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Abstract

A fundamental question in social sciences is how trust emerges. We provide
an answer which relies on the formation of social and economic relationships.
We argue that behind trust lies the fact that individuals invest in connections
taking into account the potential externalities networks produce. Once social
ties are in place, these externalities shape the individuals’ incentives to behave
efficiently in their interactions and thereby efficient social norms are sustained.

We also show that the individual’s incentives depend on the architecture of the
network as well as on the position of the individual within the network. In
particular, when an efficient interaction requires players to mutually cooperate,
efficient social norms are easily sustained in symmetric networks. By contrast,
when an efficient interaction requires players to play asymmetrically (one coop-
erates and the other free-rides), efficient social norms are best sustained in fully
centralized architectures. We interpret these results indicating that a structural
analysis is important to understand how individuals’ incentives are shaped in
many strategic contexts.
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1 Introduction

Why should I not free-ride on my coauthor in our scientific collaboration? Why should
a firm not free-ride on another firm in the collaboration for the development of a new
product? Why should I not order a very expensive meal when I go out with a friend
for dinner with the implicit agreement that we will share the bill evenly? What does
drive the economic man not to free-ride in such situations? A fundamental question
in social sciences is how trust emerges. Our answer relies on the formation of social
and economic relationships. We argue that individuals invest in connections taking
into account the potential externalities networks produce. Once social ties are in
place, these externalities shape the individuals’ incentives to free-ride or cooperate
with others and thereby efficient social norms are easily sustained. We also show that
the individuals’ incentives in their mutual interactions depend on the architecture of
the social network as well as on the position of the individuals within the network.

We examine a framework where the investment in social or economic ties has a long
run nature.1 The formation of a link between two players brings benefits and costs
to the two parties. The benefit results from the potential exchange of some valuable
non-rival good, such as information. The cost arises because maintaining a collab-
oration requires to exert effort and spend time; a player may cooperate or not and
a free-riding problem characterizes the cost side. As an illustration consider the fol-
lowing example. Two researchers form a scientific collaboration. The benefit to each
researcher is the possibility of exchanging ideas, opinions and knowledge. Part of
the knowledge is intrinsic to these two researchers, but another part is obtained as a
result of the interaction with other agents in the social network. Further, maintaining
the relationship is costly in terms of effort and time. If the two parties cooperate,
the maintenance cost of the link will be lower as compared to the case in which they
both free-ride on each other. The increase in the maintenance cost of the link reflects
some sort of inefficiency, such as a delay in the project, which would not occur in
case of cooperative behavior. However, given that one of the two parties cooperates,
the other would prefer to free ride and save some time to develop other projects by
his own. In this paper we ask how the endogenous formation of social and economic
relationships may help to overcome free-riding problems.

We start by presenting the main features of the model. There is a finite set of individ-
uals and each of them is endowed with some non-rival information. At the beginning
of the game players propose links and this generates a network of relationships. Once
the network is in place, every pair of linked players interacts for an infinite number

1The assumption that social ties have a long run nature captures the idea that the interaction
between two acquaintances occurs more frequently than the formation of the relationship itself. For
example, once a scientific collaboration is in place, the two parties meet and interact frequently before
the project has been completed. Similarly, if two firms form a collaboration for the development of
a new product, they typically interact frequently before the collaboration ends.
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of periods. In the interaction phase, each player observes the entire network of rela-
tionships and the history of actions that each of his social acquaintances has taken in
the interaction with him; neither the actions played by his acquaintances with third
parties nor the actions played by non-acquaintances are observable.2 In each period
every pair of acquaintances, say i and j, play two simultaneous move games: an Ac-
cessibility game and a Prisoner’s Dilemma game. In the Accessibility game player i
(j) either withholds or conveys the information (the non-rival good) he has to player
j (i). The outcome of this game across all pairs of social contacts determines how
information flows in the network and therefore it defines the benefits to each player
in that specific period. On the other hand in the Prisoner’s Dilemma game, player i
(j) decides whether to cooperate or defect with player j (i); this determines the cost
of that particular link and how it is covered by the two parties.3 Therefore, a strat-
egy profile specifies a network and the way players act in the interaction phase. An
equilibrium is a strategy profile such that the proposed network is pairwise stable and
the strategy profile is a sequential equilibrium. In the analysis we first characterize
the efficient outcomes and then we focus on efficient equilibria. We now discuss the
main results.

We first characterize the efficient outcomes (Theorem 3.1). An efficient outcome is
characterized either by the empty network or by any minimally connected network
where players provide full accessibility. In this latter case two efficient outcomes
arise for two distinct ranges of parameters. First, a symmetric efficient outcome
where individuals cooperate with their acquaintances to maintain the cost of their
relationships. Second, an asymmetric efficient outcome where for each pair of linked
players, one individual cooperates and bears entirely the cost of the link, while the
other player free-rides on him. Figure 1 depicts two possible efficient configurations
in a society with 4 players.

We then turn to explore when the symmetric and asymmetric efficient outcomes can
arise as a result of strategic considerations. We start by examining the existence of
equilibria that sustain the asymmetric efficient outcome (exploitative efficient equi-
libria). We show that the exploitative efficient equilibrium which exists for the widest
range of parameters has the following features. First, the social network has a star
architecture. Second, each player i provides information and cooperates with player
j if the amount of information player j accesses exclusively from player i is weakly

2 The assumption that players fully observe the network is realistic when the network represents
a physical infrastructure. When a link means a social relationship, it is hard to think that players
observe the entire structure of the social network they belong to. We shall show that, for our results
to hold, it is enough that each player has local information of the social network.

3In particular, whenever two linked players play symmetrically in the prisoner’s dilemma game
they share evenly the cost of that link (at the defection level if both players defect, or at the
cooperative level otherwise); if they play asymmetrically the player who cooperates bears entirely
the cost of that link (at the exploitative level).
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less that the the amount of information player i accesses exclusively from player j;
otherwise player i free-rides on player j. In other words, the way a player behaves with
a social contact depends on how much valuable for the former is the relation with the
latter. This equilibrium exists for a range of the discount factor which becomes wider
as the size of the population increases.

We comment on the nature of this equilibrium. We first observe that the best way to
sustain strategically the asymmetric efficient outcome is when players are embedded in
the star network. The reason is that in the star architecture the central player detects
directly any eventual deviation and his structural position allows him to punish any
cheater with immediate social isolation (withholding all the information). Second,
in the star network the central player always free-rides on his social contacts while
the spoke players always cooperate. In other words, the spoke players sponsor their
links with the central player; on the contrary the central player uses his strategic
position to obtain private gains. Here, the role of the periphery-sponsored property
is to transfer utility from poorly connected players (spoke players) to well connected
players (central players). This aligns individuals and social incentives and therefore
it enhances efficiency. Third, we show that the larger the population is the more
likely an efficient equilibrium exists. This is due to the fact that the magnitude of
the punishments is increasing in the amount of network externalities, ceteris paribus.
These results suggest that centrality and periphery-sponsorship are crucial to sustain
an asymmetric efficient outcome in information networks.

We finally explore the existence of equilibria that sustain the symmetric efficient
outcome (cooperative efficient equilibria). Here, we show that the cooperative effi-
cient equilibrium which exists for the widest range of parameters has the following
features. First, the network has a line architecture. Second, players cooperate and
provide information, while they punish deviations in the network stage as well as in
the interaction phase by defecting and withholding information (cooperative strategy
profile). This equilibrium exists for a range of the discount factor which depends on
the size of the population.

We comment on this result. First, in sharp contrast with the exploitative case, players
sustain the symmetric efficient outcome more easily when they are embedded in the
line network, which is the most symmetric architecture within the class of minimally
connected networks. The reason for this is that individual’s incentives to deviate
in the network formation stage are inversely related to the number of connections a
player has. This indicates that symmetric distribution of links across players is impor-
tant to sustain the symmetric efficient outcome. Second, we observe that similarly to
the exploitative case when the exchange of information is used strategically individ-
ual players may credibly threat their social acquaintances by withholding information.
This creates more severe punishments as compared to settings where information is
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not strategic and therefore also a relatively impatient society can sustain cooperative
efficient equilibria.

Recently, it has been shown that network relationships play a role in shaping indi-
viduals behavior in a variety of strategic situations such as games of conflicts and
coordination games.4 The current paper is one of the first work which examines the
interplay between endogenous strategic links formation and cooperative behavior.
Seen in this perspective, it relates to different strands of the economic literature such
as cooperation in repeated games, network theory and social capital and trust. We
will discuss how our paper relates to these different branches after having present our
main results. The rest of the paper is organized as follows. Section 2 presents the
model. Section 3 characterizes efficient outcomes. Section 4 and 5 analyze exploita-
tive and cooperative efficient equilibria, respectively. Section 6 reviews the related
literature. Section 7 concludes. Proofs are developed in the Appendix.

2 Model

There is a finite set of players and each agent is endowed with some non-rival infor-
mation which has a value, v. At the beginning of the game players form an undirected
graph (network formation stage). Undirected graphs are used to model the network
of relationships among players. A graph is composed by a set of nodes and a set of
links; each node represents a player while each link indicates a bilateral relationship
between two players. Once the network is formed, each pair of linked players play
an infinitely repeated game, which consists on two simultaneous games: one, players
may augment their information exchanging it with their social contacts (Accessibility
game) and two, interacting players play a Prisoner’s Dilemma game, which defines
the cost a player has to pay for each link he has. The strategy of each player is
therefore two-dimensional and this will play a crucial role in our further analysis. We
now introduce the model formally.

• Network Formation

Let N = {1, 2, ..., n} be a set of players and let i be a typical member of this set.
To avoid trivialities, we shall assume throughout that n ≥ 3. In period zero, each
player i proposes a set of links, i.e. ω0i =

¡
ω0i,1, ω

0
i,2, ..., ω

0
i,n

¢
, where ω0i,j ∈ {0, 1},

∀j ∈ N\{i}. If ω0i,j = 1 we say that player i wants to form a link with j. A
link between two agents, say i and j, is formed if both players agree on it, i.e.
ω0i,j = ω0j,i = 1. These decisions are summarized in ω0 = (ω01, ω

0
2, ..., ω

0
n) and re-

sults in an undirected network g (ω0) = (g1 (ω0) , g2 (ω0) , ..., gn (ω0)) , where gi (ω0) =
(gi,1 (ω

0) , gi,2 (ω
0) , ..., gi,n (ω

0)) , gi,j (ω
0) = ω0i,j · ω0j,i ∀j ∈ N\{i} and gi,i (ω

0) = 0

4See Kosfled (2004) for a survey of experimental work on networks. In section 6 we briefly discuss
some of these studies.
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∀i ∈ N. When there is no confusion we will use g0 instead of g (ω0) . We say
that players i and j have a direct link if g0i,j = 1, otherwise g0i,j = 0.5 Let G be
the set of all possible undirected networks on N. For a network g ∈ G, the set
Nd

i (g) = {j ∈ NÂ {i} : gi,j = 1} defines the bilateral relationships (social contacts)
of player i. Let µdi (g) be its cardinality.

• Infinitely Repeated Game

— Prisoner’s Dilemma Game (PDG)

In any period t ≥ 1, each pair of acquaintances (i, j) plays a PDG represented in table
1. Let us denote αt

i,j ∈ {C,D} as the action chosen by player i in the interaction with
j, where C means cooperation and D defection.

i\j C D
C c, c f, e
D e, f d, d
Table 1

We shall assume throughout the paper that e > c > d > f, 2d < f and we normalize,
without loss of generality, e = 0. We denote as φti,j (αi,j, αj,i) the cost player i faces
when interacting with player j, which is represented in table 1. In words, each pair of
interacting players may either share the cost of the link symmetrically (either at the
cooperative level, c, or at the defection level, d) or only one of the two players bears
entirely the cost of that link at the exploitative level, f.

• — Accessibility Game (AG)

In any period t ≥ 1, simultaneously to the prisoner’s dilemma game, each player i ∈ N
decides either to withhold or provide (at no cost) the information to each of the other
players j ∈ N\{i} (both his own information and the information he acquires from
other agents). We denote by λti,j ∈ {0, 1} this decision, where λti,j = 1 indicates
that player i transmits the information to player j. For example, when the link is a
scientific collaboration, an R&D collaboration or a social tie providing accessibility
means to share ideas, opinions, knowledge. If a link is a collaboration to construct
an infrastructure like a bridge between two cities, then providing accessibility means
to allow the other player to access the other city using that bridge.

5We note that g0i,j = g0j,i, ∀{i, j} ∈ N.
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Let us define λti =
©
λti,j
ª
j∈NÂ{i} , then the pattern λt = Πi∈Nλti determines the flow

of information within a network g ∈ G and the combination of g and λt results in an
directed network gλ

t
, to which we will refer as “flow network”, where gλ

t

i,j = gi,j · λtj,i.
We say that the information flows from j to i if gλ

t

i,j = 1; otherwise g
λt

i,j = 0. A flow

path from j to i in gλ
t
is denoted as j

gλ
t

→ i where either gλ
t

i,j = 1 or there exists a
sequence of agents j1, ..., jm different from i and j such that gλ

t

i,j1
= gλ

t

j1,j2
= ... =

gλ
t

jm−1,jm = gλ
t

jm,j = 1. Thus, given a flow network g
λt , the set of players that i accesses

is Ni

³
gλ

t
´
=

½
j ∈ N\ {i} : j gλ

t

→ i

¾
and we denote as µi

³
gλ

t
´
the cardinality of this

set. For simplicity, we assume that information flows across links without decay.

The following notation is important to define the strategy profiles of the game. Given

gλ
t
, for any gλ

t

i,j = 1 the set Ii,j(gλt) =
½
k ∈ N :

µ
∃k gλ

t

→ i

¶
∧
µ
j /∈ k

gλ
t

→ i

¶¾
indi-

cates the set of players agent j accesses exclusively via a path containing i and its
cardinality, i.e. Ii,j(g

λt) ≡
¯̄̄
Ii,j(gλt)

¯̄̄
, represents the benefit player j obtains in the

specific interaction with player i.6 The same definition applies at period t = 0 once
we impose that gλ

0
= g.

Combining the two games, the action space of each player with regard to each of
his social contact is A ≡ {(α, λ)}αj∈{C,D},λ∈{0,1}. Let us define Ai ≡ An−1 ∀i ∈
N and A = Πi∈NAi; we note that any element in Ai is a vector of tuples ai =
(ai,1, ..., ai,i−1, ai,i+1, ..., ai,n), which represents the action played by agent i with the
remaining players in the constituent game of the infinitely repeated game.

• Strategy Profiles
We shall focus on pure strategy profiles. We assume that at each period t ≥ 1 each
player i observes the social network, the past actions of his social contacts in their
specific collaboration, and the information received by each of their social contacts,
i.e. at(i; g) = {(aτj,i, aτi,j),

³
Ij,i(g

λt), Ii,j(g
λt)
´
}j∈Nd

i (g),τ∈{1,...,t−1}. We also assume that
players neither observe the behavior of their social contacts with third parties nor
the behavior of non-acquaintances. Let Ψt(i; g) be the space of observable actions for
player i ∈ N.7 Then, the observed history at period t of player i is ht(i) = {g, at(i; g)}
and the set of histories of player i at time t is Ht(i) ≡

n
{g, ψ}ψ∈Ψt(i;g)

o
g∈G

. We refer

to s = {ω0, ω1, ..., ωt, ...} as a pure strategy profile of this game, and si is a pure

6To illustrate this, in a star network, the strategic information of the center in respect to any
other player, say j, is (n− 1), while the strategic information of j in respect to the center is 1.

7With some abuse of notation, we can define in an arbitrary period t ≥ 1, the space of observable
actions for player i ∈ N as Ψt(i; g) ≡ A2(t−1)µ

d
i (g) × {0, 1, ..., n− 1}2(t−1)µdi (g).

7



strategy of player i which consists on a set of link proposals, ω0i , and a sequence of
functions, ω1i , ..., ω

t
i, ..., where ω

t
i : Ht (i)→ Ai, ∀t ≥ 1. Let player i0s strategy set be

denoted as Si, and let S ≡
Q

i∈N Si be the set of pure strategy profiles.

It is important to note that a strategy profile s = {ω0, ω1, ..., ωt, ...} results in an undi-
rected network g0 and in an infinite sequence of directed networks {gλ1, gλ2 , ..., gλt, ...},
one for each period t. In the analysis we will focus on strategy profiles which are sta-
tionary, i.e players play the same action in the equilibrium path (at every period).

• Payoff structure

We are now ready to define the payoff structure of the game. Given a strategy profile
s = {ω0, ω1, ..., ωt, ...}, the total value generated at each period t, vt (s) , and the
utility player i obtains at that period, uti(s), can be written as:

vt (s) =
X
i∈N

uti(s), where

uti(s) = µi

³
gλ

t
´
· v +

X
j∈Nd

i (g
0)

φi,j
¡
αt
i,j, α

t
j,i

¢
Therefore, the value generated by a strategy profile s in the entire game, V (s), and
the utility to player i in the entire game, ui(s), may be represented as follows:

V (s) =
∞X
t=1

δt−1v(s) =
X
i∈N

ui(s) (1)

ui(s) =
∞X
t=1

δt−1uti(s) (2)

where δ ∈ (0, 1) is the common discount factor displayed by all agents. In words, the
utility to player i is given by a discounted sum of infinite earnings derived from the
information i accesses, i.e. µti(g

λt) · v, and the cost player i bears in his interactions,
i.e.

P
j∈Nd

i (g
0) φi,j (αi,j, αj,i) .

• Equilibrium and Efficiency Notions

We are interested in determining a strategy profile s = {ω0, ω1, ..., ωt, ...} such that
the proposed network g (ω0) is stable given the prescriptions of the strategy s in the
continuation game, i.e. {ω1, ..., ωt, ...}; and this strategy is a sequential equilibrium
(i.e. prescribes to play an equilibrium for any possible observed network g0 ∈ G and
any history of play in the infinitely repeated game). To determine the stability of the
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network we use the notion of pairwise stability.8 Formally, given {ω1, ..., ωt, ...}, the
network g0 is pairwise stable if no pair of players wants to form an additional link
and no individual player wants to delete any set of his links.9

Definition 2.1 The strategy profile s = {ω0, ω1, ..., ωt, ...} is an equilibrium if {ω1, ..., ωt, ...}
is a sequential equilibrium, and g0 is pairwise stable.

To complete, we define the notion of efficiency.

Definition 2.2 A strategy s is efficient if V (s) ≥ V (ŝ) for any ŝ ∈ S.

We note that if a strategy is socially efficient, it is also Pareto efficient. The reverse
does not hold.

3 Efficient Outcomes

We start by characterizing the efficient outcomes. We shall then proceed to investigate
strategy profiles which enable to sustain efficient equilibria. We will focus on maximal
punishment strategy profiles. This will clarify the role networks play on the emergence
of efficient social norms and the effect of efficient social norms in shaping the incentives
to invest in connections. Taken these effects together, the analysis will also clarify
the tension between individual and social incentives.

We first introduce some notation. Given a network g, we say there is a path of links
from j to i, denoted as j

g←→ i, if either gi,j = 1 or there exists a sequence of players
j1, ..., jm not including i and j such that gi,j1 = gj1,j2 = ... = gjm,j = 1. A set
C(g) ⊂ N is a component of g if for any i, j ∈ C(g) there is a path between them,
and it does not exist a path between an agent in C(g) and N\C(g). A component
is minimal if there exists only one path between any pair of players i, j ∈ C(g). A
network g is connected if it has a unique component. If a network is connected and
its unique component is minimal, we say that it is minimally connected. A player
i in a network g is said to be an end-agent if he has a unique link. A network is
empty if there are no links across players. A network g has a star architecture and i
is the central player if gi,j = 1, ∀j ∈ N\{i}, and there are no other links. A line is a
minimally connected network where only two end-agents exist.

The following result characterizes the efficient outcomes.

8The concept of pairwise stability has been introduced by Jackson and Wolinsky (1996). In the
current paper we will use a modified version of this notion introduced by Goyal and Joshi (2003)

9We propose that g0 must be pairwise stable, instead of requiring ω0 to be a Nash equilibrium.
In the latter case, given {ω1, ..., ωt, ...}, we would obtain a multiplicity of equilibria of the type:
whenever ω0i,j = 0 ∀{i, j} ∈ N, then player j is indifferent between setting ω0j,i = 1 or ω

0
j,i = 0. The

former case avoids this problem and stresses the architecture of the equilibrium network, g0.
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Theorem 3.1 Suppose (1) and (2) hold. (a) If nv + max{2c, f} > 0 then s =
{ω0, ω1, ..., ωt, ...} is efficient if and only if the following conditions hold: (i) g0 is
minimally connected; (ii) each player provides accessibility in every period; (iii) the
total cost for each link in every period is max{2c, f}. (b) If nv+max{2c, f} < 0, s is
efficient if and only if g0 is the empty network.

We sketch here the main steps of the proof of Theorem 3.1. First, since exchanging
information is costless and it (weakly) increases social welfare, a social planner will
prescribe to mutually exchange information. Second, the no-decay assumption implies
that an efficient network is minimal. Third, since linking up two players otherwise
disconnected creates positive network externalities an efficient network is either empty
or connected. Finally, in any minimally connected network social welfare is maximized
whenever the cost for each link is as low as possible.

Theorem 3.1 shows that efficiency requires that players form a minimally connected
network and they exchange information. Furthermore, two possibilities may arise.
First, in some settings, i.e. 2c > f, players must mutually cooperate.10 We will refer
to this case as the symmetric efficient outcome; it is readily seen that a symmetric
efficient outcome generates a social welfare equal to (n− 1)(nv+2c)/(1− δ). Second,
in other settings, efficiency requires that for each link a player cooperates and bears
entirely the cost of that link, while the other player free-rides on him. We will refer to
this case as the asymmetric efficient outcome, which generates a social welfare equal
to: (n− 1)(nv + f)/(1− δ).11

Figure 1 depicts one possible symmetric and asymmetric efficient outcome in a society
composed of 4 players. In the figure, a link is represented by an edge connected two
players and an arrowhead pointed to one player indicates that information flows in
the direction of that player; finally, the way the cost of a link is covered by the two
players is indicated with the letters above the edge.

10For example, assume that to maintain the link agents must exert effort and that the cost to
exert effort for a player is convex. In this case splitting the mainteinance tasks between the two
parties is more efficient than letting only one player to take care of them.
11For example, when the performance of a task (the maintenance of the link) requires a lot of

coordination across players or the opening of different bureaucratic procedures, it may be more
efficient leaving the task to be solved unilaterally as compared to solve it bilaterally. In the scientific
collaboration example, if the two reaserchers belong to two different universities, it is generally more
costly for the two researchers to meet in a conference and both of them paying the plane fare as
compared to the case that only one of the two researchers visits the other one in his own university.

10
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In what follows, we shall study under which circumstances is possible to sustain
strategically the asymmetric and the symmetric efficient outcome, respectively. We
will restrict our analysis to the case in which max{2c, f} + nv > 0, which would
eventually be the case in large societies, even if the individual cost of a link is high.

4 Exploitative Efficient Equilibria

We start by examining the existence of equilibria which sustain the asymmetric effi-
cient outcome. We will refer to these equilibria as exploitative efficient equilibria. We
first analyse a benchmark case where social ties do not play any strategic role in the
game. To do this we assume that the communication of information is not strategic
and that players’ behavior in the interaction phase does not depend on the realization
of the network stage.12 The following remark shows that in this setting exploitative
efficient equilibria do not exist.

Remark 4.1. Suppose social ties do not play any role, then an exploitative efficient
equilibrium does not exist.

In what follows we shall show that when strategic communication is allowed this inef-
ficiency fades away. To show this we characterize the efficient exploitative equilibrium
which exists for the widest range of parameters. This equilibrium is characterized by
two features: one, the network has a star architecture, and two, the central player
always free rides while the peripheral players always cooperate. Therefore, in equi-
librium the cost of each connection is paid by the player who values it more.13 As a
presentation strategy we will first define a strategy profile, called exploitative strategy,
which sustains the asymmetric efficient outcome. We then show that such strategy

12Recall we are restricting our analysis to stationary strategy profiles.
13In a different setting, Meléndez-Jiménez (2002) obtains that when two agents bargain on the

cost sharing of a link, the agent who values more the link bears a higher part of the cost of the link,
and when both value the link equally, they split evenly the cost.
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sustains the exploitative efficient equilibrium for the widest range of parameters and
we characterize it.

The exploitative strategy prescribes players to form a set of links, which generates a
social network, say g0. If players observe a network which is different from the pre-
scribed one, they defect and withhold the information. Differently, if players observe
g0, each agent i provides information and cooperates with player j if the amount of
information player j accesses exclusively from player i is weakly less that the the
amount of information that player i accesses exclusively from player j; otherwise
player i free-rides on player j. Furthermore, a deviation in the interaction phase is
punished by withholding information and defecting. It is important to note that
even if players only observe the behavior of their direct neighbors in their mutual
interaction, they can infer deviations of their social contacts with third parties and
deviations of non-acquaintances by observing the flow of information they access in
their interactions. In other words, even if players have only local information, social
punishments are indirectly implementable. To define the strategy profile formally, we
need to introduce some additional notation.

Definition 4.1 We say that the action taken by player i against j at period t, ati,j,
is well-behaved, WB, with respect to the relative flow of information between i and j,
if and only if

ati,j =

½
(C, 1) if Ii,j(gλ

t
) = Ii,j(g

0) ≤ Ii,j(g
0) = Ij,i(g

λt)
(D, 1) otherwise

The exploitative strategy profile is then defined as sE =
n
ω0i , ω

E,1
i , ..., ωE,t

i , ...
o
i∈N

,

where ωE
i =

n
ω0i , ω

E,1
i , ..., ωE,t

i , ...
o
is such that for any ĝ ∈ G and any j ∈ N :

ωE,1
i,j =

 (D, 1) if ĝ = g0 and Ii,j(g
0) > Ij,i(g

0)
(C, 1) if ĝ = g0 and Ii,j(g

0) ≤ Ij,i(g
0)

(D, 0) otherwise
, and ∀t ≥ 2 :

ωE,t
i,j =


(D, 1) if at−1k,i and at−1i,k are WB, ∀k ∈ Nd

i (g
0) , and Ii,j(g

0) > Ij,i(g
0)

(C, 1) if at−1k,i and at−1i,k are WB, ∀k ∈ Nd
i (g

0) , and Ii,j(g
0) ≤ Ij,i(g

0)
(D, 0) otherwise

It is worth noting that the exploitative strategy profile prescribes that each player
plays the Nash equilibrium (D, 0) in any out-of-equilibrium path. This implies that,
to define the conditions for existence of a sequential equilibrium, we only need to
focus on individuals’ incentives in the equilibrium path. We are now ready to provide
the main result of this section. Let us denote n̄ = (v−2d)(d−f)

v2
+ 1.
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Theorem 4.1 Suppose (1) and (2) hold and assume 2c < f. An efficient equilibrium
exists if and only if (i) f + (n − 1)v ≥ 0 and (ii) δ ≥ d−f

(n−1)v . Furthermore, if n > n̄
then the unique network part of the efficient equilibrium which exists for the widest
range of parameters is the star network.14

The proof of the theorem is based on Lemmas 1 and 2 which are provided in the
appendix. We sketch here the main arguments. In Lemma 1 we start by showing
that the exploitative strategy sustains the exploitative efficient equilibrium for the
widest range of parameters in a star network. The reason is that in the star network
the center may punish any deviations directly by withholding all the information; this
implies that any cheater would be socially isolated just after one period of his devi-
ation. On the contrary, in any other minimally connected network there exists some
player who could deviate and yet enjoy some information for some period after the
deviation. Next, conditions (i) and (ii) follow by solving the equilibrium conditions
for the exploitative strategy profile in the case where the initial network has a star
architecture.

In Lemma 2 we show that if conditions (i) and (ii) are not satisfied then there does
not exist a strategy profile which sustains as equilibrium the asymmetric efficient
outcome. To prove this we first show that any strategy profile which sustains the
asymmetric efficient outcome for the parameter range in which condition (i) holds
should impose that each player pays at most for one of the links he has. We then
turn to the equilibrium condition imposed by the sequential rationality notion, i.e.
condition (ii). Here we note that when condition (ii) binds, i.e. δ = d−f

(n−1)v , for an
equilibrium any end-agent must pay for his link. For otherwise, there would be a
player which pays for at least two links and this player would deviate at that level of
the discount factor. Using this fact, the proof follows by noticing that the exploitative
strategy prescribes a maximal punishment to an end-agent who deviates. Finally we
prove that, if the population is high enough (n > n̄), when conditions (i) and (ii) are
binding any strategy profile different from the exploitative strategy profile is not an
equilibrium.

We first comment on the existence region of exploitative efficient equilibria. Two
remarks are worth making. One, both condition (i) and (ii) become weaker as the size
of the population increases. Asymptotically as the size of the society becomes infinite
an exploitative efficient equilibrium always exists. This is so because the higher is the
size of the population, the higher are the network externalities which are produced,
which in turn increase the magnitude of punishments. This suggests that the conflict
between individual and social incentives is less severe in large societies. Two, we also
note that the pairwise stability notion leads to an equilibrium condition (condition
(i)), which is invariant with respect to the architecture of the network, provided that

14We note that even if n < n̄, the star network is an efficient equilibrium for the widest range of
parameters, but it is not the unique one.
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each player pays at most the cost of one link. Therefore, the pairwise stability notion
does not have any bite on the architecture of the network. On the contrary, the
requirement of sequential equilibrium crucially depends on the architecture of the
network. Hence, in our setting, individuals’ incentives are embedded in their social
network.

The second set of observations concerns with the nature of efficient exploitative equi-
libria. Here, we would like to emphasize three remarks. First, the star architecture
allows to sustain strategically the asymmetric efficient outcome more likely as com-
pared to other minimally connected networks. The reason is that in the star network
the central player has the ability to maximally punish occurring deviations. This sug-
gests that centrality is a crucial structural property to monitor individuals’ behavior in
information networks. Second, centrality is accompanied by the periphery-sponsored
property: the cost of each link is unilaterally met by the player who values it more,
which is the peripheral player in that specific interaction. Here, the role played by
the periphery-sponsored property is to transfer utility from poor connected players
to well connected players. In other words, well connected players use strategically
their structural position to obtain private gains. This is in line with the theory of
structural holes developed by Burt (1983), which has been successfully tested in many
empirical analyses.

Third, we note that exploitative efficient equilibria are characterized by hierarchical
structures. The following example illustrates this point. Consider a society composed
of 9 players, arranged in the network depicted in Figure 2, who follow the exploitative
strategy profile.
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Figure 2

We note that three types of players emerges. Player 1 is the exploitative player
in the sense that he free-rides on every of his neighbors (players 2 and 3). The
role of the exploitative player is to connect two star components, which would be
otherwise disconnected. Players 2 and 3 are hybrid players in the sense that they
cooperate with the central player and they exploit all their other social contacts.
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The remaining players are always exploited. Note that hybrid players have higher
incentives to deviate than exploited players because, as compared to the end-agents,
hybrid players could defect with their exploiter (the center) and yet they would enjoy
the information from the end-agents for some period after that the deviation has
occurred.

5 Cooperative Efficient Equilibria

We now explore the existence of equilibria which sustain the symmetric efficient out-
come. We shall refer to these equilibria as cooperative efficient equilibria. Similarly to
the previous section, we first analyse a benchmark case where social ties do not play
any strategic role. The next remark shows that in these cases the trade-off between
individual and social incentives is substantial.

Remark 5.1. Suppose that social ties do not play any role and that 2c > f. An
efficient equilibrium exists if and only if v + c ≥ 0 and δ ≥ c/d

We note that given a minimally connected network the continuation game degener-
ates, for each period t ≥ 1, in a finite number of bilateral prisoner’s dilemma games
which are strategically independent. As a consequence the equilibrium condition to
sustain mutual cooperation in any link is obtained by applying the standard Folk
theorem, i.e. δ ≥ c/d. Once players are sufficiently patient, the condition v + c ≥ 0
is necessary and sufficient so that a minimally connected network is pairwise stable
(in this case the critical agent would be the one linked with an end-agent).

We now examine the effect of allowing players to use the information strategically.
We shall show that when strategic communication is allowed the conflict between
individual and social incentives is less severe. As in the previous section, we analyse
the cooperative efficient equilibrium which exists for the widest range of parameters.
This equilibrium is characterized by two features: the network has a line architecture
and every player cooperates.

We start by introducing the cooperative strategy profile. This strategy prescribes
players to form a set of links, which generates a network of relationships, say g0.
In the interaction phase each player defects and withholds information whenever a
network which is different from the prescribed one is observed. Otherwise, each player
cooperates and provides information to his neighbors, while he punishes an eventual
deviation by defecting and withholding the information in every period onwards in all
his links. Also in this case, each player detects directly the deviations of their social
contacts in his interactions and indirectly (via the information flow) the deviations
of his social contacts with third parties and the deviations of non-acquaintances.
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Formally, let us define the cooperative strategy profile as sC = {ω0i , ωC,1
i , ..., ωC,t

i , ...}i∈N ,
where ωC,t

i =
n
ωC,t
i,1 , ..., ω

C,t
i,n

o
is such that for any ĝ ∈ G and any j ∈ N :

ωC,1
i,j =

½
(C, 1) if ĝ = g0

(D, 0) otherwise
and ∀t ≥ 2 :

ωC,t
i,j =

½
(C, 1) if at−1k,i =a

t−1
i,k = (C, 1) and (Ik,i(g

λt−1), Ii,k(g
λt−1))=(Ik,i(g0), Ii,k (g0)), ∀k ∈ Nd

i (g)
(D, 0) otherwise

It is worth noticing that the cooperative strategy profile prescribes to play the Nash
equilibrium (D, 0) in any out-of-equilibrium path. Thus, to define the existence con-
ditions of a sequential equilibrium it is enough to focus on individuals’ incentives in
the equilibrium path. The Theorem below provides the main result of this section.
Let δ∗ be the solution of the following equation δ∗[v+(n− 2) vδ∗+c−d−dδ∗]+c = 0.

Theorem 5.1 Suppose (1) and (2) hold and assume that 2c > f. An efficient equi-
librium exists if and only if (i) (n − 1)v + 2c ≥ 0 and (ii) δ ≥ δ∗. Furthermore, the
unique network which is part the cooperative efficient equilibrium which exists for the
widest range of parameters is the line network.

The Theorem follows from lemmas 3 and 4 in appendix. We sketch here the main
arguments. In the first lemma we show that the cooperative strategy profile sustains
the cooperative efficient equilibrium which exists for the widest range of parameters
when the initial network has a line architecture. To prove this we first observe that,
given that players follow the cooperative strategy in the interaction phase, in the
network formation stage players’ incentives to deviate are increasing in the number
of links they have. Furthermore, we show that in any other network different from
the line, in the interaction phase players have at least the same incentives to deviate
as compared to players embedded in a line network. The equilibrium conditions
(i) and (ii) are obtained by imposing pairwise stability and sequential rationality,
respectively. In the second Lemma we show that both conditions (i) and (ii) should
hold in order that a symmetric efficient outcome can be sustained as an equilibrium.
This follows by noticing that the cooperative strategy profile prescribes maximal
punishments.

We would like to elaborate on some aspects of the results presented in Theorem
5.1. We first observe that when players can strategically decide whether to convey
or withhold information to their neighbors, cooperative efficient equilibria exist for
parameter ranges where they would not exist, otherwise (see Remark 5.1). The
reason is that players may credibly commit to convey information, conditionally on
having inferred that each player has cooperated in his interactions. Similarly to the
exploitative case analysed in the previous section, network externalities are higher
in a larger society, which enhances efficiency. The second observation is about the
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nature of the equilibrium which exists for the widest range of parameters. Figure 3
illustrates this equilibrium in a society composed of 4 players.

2 31 4
(c,c) (c,c) (c,c)

2 31 4
(c,c) (c,c) (c,c)
Figure 3: Line network

The main feature of this equilibrium is that players are embedded in a very symmetric
network: the line network. This suggest that a symmetric distribution of connections
across players (fairly compatible networks) is crucial to sustain strategically the sym-
metric efficient outcome.

6 Related Literature

The prevalence of situations in which networks play a role and their crucial impor-
tance in shaping the final outcome of these interactions has been extensively studied
empirically. In particular, in the context of games of conflicts, a recent experiment
by Rield and Ule (2002) examine the role of endogenous network formation in the
way rational players’ play a repeated prisoners’ dilemma game. When comparing a
treatment where the network is exogenously given with treatments where the net-
work is formed endogenously, they observe that in the latter case cooperation rates
are significantly higher as compared to the former case. Cassar (2002) analyzes the
cooperative behavior in three classes of networks: random networks, small world net-
works and regular networks. The main result is that small world networks exhibit
the smaller level of cooperation among different network structures considered. This
suggests that the way players are connected shapes their willing to cooperate. The
current paper provides a theoretical account of the effects of network externalities
in the strategic formation of informal relationships and individuals’ incentives. Our
paper relates to three strands of the economic literature, that is network formation,
cooperation in repeated games and social capital and trust. We will refer to each of
them in turn.

The first contribution refers to the body of literature which studies how networks form
when players have the discretion of forming links, see Aumann and Myerson (1989),
Bala and Goyal (2000) and Jackson and Wolinsky (1996).15 Our model borrows from
that literature the basic elements of network formation models: forming a link with
another individual requires to costly exert effort and it allows access, in part and in due
course, to the benefits available to the latter via her own links. However, we depart

15Other examples are Dutta, Nouweland and Tijs (1995), Galeotti, Goyal and Kamphorst (2003),
Jackson and Watts (2001) and Kranton and Minehart (2001).

17



from the existing literature as players can decide whether to exchange information
and their behaviors determine the cost of the links. Therefore, players’ strategies are
two-dimensional and this is the primary difference between the current paper and the
existing literature on network formation. The main effect of this multidimensionality
in the strategy space is that players can strategically relate the decision of providing
information with the action that determines the cost of the link. We have shown that
this fact mitigates the trade-off between individual and social incentives and that the
trade-off vanishes as the size of the society is large enough.

Secondly, our paper relates to the literature of cooperation in repeated games. To
some extent it relates to the work of Kandori (1992) and Ellison (1994). They analyse
a setting where players, belonging to a community, are repeatedly and randomly
matched to play a Prisoner’s dilemma game. The main result is that cooperation
can be sustained if players react to a deviation by punishing subsequent partners.
Therefore, the community has a positive effect in the enforcement of cooperative
behavior: to free-ride on one player causes sanction by others. The main difference
in our approach is that players’ interaction takes place in a fixed pattern of play (the
community is endogenously structured) and this allows us to investigate the effect of
network externalities on the enforcement of efficient long-run and stable relationships.

A paper which shares the same spirit of ours is Haag and Lagunoff (2000); they analyse
a prisoners’ dilemma game where players are ex-ante heterogeneous with respect to
their discount factor and they play with all the population (i.e. the complete network)
and each player is restricted to play the same action with all agents. They show that
the more symmetric the distribution of the discount factor is, the higher it is the
maximum achievable degree of cooperation. Moreover, the effects of the size of the
population on cooperation depends on the parameters of the model. Differently, in
the current paper, even if players are ex-ante homogeneous, heterogeneity comes from
the different positions in the network once it is (endogenously) determined.

Finally, we relate our paper to the theory of social capital and trust.16 Social capital
is a relational concept and its existence is inherent to socioeconomic networks. Social
capital affects individuals’ behavior as well as aggregate economic phenomena. An
individual player can use his social capital, which depends on the nature of his con-
nections, to obtain private economic gains. From a societal perspective, social capital
represents the basis of trust in repeated interactions. Sociologists have widely studied
this subject. Coleman (1988) emphasizes the role of redundant links for the emer-
gence of trust introducing the so-called closure argument. Consider, for simplicity, a
society with three players. Coleman (1988) argues that social capital is higher when
players are embedded in a cycle network as compared to a star network. The reason
is that in a cycle players can monitor rivals’ deviations more efficiently than in a star:

16See J. Sobel (2002) for an extensive discussion on the notion of social capital.
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in a cycle if a friend cheats on me I could communicate this to a common friends (in
the star there are no common friends), which would eventually react by punishing
the cheater. By contrast, Burt (1992) emphasizes the importance of non-redundant
connections introducing the so-called structural hole argument. Structural holes are
players who connected networks by linking different components, which would be
otherwise disconnected. These players on the one hand integrate additive sources
of information, which in turn increases the value generated by the network and on
the other hand they may use strategically their structural position to obtain private
gains. These two theories should be seen as complementary: the closure argument
explains how the benefits of network externalities can be realized in a community,
while the structural hole argument explains how network externalities come about,
and the structural properties of players who are crucial for the emergence of these
externalities.

In economics, the notion of social capital has been mainly used to study issues related
to economic development, criminality and education.17 However, a theoretical anal-
ysis of how social capital emerges is still at a preliminary stage. The first attempt to
address this issue is Vega-Redondo (2002). Agents interact according to a collection
of infinitely repeated prisoner’s dilemma games played on the current social network.
The strategic effects of networks result from the fact that players can communicate
via their links behavioral information about their acquaintances. This allows for the
formation of stable and dense networks in which players can monitor efficiently other
players’ behavior and this mitigates the incentives to free-ride. By contrast, in our
model social capital emerges because players invest in connections that generates net-
work externalities, and players use these externalities to punish possible deviations.
We would like to emphasize that while the work of Vega-Redondo (2002) is more
in the spirit of the closure argument, our paper follows the idea of structural holes.
In this perspective, the current paper can be seen as complementary to the work of
Vega-Redondo (2002).

7 Discussion and Conclusion

Free-riding problems are often solved in many economic and social interactions. We
have showed that the mere fact that economic actions are embedded in the social
structure allows players to internalize network externalities to a great extent. Fur-
thermore, players may use strategically these externalities to overcome free-riding
problems. These effects result from the fact that players can strategically use social
channels to exchange information and this serve to shape individuals’ incentives.

We now discuss how the results presented in the paper are robust to the main as-

17See Dasgupta and Sarageldin (1999) for a discussion of the main contributions on social capital
in economics.
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sumptions. We first elaborate on the impact of relaxing the assumption that players
observe fully the structure of the network. It is easy to see that for our results to hold
it is enough that players are aware about the connections held by their direct social
contacts and the information their social contacts can potentially provide. Indeed,
this information is sufficient to allow players to employ the strategy profiles used in
our analysis.

Second, we have showed that efficient equilibria are best sustained when the size of
the society is large. It is worth noticing that this result holds as far as the payoffs
functions are increasing in the amount of information a player accesses. Thus, the
fact that we consider linear payoff functions is not crucial. A weaker case can be made
if we relax the assumption of frictionless information flow. Suppose we introduce a
small amount of decay then an efficient outcome is characterized by a star network
where players provide information and the cost of each link is either shared at the
cooperative level (when 2c>f) or it is borne unilaterally at the exploitative level
(otherwise). In the former case, since the central player bears the cooperative cost
for each link, the existence conditions for a cooperative efficient equilibrium will be
independent of the size of the population. On the contrary, in the latter case, the
results presented in section 4 carry on qualitatively.

Third, we have explored a model where investment in links is sunk and players cannot
change their network over time. We note that the strategy profiles use also apply on
a repeated game where the network formation and players interaction occurs simul-
taneously. Finally, we elaborate on the possibility of time-preference heterogeneous
players. Our analyses shows that in equilibrium players having different position in
the networks have different incentives. Therefore it is not crucial that players discount
the features evenly. A formal analysis of these topics is left for future research.

8 Appendix

Efficient Outcomes

We start by proving Theorem 3.1, which characterizes the efficient outcomes of the
game.

Proof of Theorem 3.1. We start by proving part (a), i.e. nv+max{2c, f} > 0.We
first claim that if s is efficient then conditions (i)-(iii) hold. First, the requirement
that g0 is minimal follows from the no-decay assumption. Second, we note that
given a minimal network, to provide information strictly increases social welfare.
Thus, condition (ii) follows. Third, condition (iii) assures that the cost of each link
at any period is minimized. Fourth, we note that g0 must be connected. For a
contradiction let assume that g0 is minimal but not connected. Consider an end-agent
belonging to a component C(g0) of cardinality k > 1; the social welfare produced by
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the link with the end-agent is 2(k− 1)v+max{2c, f} ≥ 0, which is positive since, by
assumption, s is efficient. Let us consider a strategy ŝ which prescribes a network ĝ0,
which differs from the original network in the fact that ĝ0 has an additional link, say
between i and j, where i ∈ C(g0), j ∈ N\C(g0), and the information is exchanged
in the new link. It is readily seen that V (ŝ) − V (s) ≥ 2kv + max{2c, f}. Since
2kv + max{2c, f} > 2(k − 1)v + max{2c, f} ≥ 0, it follows that V (ŝ) − V (s) > 0.
This contradicts the fact that s is efficient. Hence, the claim follows. We now observe
that any minimally connected network in which condition (ii) and (iii) are satisfied
produces a social welfare equals to V (s) = (n−1)(nv+max{2c,f})

1−δ > 0. This proves the
part (a) of the Theorem. Part (b) follows trivially. Hence, the proof is completed.¥

Exploitative Efficient Equilibria

Proof of Theorem 4.1. The proof of the Theorem is based on the next two lemmas.
Let n̄ = (v−2d)(d−f)

v2
+ 1

Lemma 1 Suppose (1) and (2) hold and assume 2c < f. The strategy profile sE

is an efficient equilibrium if and only if (i) δ ≥ d−f
(n−1)v and (ii) (n − 1)v + f ≥ 0.

Further, if n > n̄ then the strategy sE is an efficient equilibrium for the widest range
of parameters when g0 is a star network.

Proof. Consider the strategy sE =
©
ω0, ωE,1, ..., ωE,t, ...

ª
where g0 is minimally

connected. We first observe that, given sE, in order to obtain an asymmetric efficient
outcome, we need to focus on minimally connected network where Ii,j (g0) 6= Ij,i (g

0)
for any gi,j = 1. Next, we observe that, given sE, in any minimally connected network
each player pays at most the cost of one link at the exploitative level. It is readily
seen that g0 is pairwise stable if and only if (n− 1) v + f ≥ 0.

Second, we analyse the conditions for the discount factor δ (relative to the interaction
stage). We start by noticing that, since as soon as players realize a deviation via the
information flow they reverse their behavior to the Nash equilibrium (D, 0) , it follows
that sE is optimal, regardless of the players’ beliefs. This implies that to determine
the parameter conditions for a sequential equilibrium we simply need to focus on the
players’ incentives on the equilibrium path.

Third, let us assume that g0 is the star network. Here, we start by noticing that the
central player, say j, does not have any incentives to deviate from sE, since he obtains
the maximum achievable payoff in this game, i.e. ufj

¡
sE
¢
= (n−1)v

1−δ . Furthermore, every
agent i ∈ N\{j} faces the same problem; select then an arbitrary player i in this set.
Next, we show that i does not deviate if and only if δ ≥ d−f

(n−1)v . To see this we note

that the utility agent i obtains following the strategy sE is ui
¡
sE
¢
= (n−1)v+f

1−δ , and
the utility if he deviates is udi

¡
sdi , s

E
−i
¢
= (n− 1) v + d

1−δ . Therefore an equilibrium
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requires that ui
¡
sE
¢ ≥ udi

¡
sdi , s

E
−i
¢
, which is satisfied if and only if δ ≥ d−f

(n−1)v . Hence,

if (n− 1) v + f ≥ 0 and δ ≥ d−f
(n−1)v the strategy sE where g0 is a star network is an

equilibrium. Differently, if g0 is not a star network, we note that there always exist
at least two end-agents; it is readily seen that an end-agent does not deviate from sE

only if δ ≥ d−f
(n−1)v .

Fourth, we show that if n > n̄ the strategy sE is an equilibrium for the widest range of
parameters only if g0 is a star network. Suppose not, then when n > n̄, (n− 1) v+f ≥
0 and δ = d−f

(n−1)v , the strategy sE is an equilibrium for some minimally connected
network g0 different from the star. We note that in any minimally connected network
g0 it exists an agent, say j, who has k links with k end agents (k ≥ 1) and one
additional link with a non end-agent, i.e. µdj (g

0) = k + 1. The utility this player
obtains following the strategy is uj

¡
sE
¢
= (n−1)v+f

1−δ . Assume player j deviates with
the k end-agents; the utility from such deviation is udj

¡
sdj , s

E
−j
¢
= (n− 1) v + d

1−δ +

kvδ + kdδ2

1−δ . Since g
0 is part of an equilibrium, it must be the case that the incentives

to deviate of an arbitrary end-agent i are weakly higher than the incentives of player
j, i.e. udi

¡
sdi , s

E
−i
¢ ≥ udj

¡
sdj , s

E
−j
¢
.18 This is satisfied if and only if (n− 1) v + d

1−δ ≥
(n− 1) v + d

1−δ + kvδ + kdδ2

1−δ , which can be rewritten as v − δ (v − d) ≤ 0. We now
note that when δ = d−f

(n−1)v the condition v − δ (v − d) = v − (d−f)(v−d)
(n−1)v ≤ 0 if and

only if n ≤ (d−f)(v−d)
v2

+ 1. Since (d−f)(v−d)
v2

+ 1 < n̄, this contradicts the assumption
that n > n̄. Hence if n > n̄ the star network uniquely allows the strategy sE to be an
equilibrium for the widest parameter range.

This completes the proof of the Lemma.¥

We now prove that, given any strategy profile an efficient equilibrium exists only if the
conditions (i) and (ii) in Theorem 4.2 are satisfied and that given that these condi-
tions are binding then a strategy s = (g0, ω1, ..., ωt, ...) different from the exploitative
strategy profile is not an efficient equilibrium.

Lemma 2 Suppose (1) and (2) hold and assume 2c < f. An efficient equilibrium exists
only if (i) (n− 1) v+f ≥ 0 and (ii) δ ≥ (d−f)

(n−1)v . Further, given that (n− 1) v+f = 0

and δ = (d−f)
(n−1)v , if n > n̄ every strategy s = (g0, ω1, ..., ωt...) different from the

exploitative strategy is not an efficient equilibrium.

Proof. Let f > 2c. Assume that the outcome of s = {ω0, ..., ωt, ...} is efficient,
i.e. g0 is a minimally connected network, all links are paid at the exploitative level
and there is complete flow of information. We first claim that s is pairwise stable
only if (n− 1) v+f ≥ 0. In order to get the lower bound condition to attain pairwise
18This is true because the utility to player i and j by following the strategy profile sE coincides.
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stability we shall assume that the strategy s prescribes a maximal punishment in
the network formation stage, i.e. if a network ĝ 6= g0 is observed then agents play
(D, 0) in all the interactions. Then, given that players follow s in the interaction

phase the payoff of an agent when the network g0 is formed is
(n−1)v+µd,pi (g0,s)f

1−δ , where
µd,pi (g0, s) ≤ µdi (g

0) represents the links agent i pays (at the exploitative level) given s.
The best deviation of player i in the network formation stage would be to delete all his
links and obtain a payoff 0. Hence the condition for pairwise stability is obtained when
(n− 1) v+maxi∈N µd,pi (g0, s) f ≥ 0. Given s, for any g0, min{maxi∈N µd,pi (g0, s)} ≥ 1,
thus, s is pairwise stable only if (n− 1) v + f ≥ 0 and the claim follows.

Second, we claim that s is a sequential equilibrium only if δ ≥ d−f
(n−1)v .We note that, in

order to get a lower bound on δ, we shall consider that the strategy profile s involves
maximal punishments in case of any deviation in the interaction stage. Such strategy
should prescribe that if at some period t an agent i ∈ N deviates in his interaction
with j ∈ Nd

i (g
0) then j plays aτj,i = (D, 0) ∀τ ≥ t + 1. Therefore, given s, two

possibilities may occur: (1) there is at least one end agent, say j, who pays for his
link, and (2) no end-agent pays for his link. We start considering case (1) ; the payoff
to the end-agent j, if he follows the strategy is uj (s) =

(n−1)v+f
1−δ , and the payoff if he

deviates in his interaction is udj
¡
sdj , s−j

¢
= (n− 1) v + d

1−δ . Agent j does not want to
deviate whenever δ ≥ d−f

(n−1)v . Hence, in this case, our claim follows.

We now consider case (2) , i.e. no end-agent pays for his link. Let E0 (g0) ∈ N
represent the set of end-agents in g0. We claim that there exists some player i ∈
M0 (g

0) ≡ N\E0 (g0) who is paying all his direct links. Assume for a contradiction
that no agent pays for all his links, i.e. µd,pi (g0, s) < µdi (g

0) ∀i ∈ N . Since the
end-agents are not paying for their links, any agent k0 ∈ M0 (g

0) linked to an agent
j0 ∈ E0 (g

0) is paying for the link {j0, k0}. This implies that in case g0 has a star
architecture, the center pays for all his direct links; this is a contradiction. Therefore,
let g0 be a minimally connected network different from the star. Let g0,1 be a network
obtained by removing from g0 all agents belonging to E0 (g0) and their corresponding
links. We note that since g0 is minimally connected, also g0,1 is minimally connected.
Let E1 (g0) ∈ M0 (g

0) be the set of end-agents in g0,1. We note that each player
j1 ∈ E1 (g

0) had some link with some end-agent in g0 and he was paying for that
particular link; since j1 is an end-agent in g0,1 and no agent pay for all his links in
g0, it follows that j1 does not pay for the link in g0,1, i.e. there exists some player
k1 ∈ M1 (g

0) ≡ M0 (g
0) \E1 (g0) linked to some agent j1 ∈ E1 (g

0) and such that k1
pays for the link {j1, k1}.

We can proceed with the same reasoning defining the network g0,2 as the resultant
network from removing from g0,1 all agents in E1 (g

0) and their corresponding links.
We note that g0,2 is also minimally connected. Let E2 (g0) ∈ M1 (g

0) be the set of
end-agents in g0,2. Since each j2 ∈ E2 (g

0) had some link with some end-agent in g0,1,
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he was paying for that particular link and this agent just have one link in g0,2 it
follows that any agent k2 ∈M2 (g

0) ≡M1 (g
0) \E2 (g0) linked to an agent j2 ∈ E2 (g

0)
is paying for that link {j2, k2}. Since the number of players is finite, by induction
we obtain that at some finite iteration period τ , the cardinality of the set Mτ (g

0) is
either 1 or 2. Consider the caseMτ (g

0) = {i1}. Then this agent pays for all his links,
which contradicts our initial assumption. Now consider the case Mτ (g

0) = {i1, i,2};
note that i1 and i2 must be necessarily linked in g0 and, therefore, one of these agents
pays for all his links, a contradiction. This proves the claim.

This claim implies that there exists some player i such that µd,pi (g0, s) = µdi (g
0) .

Since player i is not an end agent in g0, µdi (g
0) ≥ 2. The payoff of such agent from

following the strategy s is ui (s) =
(n−1)v+µdi (g0)f

1−δ , and the payoff from deviating in

all his interactions, sdi , is ui
¡
sdi , s−i

¢
= (n− 1) v + µdi (g0)d

1−δ . For an equilibrium it

must be the case that ui (s) ≥ ui
¡
sdi , s−i

¢
, i.e. δ ≥ µdi (g0)(d−f)

(n−1)v . We observe that since

µdi (g
0) ≥ 2, µ

d
i (g0)(d−f)
(n−1)v > d−f

(n−1)v . The argument developed so far shows that conditions
(i) and (ii) are necessary for a strategy s to be an efficient equilibrium.

We now prove that if these two conditions are binding and n > n̄, any strategy s
different from sE is not an efficient equilibrium. Assume s = {g0, ..., ωt, ...} is an
efficient equilibrium; we start by noting that since (n− 1) v + f = 0 and s is an
efficient equilibrium it must be the case that each player i ∈ N pays at most for
one link, i.e. each player cooperates with at most one of his social contacts. Next,
consider now an arbitrary pair of players, say i and j, who are directly linked, g0i,j = 1,
and, without loss of generality, let us assume that Ii,j (g0) > Ij,i (g

0) . We have two
possibilities, which we analyse in turn.

I.) Suppose the strategy profile s prescribes in the equilibrium path that player j
cooperates and player i defects. In this case, since sE and s are equivalent in the
equilibrium path and sE prescribes maximal punishments for every deviation which
eventually occurs, it follows that the incentive of player j (i) to follow s with i (j)
cannot be higher than to follow sE. In this case, we can use Lemma 4.1 to prove the
claim.

II.) Suppose that the strategy profile s prescribes in the equilibrium path that player
i cooperates and player j defects. The utility of player i to follow s is ui (s) =
(n−1)v+f
1−δ . If player i deviates (using his best deviation) against player j at some pe-

riod t, the utility he obtains in the continuation game is udi
¡
sdi , s−i

¢
= (n− 1) v +

(n− 1− Ij,i (g
0)) vδ+ d

1−δ +
(µdi−1)dδ2

1−δ . Now we claim that player i have always incen-
tives to deviate (for δ = d−f

(n−1)v ). To see this, let us consider the case where player i
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would have the lowest incentives to deviate19, i.e. Ij,i (g0) = n/2 and µdi = n − 2.20
In this case, the utility of the best deviation of player i becomes ūdi

¡
sdi , s−i

¢
=

(n− 1) v + ¡n−2
2

¢
vδ + d

1−δ +
(n−2)dδ2
1−δ . We now note that ui (s) ≥ ūdi

¡
sdi , s−i

¢
if and

only if (n− 1) vδ − ¡n−2
2

¢
vδ (1− δ) − (n− 2) dδ2 > d − f. Since δ = d−f

(n−1)v , we can

rewrite this condition as −v+ δ(v− 2d) = −v+ d−f
(n−1)v (v− 2d) > 0, which is satisfied

if and only if n < n̄. This contradicts the fact that n > n̄ and completes the proof of
the Lemma.¥

The two lemmas prove the Theorem.¥

Cooperative Efficient Equilibria

Proof of Theorem 5.1. We first observe that the cooperative strategy profile pre-
scribes players to play the Nash equilibrium (D, 0) in any possible out-of-equilibrium
path. This implies that, to define the existence conditions of a sequential equilibrium,
we just need to focus on individuals’ incentives in the equilibrium path. Using this
fact, the proof of the theorem is based on two Lemmas which are stated and proved
below.

Lemma 3. Suppose (1) and (2) hold and assume 2c > f. The cooperative strategy
profile, sC =

©
ω0, ωC,1, ..., ωC,t, ...

ª
is an equilibrium for the widest range of parameters

when g0 is a line network. In such case, sC is an equilibrium if and only if (n− 1) v+
2c ≥ 0 and δ ≥ δ∗, where δ∗ [v + (n− 2) vδ∗ + c− d− dδ∗] + c = 0.

Proof.
Let us consider the strategy profile sC = {ω0, ωC,1, ..., ωC,t, ...}, where g0 is a minimally
connected network. We first show that the network which is pairwise stable for
the widest range of parameters is the line network. The utility a player i obtains

from following the cooperative strategy is ui
¡
sC
¢
=

(n−1)v+µdi (g0)c
1−δ , where µdi (g

0) ∈
{1, 2, ..., n− 1} . Suppose player i deviates in the network stage. Since players play
defection and withhold information in the interaction phase if a network different
from g0 is observed, it is clear that the best deviation of player i is to delete any link
he has and doing so player i obtains zero utility. Thus, player i follows sC if and
only if ui

¡
sC
¢ ≥ 0, which is equivalent to (n− 1) v + µdi (g

0) c ≥ 0. This implies that
in any minimally connected network g0 the player who has the highest incentive to
deviate in the network stage is player j such that µdj (g

0) = maxi∈N µdi (g
0) . We now

observe that in the line network µdj
¡
gline

¢
= 2 < µdj (g

0) for any minimally connected

19Note that player i’s incentives to deviate are decreasing in Ij,i
¡
g0
¢
, because it represents the

amount of information he looses when deviating (with a lag of only one period), and these incentives
are also decreasing in µdi , since when player i deviates at some period t he will have to pay a cost d
in his relationship with each of his social contacts from period t+ 2 onwards.
20Note that this situation is not possible, but we use it to get a lower bound in the incentives to

deviate.
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network g0 different from the line. It is readily seen that, given sC, where g0 is the
line network, the network g0 is pairwise stable if and only if (n− 1) v + 2c ≥ 0.

We now analyse the conditions for the discount factor δ (relative to the interaction
stage). Let us assume that g0 is the line network. We first show that the player
who has the highest incentive to deviate in the interaction phase is either an end-
agent, say i, or a player linked with an end agent, say j. Consider an end agent i,
then the utility this player obtains following the strategy is ui

¡
sC
¢
= (n−1)v+c

1−δ . If
player i deviates in the interaction stage, his utility would be (n− 1)v + c

1−δ ; thus a
deviation is not profitable when δ ≥ δ̄ ≡ −c

(n−1)v−d . Next, consider a player j linked
with an end-agent; we note that player j has two links: one with an end-agent, say
i, and one with a non-end agent, say j0. The utility of player j from following the
strategy uj

¡
sC
¢
= (n−1)v+2c

1−δ . At any period t, player j has two relevant possible
deviations. One, player j may deviate only with player i at period t and deviate
with player j0 in period t + 1; let us denote this deviation strategy as sd1j , then
ud1j
¡
sd1j , s

C
−j
¢
= (n− 1) v + (n− 2) vδ + c + dδ

1−δ +
dδ2

1−δ . Two, player j may deviate
both with player i and j0 at period t; let us denote this deviation strategy as sd2j ,

then ud2j
¡
sd2j , s

C
−j
¢
= (n− 1) v + 2dδ

1−δ .
21 We now observe that any other player who is

neither an end-agent nor a player linked with an end-agent, say j0, has a link with
two non end-agents and he may deviate similarly to player j: to deviate only with
the agent who is closest to an end agent of the line, say sd1j0 , and to deviate with both
of his social contacts, say sd2j0 . It is readily seen that u

d1
j (s

d1
j , s

C
−j) > ud1j0 (s

d1
j0 , s

C
−j0) and

ud2j (s
d2
j , sC−j) = ud2j0 (s

d2
j0 , s

C
−j0). This proves the claim.

Second, we claim that agent j has a higher incentive to deviate as compared to player
i. Above we have shown that player i follows sC if and only if δ > δ̄. We now
investigate the incentive of player j. Assume δ > δ̄, then ud1j ≥ ud2j if and only if
δ ≥ δ̂ ≡ −c

(n−2)v−d > δ̄. Player j follows sC if and only if uj
¡
sC
¢ ≥ ud1j

¡
sd1j , s

C
−j
¢
,

which is equivalent to δ[v+(n− 2) vδ+c−d−dδ]+c ≥ 0. Let us define the following
function: Υ (δ) = δ[v+(n− 2) vδ+ c− d− dδ] + c.We note that ∂Υ(δ)

∂δ
> 0 and using

the fact that c = dδ̂ − (n− 2) vδ̂. we observe that Υ
³
δ̂
´
= − (n− 3) vδ̂ < 0. Hence

for δ ≤ δ̂ player j has incentives to deviate. This proves the claim. Moreover we can
state the condition for player j not to deviate. Since when δ > δ̂, the best deviation
of player j is sd1j , for an equilibrium we need that δ ≥ δ∗, where δ∗ > δ̂ is such that
Υ (δ∗) = 0.

We now claim that in any other minimally connected network g0 different from the
line, say g0, if δ < δ∗, sC is not an equilibrium. We observe that in any minimally

21Player j may also deviate only with player i at period t. However, this deviation is strictly
dominated by the deviation sd1j . Finally, player j may deviate with player j0 at period t and either
deviate with i at period t+ 1 or not. These two possibilities are strictly dominated by sd2j .

26



connected network it must be the case that there exist a player, say j00 who has k
links with k end agents (k ≥ 1) and one additional link, which may be either with
a non end-agent, or with an end-agent (this last case would only be possible with
the star network). Here we have two possibilities. One, if k = 1 then the incentives
to deviate of player j00 are the same that the incentives of a player linked with an
end-agent in a line network (player j above); in this case the claim follows. Two,
k ≥ 2; by construction µdj00 (g

0) = k+ 1 and the utility player j00 obtains following sC

is uj0
¡
sC
¢
= (n−1)v+(k+1)c

1−δ . Let us assume that player j00 deviates in his interactions
with the k end-agents at some period t and with the remaining player at period t+1,
sdkj00 . The utility from such deviation is udkj00

¡
sdkj00 , s

C
−j00
¢
= (n− 1) v + (n− 1− k) vδ +

c + kdδ+dδ2

1−δ . Therefore player j00 follows sC if and only if uj00
¡
sC
¢ ≥ udkj00

¡
sdkj00 , s

C
−j00
¢
,

which is analogous to δ[kv + (n− 1− k) vδ+ c− kd− dδ] ≥ −kc.We now show that
when δ = δ∗, player j00 deviates. To see this we note that Υ (δ∗) = 0 implies that
−c = δ∗[v + (n− 2) vδ∗ + c − d − dδ∗]. Assume for a contradiction that player j0

does not want to deviate at δ∗, i.e. δ∗[kv + (n− 1− k) vδ∗ + c − kd − dδ∗] ≥ −kc.
If, in the RHS, we substitute −c from the equation Υ (δ∗) = 0 we obtain δ∗[kv +
(n− 1− k) vδ∗+ c− kd− dδ∗] ≥ −kδ∗[v+(n− 2) vδ∗+ c− d− dδ∗]⇔ δ∗ ≤ −c

(n−1)v−d ,

which is a contradiction since we have already shown that δ∗ > δ̂ > δ̄ = −c
(n−1)v−d .This

proves the claim.

This completes the proof of the Lemma.¥

Lemma 4. Suppose (1) and (2) hold and assume 2c > f. Consider the set of
strategies S∗ ⊂ S which result in the asymmetric efficient outcome. If a strategy
s ∈ S∗ is an equilibrium, then sE with g0 = g is also an equilibrium.

Proof.

Assume 2c > f. To prove this, it is enough to show that sC is a maximal punish-
ment strategy profile. To see this note that if a player, say i, deviates in the network
formation stage, he receives the worst possible outcome from period 1 onwards (be-
cause aτj,i = (D, 0), ∀j ∈ Nd

i (g) , τ ≥ 1). If player i deviates in the interaction stage,
at some period t then the players with whom player i deviates directly realize the
deviation, and hence they play (D, 0) from period t + 1, while the remaining social
contacts realize the deviation at t + 1 and hence they play (D, 0) from period t + 2
onwards. Clearly, given the informational structure, player i receives the maximum
punishment when he deviates. This completes the proof.¥

Lemmas 4 and 5 prove the Theorem.¥
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