-1993,
and was extracted for a great part from Van Ooststroom (1999). These data were
combined with data from the online version of CBS data base, and from the yearly
paper versions of the CBS review Nederlandse spoorwegen, infrastructuur en rollend
materiaal, 31 december, in Statistiek van het persoonvervoer.

In the short-run variable cost function, we include the following variables.

The operating costs or variable costs used in the analysis break down into three
components: labour costs, energy costs and maintenance costs (Figure 4). Input prices
(Figure 5) are computed as the ratios between expenditures and corresponding

volumes. For the price of labour, personnel expenditures are divided by the number of

11



employed persons. The energy cost is the ratio of energy expenditures for traction to
the need for energy in kilowatt-hour. Finally, maintenance costs are obtained by
dividing maintenance and materials expenditures by the sum of the number of train-
kilometres goods and train-kilometres passengers. The greater part of the operating
costs of the Dutch railways are labour costs (reaching 80% of total operating costs in
the late 1970s). Labour became more and more expensive until the 1970s. The cost
shares have been computed from the sum of these three items. Costs are deflated by

dividing its initial value by the consumer price index, base 100 in 1980.

Figure 4 about here

The number of seat-kilometres is the only output used in the cost function. The
NS gradually reduced the network length solely devoted to freight transport.
Moreover, the number of freight-ton kilometers is small compared to the number of
passenger-kilometers. Including freight as an output results in a theoretically incorrect
sign for the first order parameter. One output (passenger-kilometers) is therefore used
in the reported estimations. The number of stations was also considered as an
(intermediate) output, but also hag an incorrect sign. The number of stations may also
be used as a measure of network size (but then one also would not expect a negative
sign) or as a fixed factor. But in the latter case, one would expect the number of
stations to be included in the value of capital, so that it is counted double. It was

therefore dropped from the estimations all together.
Figure 5 about here
The value of capital is used as a quasi-fixed factor, and is simply the value of
capital corrected for usage by applying the load factor. The load factor is the ratio of
passenger-kilometres to capacity seat-kilometres. The value of capital is given in
constant guilders, and is highly correlated with the total network length inkilometres.

Figure 6 about here

Finally, a quadratic trend was included to capture temporal effects.

12



5. Estimation results.

The estimation results are presented in Table 3. The Durbin-Watson statistic for the
cost function is in the “safe-zone”. The R’ is very high, which is due to the relatively
large number of second-order terms.

All the squared terms have positive signs, which is according to expectations:
the cost function is globally increasing in input prices and outputs, all other variables
held constant. From the sign of the interaction terms, it appears thatlabour and energy
are substitutes. This may be explained by the fact that the same number of seat-
kilometers can be obtained by lengthening trains, keeping all other variables fixed,
less drivers and more energy is needed, although the amount of energy needed is
probably not doubled. Moreover, labour and maintenance appear to be substitutable
goods.

The trend variable has a significant second-order coefficient with a negative
sign. The constant represents the cost function value at the point of approximation, so
that the negative sign of the second order term indicates that the cost evaluated at a
given point (the point of approximation) decreases over time: productivity increases.
Note that the estimated constant changes when we change the point of approximation.
The interpretation of the second-order trend term does, however, not change. As
outlined in the Appendix, the point of approximation is irrelevant in the discussion of
RTD which will follow (see Appendix 1 for details).

Table 4 and Figure 7 present the results on the returns-to-density computed

from the estimation results in table 3.

Tables 3 and 4 about here

Figure 7 about here

Up until 1967 the RTD-coefficient is fairly stable around 1; slight decreasing returns
to density prevail. After 1968 increasing returns to density prevail. This is consistent
with the above mentioned strategy change in the early 1970s (discussed by van
Ooststroom, 1998). A demand oriented strategy was replaced by a supply oriented
strategy. The frequency of service was increased, also off-peak, hoping that demand
would pick up. As a result, the number of available seatkilometers increased. Because

this was a “nation-wide” policy, more frequent trains automatically meant shorter
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trains (given the number of carriages). The results show that lower cost per seat-
kilometer could be obtained by increasing the number of seats (by making trains
longer or introducing different train types). This is what we see in the late 1980s,
when double-decker trains were introduced. The “old” carriages (replaced by the
double-deckers) were used to increase the length of other trains, so that the total
number of available seats increased: there are less opportunities to exploit density
economies.

A general similar pattern (increasing trend) in R7D is found by van
Ooststroom (1998), although in van Ooststroom’s case there are more fluctuations
around the general trend. Our study thus confirms this increasing trend. However,
judging by the standard error reported in Table 4, the value 1 falls inside the 95%
confidence interval for R7TD for each year, so that the null hypothesis of constant
returns to scale cannot be rejected in each year'*.

Very strong increasing returns to density, as reported by Andrikopoulos and
Loizides (1998) for the NS, are not encountered in this study. Likewise, Preston
(1994) reports that RTD for the NS is 0.77 in 1990. Although we find values for RTD
in that order of magnitude, we certainly do not find it for the year 1990. The different
results may be contributed to the set-up of the different studies. Andrikopoulos and
Loizides (1998) use a different output and have a relatively small number of degrees
of freedom. Preston (1994) uses a pool of different companies, so that the
performance of the NS is judged against the best practice in Europe, rather than

evaluated over time, as is done in this study.

6. Conclusion

Preston (1994) discusses the “traditional” and “revisionist” view of railway
economists on the issue of the effect of firm size on costs. In short, the traditional
view is that “size matters”; the railway industry faces declining average costs. As a
result, most railway companies in Western Europe at some point in time became
(state) monopolies, because it is cheaper to integrate smaller companies. According to
the revisionist view, “size does not matter”, at least not in railway operations.

Moreover, railway operations are thought to be contestable, and large state-owned

' Standard errors are approximated using the delta-method (see e.g. Greene, 2000).
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railway companies experience X-inefficiency. The revisionist view suggests that
infrastructure and railway operations should be separated, and that competition
between different railway operators is advisable; since the early 1990s, this has been
the U.K. rail policy.

Although the estimated patterns in returns to density more or less reflect the
findings of van Ooststroom (1998) for the Netherlands national railway company
(NS), the associated standard errors univocally lead to the conclusion that constant
returns to scale prevail through the entire sample period. In this sense, the results
support (part) of the revisionist view for the Netherlands. Estimates of the returns to
density parameter yield values that are larger than 1 (as in van Ooststroom (1998))
and smaller than 1 (as reported by Preston (1994) for the NS), but always statistically
equal to 1. Very high values, such as in Andrikopoulos and Loizides (1998) were not
encountered.

These findings suggest that it was a good point to restructure the Dutch rail
sector by separating infrastructure and operations, and allowing competition. There
are, however, a few comments. Firstly, X-inefficiency and the relation between the
infrastructure operator and the rail operator(s) are ignored in this paper. Some of the
problems faced by the Dutch railway company today are due to capacity problems of
the infrastructure operator. Increasing competition “on the tracks” may be a good idea
to increase the efficiency of rail operators. But when infrastructure capacity is limited,
the railway companies may not be able to operate their optimal schedules, so that the
(welfare economic) effect of competition is reduced. Secondly, this argument ignores
network externalities on the demand side. Passengers would benefit from a merger
between complementary local rail operators. When these rail operators are
independent, (some) passengers have to switch operators to travel between the origin
and the destination. A price increase by one operator then automatically decreases
demand for the complementary operator. When the operators merge, they internalize
this effect. This is, however, a demand effect, and conclusions cannot be drawn based

upon the results (on cost effects) in this paper.
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Appendix 1 Choice of approximation point

To show the effect of the point of approximation on the parameter estimates and the
estimate of RTS, we consider, without loss of generality, the following simplified cost

function:

25i].(lnYi—lnYi*Xlan—lnY;)+g (A1)

InC = q, +iai(lnYi —lnYi*)+%

m m
i=l1 i=l j

J=1

olnC

m
Calculating z from (A1) yields (with m=2 and 6;,=5)

i=1 i

ay+ay +8, Y, -nY, )+, (0¥, +In¥, —n ¥, —In¥; )+ 5,,(In¥, -In¥; ) (A2)

In the estimation of (Al), it is important to realize that the point of
approximation, InY", is a constant; it is the same for all parameters. This has
implications for the parameter estimates. For m=2, we can rewrite the cost function

as:

InC =

(ao —a,InY —a,InY, +%§“(an* ) +%§2,2 (ln Y, )2 +0,,InY In Y;]+
(A3)
1 1 .
a,InY, +a,InY, +5§H(lnY, ) +E§2Y2(InY2) +6,,InY, Iny, -

8, InY InY, -6 ,InY InY, -6, ,InY, InY, -6,,InY, In¥, +¢ <

InC=w, +w,InY, +@, InY, +%5U(mx ) +%52,2(1nY2 ) +6,InY, InY, +& (A4)

where
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so that

Gy =@y +6,InY, +d,InY; —%Sl’l(ln)’l*)z —%5},2 (ny;} -8, n¥, Iny;

A A A * A *
ay =@, +6;;InY, +6,,InY,

A A A * A *

The @’s are estimated from the data. The «’s can then be calculated from the estimated

parameters. When the point of approximation is changed, 5 and & will not change (because

InY" is not an explanatory variable in A4). But @ will change: changing the point of
approximation breaks down to changing the first-order parameters (and thus the estimate of
RTD at the point of approximation).

For the calculation of RTD for specific points, the point of approximation does not

matter. It follows from A4 that

ZSE? =@ +@, +6,,(InY)+ 6, (InY, +1nY,)+ 6, ,(In Y, ) (A5)

i

which is invariant to the point of approximation. When one calculates d1nC/d1nY; directly

from (A1), then one obtains

kil B (A6)
Oln Yl Y-=Y~*

i

It is thus important to realize that &, and &, are not estimated directly, but calculated from

@, . Moreover, substituting the expression for @, in (A6) yields (A5), and since @; does not

matter on the point of approximation, we have shown that the estimate of RTD for specific
points is invariant to the point of approximation. The standard errors will also be unaffected,

because the standardization has no effect on the variance of the explanatory variables.
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RTD RTS period  functional horizon outputs obs
form
Berndt et al. 1.56 1974- translog short tonmiles freight 229
(1993) 1986
Bitzan (2000) 1.87-1.91 0.98-1.21 1983- translog long tonmiles freight 215
1997
Brauetigamet 2.71, 1976- translog, long, monthly carloads 35
al. (1984) 3.21 1978 short speed
Brauetigamet  19.02 1969- translog, short loaded car miles, 108
al. (1982) 1977 speed
Brown et al. 1.193 1936 translog long tonmiles freight, 67
(1979) passenger miles
Caves et al. 1.13-1.18 1955, translog, long tonmiles freight, 154
(1980) 1963, passengermiles
1974
Caves et al. 1.01-1.23 1955, translog short, tonmiles freight, 154
(1981) 1963, long passengermiles,
1974 average length of
freight haul
Caves et al. 1.02-1.26 1955, translog, short tonmiles freight, 160
(1981) 1963, passengermiles,
(includes 1974 average length of
Canada) freight haul
Friedlaender 0.72-1.63 1968- translog, short revenue tonmiles 75
and Spady 1970
(1980)
Friedlaender 1.41-30.3 0.93-2.69 1974- translog short, tonmiles of 229
et al. (1993) 1986 long freight
Hasenkamp 1.13-1.16 1928, Cobb- long tonmiles freight, 86,
(1976) 1936 Douglas, passengermiles 71
CES
Ivaldi and 1.9 1.65 1978- translog short carmiles bulk 299
McCullough 1997 traffic, carmiles
(2001) high-value
traffic, carmiles
general traffic
Wilson 1.11-1.60 0.86-1.05 1978- translog short revenue tonmiles 304
(1997) 1989
Table 1 Cost function estimations for U.S. railroads
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RTD RTS period functional horizon  outputs obs
form
Cantos (2001)  1.42-2.04 0.47-2.06 1973-  translog long trainkilometers 204
Europe 1990 freight,
passenger
trainkilometers
Cantos (2000)  1.90-2.34 0.25-1.48 1973-  translog long trainkilometers 215
Europe 1990 freight,
passenger
trainkilometers
Cantos and 0.77-1.81 1970-  translog long trainkilometers 306
Maudos (2000) 1990 (frontier) freight,
passenger
trainkilometers
de Borger 0.85-1.34 1950-  translog, short hedonic 37
(1993) 1986 passenger
Belgium kilometers,
hedonic ton
kilometers
de Borger 0.85-1.44 1950-  generalized short hedonic 37
(1992) 1986 Leontieff, passenger
Belgium generalized kilometers,
Box-Cox, hedonic ton
translog kilometers
de Borger 0.62-1.65 1950-  translog, short passenger 37
(1991) 1986 kilometers,
Belgium ton kilometers
Andrikopoulos  5.54-47.2 1969-  translog long traffic units 25
and Loizides 1993 (kilometer
(1998) passengers +
Europe kilometers
freight)
Filippini and 1.45-2.11 0.95-1.62 1985-  translog, aggregate wagon 192
Maggi (1992) 1988 kilometers for
Switzerland passenger and
freight
McGeehan 4.07 1973-  translog, short freight tonmiles 44
(1993) 1983 passengermiles
Ireland
van 1.09-4.17 1951-  translog long trainkilometers 40
Ooststroom 1991 of pax
(1998) trainkilometers
Netherlands of freight
Preston (1994) 0.77-53.8 0.60-1.26 1971-  translog long trainkilometers, 300
Europe 1990 length of line
Table 2 Cost function estimations for European railroad companies
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Explanatory variable

Parameter Standard

estimate  error
constant 21.246 0.045
output in seat-km 0.504 0.082
labour price 0.684 0.008
energy price 0.093 0.007
maintenance price 0.223 0.001
value of capital corrected for 0.229 0.103
usage
(output)’/2 0.057  0.446
(labour price)’/2 0.127 0.015
(energy price)’/2 0.035  0.012
(maintenance price)’/2 0.085 0.014
(value of capital corrected 2.677 1.344
for usage)’/2
output x price of labour -0.048 0.027
output x price of energy 0.023 0.029
output x price of 0.025 0.012
maintenance
labour price x energy price -0.039 0.011
labour price x maintenance ~ -0.088 0.007
price
energy price x maintenance  0.003 0.008
price
value of capital corrected for 0.598 0.586
usage x output
value of capital corrected for 0.004 0.092
usage x labour price
value of capital corrected for 0.050 0.083
usage x energy price
value of capital corrected for -0.054 0.023
usage x maintenance price
trend 0.001 0.003
trend’ -0.0002  0.0000
DW (cost function) 1.48
adjusted R (cost function) 0.99
observations 43

Table 3 Estimation results of railway

cost function, FIML, specification (1)

including trend
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Year RTD  Standard error
1951 0.625 0.525
1952 0.878 0.583
1953 0.976 0.596
1954 0.820 0.488
1955 0.698 0.437
1956 0.725 0.422
1957 0.947 0.438
1958 1.012 0.447
1959 1.043 0.448
1960 0.956 0.390
1961 1.013 0.366
1962 0.748 0.380
1963 0.604 0.401
1964 0.712 0.384
1965 0.924 0.362
1966 1.057 0.366
1967 1.189 0.397
1968 1.474 0.499
1969 1.817 0.604
1970 2.033 0.594
1971 1.998 0.547
1972 3.179 1.629
1973 2.699 1.162
1974 2.445 0.888
1975 2.637 1.101
1976 3.044 1.579
1977 3.102 1.682
1978 2.792 1.342
1979 2.169 0.791
1980 2.328 0.850
1981 2.122 0.671
1982 1.717 0.375
1983 2.542 1.014
1984 2.804 1.267
1985 2.689 1.144
1986 3.217 1.617
1987 3.274 1.554
1988 3.160 1.384
1989 3.076 1.233
1990 2.812 0.938
1991 0.851 0.640
1992 1.168 0.646
1993 1.472 0.640
sample mean  1.528 0.377
1951-1960 0.863 0.470
1961-1970 1.112 0.365
1971-1980 2.618 1.107
1981-1990 2.702 1.035

Table 4 Returns to density in

Netherlands Railways
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