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Abstract

We investigate changes in the time series characteristics of postwar U.S. inflation. In
a model-based analysis the conditional mean of inflation is specified by a long memory
autoregressive fractionally integrated moving average process and the conditional variance
is modelled by a stochastic volatility process. We develop a Monte Carlo maximum
likelihood method to obtain efficient estimates of the parameters using a monthly data-
set of core inflation for which we consider different subsamples of varying size. Based on
the new modelling framework and the associated estimation technique, we find remarkable
changes in the variance, in the order of integration, in the short memory characteristics
and in the volatility of volatility.

Keywords: Time varying parameters, Importance sampling; Monte Carlo simulation;
Stochastic Volatility; Fractional Integration

JEL classification: C15, C32, C51, E23, E31

1 Introduction

Many monetary authorities, financial institutions, pension funds and private investors demand
realistic statistical models for inflation to assess the real value of wealth, income and returns,
both in the short run and in the long run. In this paper we develop a new exact maximum
likelihood method to investigate the statistical properties of an inflation process with long
memory and stochastic volatility.

It is well established that the statistical properties of postwar U.S. inflation underwent a
number of structural breaks. There are many ways to explain persistent changes in the mean,
variance and autocorrelation of U.S. inflation. The changes in the time series properties of
inflation may be due to changing monetary policies (short run direct price controls in the
1950s and 1970s, long run indirect inflation controls starting in the 1980s) or to changes in
the process generating price shocks. Many types of shocks have been investigated, we mention
technological progress, unemployment changes, output gap disturbances, fluctuations in real
unit labour costs as in Gaĺı and Gertler (1999), oil price shocks, as in Hooker (2002), changes



in the sectoral distribution of price changes as in Ball and Mankiw (1995), trade unions as
in Bowdler and Nunziata (2007), and exchange rate pass-through as in Campa and Goldberg
(2005). Cecchetti, Hooper, Kasman, Schoenholtz, and Watson (2007) provide an extensive
discussion of the empirical evidence of changes in the time series properties of inflation. It
has been recognised that empirical models should allow for such changes in mean, volatility
and persistence of inflation. In particular, the Great Inflation period of the 1970s and early
1980s shows the highest mean, the highest volatility and the highest persistence in mean and
volatility. The statistical significance and the economic importance of the changes in mean
and persistence are debatable but the reduction in volatility since the mid 1980s is relatively
undisputed.

1.1 Empirical evidence of changes in the dynamic properties of inflation

Evans and Wachtel (1993) first investigated the fundamental changes in the persistence and
conditional volatility of U.S. inflation using the Markov-Switching model of Hamilton (1990)
and many studies had followed suit. Kim (1993) modelled changing volatility in inflation
in a Bayesian Markov-Switching model. Alogoskoufis and Smith (1991) and Emery (1994)
used parameter stability tests to show the increase in inflation persistence in the 1970s and
the following decrease in the 1980s, respectively. The persistence of price inflation and wage
inflation that appeared in the 1970s have been widely recognised as important stylised facts
to be captured in macroeconomic models since Fuhrer and Moore (1995) published their
influential article “Inflation Persistence”. There is a continuing debate about the statistical
significance of inflation persistence and its stability over time. For example, Pivetta and Reis
(2007) challenged the findings of changing persistence by Cogley and Sargent (2002). More
recently Cogley and Sargent (2007) suggested that the change in persistence is more clearly
established for the inflation gap, defined as inflation in deviation from a stochastic trend for the
unconditional mean. It seems that one can only show significant changes in persistence when
assuming a specific model structure. An exception is Harvey, Leybourne, and Taylor (2006)
who show a significant change in the persistence in monthly U.S. inflation from I (1) to I (0)
using a nonparametric variance ratio test and assuming a stationary variance process for the
innovations. By considering a general classical frequency domain framework, encompassing
simple versions of fractionally integrated processes as in Robinson (2003), local to unit root
models as in Stock (1994) and unobserved component models as in Harvey (1989), Müller
and Watson (2006) did not find conclusive evidence for significant changes in low-frequency
behaviour of postwar U.S. inflation. The structural volatility changes in inflation have been
accompanied by similar changes in a wide range of U.S. macroeconomic time series, see Kim
and Nelson (1999), McConnell and Perez-Quiros (2000), Sensier and van Dijk (2004) and
Kim, Nelson, and Piger (2004).

Structural explanations of the decrease in volatility and the reduction in persistence are
still actively debated. For example, Benati (2006) reviews changes in inflation persistence in a
wider historical and international perspective and concludes that inflation persistence might
well be associated with monetary regimes, thereby questioning the structural character of
inflation persistence. For example, the decrease in U.S. inflation volatility is associated with
a change in monetary policy. Warne and Vredin (2006) found support for this explanation in
a bivariate Structural Vector Autoregressive (svar) model for inflation and unemployment,
where volatility breaks are captured by endogenous two-regime Markov-Switching. Primiceri
(2005) captured the changing variance in a Stochastic Volatility (sv) specification of a trivari-
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ate svar, also including an interest rate. Cogley and Sargent (2007) analysed a similar Vector
Autoregressive (var) model, estimating stochastic volatility in inflation-gap persistence in the
U.S. in addition to time variation in the var parameters. Sims and Zha (2006) analysed a
svar with six variables switching between nine regimes. All these authors used seasonally
adjusted data and found significant changes in U.S. inflation volatility.

Stock and Watson (2007) and Nason (2006) studied the time variation in inflation per-
sistence using standard Autoregressive Integrated Moving Average (arima) and Unobserved
Components (uc) time series models. Nason (2006) used rolling exact maximum likelihood
estimates for U.S. monthly inflation. Stock and Watson (2007) used quarterly U.S. data in
fixed subsamples and introduced sv processes in both the nonstationary level component and
the stationary component in inflation. They adopted Bayesian estimation methods using in-
formative priors. Cecchetti, Hooper, Kasman, Schoenholtz, and Watson (2007) extended the
empirical analysis of Stock and Watson (2007) to the G7 countries.

1.2 Evidence of long memory in inflation

Long memory modelling has been studied in econometrics and finance ever since Mandel-
brot introduced long memory specifications for price processes, see Mandelbrot (1969) for
early references and Baillie (1996) and Robinson (2003) for econometric literature reviews. In
this paper we add a new model in this long tradition. Long memory models only started to
become widely used in the 1980s when Geweke and Porter-Hudak (1983) developed the log pe-
riodogram regression estimator for the order of integration parameter d in the arfima model
of Granger and Joyeux (1980) and Hosking (1981). They applied their estimator to postwar
U.S. CPI inflation data and found that inflation was integrated of an order d, I (d), with d
around 0.5, clearly different from the values of zero and one which were assumed in the ear-
lier literature. This was an interesting alternative characterisation of the long-run behaviour
of inflation with important economic implications. Moreover, the parameterisation provided
simple tests for non-stationary values of d > 0.5 against stationary values d < 0.5 and vice
versa. Moreover, the order of integration d turned out to be a crucial parameter for long-run
forecasting, as it determines the rate of increase of dynamic prediction intervals at long hori-
zons for values of d > 0.5, see Beran (1994, §8.7). This is important for inflation, but even
more so for the consumer price level, which is often used in long-term financial contracts.
Doornik and Ooms (2004) illustrated these effects

Hassler and Wolters (1995) showed that a range of international postwar inflation series
could effectively be modelled with a fractional order of integration. Baillie, Chung, and
Tieslau (1996) further extended the evidence on long memory in international inflation rates
by estimating fractional orders of integration using approximate maximum likelihood in the
time domain. Their estimates took account of autoregressive conditional heteroskedasticity,
initially introduced by Engle (1982) to model heteroskedasticity of U.K. inflation. Ling and
Li (1997) provided additional asymptotic theory for these arfima-garch models. Beran and
Feng (2001) and Feng, Beran, and Yu (2007) developed estimation and inference methods for
the arfima-garch model in combination with semi-parametric estimates of deterministic
flexible smooth trends.

A range of inflation series for different countries has provided strong evidence of high per-
sistence and changing volatility over time. High estimates of inflation persistence in arma or
in arfima models could partly be explained by structural shifts in the unconditional mean.
These shifts may lead to overestimating the persistence and to wrong conclusions regarding
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the order of integration of the stochastic part of the model. This point was strongly made
by Perron (1989), who analysed the effect of structural changes in the mean on tests for the
unit root hypothesis developed by Dickey and Fuller (1979). For example, allowing for seven
breaks in the model for the mean of the U.S. CPI index he concluded: “After 1929 the unit
root is no longer present”, cf. Perron (1989, p. 1385). In the context of arfima models for
international inflation rates Bos, Franses, and Ooms (1999) showed how structural changes
in the mean affect estimates of the fractional integration parameter d.

A related problem for the interpretation of persistence estimates in inflation occurs when
volatility is (nearly) nonstationary. Then the specification of the volatility component does
influence the parameter estimates in the conditional mean part of the model. Boswijk and
Klaassen (2004) discussed theoretical results and practical implications of this interaction of
volatility and mean specification for tests of the I (1)-hypothesis in an arima-garch context.
Based on an unobserved components model with sv, Cavaliere and Taylor (2005) analysed
the effect of nonstationary volatility specifications on the limiting distribution of tests of the
I (0)-hypothesis. When evaluating time variation in persistence measures in inflation it is
therefore crucial to investigate stability of the mean and volatility at the same time. Reliable
tests for the stability of long-memory persistence in the presence of a nearly nonstationary
mean and (nearly) nonstationary volatility have not been developed yet.

On the other hand, high persistence in inflation can lead to overrejections in tests of the
null hypothesis of stability of the unconditional mean, even if the underlying data generating
process satisfies the assumptions of the test. For example, Müller (2005) clearly showed that
partial sum tests like the KPSS-test of Kwiatkowski, Phillips, Schmidt, and Shin (1992) do
not work in the presence of high persistence, at least not for practical sample sizes. Nyblom
and Harvey (2001) clearly indicated the limitations of similar stability tests in a parametric
unobserved components context.

If the mean is modelled as a stochastic processes with occasional extremely long-lasting
changes in the mean it can even be considered as a substitute for long-memory, removing the
scope for an additional arfima process to model deviations from this mean, see Engle and
Smith (1999), Parke (1999) and Diebold and Inoue (2001). At a more basic level it is well
known that one can approximate a fractionally integrated process by an arima process with
an ma root close to the unit circle as in Brodsky and Hurvich (1999).

In sum, there is evidence of long memory in inflation rates, but in the evaluation of this
evidence one should consider the possibility of persistent changes in the mean and volatility.

1.3 Contribution of this paper

In this paper we take a new step by modelling heteroskedasticity in an arfima model by
means of a Stochastic Volatility (sv) model. sv models have been reviewed by Taylor (1994)
and in the edited volume of Shephard (2005). Shephard (1996) extensively discussed the
differences and similarities of arch and sv models. Taking into account many of the criticisms
of existing research we provide a different view on the changing time series characteristics
of inflation. We examine changes in the long-run persistence in the mean by monitoring
changes in the estimate of the long-memory parameter d of the arfima model. Furthermore,
we investigate fluctuations in the volatility pattern, in the persistence of volatility (via the
autoregressive parameter and the variance parameter of the sv component) and in short
memory characteristics (via the arma parameters present in the arfima model).

In contrast to Primiceri (2005) and Stock and Watson (2007) we use monthly time series
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data and we adopt maximum likelihood methods instead of Bayesian methods. We extend
the analysis of Stock and Watson (2007) by using an arfima specification which allows us
to circumvent the a priori choice for the order of integration. However, as we do not use an
unobserved components model we can only distinguish a single source of stochastic volatility.

We adapt the Monte Carlo maximum likelihood estimation procedure of Koopman and
Bos (2004) to allow its treatment within an arfima model. The details are given in this
paper. The evaluation of the loglikelihood function is comparatively fast, so that we are
able to obtain the rolling and recursive estimates necessary for the analysis of time variation
of the parameters. We label our model arfima-sv which should not be confused with the
long memory sv models of Breidt, Crato, and De Lima (1998) and Brockwell (2007). They
model long memory in the sv component instead of long memory in the conditional mean.
As we allow for long-memory and stochastic volatility we cannot use techniques as in Bai
and Perron (2003) to formally establish the statistical significance of changes in parameters
between subsamples. Anyhow, even in a model with constant mean Beran and Terrin (1996)
and Ling (2007) showed that in order to reliably detect structural changes in the long memory
parameter d, one requires considerable subsample sizes. Development of similar tests for our
model are our outside the scope of this paper.

The remainder of this paper is organised as follows. Section 2 introduces the arfima-

sv model and the maximum likelihood estimation of the fixed parameters and the volatility
component. Section 3 presents empirical results for U.S. inflation. We present the estimation
results for the arfima-sv model and we analyse parameter (in)stability. We also use our
framework to compare the results for the arfima-sv model with specifications from the
existing literature. Section 4 concludes.

2 Long memory model with stochastic volatility

Our model combines a long memory model as specified in arfima-form by Granger and
Joyeux (1980) and Sowell (1992) with a stochastic volatility model as presented by Taylor
(1982). Robinson (2003) reviewed long memory models. Our method is not confined to
arfima models, we can consider all general linear time series models with a stationary au-
tocorrelation function. In terms of asymptotic representations the data generating process of
our approach relates to the stationary ”fractional Brownian motion of Type I” in the termi-
nology of Marinucci and Robinson (1999), in contrast to nonstationary Type II long memory
specifications, which were considered inferior by Mandelbrot and Van Ness (1968). Davidson
and Hashimzade (2008) discuss important differences between Type I and Type II fractional
Brownian motions in the development of asymptotic theory.

We choose the arfima specification as it delivers the well known arima models as special
cases. Moreover, the arima(0,1,1) model encompasses the random walk plus noise model,
or local level model, which is very effective for forecasting inflation, see Stock and Watson
(1999) and Stock and Watson (2007). Sowell (1992) discussed the exact maximum likelihood
estimation of arfima parameters. Doornik and Ooms (2003) refined Sowell’s method and
introduced a computationally efficient implementation. Exact maximum likelihood avoids ad
hoc decisions on the likelihood for the initial observations of the process. Because of the
relatively strong correlation of distant observations this is more important for long memory
arfima models than for short memory arma models. Note that one can take first differences
of the process to ensure stationarity. This is relevant for inflation data in the 1970s.
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We add the sv specification to the arfima model. The sv specification avoids the ad hoc
decisions for the computation of the likelihood of the initial observations that one needs to
make in estimating garch type models as introduced by Bollerslev (1986).

2.1 The ARFIMA-SV Model

The arfima(p, d, q) model for a time series yt is based on a linear Gaussian long memory
process for the conditional mean as given by

Φ (L) (1 − L)d (yt − µ) = Θ (L) εt, εt ∼ NID(0, σ2), t = 1, . . . , T, (1)

where Φ (L) = (1 − φ1L − . . . − φpL
p) is the autoregressive (ar) polynomial and Θ (L) =

(1 + θ1L + . . . + θqL
q) is the moving average (ma) polynomial in the lag operator L, with

Lkyt = yt−k for k = 0, 1, . . . and integer orders p ≥ 0 and q ≥ 0. The mean of the long
memory process is µ. The disturbance εt is serially independent and normally distributed
with zero mean and variance σ2. The fractional difference operator (1 − L)d with real d is
defined by

(1 − L)d =

∞∑

j=0

δjL
j =

∞∑

j=0

(
d
j

)
(−L)j .

We assume −1 < d < 0.5. The autoregressive moving average (arma) part of the model
is assumed invertible and stationary. We further assume that the equations Θ(z) = 0 and
Φ(z) = 0 for unknown z do not have common roots. Granger and Joyeux (1980) define the
process of yt − µ to be integrated of order d, denoted I(d).

The mean µ can be replaced by a time-varying deterministic component µt and specified
as in a linear model to capture deterministic variation in the time series. More specifically,
we may specify the mean function as µt = X ′

tβ where Xt is a k × 1 vector of covariates
(including the constant) and β is a k×1 vector of fixed but unknown coefficients. The resulting
arfima model is standard and its treatment is considered by many, including Hosking (1981),
Sowell (1992) and Beran (1994).

To deal with possibly time-varying volatility in the time series, the arfima model is
extended by replacing σ2 in (1) for σ2

t which is modelled by the sv model. For this purpose,
we specify σ2

t = exp(ht) where the log-variance ht follows a stationary Gaussian ar(1) process
with zero mean, that is

ht+1 = (1 − ρ)γ + ρht + ξt, ξt ∼ NID(0, σ2
ξ ), t = 1, . . . , T, (2)

with autoregressive coefficient 0 < ρ < 1. The constant term γ in (2) is the mean of the
volatility process. The disturbances ξt are serially independent and normally distributed
with zero mean and variance σ2

ξ . The disturbances εt in (1) and ξt in (2) are mutually
independent for all t, s = 1, . . . , T . The parameter ρ captures the persistence of volatility and
σ2

ξ measures the volatility of volatility. A selection of readings on the sv model is given by
Shephard (2005).

Fast and reliable methods for the exact maximum likelihood estimation of parameters in
the arfima model (1) with arbitrary d have been discussed by Doornik and Ooms (2003).
Koopman and Bos (2004) have developed Monte Carlo maximum likelihood estimation meth-
ods for the arima-sv model, that is model (1)-(2) with integer d = 0, 1, 2, . . .. These methods
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are based on the non-Gaussian state space framework and treated in Durbin and Koopman
(2001). They allow for simultaneous estimation of the arma and sv parameters. In the next
subsection we discuss an efficient combination of the arfima and sv methods of estimation
to treat the arfima-sv model (1)-(2) with arbitrary d.

2.2 Likelihood estimation

Consider arfima-sv model (1)-(2) for the simple case with µt = 0, p = 1 and q = 1 and with
Φ(L) = 1−φL and Θ(L) = 1+θL. The unknown parameters are d, φ, θ, γ, ρ and σ2

ξ and they
are collected in the parameter vector ψ. Given a realised value for h = (h1, h2, . . . , hT )′, the
density of the data vector y = (y1, y2, . . . , yT )′ follows from the prediction error decomposition
of the Gaussian density and is given by

log p(y|h;ψ) = −
T

2
log 2π −

1

2

T∑

t=1

log ft −
1

2

T∑

t=1

v2
t / ft, (3)

where vt is the one-step ahead prediction error and ft is its variance, see Schweppe (1965) and
Brockwell and Davis (1993). Koopman and Bos (2004) used the Kalman filter to compute
vt and ft for the arima-sv model. In this paper we need to treat an arfima process, so
this would require an equivalent process represented in state space form. However, Chan and
Palma (1998) have proven that a state space representation of the arfima process with a
finite dimension of the state does not exist. Therefore we resort to the algorithm of Durbin
(1960), modified by Doornik and Ooms (2003) to compute vt and ft.

Golub and Van Loan (1996, §4.7.2) discuss the Durbin algorithm as a special implementa-
tion of the Choleski decomposition for Toeplitz matrices and argue that the algorithm is com-
putationally efficient. For our purpose, the covariance matrix of data vector y is of Toeplitz
form and needs to be decomposed. The Durbin algorithm requires explicit expressions for
the autocovariance function of the time series process yt in terms of the model parameters.
Sowell (1992) derived reliable algorithms to compute the autocovariance function. Doornik
and Ooms (2003) further refined these. Let Ω denote the covariance matrix of y, then the
algorithm computes the ft for t = 1, . . . , T and v = P−1y, where P is the T × T Choleski
factor matrix so that Ω = PFP ′ with F = diag(f1, . . . , fT ) and |P | = 1. The Choleski factor
P is not stored as this is prohibitive for large T . Only the projection coefficients for the last
observation yT are in memory at the end of the computations. Note that the Kalman Filter
computes a similar Choleski factorisation, see Durbin and Koopman (2001). Therefore the
Durbin-algorithm and the Kalman filter deliver the same numerical results for vt and ft for
stationary models that can be put in state space form. It is clear that in cases where σ2

t = σ2,
σ2 can be concentrated out of the likelihood function for yt as it is just a scaling factor.

2.3 Importance sampling

Consider the arfima-sv model with σ2
t = exp(ht) where ht is modelled by (2). We can

express the density of y1, . . . , yT as given by

p(y;ψ) =

∫
p(y, h;ψ)dh =

∫
p(y|h;ψ)p(h;ψ)dh =

∫
p(v|h;ψ)p(h;ψ)dh (4)

It is noticed that the Jacobian of the transformation from y to v = (v′1, . . . v
′

n)′ is unity.
Therefore the density of y|h is the same as the density of v|h and p(v|h;ψ) is given by (3).
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The difficulty in evaluating the integral to obtain the density of the arfima-sv model is well
recognised. A possible Monte Carlo technique for the evaluation of this density is importance
sampling and is applied to stochastic volatility models by Danielson (1994), Shephard and
Pitt (1997), Sandmann and Koopman (1998) and Durham and Gallant (2002). This approach
is taken below and it involves approximating the density via averages of simulations from an
approximating model.

Given a realised value of y, the evaluation of the resulting likelihood function (4) can be
based on importance sampling. For this purpose, the observation density is represented by

p(y;ψ) =

∫
p(v|h;ψ)p(h;ψ)

g(h|v;ψ)
g(h|v;ψ)dh, (5)

where g(h|v;ψ) is the importance density. The importance sampler will be based on the
prediction errors vσ of the arfima model (1) with σ2

t kept fixed at 1. To increase the
efficiency of the importance sample, the importance density g(.) is suitably chosen so that it
is close to the density p(.). The importance density is constructed using an approximating
linear Gaussian state space model. It can be obtained as described in Appendix A.

It follows from Bayes’ rule that g(h|v;ψ) = g(v|h;ψ)g(h;ψ)/g(v;ψ). Substituting in the
denominator of (5), and observing that g(h;ψ) = p(h;ψ), one obtains

p(y;ψ) = g(v;ψ)

∫
p(v|h;ψ)

g(v|h;ψ)
g(h|v;ψ)dh. (6)

Based on M simulated series h(i) from the importance density g(h|vσ ;ψ), we approximate
the logarithm of (6) via importance sampling and obtain the Monte Carlo estimate of the
loglikelihood

log ̂p(y;ψ) = log g(vσ ;ψ) + log

[
1

M

M∑

i=1

p(vσ|h(i);ψ)

g(vσ |h(i);ψ)

]
. (7)

The estimator (7) is subject to simulation error, which can be made arbitrarily small by
increasing the number of simulations M . Generating drawings from the importance density is
referred to as simulation smoothing. Various simulation smoothing methods exist to compute
conditional draws from the approximating model g(h|vσ ;ψ). We have used the fast and simple
simulation smoother of Durbin and Koopman (2002).

The Monte Carlo estimate of the loglikelihood function in (7) is maximised with respect
to ψ. The evaluations of the Monte Carlo loglikelihood for different values of ψ are based on
the same set of random numbers for the sampling of h(i), i = 1, . . . ,M , to ensure a smooth
loglikelihood function in ψ. In our main applications we use M = 250, but M can often be
reduced without important effects on the empirical results. Standard error estimates of the
parameters are obtained from the numerical Hessian of the loglikelihood. This procedure is
numerically stable and is implemented for the programming language Ox of Doornik (2006)
using the arfima functions as documented in Doornik and Ooms (2003) and adopting state
space functions of SsfPack as in Koopman, Shephard, and Doornik (1999). The programs
are available upon request.

2.4 Estimation of the volatility process

The volatility vector h can be estimated by the importance sampling methods as well. In
a similar way as for the construction of the likelihood function, we develop the importance
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sampling estimator

ĥt = E(ht|y) = ω̄−1
M∑

i=1

ωiĥ
(i)
t , ωi =

p(vσ|h(i);ψ)

g(vσ |h(i);ψ)
, ω̄ =

M∑

i=1

ωi, (8)

where ĥ
(i)
t is the smoothed estimate of ht based on the stationary linear Gaussian state space

model (9) and (2) using the Kalman filter and associated smoother, see Appendix A. In a
similar way, the variance of the smoothed volatility estimate is given by

var(ht|y) = ω̄−1
M∑

i=1

ωiV
(i)
t ,

where V
(i)
t is the smoothed variance estimate Vt associated with ĥ

(i)
t .

3 Empirical study of U.S. core inflation

3.1 Data

We apply our model to a long monthly time series of inflation. We use the U.S. City Average
core consumer price index of the Bureau of Labor Statistics (BLS), series CUUR0000SA0L1E.
This index, which excludes the direct effect of price changes for food and energy and is further
denoted by Pt. Monthly U.S. core inflation, πt, is calculated as πt = 100{log(Pt)− log(Pt−1)}
and can be interpreted as the percentage price change per month. Our series start in 1965:1.
The preceding years of data lack sufficient precision as the CPI index is rounded at two digits
and normalised at 100 for 1982-1984. This makes the earlier data unfit for the analysis of
stochastic volatility.

Table 1 reports descriptive statistics of our series. Figure 1 shows time series plots of
the price index, monthly inflation, and sample autocorrelation functions of inflation and of
changes in inflation. The time-varying character of mean and volatility are clear from the time
series plots. There are also some possible outliers in inflation, 1980:7 showing most clearly.
The autocorrelation function shows strong persistence and a seasonal pattern, so it seems
advisable to build a model that allows for long range dependence and seasonal correlations.
However, we cannot model all aspects of the data in great detail, as the main aim of our
paper is to examine time variation in the persistence of the mean and variance of the inflation
process. Efficiency of the estimate is an issue. Even simple nonlinear long memory models
need a substantial sample for a satisfactory empirical identification of the parameters.

We therefore take a simple approach regarding seasonal movements. We take the mean of
the seasonal component in πt as fixed and remove it by a priori OLS regression, resulting in
our dependent variable yt. We use yt in the remainder of our paper. For the full sample, we
also estimated fixed seasonal factors within the model, resulting in seasonal estimates that
were very close to the OLS estimates. We include seasonal ar parameters in the model to
capture the remaining seasonality. The next section presents our main empirical estimates
and diagnostic tests for arfima-sv models for yt.

The discussion of the estimation results for the arfima-sv model is organised as follows.
First, Section 3.2 presents the estimates of the full sample, for models with and without an
sv-component. More importantly, it also reports these results for the two subsamples. Next,
Section 3.3 shows the sensitivity of the results with respect to the begin point and endpoint
of the subsamples.
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Figure 1: (a) Monthly time series of U.S. core price index (1982-84=100), (b) Monthly core inflation adjusted for fixed seasonals, (c)
Sample autocorrelation function (SACF) of core inflation up to a lag 100 months (d) SACF of changes core in inflation
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3.2 Full-sample, Great-Inflation, and Post-Great Moderation results

Table 2 presents detailed estimation results for models that are restricted to be stationary
and for three samples. This table illustrates the effect of the sv extension on the arfima es-
timates and shows the presence of a structural break in the parameters. Table 3 displays
the corresponding arfima-sv estimates for ∆yt to show the consequence of relaxing the sta-
tionarity assumption. Table 3 also facilitates comparison with arima-sv results. In all these
tables, we estimate a parsimonious subset ARFIMA model. The parameters φ2, φ3, . . . , phi10
are not significant in our applications and fixed at zero.

The first two columns of Table 2 show the full sample exact maximum likelihood estimates
for the parameters of a subset arfima model (1) for yt. We impose φ2 = φ3 = . . . = φ10 = 0
as these parameters are insignificant in our applications. In this case σε denotes the standard
deviation of ε. The order of integration, d, is estimated at 0.39 and significantly different from
0. This implies that U.S. core inflation is long memory. Note that we impose −1 < d < 0.5
but it is not clear that we can reject d > 0.5. The ar component of the arfima model mainly
captures seasonal correlations via the parameter φ12. The mean inflation µ is estimated at
0.32% per month, or 3.9% per year. The residual standard error σε is large at 0.18% per
month. The mean appears not to be significant. The inflation rate in 1980:7 is a negative
additive outlier and very significant, and remains significant in all other estimation results.
The diagnostic tests reported for the prediction errors are the normality test and the Box-
Ljung Q statistic to test the white noise assumption. Both tests clearly reject the simple
arfima specification.

Columns 3 and 4 of Table 2 present the full sample estimates of the complete arfima-

sv model (1)-(2) with σε = exp(γ/2), to facilitate comparison with the arfima model without
sv in Columns 1 and 2. In this case σε is a measure of the average volatility. The sv extension
increases the likelihood by 48 points. The distribution of the Likelihood Ratio test statistic for
sv is nonstandard as σ2

ξ = 0 is on the boundary of the parameter space and ρ is not identified
under the null. Despite this caveat we interpret this likelihood increase as a significant im-
provement. To further illustrate the significance, we plot the smoothed estimate of exp(ht/2)
in Figure 2, see the solid line. The volatility decrease in the early 1980s is spectacular and
persistent. Moreover, as indicated in § 1.1, it has been documented in a range of models,
for a range of macroeconomic variables and for a range of developed countries. It is often
labelled The Great Moderation. The estimate for d decreases by 0.09, or 1.5 standard error
by the sv extension and φ12 increases by a similar amount. The estimate of µ is also clearly
affected. The sv component itself is nearly nonstationary as the autoregressive coefficient of
volatility, ρ, is very close to one and the volatility of volatility, σξ, is well identified at 0.145
with a standard error of 0.05. When volatility is stationary, the model specification of the
volatility does not have a big impact on the estimates of ar parameters and d, but this large
and persistent change in volatility has a marked effect and has to be taken into account when
evaluating persistence measures.

The subsample periods in Table 2 are chosen to investigate potential structural breaks
in the parameter estimates of the arfima-sv model between the Great Inflation and the
Post Great Moderation era. For the interpretation of the subsample estimates it is important
to note that the exact maximum likelihood estimates are truly unconditional. Presample
observations of yt are not used to condition on. This is in contrast with the conditional
least squares estimators for the long memory model as in Baillie, Chung, and Tieslau (1996).
Columns 5 to 8 of Table 2 show the parameters of the arfima and arfima-sv model for data
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centred around the Great Inflation period. The associated stochastic volatility estimate is
shown in the left hand side of Figure 2 as a dashed line. The d parameter is now close to the
nonstationary value of 0.5, and the parameter ρ is somewhat smaller than for the full sample.
Naturally, the estimate of mean inflation is high, but so is its standard error. The diagnostics
look better than in the full sample. There is still a sizeable difference in loglikelihood values
between the arfima model and arfima-sv model, but this difference is much smaller than
for the full sample estimates and the differences for d and the AR parameters across the
arfima and arfima-sv specification are much smaller than in the full sample.

Finally, columns 9 to 12 of Table 2 display the results for the period after the Great
Moderation. The volatility estimate is shown in the dotted line on the right hand side of Figure
2. The d parameter is apparently significantly smaller than in the first period and here the
likelihood contribution of the sv-component is comparatively small. The volatility of volatility
is slightly lower than in the Great Inflation period, and its significance is much lower than in
the full sample. The arma parameters also show a significant change in comparison with the
first period. The diagnostics are nearly satisfactory, even without any outlier correction.

Table 3 presents estimates of the same arfima-sv model for the same periods as Table
2, but now for changes in inflation, ∆yt. Consequently, we estimate d − 1 instead of d and
we impose 0 < d < 1.5. The mean of yt is no longer identified, so µ drops out of the model.
The explanatory dummy variable could also be differenced, but we choose a specification with
separate coefficients for the dummy variable and its lag. In the Great Inflation period, d− 1
equals -0.29, corresponding to a value of d of 0.71 and it seems significantly larger than 0.5.
For the full sample d − 1 equals -0.71, nearly equivalent to the d of 0.29 in Table 2. The
implicit estimate for d in the last subsample is 0.12, compared to 0.14 in Table 2. Table 3
therefore shows a significant drop in d by a margin of around 0.6, providing clear evidence of
a structural break in d, but also in σε and in the ar parameters. The volatility of volatility is
similar across subsamples and again insignificant in comparison with the full sample estimate.

3.3 Rolling and Recursive estimation results

The estimation results of Section §3.2 become easier to interpret after a sensitivity analysis
with rolling and recursive estimates. Each subsample needs to be sufficiently long to make
sense in a long memory analysis. Therefore we start our sensitivity analysis with rolling
estimates for subsample lengths of 200 months.

A selection of the corresponding rolling window estimates with one-standard-error bands
is presented in Figure 3. The values for 1965:1 correspond to the estimation period 1965:1-
1981:8, which truncates the first sample of Table 2 from the right. The values for 1991.2 show
estimates for 1991:2-2007:9 truncating the last sample from the left. We present the rolling
subsample estimates for four key parameters. The fractional integration order d captures
the long memory behaviour, φ12 picks up the short memory behaviour including seasonality.
The parameter σε shows the overall volatility in the disturbances, while µ measures the
unconditional mean. Figure 3 reveals that the d estimates do not change much if one shifts
the start of the sample from 1965 through to 1974. We computed the same rolling estimates
of the arfima-sv model for ∆yt as in Table 3. The results were similar, except that the
values for d in samples with starting date upto 1974 fluctuated around 0.6 instead of around
0.45.

The estimates for µ show the effect of the (near-)nonstationarity of yt in the early samples.
The standard error estimates for µ are very large, indicating serious empirical identification
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Figure 2: Volatility estimates exp(ht/2) in arfima-sv model (1)-(2). Solid line: estimates based on full sample 1965:1-2007:9. Dotted
lines: estimates based on samples 1965:1-1982:12 and 1985:1-2007:9.
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problems for the unconditional mean. These problems do not occur in the second part of the
sample, where the mean is well identified, although the rolling estimates indicate a drop in
the mean when the 21st century data start getting included.

The other parameters begin to change when the subsamples start to include both Great
Inflation and Post Great Moderation years. The constant parameter model is then seriously
misspecified. The long memory parameter decreases, the parameter φ12 increases. The esti-
mates do not change for starting dates between 1983 and 1986. The results for the second
period in Table 2 do not vary a lot if one shifts the period backwards. The estimates for d
and φ12 tend back to their Great Inflation values when the 2004 and 2005 values are included
in the sample, but 2006 and 2007 indicate a new decrease in persistence. It is too early to
tell whether this reversion to around d = 0.2 is significant.

Figure 4 displays the results of our last parameter stability analysis of the arfima-

sv model. This analysis is based on estimates for two consecutive subsamples where we
shift the break date over time. The solid lines show standard recursive estimates for the
first subsample where new observations are subsequently added at the end. The dashed lines
presents the estimates of the remaining subsamples. The distance between the two lines in
Figure 4 shows the difference in the estimates for two non-overlapping but consecutive sub-
samples. These distances form the basis of parameter instability tests and tests for structural
change with unknown change point as in Quandt (1960) and Andrews (1993). Ling (2007)
recently derived asymptotic theory for normalised Quandt-type Maximum Wald statistics in
the context of QML (conditional least squares) estimation of arfima models. He extended
and improved related frequency domain results of Beran and Terrin (1996). Na and Lee
(2007) show that tests can also be developed based on the moving estimates of time series
models as in Figure 3 but this is beyond the scope of this paper. As indicated in §1 we do not
present formal tests for parameter stability. The rejection of the null hypothesis of constant
parameters for the full sample has already been firmly established in the literature and the
Post Great Moderation period is too short to detect a structural break in the long memory
properties of inflation.

For forecasting purposes it is interesting to focus on post-break estimates. Estimates of
d based on subsamples with starting dates between 1985 and 1993 fluctuate around 0.15, in
accordance with the rolling estimates of Figure 3. It is too early to tell whether the long
memory characteristic of inflation has remained significant in the 21st century, but based on
this evidence one can safely state that the current long run persistence is lower than in the
Great Inflation period. The recursive estimates of φ12 follow a slowly drifting trend. The most
significant changes occur in the first decade after the Great Inflation. The recursive estimates
of σε confirm the Great Moderation in the inflation variance. The recursive estimates of µ
in the pre-break periods clearly show the start of the Great Inflation period. The postbreak
estimates of µ are remarkably stable, even going back to 1988. Although the U.S. have not
had an explicit inflation targeting policy, the estimation results for µ confirm the success
in achieving long run inflation stability together with both a decrease in short run inflation
uncertainty (see the rolling estimates of σε in panel (c) of Figure 3) and a decrease of volatility
(see the postbreak stochastic volatility estimates exp(ht/2) in Figure 2).
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Figure 3: Selected Rolling Window parameter estimates for arfima-sv model (1)-(2) for yt (as specified in Table 2) with one-standard-
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3.4 Comparisons

This section compares our estimates with the results for an arima-sv model, in particular
model (1)-(2) with d = 1, p = 14 and q = 1. In this model the changes in the long run
persistence are captured by changes in the ma(1) parameter θ1, see Stock and Watson (2007)
and the references therein. Stock and Watson (2007) analysed these changes in the ma(1)
parameter for different measures of U.S. inflation and interpreted these changes in terms of an
unobserved components (uc) model. The equivalences between uc models and arima models
are discussed by Harvey (1989, §2.5). The arima(0,1,1) model can be written as (1−L)yt =
εt + θ1εt−1 where εt ∼ NID(0, σ2

ε ) for t = 1, . . . , T and with −1 < θ1 < 1. Values of θ1
clearly above −1 correspond to a nonstationary I(1)-process for yt while values of θ1 close to
−1 correspond to a stationary I(0) process.

Table 4 presents our results for the arima-sv model and should be compared with Table 3.
The significant change in persistence between subsamples is now captured by θ1 which shifts
from −0.66 to −0.96, that is, from a clear I(1) model to a nearly stationary specification. The
arima-sv likelihood in the first subsample is marginally lower than the arfima-sv likelihood
whereas it is somewhat higher in second subsample. The diagnostics for the arima-sv model
are slightly worse in the first subsample and slightly better in the second subsample. As the
evidence of long memory is not strong in the second subperiod, one could have anticipated
these results for the latter period.

We also compared our results with estimates for explicit uc-sv and uc-garch models as
in Koopman and Bos (2004), but we omit the results as the resulting likelihoods were not
higher than for the arima-sv model presented here. In line with Table 4, those estimates
show a drop in the importance of the trend component, an increase in the importance of
seasonal changes and an overall decrease in the variance.

We have shown that our exact likelihood framework allows for straightforward compar-
isons between arfima-sv and arima-sv models using maximum likelihood estimation. We
conclude from Tables 3 and 4 that we can reinterpret existing evidence on the shift in the long
run dynamics based on a change in the ma(1) parameter θ1, as a shift in the long memory
parameter d. This is an important finding because the long run characteristics of the arfima-

sv model differ in important respects from the long run behaviour of an arima-sv model.
For example, forecast intervals for the log of the price level based on arfima-sv models and
arima-sv models are qualitatively different at long horizons. We agree with Stock and Wat-
son (2007) that U.S. inflation may have become harder to forecast, but we provide a different
interpretation of the evidence.

4 Summary and Conclusion

In this paper we have discussed and implemented exact maximum likelihood estimation
for stationary arfima models with stochastic volatility using Monte Carlo methods. The
arfima-sv model provides a good description of U.S. inflation, in particular for two sub-
samples: the Great Inflation period and the Post Great Moderation period. The fractional
integration order d of U.S. inflation changed from around d = 0.65 during the Great Infla-
tion period to about d = 0.15 after the Great Moderation. The constant parameter model
is misspecified for the combined period, but the sv-part of the model clearly captures the
Great Moderation in this case with a high volatility of volatility. Sensitivity analysis with
rolling and recursive estimates confirms and extends these findings. We do not find evidence
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of a change in the mean of inflation in the Post Great Moderation period. We compared
our results with a related parameter stability analysis as in Stock and Watson (2007). For
this purpose we used our exact likelihood framework to fit an arima-sv model, where the
ma(1)-parameter shifted from θ1 = −0.66 in the Great Inflation period, to θ1 = −0.96 in the
Post Great Moderation period. Our analysis of parameter stability in the arfima-sv model
extends the existing applied econometric literature on this topic as it makes a different dis-
tinction between parameter changes in the long run dynamics and changes in the parameters
for the short run dynamics while allowing for stochastic volatility.
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A Approximating model

In this appendix we provide details for the construction of an approximating model for the
arfima-sv model (1)-(2), as discussed in §2.3. Consider et = vσ

t /
√
fσ

t where vσ
t and fσ

t are
obtained from the Durbin algorithm with σ2

t = 1. The approximating model is based on mean
E(et) = ht + ct and variance var(et) = dt where ct and dt, for t = 1, . . . , T , are constants
across simulations. We have the approximating model given by

et = ht + ut, ut ∼ NID(ct, dt), t = 1, . . . , T, (9)

where ht is modelled by (2). The values for ct and dt are determined by equating the first
two derivatives with respect to ht of the true density for et ∼ NID(0, exp(ht)) and the
approximating model density for et ∼ NID(ht + ct, dt). The resulting set of equations need
to be solved. Since the variable ht is unobserved, optimal values for ct and dt need to be
found iteratively based on estimates of ht.

The conditional densities are given by

p(e|h;ψ) =

T∏

t=1

pt, g(e|h;ψ) =

T∏

t=1

gt,

with e = (e1, . . . , eT ) and where p(·) refers to the true density, g(·) refers to the approximating
density and

pt = −0.5[log 2π+ht+exp(−ht)(v
σ
t )2], gt = −0.5[log 2π+log dt+(vσ

t −ct−ht)
2 / dt],

for t = 1, . . . , n. The first and second derivatives with respect to ht are given by

ṗt = −0.5[1 − exp(−ht)e
2
t ], ġt = (et − ct − ht) / dt,

p̈t = −0.5 exp(−ht)e
2
t , g̈t = −1 / dt,

for t = 1, . . . , T . Equating ṗt = ġt and p̈t = g̈t leads to the solutions

ct = et − ht + 0.5dt[1 − exp(−ht)e
2
t ], dt = 2exp(ht) / e

2
t ,
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which can be computed for a given value of ht, for t = 1, . . . , T . We note that variance dt is
positive for any value of ht. For given values of et, ct and dt, estimates of ht can be based on
the linear Gaussian state space model consisting of measurement equation (9) and transition
equation (2) by using the Kalman filter and associated smoother, see Durbin and Koopman
(2001). The resulting recursive procedure is repeated until convergence which usually takes a
limited number of iterations, typically around five. The final model is the linear state space
model with time-varying variances from which simulated series can be generated conditional
on the observations e1, . . . , eT . This procedure is referred to as simulation smoothing; see
Durbin and Koopman (2002) and the references therein. The resulting simulations can be
regarded as realisations from g(h|vσ ;ψ).
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Table 1: Descriptive statistics U.S. Core CPI inflation
Variable min max mean s.d.

Pt 32.6 211.6 113.92 58.09
100 ∆ logPt -0.239 1.392 0.365 0.295

yt -0.246 1.386 0.365 0.274

NOTE: Source: BLS. Code Pt: CUUR0000SA0L1E. yt=∆ logPt adjusted for
fixed seasonal factors by OLS. Sample 1965:1–2007:9, T = 513.
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Table 2: arfima-sv Maximum Likelihood Estimation for yt

Sample 1965:1–2007:9 1965:1–1982:12 1985:1–2007:9
Column No. 1 2 3 4 5 6 7 8 9 10 11 12

Parameter s.e. s.e. s.e. s.e. s.e. s.e.

d 0.386 (0.05) 0.285 (0.06) 0.474 (0.03) 0.474 (0.03) 0.131 (0.08) 0.136 (0.08)
φ1 0.028 (0.07) 0.032 (0.07) −0.038 (0.08) −0.089 (0.08) 0.048 (0.10) 0.023 (0.10)
φ11 0.108 (0.04) 0.131 (0.04) 0.086 (0.07) 0.058 (0.07) 0.175 (0.06) 0.160 (0.06)
φ12 0.306 (0.04) 0.396 (0.05) 0.061 (0.07) 0.064 (0.07) 0.292 (0.06) 0.298 (0.06)
φ13 0.029 (0.05) 0.080 (0.05) −0.048 (0.07) −0.056 (0.07) 0.129 (0.06) 0.125 (0.06)
σε 0.175 (0.01) 0.150 (0.03) 0.208 (0.01) 0.207 (0.02) 0.103 (0.00) 0.101 (0.01)
σξ 0.143 (0.04) 0.117 (0.07) 0.095 (0.07)
ρ 0.982 (0.01) 0.962 (0.04) 0.954 (0.06)
µ 0.320 (0.21) 0.214 (0.12) 0.443 (0.49) 0.521 (0.43) 0.252 (0.03) 0.236 (0.03)

β(i80:7) −1.240 (0.16) −1.256 (0.25) −1.105 (0.19) −1.114 (0.21)
LL 164.690 212.782 31.248 34.382 231.059 232.693
T 513 513 216 216 273 273
N 28.220 [0.00] 34.527 [0.00] 4.582 [0.10] 5.286 [0.07] 6.704 [0.04] 7.163 [0.03]
Q 38.569 [0.01] 57.829 [0.00] 13.833 [0.79] 15.218 [0.71] 28.373 [0.08] 28.829 [0.07]

NOTE: ML estimates for the parameters of model (1-2) with extra coefficients for dummy variables in the mean β(i80:7) and σε = exp(γ/2).
Full sample and two subsamples. Standard errors in parentheses. n: number of observations. LL: log-likelihood for yt. N: Normality tests of
Doornik and Hansen (1994). Q: Residual serial correlation test of Box-Ljung for 24 lags, see Ljung and Box (1978) and Li and McLeod (1986).
The p-values are reported in brackets.
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Table 3: arfima-sv MLE results for ∆yt

Sample 1965:1–2007:9 1965:1–1982:12 1985:1–2007:9
Parameter s.e. s.e. s.e.

d− 1 −0.707 (0.06) −0.292 (0.08) −0.882 (0.07)
φ1 0.018 (0.07) −0.298 (0.09) 0.017 (0.10)
φ11 0.128 (0.04) 0.075 (0.07) 0.154 (0.06)
φ12 0.392 (0.04) 0.061 (0.08) 0.291 (0.06)
φ13 0.081 (0.05) −0.049 (0.07) 0.110 (0.06)
σε 0.149 (0.02) 0.204 (0.02) 0.101 (0.01)
σξ 0.145 (0.04) 0.101 (0.07) 0.093 (0.08)
ρ 0.982 (0.01) 0.956 (0.05) 0.952 (0.06)

β(i80:7) −1.348 (0.25) −1.287 (0.22)
β(i80:8) 1.139 (0.25) 0.999 (0.22)

LL 214.524 37.034 232.542
T 513 216 273
N 32.202 [0.00] 3.643 [0.16] 2.595 [0.27]
Q 58.245 [0.00] 12.647 [0.86] 25.645 [0.14]

NOTE: ML estimates for the parameters of arfima-sv model (1)-(2) with
extra coefficients for dummy variables in the mean β(i80:7) and β(i80:8). σε =
exp(γ/2). Standard errors in parentheses. T : number of observations. LL:
log-likelihood for ∆yt. N: Normality tests of Doornik and Hansen (1994). Q:
Residual serial correlation test of Box-Ljung for 24 lags. The p-values are
reported in brackets.

Table 4: arima(14,1,1)-sv MLE results (d=1). Dependent variable: ∆yt

Sample 1965:1–2007:9 1965:1–1982:12 1985:1–2007:9
Parameter s.e. s.e. s.e.

φ1 0.230 (0.06) 0.059 (0.12) 0.080 (0.07)
φ11 0.101 (0.04) 0.049 (0.07) 0.124 (0.06)
φ12 0.347 (0.04) 0.029 (0.07) 0.258 (0.06)
φ13 −0.021 (0.05) −0.073 (0.07) 0.055 (0.06)
φ14 −0.043 (0.04) 0.067 (0.08) 0.080 (0.06)
θ1 −0.907 (0.03) −0.660 (0.10) −0.960 (0.03)
σε 0.150 (0.02) 0.204 (0.02) 0.101 (0.01)
σξ 0.156 (0.04) 0.133 (0.07) 0.080 (0.06)
ρ 0.979 (0.01) 0.953 (0.05) 0.967 (0.04)

β(i80:7) −1.329 (0.24) −1.297 (0.22)
β(i80:8) 1.056 (0.24) 1.010 (0.22)

LL 212.606 36.686 234.741
T 513 216 273
N 36.070 [0.00] 5.501 [0.06] 2.161 [0.34]
Q 64.671 [0.00] 18.987 [0.39] 21.949 [0.23]

NOTE: ML estimates for the parameters of model (1-2) with extra coefficients
for dummy variables in the mean β(i80:7) and β(i80:8). σε = exp(γ/2). Stan-
dard errors in parentheses. T : number of observations. LL: log-likelihood for
∆yt. N: Normality tests of Doornik and Hansen (1994). Q: Residual serial
correlation test of Box-Ljung for 24 lags. The p-values are in brackets.
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