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A DISCUSSION OF MAXIMIN

VITALY PRUZHANSKY

Abstract. This paper builds on one of the results of Pruzhansky
[22], namely that maximin strategies guarantee the same expected
payoffs as mixed Nash equilibrium strategies in bimatrix games.
We present a discussion on the applicability of maximin strategies
in such class of games. The usefulness of maximin is illustrated
from both positive and normative viewpoints. Examples are pro-
vided.

1. Introduction

It is not a coincidence that the title of this paper parallels that
of Owen [21]. Likewise, we provide a discussion on the applicability
of maximin strategies in completely mixed bimatrix games, and dis-
cuss their (potential) superiority as compared to mixed equilibrium
strategies. This work continues the theme started in our recent paper
Pruzhansky [22], to which the reader is referred for precise notation
and definitions, such as maximin and equalizer strategies.
Recall how a typical justification of Nash equilibria runs: if some-

body is to recommend equilibrium strategies to the players, then no
one has incentives not to obey this recommendation. When it comes to
completely mixed equilibrium strategies, this justification is somewhat
weakened: even though no player has incentives to deviate, they still
have no particular incentives to randomize with the prescribed proba-
bilities. Nevertheless, despite the fact that such equilibrium strategies
typically do not guarantee expected equilibrium values to the players,
they rule out the possibility of strategic outguessing by the opponent,
and thus may seem desirable. However, a more reasonable description
of reality would probably involve players figuring out themselves what
to do in a particular game independently of each other. Suppose a
player discovers that he has a maximin strategy that guarantees him
the same expected payoff as the equilibrium one, although it leaves open
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2 VITALY PRUZHANSKY

the possibility that the opponent will correctly predict the player’s in-
tentions and respond accordingly1. What strategy should such a player
choose? In other words, in what cases can the desire to guarantee the
expected equilibrium payoff be at least as important as ruling out pos-
sible strategic outguessing2? Alternatively, if we were to estimate the
chances that the outcome of a particular game will be consistent with
players’ selecting maximin or mixed equilibrium strategies, what strat-
egy would have higher odds?
The purpose of this paper is to answer the above questions and to

support the claim that maximin strategies may be at least as attrac-
tive as the mixed equilibrium ones, and, thus, should be taken into ac-
count3. This claim will be defended from both normative and positive
standpoints. Section 2 presents the positive arguments while Section
focuses on the normative ones. Finally, Section 4 provides examples
illustrating each of these positions.
It is essential to note that most of our arguments are based on the

idea that players are not certain about the strategies chosen by their
opponents. Consequently, they treat these strategies as random vari-
ables, to which subjective probability distributions must be assigned.
This approach is not new and was used in Kadane and Larkey [16] to
question the power of the minimax solution in two person zero-sum
games. Their position received a fair amount of criticism in Harsanyi
[14] due to the fact that it may not agree with the basic principles
of game theory as spelled out by J. von Neumann and O. Monger-
stern. Nevertheless, we believe that in non-zero sum games the force
of Harsanyi’s critique is limited. In these games players’ interests are
not always directly opposed. That is, player i’s objective is not nec-
essarily to minimize the expected payoff of player j, but to maximize
his own. Consequently, maximization of own expected utility may con-
flict with the desire to avoid being outguessed by the opponent. This
phenomenon is typical in games, whose Nash equilibria are only mixed.
Before we start the discussion, let us restate what is understood by

the term ’mixed strategy’, since numerous interpretations of this ter-
minology exist. For all Sections the interpretation of mixed strategy as
a belief, in the spirit of Aumann [2] would suffice. However, in Sections

1To sharpen our arguments, in what follows we suppose that the set of strategies
that are both equilibrium and maximin is empty.

2This should not be confused with obtaining an equilibrium payoff for sure, since
a maximin strategy may be mixed!

3We are not aware of any applied model, in which the distinction between mixed
equilibrium and maximin strategies is clearly made. Typically, maximin strategies
are simply disregarded.
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3.1 - 3.2 it is also useful to take another view, a classical one, according
to which mixed strategies are considered to be the object of choice. It
will be fair to say that this approach has often had conceptual difficul-
ties and probably other approaches, such as the above interpretation
in terms of beliefs or that of Harsanyi [12], are more intuitive. Never-
theless, as we show by a few examples in Section 3.1 below, sometimes
players may have strict incentives to randomize in order to get the
maximum of their expected utilities.

2. Positive Arguments

2.1. Common Knowledge. The use of maximin strategies in the
class of games we consider is consistent with the assumption of common
knowledge of rationality. This follows from the fact that in completely
mixed bimatrix games no player has dominated strategies. Thus, all
pure and mixed strategies are rationalizable in the sense of Bernheim
[5], and maximin strategies are rationalizable too. Unfortunately, ra-
tionalizability of maximin strategies cannot be generalized to arbitrary
(bimatrix) games. If the game under consideration is not completely
mixed, then a maximin strategy of one player may be rationalizable
only via a dominated strategy of the opponent.
From the point of view of common knowledge of Bayesian rationality

(see Aumann [2] for precise definition) when all players have subjective
priors, we are led to the concept of subjective correlated equilibrium.
Maximin strategies are the part thereof, since rationalizability is equiv-
alent to subjective correlated equilibria in the class of completely mixed
games, as follows from the work of Branderburger and Dekel [6]. One
has to remember, though, that it is not the desire to maximize the min-
imum of expected utility that ’forces’ players to select their maximin
strategies in a subjective correlated equilibrium. It is the difference
in priors and information partitions. Also notice that the critique of
rationalizability and subjective correlated equilibria voiced in Aumann
[2], p. 14, does not apply to completely mixed games.
However, if the assumption of common knowledge of Bayesian ratio-

nality is accompanied by the requirement that players’ priors be the
same, it follows fromAumann [2] that some objective correlated equilib-
riummust take place. The latter no longer uniformly supports maximin
strategies. For instance, in 2×2 games with a unique Nash equilibrium
in mixed strategies the only correlated equilibrium is identical to the
completely mixed one (see Calvó-Armengoly [7]). For games of higher
dimensions, to the best of our knowledge, no results have been obtained
yet.
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Thus, the common prior assumption turns out to be crucial for jus-
tification of maximin strategies, at least for 2× 2 games. A discussion
on whether this assumption is plausible can be found in Aumann [2],
pp. 12-15. Note, however, that even if maximin strategies correspond
to some (objective) correlated equilibria, Nash mixed strategies always
do too. Hence, although it cannot be claimed that maximin strategies
are always better than mixed equilibrium ones, at least rationality does
not violate the use of maximin.

2.2. Bayesian Beliefs in 2 × 2 Games. Bimatrix games, in which
each player has only two pure strategies are, perhaps, the most well-
known and widely applied class of games. We will show how Bayesian
rationality supports players’ use of their maximin strategies in com-
pletely mixed games of this specific dimension. For application of
Bayesian rationality in a more general setting see Tan and Werlang
[23]. One difference of our analysis and that of [23] is that we focus
specifically on mixed equilibrium and maximin strategies. Interest-
ingly, the framework we develop here turns out to have an unexpected
relation with the notion of risk dominance.
Let x be an n-dimensional random variable, whose realizations are re-

stricted to ∆, and F (f) its multivariate probability distribution (joint
density function). Thus,

Pr[x ∈ S ⊆ ∆] =

Z
S

f (s) ds,

where ds stands for ds1...dsn and
R
S
for the n-dimensional integral over

the region S.
Define the expected value of x as the vector of expectations, i.e.

E[x] = (E[x1], ..., E[xn]) ,

such that for all i = 1, ..., n

E[xi] =

Z
∆

sif (s) ds.

(In what follows, the region of integration will always be confined to the
unit simplex, thus, the symbol ∆ will be suppressed). As a shorthand
for this formula we will write

E[x] =

Z
sdF.
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Suppose that the decision choice of player 2 is perceived by player
1 as a random n-dimensional vector4 q, and the beliefs of player 1 are
described by a probability distribution F over ∆. Let F be a set of
possible beliefs of player 1 and suppose that all members of F have
distinct means (see footnote 5 for an explanation). That is, for any
x ∈ ∆ there exists a unique F ∈ F satisfying

x =

Z
sdF.

Clearly, there can be many sets F satisfying the above condition. How-
ever, any such set will serve our purposes.
Define a metric d (·) on F in the following way. Let x =

R
sdF and

y =
R
tdG for some F,G ∈ F , then

d (F,G) =

"
nX
i=1

(xi − yi)
2

# 1
2

.

That is, the distance between two distributions F and G is given by the
usual Euclidian distance between their mean values. It is easy to check
that the above metric d (·) satisfies all required axioms of metric5.
The expected payoff of player 1 under belief F when he plays strategy

p is

(2.1) v1 =

Z
(pAs) dF = pA

µZ
sdF

¶
.

In principle, F may be degenerate in the sense that its density f puts all
probability mass on a single point es. This would correspond to player 1
believing that player 2 chooses es ∈ ∆ with certainty. Under such belief
F (2.1) reduces to the usual v1 = pAes.
For p∗ ∈ ∆, define F∗ ⊂ F as follows

F∗ :=
½
F ∈ F| p∗ ∈ argmax

p

µ
pA

Z
sdF

¶¾
.

Using the properties of a completely mixed equilibrium (p∗, q∗) , it is
easy to verify that for all F ∈ F∗ it must be the case that q∗ =

4Strictly speaking, it must be an n − 1 dimensional vector, because variables
q1, ..., qn are linearly dependent. However, to simplify notation we will talk about
n dimensions.
5The non-negativity property d (x, y) = 0 if and only if x = y forced us to assume

that all members of F have distinct mean values. This can be interpreted as if
decision-makers cared only about expected values, and not about higher moments
of random payoffs. Moreover, they regard two different distributions F and G with
the same mean as being identically equal.
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sdF. Therefore, F∗ represents the set of beliefs, to which p∗ is a best

response.
Similarly, define F ⊂ F

F :=
½
F ∈ F| p ∈ argmax

p

µ
pA

Z
tdF

¶¾
to be the set of player 1’s beliefs justifying the use of p.
Finally, let Fi ⊂ F be

Fi =

½
F ∈ F| ei ∈ argmax

p

µ
pA

Z
udF

¶¾
.

Thus, Fi is the set of beliefs under which the optimal response of player
1 is a pure strategy p = ei.
Since in completely mixed games there are no dominated strategies,

any (pure or mixed) strategy of every player is a best response to some
beliefs. Hence, the sets F∗, F , Fi for each i = 1, ..., n are non-empty.
Similarly, any mixed strategy p of player 1 is justifiable, given some
belief F (and this is trivially so for F = F ∗). Suppose that p assigns
positive probabilities to some k ≤ n pure strategies of player 1, without
loss of generality let them be the first k strategies. Due to the linearity
of expected payoffs in bimatrix games, it follows that any pure strategy
in this set {1, ..., k} must be also justifiable by F. Thus,

F ∈ F1 ∩ ... ∩Fk,

and this intersection in non-empty. We summarize these relations in a
Lemma below, which, because of its simplicity, is stated without proof.

Lemma 1. Let (A,B) be a completely mixed (possibly non-generic)
bimatrix game and let the maximin strategy of player p assign positive
probabilities only to his k ≤ n pure strategies. Then it holds that

F ≡
\k

i=1
Fi,

F∗ ≡
\n

i=1
Fi,

F∗ ⊆ F .
Moreover, in generic games F∗ ≡ {F ∗}, such that q∗ = R sdF ∗. Fur-
thermore, if p is completely mixed, then F∗ ≡ F ≡ {F ∗}.
Next Lemma will be used in the proof of the subsequent theorem.

Lemma 2. Let (A,B) be a completely mixed generic bimatrix game.
For any set of k < n pure strategies of player 1, there exists a belief
F 6= F ∗, such that any strategy p ∈ ∆, assigning positive probability
only to the above k pure strategies is a best response, given F.
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Proof. Fix a not completely mixed strategy ep of player 1. We need to
show the existence of eq such that
(2.2) epAeq ≥ pAeq,
for all p ∈ ∆.
Consider the following system

(2.3) eAq = eu,
where

eA =


a11 · · · a1n
...

...
ak1 · · · akn

γak+11 · · · γak+1n
...

...
γan1 · · · γann


, γ > 1,

and all coordinates of eu are equal. Since the game is generic, det (A) 6= 0
and it is easy to check that det

³ eA´ 6= 0 too. Thus, there exists a unique
solution to (2.3), say eq. Now observe that given F, such that eq = R sdF,
the strategy ep assigning positive probabilities only to the first k rows
of A solves (2.2). We just need to ensure that eq ∈ ∆. Indeed,

lim
γ→1

eq = q∗.

Hence, for γ close enough to 1, we will have that eq ∈ ∆. ¤
The intuition for Lemma 2 is simple. The existence of a completely

mixed equilibrium implies the existence of a unique hyperplane passing
via points a1, ..., an with a normal q∗. If the vectors a1, ..., an are lin-
early independent, we can always ’lift’ the hyperplane so that it rests
on only k points a1, ..., ak and lies above the other n − k points. The
’shifted’ hyperplane, thus, has a normal eq that solves (2.2). An im-
portant consequence of this Lemma is that any not completely mixed
strategy ep must be a strict best response to q = αeq+(1− α) q∗ for any
α ∈ (0, 1], i.e. epAq > pAq, for all p 6= ep.
That is, for any non-completely mixed ep there exists a continuum of
distributions, whose mean values lie on a line segment between eq and
q∗, to which ep is a best response. Formally, for each not completely
mixed strategy ep there exists eF ∈ F , such that for any G ∈ F enjoying

d
³ eF,G´ ≤ �,
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where � is sufficiently small, it holds that

epAZ sdG ≥ pA

Z
tdG, for all p ∈ ∆.

This implies the following.

Theorem 1. Let A be any σ-algebra of F, containing all Fi, i =
1, ..., n, and G be the class of all generic completely mixed bimatrix
games. For any probability measure µ (·) on A and any game (A,B) ∈
G, it holds that µ (F∗) ≤ µ

¡F¢ . Moreover, if the measure µ (·) is non-
atomic6 and the maximin strategy p of player 1 is not completely mixed,
then 0 = µ (F∗) < µ

¡F¢ .
Proof. By Lemma 8, F∗ ⊂ F , thus for any probability measure µ we
have µ (F∗) ≤ µ

¡F¢ , with equality if and only if p is completely mixed.
Because of the genericity assumption, F∗ ≡ {F ∗}. On the other hand,
if p is not completely mixed, then F is not singleton. Hence, for any
non-atomic µ we have µ (F∗) = 0 and µ

¡F¢ > 0. ¤
The Theorem asserts that player 1 is at least as likely to hold be-

liefs justifying his use of maximin strategy, as his use of the mixed
equilibrium strategy. That is, Bayesian rationality in bimatrix games
favors maximin strategies at least as often as it does mixed equilibrium
strategies. Moreover, given any F ∈ F∗, any pure or mixed strategy
of player 1 yields him the same expected payoff. Thus, if players are
Bayesian expected utility maximizers and are not completely rational
in the sense that they disregard the consequences of their own actions
on the actions of the opponents, mixed equilibrium strategies will be
observed only by chance, perhaps just in the case, when they easily
suggest themselves, like in games á la Matching Pennies.
This interpretation of the Theorem is close to the positive support for

maximin strategies in a subjective correlated equilibrium. There, if the
outside observer witnessed the frequencies with which players choose
their strategies, those frequencies would form a subjective correlated
equilibrium. Here, the claim is that the outside observer is more likely
to witness an outcome induced by players’ maximin strategies. Note
also, that the formation of players’ beliefs is not based on past plays,
but is arbitrary. It is as if players have never met before. Then their
intention to play maximin strategies arises much more often than the
intention to play a completely mixed Nash equilibrium strategy.
6Measure µ is said to be non-atomic if for any A ∈ A such that µ (A) > 0, there

exists B ⊂ A, so that µ (B) > 0. In other words, any finite set of points (in our
case distributions) receives zero weight. This assumption reflects the diversity of
opinions that player 1 may hold about player 2’s possible behavior.
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From the above Theorem it also follows that for any pure strategy,
to which p assigns positive probability, say the k-th one, we have

µ (F∗) ≤ µ
¡F¢ ≤ µ (Fk) .

Thus, Bayesian rationality would, perhaps, favor the k-th pure strategy
even more often than p.Why is the maximin strategy special? Indeed,
in general bimatrix games we do not find much support for maximin
strategies as compared to other pure strategies. However, in 2 × 2
completely mixed games the attractiveness of maximin comes in a new
light. The reasons is that if p is not completely mixed in generic games,
then it must be pure. Therefore,

0 = µ (F∗) < µ
¡F¢ .

In words, according to a Bayesian view, player 1 is more likely to play
a pure maximin strategy than a completely mixed equilibrium one for
any set of beliefs F , if µ is non-atomic. This is an interesting fact,
taking into account the range of applications in which the theory of
2× 2 games has been used. There is a need to see if such a hypothesis
is confirmed empirically7.
Finally, the approach of comparing the sets of beliefs Fi and Fj

turns out to be intrinsically linked to risk dominance in 2 × 2 games
(regardless of whether maximin strategies are pure or not). Consider
an arbitrary 2× 2 bimatrix game with two distinct pure strategy Nash
equilibria. For concreteness, assume that both players selecting either
their first or second pure strategies constitutes a Nash equilibrium.
Such a game will also have a completely mixed Nash equilibrium. Let eq
be an equilibrium probability of player 2 selecting his first pure strategy
in this mixed Nash equilibrium. Clearly for player 1 we have

F1 ≡
½
F ∈ F|

Z
sdF ∈ [eq, 1]¾ ,

F2 ≡
½
F ∈ F|

Z
tdF ∈ [0, eq]¾ .

Consider now a uniform measure8 µ, i.e. the measure that is propor-
tional to the length of the line segments F1 and F2. Suppose that eq ≤ 1

2
and, correspondingly, µ (F1) ≥ µ (F2) . If a similar relation holds for
7In order to confirm it, one probably needs to employ the interpretation of mixed

strategies as frequencies, with which corresponding pure strategies are selected over
time.
8That is, an outside oberver will witness all possible beliefs of player 1 in the set

F equally likely.
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player 2, then the equilibrium in which both players select their first
pure strategies is risk dominant.

3. Normative Arguments

3.1. Two Polar Versions of Rationality. Rationality can take up
many forms. At the one extreme players are rational in the Bayesian
sense. They form beliefs (which can be arbitrary) and act rationally,
given these beliefs. In addition, each player considers the world as
fixed at any specific point in time. Maximin strategies of these players
are the natural response to the uncertainty surrounding them. At the
other end of the spectrum, there lies a case of complete rationality,
which is characterized not only by common knowledge of rationality,
but also by the fact that players fully account how their own actions
affect the actions of others. Specifically, a completely rational player i
will not take those actions, to which his opponents have incentives to
respond in an unfavorable to imanner, as compared to some status quo
state. Although we do not define this notion formally, it is not hard
to see that a solution concept, appropriate in the presence of complete
rationality, should not be just ’individually’ rational, but also ’com-
monly’ rational, i.e. it must constitute a Nash equilibrium. In terms
of set conclusion, complete rationality implies common knowledge of
rationality, and the latter implies Bayesian rationality. Moreover, in
completely mixed games Bayesian rationality and common knowledge
of rationality coincide9.
One of the most popular critique of mixed strategy Nash equilibria

is that players have to randomize with correct probabilities in order
to make the opponent indifferent. Statements like ’rational players do
not have incentives to randomize with equilibrium probabilities, since
they are indifferent’ are abundant, eg. Harsanyi and Selten [15], pp.
14-16, Osborne and Rubinstein [20], p. 41. Such claims can be in
line with the notion of Bayesian rationality, but are inconsistent with
the idea of complete rationality. The reason being that the latter con-
cept is not limited to payoffs only, but also takes into account how ac-
tions/intentions of one player affect actions/intentions of his opponents.
That is, ruling out strategic outguessing is necessarily a consequence
of complete rationality. (In the same time, it may not be implied by
the common knowledge assumption, see below). We will argue that
completely rational players do have incentives to adhere to their mixed

9This is due to the absence of dominated strategies in completely mixed games.
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equilibrium strategies10. However, the conditions that ensure this are
very strict and, perhaps, unrealistic. That is why maximin strategies
may seem to be better.
Consider the following two games.

L R

T 1, 1 3, 0

B 2, 0 2, 1

Game Γ1

L M R

T 0, 5 1, 0 2, 2

B 1, 0 0, 3 2, 2

Game Γ2

It can be checked that in both games the unique equilibrium strategy
of player 1 is completely mixed and is not equal to his maximin strategy.
In both cases, thus, player 1 is indifferent and presumably does not
have incentives to randomize as the equilibrium prescribes. Moreover,
in Γ1 he can guarantee himself the equilibrium value by selecting his
pure strategy B. If player 1 indeed does not care, what player 2 thinks
about him, the desire to obtain the equilibrium value with certainty
seems to be a rational course of action. However, if player 1 takes into
account that player 2 will try to outguess him, he should not select B
with certainty. Thus, complete rationality forces player 1 to randomize.
In Γ2 the situation is even more serious. The unique Nash equilib-

rium of the game prescribes that player 1 randomizes (p, 1− p) , where
p ∈ £1

3
, 2
5

¤
, and player 2 selects R. Although this equilibrium is not

completely mixed, given player 2’s strategy R, player 1 is indifferent
between any two pure or mixed strategies. Now, for any p /∈ £1

3
, 2
5

¤
player 2 will never play R. As a consequence, the expected payoff for
player 1 will not exceed one under any circumstances! However, in
equilibrium, he obtains the payoff of two. Therefore, player 1 has strict
incentives to randomize. Moreover, his randomization cannot be arbi-
trary! To push this idea further, observe that Γ2 can be modified so
that the set of admissible equilibrium strategies of player 1 shrinks to

10This statement should be treated cautiously. First, what players really must
do is to credibly persuade the opponent that they in fact randomize. Second, there
might be peculiar exceptions, where the equilibrium value can be obtained with
certainty, not employing any randomization, even if the opponents are aware of the
deviation, see Examples below.
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a single point. Also note that although common knowledge of ratio-
nality does not preclude player 1 from selecting p /∈ £1

3
, 2
5

¤
, complete

rationality does so! In particular the maximin strategy p =
¡
1
2
, 1
2

¢
is

rationalizable, but if player 1 is known to use it, then player 2 will
certainly not play R, and as a consequence, player 1’s expected payoff
will not exceed one. (Of course, player 1 can obtain his equilibrium
payoff of two if player 2 decides to use his own maximin strategy, i.e.
R. However, the point we wish to emphasize is that player 1 has strict
incentives to randomize, when he is seemingly indifferent).
It may seem that these examples are artificial and in games like the

one presented in the Introduction of [22] or in Aumann and Maschler
[4] such phenomena do not arise. We, however, are convinced that
these differences are not justified. The game from the Introduction is
simply an extreme version of the above reasoning. But the reasoning
goes along exactly the same lines as in the above examples.
What are the conditions that one needs in order to ensure players’

complete rationality and how strict are they? The following condition
is sufficient, but it appears quite severe to us11. Namely, it must be
common knowledge among players that any deviations from equilib-
rium strategies will be correctly exploited by the opponents. In sum,
the adherence to (completely) mixed equilibrium strategy of player i
that depends on j’s payoffs rests on a very demanding assumption.
Whenever the latter is not satisfied, mixed Nash equilibria seem to be
especially vulnerable in the presence of maximin strategies that can
guarantee the same expected payoff.

3.2. Implementation of Mixed Strategies. As was demonstrated
above, completely rational players may have strict incentives to ran-
domize. In their classical interpretation, mixed strategies are viewed
as an object of choice. That is, players are assumed to use a random
device, such as a roulette spin, in order to decide about their choice of
a pure strategy. If such position is adopted, the problem of implemen-
tation arises. Recall that an equilibrium mixed strategy of a player
is optimal only if the opponent also follows his equilibrium strategy.
Therefore, before actually implementing such a strategy one should
be convinced that the opponent randomizes according to the equilib-
rium probabilities himself. That is, he constructs a random experiment

11It does not rule out a possibility that some less strict conditions may lead to
the same outcome. We have not explored this possibility yet.
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and commits himself to the subsequent outcome12. Moreover, the ran-
domizing probabilities of the random device must be objective in the
sense that all players agree on them. These arguments become espe-
cially important when the equilibrium mixed strategy is not obvious
(eg. Matching Pennies), but involves a randomization over a big set of
strategies that have to be played with different probabilities. In fact,
unless a player supervises the experiment conducted by the opponent
and observes its outcome, he cannot be convinced entirely that the op-
ponent is playing according to the Nash equilibrium. And, of course,
after the outcome was observed, he will probably never conduct an
experiment himself, as the best response can be computed right away.
It is noteworthy that maximin strategies do not suffer from similar

drawbacks. The decision to use them depends only on the player’s
desire, and correct implementation is subject only to player’s skills.
As to the possible criticism that player j will respond optimally to i’s
maximin if he knows about i’s intentions to use it - it is ill grounded.
If the above reasoning is valid, namely, players do perceive the issue of
implementation to be relevant, then player j simply cannot be sure that
i will play his maximin strategy correctly, even if the latter is known
to have such an intention. In this situation the best player j can do
is to resort to his own maximin, especially as the latter guarantees
the equilibrium payoff. Related to the problem of implementation and
bounded rationality is the criticism of the statement that if player i
questions j’s ability to compute or implement the equilibrium strategy
correctly, i’s equilibrium strategy may still be a good choice, since j’s
mistakes may be ’in i’s favor’. It is not hard to see that, given the
mistakes of j, the equilibrium strategy of player i can make him either
at most as good, as any other strategy can, or strictly worse off.
The problem of subjectivity in players’ assessments about each other’s

randomizing devices was also raised in Aumann [1], that naturally
led to the development of subjective correlated equilibrium discussed
above. However, Aumann does not himself make any reference to the
importance of maximin strategies, which appears very logical to us in
this regard13.

12The issue of commitment is often overlooked in textbooks, although it is a
very serious point. For an intriguing example of how security considerations after
randomization may force a player to violate the commitment see Owen [21]. Similar
ideas are also stated in Luce and Raiffa [18], pp. 75-76.
13Aumann supposes that each player has a subjective probability distribution

about the state of the world. However, when players’ uncertainty is so big that they
cannot assign any probability distribution, the use of maximin strategies seems to
be the only option.
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3.3. Bounded Rationality. Empirical evidence largely supports the
fact that neither do players trust their opponents to be rational, nor are
they capable of computing non-trivial Nash equilibrium strategies, see,
for instance, Fudenberg and Tirole [9], p. 8, Goeree and Holt [10]14.
(Note, that even if players can compute their equilibrium strategies,
there still remain problems of implementation). How should a mildly
rational player, who has the necessary skills to analyze the game cor-
rectly, behave in such an interaction then? If he cannot observe empir-
ical frequencies of the opponent’s choices and does not have any record
of his past behavior, it seems plausible that guaranteeing the equilib-
rium value should outweigh the desire to outguess the opponent.
Perhaps in the same spirit, although the term ’bounded rationality’

was not explicitly used, Harsanyi [13], p. 116, formulates a set of
rationality postulates. One of them asserts the following: if player i
cannot hope to obtain more than his maximin payoff vi, he must use
the strategy that ’fully assures at least that much’15. Hence, maximin
and not mixed equilibrium strategies are defended. It must be stressed
that the example, in which Harsanyi illustrates this idea is a non-zero
sum, completely mixed bimatrix game of the type we deal with in this
paper.

3.4. Multiple Equilibria and Uncertainty Aversion. Typically,
the use of maximin strategies, either pure or mixed, is supported in
the framework of subjective or nonadditive probability that was ax-
iomatized by Gilboa and Schmeidler [11], see for instance Lo [17] and
Marinacci [19]. These models favor maximin strategies because players
understand that they face uncertainty on the part of their opponents’
strategies. Depending on the degree of this uncertainty non-maximin
strategies become either more or less attractive. As for the maximin
ones - they are attractive for any level of uncertainty, since the indi-
viduals are uncertainty averse. In our setup, a bimatrix game (A,B)
may possess multiple mixed strategy equilibria, which naturally leads
to the above uncertainty.

14Despite the fact that the latter tested common knowledge of rationality only
in extensive games of perfect information, their findings can probably be of some
interest here as well. Specifically, Goeree and Holt [10], found that players did not
trust in each other’s rationality when the costs of such irrationality was small.
15It is not hard to see that in any game player j can always hold (perhaps

unconsciously) i’s expected payoff down to vi by an appropriate randomization.
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4. Further Examples

Here we provide two Examples illustrating the ideas of the previous
Sections. Roughly speaking, the first Example focuses on positive as-
pects, while the second stresses normative usefulness of maximin strat-
egy.

4.1. Bounded Rationality and Model Misspecification. In ap-
plied research we rarely know players’ exact utility functions. Usually
the researcher simply substitutes monetary payoffs for utilities. Nash
equilibria of these misspecified models confirm with reality only by
chance, of course. Below we present an example, where such model
misspecification highlights the use of maximin strategies. It also shows
that the strategic situation, as perceived by players, may be different
from the model designed to capture it.
We also maintain the assumption that players are boundedly ratio-

nal. What we specifically mean by this is that players have a certain
model in mind and they act in accordance with its solution. These
models may differ. It appears that this is much more realistic than
simply assuming that all players have the same model in mind.

Example 1. A taxpayer (player 1) decides whether to report his income
honestly or evade some part of it. Independently of the taxpayer, a
tax agency (player 2) decides whether to audit him or not. Auditing
imposes fixed costs on the agency. If the audit is carried out then the
true income of the taxpayer is detected with probability one. If cheating
indeed took place, the taxpayer pays the missing amount of tax plus
a fine that is proportional to the amount of concealed income. The
monetary payoffs are summarized in the following table16

audit don’t

evade Y (1− t)− θ (Y − y) , Y t+ θ (Y − y)− c Y − yt, yt

don’t Y (1− t) , Y t− c Y (1− t) , Y t

16We are not claiming that this overly simple model best describes important
aspects of tax evasion. There are much more sophisticated models designed for that.
The usefulness of this example lies in the fact that, despite being general enough,
it exemplifies two polar cases: when maximin strategies coincide with equilibrium
ones, and when they are pure.
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Where
Y - real income of the taxpayer
y - reported income
t - tax rate
θ - penalty rate (per unit of concealed income)
c - fixed costs of audit

It is further assumed that the agency is risk neutral and the taxpayer
is risk averse, and the costs of audit are not too high, namely

c ≤ (Y − y) (t+ θ) .

The misspecification of this model, therefore, lies only in the wrong
representation of the taxpayer’s preferences. Simple computations show
that

p = (0, 1) ,

p∗ =

µ
c

(Y − y) (t+ θ)
, 1− c

(Y − y) (t+ θ)

¶
,

q∗ = q =

µ
t

t+ θ
,

θ

t+ θ

¶
,

v∗1 = Y (1− t) ,

v∗2 = Y t− ct

t+ θ
.

There are several points of interest here. First, observe that maximin
and equilibrium strategies for the agency coincide17. By all means, it
would be difficult to recommend any other strategy for the agency in
this case. We would like to relate this observation to the comments of
Ariel Rubinstein in [20], p. 37, who criticized modeling the relation-
ship between taxpayers and a tax agency as a mixed strategy Nash
equilibrium, since in equilibrium the agency is indifferent between any
two (not necessarily equilibrium) strategies, which does not seem to be
realistic. The fact that q∗ = q shows that such critique is not entirely
convincing: although in equilibrium any strategy yields the same pay-
off to the agency, only the equilibrium strategy guarantees this payoff
independently of the actions of the taxpayer. Hence, the agency may
have strong incentives to adhere to q∗.
Second, note that the above v∗2 will be the agency’s equilibrium value

for any strictly increasing concave utility function u (·) applied to the
taxpayer’s monetary payoffs (as long as the structure of Nash equi-
librium is still preserved under this transformation). Therefore, even

17Of course, this model is misspecified, but even for a correct model it may turn
out that q∗ = q.
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despite the fact that the researcher does not know u (·), he may have
strong incentives to recommend q∗ to the agency, as it guarantees v∗2
independently of the taxpayer’s true utility function. The revenue
maximizing agency, thus, may adopt the prescribed strategy even if
it suspects a misspecification, but does not know how to amend it.
Alternatively, the agency may follow the strategy q∗ because of the ar-
guments in Harsanyi [12]. Namely, it may think that the real payoffs
of the taxpayer are subject to small perturbations that tend to zero in
the limit. And that the population of taxpayers consists of two types,
each playing a corresponding pure strategy. This small amount of in-
complete information about the type of taxpayer is enough to persuade
the agency to randomize according to q∗.
Third, and most important, the model predicts a certain level of

taxpayer’s evasion, given the strategy of the agency. However, if the
agency indeed implements q∗, the risk averse taxpayer has incentives
to deviate from the proposed equilibrium. More importantly, he will
deviate precisely to p. To check this, observe that given q∗, the pure
strategy evade offers the taxpayer a lottery with the expected value
Y (1− y) , whereas the pure strategy don’t offers the same amount
with certainty. Hence, the real level of evasion will be effectively zero.
Furthermore, such deviations to pure maximin strategies would arise
even if the latter would not guarantee the expected equilibrium pay-
off. This follows from the fact that pure maximin strategies minimize
payoff dispersion (see Lemma 6 in Pruzhansky [22]). It seems that the
above misspecification may (at least) partially explain why the levels
of taxpayer’s evasion in reality are much lower than it is predicted by
the theory. Factors summarized in Sections 2 and 3 can also add to
this explanation, of course. Moreover, for the reasons explained there,
maximin strategy may be preferred to the mixed equilibrium one, even
if the model were correctly specified, or the taxpayer were risk neutral.
Finally, on pure psychological grounds, it may be the case that indi-

viduals lexicographically prefer a lottery offering v∗ with certainty to a
lottery, whose expected value is v∗, but which allows receiving strictly
less than v∗ with some positive probability. We lack precise empirical
evidence on that18. Similarly, in the context of bounded rationality and
one-shot games the quest for certainty may outweigh strategic consid-
erations. These arguments, if confirmed experimentally, will offer yet
another support for maximin strategies.

18In the context of one-person decision making this is supported by a thought
experiment in Ellsberg [8].
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4.2. Unknown Distribution. Although the next Example does not
belong to the class of 2-person games in normal form, it illustrates
how considering a maximin strategy may be useful from the normative
point of view in the light of uncertainty aversion.

Example 2. Two players jointly own a business, for which they have
private valuations θi ∈ [0, 1] , i = 1, 2. Each player i possesses a share
si of the total enterprise, thus, s1 + s2 = 1. The utility of player i is
given by θi, if he fully owns the business, and zero otherwise. The play-
ers decide to split the ownership according to the following procedure.
Player 1 names a price p for the whole business. Then player 2 either
sells his share for s2p or buys the share of player 1 for s1p, whatever
gives him higher utility. What is the equilibrium price?

In order to solve this problem player 1 needs a probability distribu-
tion of θ2. Let F (·) be such distribution. It is easy to verify that player
1 chooses such p, that maximizes his expected utility, given by

v1 (s1, p) = Pr [2 buys] s1p+Pr [2 sells] (θ1 − (1− s1) p) .

Clearly, player 2 buys whenever θ2 ≥ p and sells otherwise. Thus,

(4.1) v1 (s1, p) = s1p− pF (p) + θ1F (p) .

This expression can be maximized with respect to p, after F (p) is
assumed a specific functional form. For instance, if F (p) is uniform on
[0, 1], we have

p∗ =
s1 + θ1
2

, v∗1 =
(s1 + θ1)

2

4
.

Certainly this problem cannot be solved without a specific assump-
tion about F (·) . In reality player 1 will never know F (·) for sure.
Moreover, let us assume that player 1 is so uncertainty averse that he
is afraid of making any choice between possible distributions. At first
glance the problem does not have a solution then. Nevertheless, we
will see that analyzing a maximin strategy may (though not always!)
significantly simplify the choice of player 1.
A maximin solution makes player 1 indifferent between buying or

selling of player 2. Thus, he should set p = θ1, which will give him
utility v1 = s1θ1 with certainty. It can be checked that v∗1 ≥ v1, and
equality holds only if s1 = θ1. Player 1 can use the maximin pricing
rule when he is uncertainty averse. However, we can say something
more as well. Let us see when this maximin solution also maximizes
(4.1). By differentiating (4.1) with respect to p and setting p = θ1, one
finds the following condition

(4.2) s1 = F (θ1) ,
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which is nothing less than Pr [θ2 ≤ θ1] = s1, using the definition of
F (·) . Thus, if player 1 can estimate the probability that his valuation
exceeds that of player 2 as being equal to s1, then he can safely use
the maximin pricing and guarantee himself the equilibrium level of
utility. It appears that answering this question is somewhat simpler
than assigning a right probability distribution to θ2. Of course, it may
not solve the problem completely. In particular, generically for an
arbitrary distribution F, condition (4.2) will not hold with equality.
Despite this, considering the maximin price may be a useful step in
analyzing a problem like the above.
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